NOTES ON

RUBIK'S
MAGIC

CUBE

by
DAVlD SINGMASTER

chmc o the Sout
London, England

ENSLOW PUBLISHERS
Bloy Street and Ramse enue



First American publication, 1981
Copyright ©1981 by David Singmaster
© 1979, 1980 by David Singmaster

Except for corrections and additional bibliography,
this edition is identical to the British fifth edition.
All rights reserved.

No part of this book may be reproduced by any means
without the written permission of the publisher.

Library of Congress Cataloging in Publication Data:

Singmaster, David.
Notes on Rubik’s Magic Cube.

Includes index.

1. Cube. 2. Polyhedra—Models. 3. Grouips,

Theory of. I. Title.
QA491.858 1981 793.7°4 80-27751
ISBN 0-89490-043-9 paperback AACR1
ISBN 0-89490-057-9 hardcover

Printed in the United States of America
10987654321



iii

CONTENTS.
Foreword v
1. Introduction 1
2. Generalities 1
Disassembly 2
3. Notation 3
4, Some group theory L
5. Some explorations 10
A. The slice group 10
B. The slice-squared group 11
c. Two squares group 11
D. The antislice group 11
E. The two generator group 12
F. Some simple processes 12
6. The Basic Mathematical Problem 12
T. Further problems 18

A. The supergroup; B. The three generator groups;

C. The four generator groups; D. The five generator group;
E. The square group; F. The maximal order problem;

G. The commutator subgroup; H. Pretty patterns;

I. Super problems.

8. Some answers and comments 18
The slice group; The slice-squared group;

Two squares group; The antislice group 20

The two generator group 21

The supergroup 22

9. Supplement on the Basic Mathematical Problem 22

A, Improved edge processes 22

B. Monoflips and monotwists 23

C. Some further improved corner processes 24

D. An improved algorithm 24

E. Problem 19 26

10. Some results on further problenms 26

A. Orders of subgroups 26

B. The five generator group 26

C. The maximal order problem 27

D. The commutator subgroup 27

E. Pretty patterns 28

F. More magic polyhedra 28

ADDENDUM NUMBER ONE 29

ADDENDUM NUMBER TWO 30

ADDENDUM NUMBER THREE 31

The slice group 31

Some problems 33

ADDENDUM NUMBER FOUR 3k

Minimum number of moves 3k

The Magic Domino 3k

ADDENDUM NUMBER FIVE 36

5.1, Lubrication 37

5.2. Distribution of the cube 37

5.3. Independent invention 37

5.4. General anecdotes 38

5.5. Competitions and shortest times 38
5.6. Problem 19 - Maximum number of moves to restore

the cube 39

A. Thistlethwaite's algorithm 39

B. Other algorithms 39



iv

5.7. New notation and diagrams
A, U notation
5.8. A small catalogue of processes
A. U edge processes
i, Two 2-cycles
ii. One 3-cycle
iii. Flips
B. U corner processes
i. Two 2-cycles
ii. One 3-cycle
iii. Twists
C. Some other U processes
D. Some non-U processes
E. Edge(s) into middle slice processes
F. Supergroup processes

G. Comments on useful new partial processes

5.9. Pretty patterns

A, Symmetries of the cube and the centres group

B. The simpler pretty patterns
C. More complex pretty patterns
5.10. Theoretical developments and problems
A. The U group
B. Generation of the whole group
C. Presentations
D. Orders of elements
E. The two-dimensional problem
F. Cayley graphs and antipodes
G. The square group - 2 x 2 x 2 case
H. The antislice group
I. The square group - 3 x 3 x 3 case
J. The two generator group
K. The group <F,RZ>
L. Conjugation and cycle structure
M. Wreath products
N. The 2 x 2 x 2 cube
5.11. Miscellany

A STEP-BY-STEP SOLUTION TO RUBIK'S MAGIC CUBE
Bibliography

Index



FOREWORD

These Notes are a bit like Topsy - they have 'just growed'.
There have been so many additions for this edition that I feel it
necessary to provide a new and more substantial introduction.

The book has been retitled since the cube is now being sold both as
the Magic Cube and Rubik's Cube. This edition is twice the length of the
last version of the book and includes a table of contents, the latest
news and results, a new notation and diagrams for one face processes,
catalogues of useful processes and pretty patterns, many theoretical ad-
ditions (including the discovery of PGL(2,5)), a bibliography, a detailed
index and a detailed step-by-step solution, found on pages 62-64.

The material of the last version has been unchanged except for
minor corrections and the liberal insertion of cross references where
there was space to add them. These are sometimes abbreviated to just
page numbers, e.g. (See pp 12,31) or (pp 12,31) or even (12,31). I have
also inserted a few names of processes or patterns when the names have
been bestowed after the original description, e.g. (L-flip; 31).

There is not always room to give such references, so the reader should
remember that a particular topic may be discussed again later and better.
The accretion of addenda to the first four editions has been retained

as the accretion of new results is felt to reflect the way in which
cubism has developed.

The basic material of these Notes is designed to give you, the
reader, a basic understanding of the Magic Cube. An algorithm for
restoring it to START is developed in section 6 and improved in section
9. A detailed step by step version of it is given separately. With
practice, this method takes less than 200 moves and less than 5 minutes.
This is quite an accomplishment, but then what? To go beyond, one must
have a good notation and some elementary notions of group theory. Section
3 introduces my notation which has been widely accepted and should be
readily understandable even to those with no mathematical background.
(Indeed, those with mathematical background often adopt much more complex
notations.) Section 4 introduces the basic concepts of permutations and
group theory, using the symmetries of the square as a standard example.

A lot of basic material is quickly covered here and the reader is advised
to skim through this section and return to it as necessary. A great

deal more group theory develops later, but always as a natural outgrowth
of playing with the cube. If the cube fascinates you as much as it does
me, you will assimilate an enormous amount of group theory and greatly
develop your spatial abilities. It is reported that Rubik actually
invented the cube to develop students' three dimensional abilities.

The cube is probably the most educational toy ever invented!

There are many exercises and problems, especially in sections 3 to
T. The reader is advised to stop and try them. Some solutions are in
section 8, but there are often better answers given later and there are
many problems which can be improved or which have not yet been examined
I hope that this presentation is accessible to those with no mathematical
background and that it will lead them up to the frontiers of the subject.
Though elementary, some of the ideas require practice and hard work to
master and the reader is advised to use lots of paper for writing out
and for drawing and to constantly have a cube in hand.

v
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Section 1 is an earlier introduction; section 2 is generalities,
including how to dismantle the cube. Sections 3 and 4 have been described
above. Section 5 introduces the reader to the simpler subgroups of the
cube. If your cube is in chaos, get someone to do it for you, or take
it apart, or follow the step by step solution, so that you can do this
section. These groups are aesthetically pleasing and are small enough
that you can easily keep from getting lost. In some of them, you can't
even get lost. These explorations should lead you to find sufficient
basic processes that you could create a general algorithm.

Section 6 explains and later shows just which patterns of the
cube are achievable. It shows how two basic processes can be used to
construct an algorithm. This algorithm is greatly improved in section 9.
Section T introduces a number of further subgroups and problems.

Section 8 gives answers to the problems and some comments on the more
open-ended problems.

Supplementary section 9 gives many improved processes, including
the monoflip and monotwist, leading to an reasonably efficient algorithm.
Section 10 presents many new results and extensions. The addenda to
the first four editions extend the previous results, giving improvements
and many new pretty patterns, discussing the Magic Domino, ete.

Addendum Number Five is nearly as large as all the previous
material. It includes the latest anecdotes ('cubist's thumb'),
discussion of Thistlethwaite's latest algorithm (at most 52 moves) and
other algorithms, a new notation and diagrams for processes that only
affect the U face, a small catalogue of useful processes (systematically
arranged) and comments on new partial processes (Monoswop, Rubik's
Duotwist, Thistlethwaite's Tritwist), a systematic catalogue of pretty
patterns and an number of analyses of subgroups (square group, two
generator group), among a number of other theoretical results and
problems. Some rather advanced topics of group theory turn up on the
cube, including PGL(2,5) in its degree 6 representation and wreath products.
A detailed index (5 pages), a bibliography (3 pages), and the step by
step solution (4 pages) are included.

I should like to thank the many correspondents who have provided
corrections and additions. I am happy to receive further correspondence,
though it is becoming overwhelming! In particular, I am thinking of
compiling/editing a more theoretical book on the cube, perhaps in one
of the Lecture Notes series and I would be happy to hear from potential
contributors (but please try to keep in agreement with my notations!). My
address is: David Singmaster

Department of Mathematical Sciences and Computing
Polytechnic of the South Bank
London SE1 OAA

My thanks to Cornelius Caesar, Jerrold Grossman, Nicholas Hammond,
Michael Holroyd, 3-D Jackson, Kathleen Ollerenshaw, Itsuo Sakane and Morwen
Thistelthwaite for finding errata, which now have been corrected.

Finally, I would like to dedicate this to my wife Deborah, who correctly
recognised the cube as an enemy on first sight two years ago and who has

wisely refused to touch it, but who has nonetheless gallantly proofread
the text.

David Singmaster



NOTES ON RUBIK'S MAGIC CUBE

1. INTRODUCTION.

These notes are intended to be read in parts. Numerous exercises
and problems are given. The reader is invited to stop after reading a
problem and try to solve it. If you get stuck or are impatient, try
reading the next few sentences. The answer is rarely given immediately—
instead there may be development of the ideas involved or hints or the
solution is given in section 8.

Many of the later problems are not yet completely solved and many
undoubtedly have better solutions than given here. I would be grateful
for comments.

A Supplement of better results, an improved algorithm and further
problems has been added as sections 9 and 10 to this revised version.

2. GENERALITIES.

The action of the cube is that each face (of nine unit cubes) can be
turned about its céntral point. WARNING!! It only takes about 4 random
moves for the cube to become thoroughly confused. (But see page 38.)

The Basic Mathematical Problem is to restore the cube from any random
pattern back to the original pattern in which each face is of a single
colour. Masochists with a mathematical background may wish to start
solving this problem at this point. WARNING. Two weeks seems to be
the average solution time if you work very hard at it and are clever or
have some hints or know some group theory or have exceptional three-
dimensional ability. Some group theory, a notation and some introductory
hints are given below, before a solution is outlined. I recommend even
masochists to read the section on notation before beginning.

For the mechanically minded, there is the Basic Mechanical Problem of
how the cube is constructed. The internal structure is remarkably simple
and ingenious. Problem. Can you devise a mechanism for the cube? Very
few people can. The cube was invented by an ingenious Hungarian sculptor,
architect and designer, Professor Ern8 Rubik, of the School for Commercial
Artists in Budapest. Though he did not work out the formal mathematics of
the basic mathematical problem, he did find a workable algorithm. (37,38)

The Hungarian instructions are fairly general and not necessary though
I have prepared a literal translation of them (my thanks to J. Dénes and A.
Kaposi for this). However, the instructions do state that the cube can be
washed in lukewarm slightly soapy water. I find that turning the cube under
a running tap works well. This removes the plastic dust which accumulates
internally and which may make turning rather stiff. The plastic is some-
what self lubricating but turning may be quite stiff at first. A lubricant
can be applied when the cube is disassembled but it is not clear what should
be used. Graphite powder (which would be ideal) or a liquid will come out
on the hands. I tried talcum powder once but it didn't seem to make any

1
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difference. Soap, candlewax or silicone grease might work. (pp 31,37,38)

The unit cubes are not solid but are hollow plastic mouldings. One
internal face has a cover plate pressed in and perhaps glued. A loose
plate will give great trouble in turning. It can be pressed in and |
reglued (if necessary) with any ordinary glue when the cube is disassembled.
A plate which is uneven or a ridge of glue can also be troublesome and
these can be filed smooth with a nail file or simply allowed to wear down
with use.

In turning a face, it helps to hold the cube firmly so the unit cubes
stay aligned. If the cube gets a bit skew, pressing it against a flat
surface will 'square' it up.

Disassembly. Consider any face of the cube. It contains 9 unit
cubes: & corners, 4 edges and a centre. Rotate the top by h5° (i.e. an

eighth of a turn or half-way to the next position). An edge piece of the
top face can then be twisted upward, as shown by the arrow in Figure 1,
and then it will come out. If
the cube is stiff, a screwdriver
may be used. Once one piece is
out, the other pieces can be
easily removed. The internal
[ ] mechanism can then be inspected
l and will become clear. The
elegant simplicity of the
mechanism is truly remarkable and
is a brilliant piece of three-
4 dimensional design! To reassemble,
return the pieces one by one. You
will find it convenient to omit
an edge of the middle layer and
to turn the top layer as you put
pieces into it. Put the omitted
edge piece in last, in the
configuration of Figure 1, simply
by pressing it in and down. This
FIGURE 1 may require considerable eff?rt
—_— with a new cube. You may find
some edges easier to insert than
others. WARNING. It is advisable
to reassemble in the starting
pattern. We shall see that not all patterns are accessible from the
starting pattern. Problem. Show this.

The face centre pieces are attached to the central spindle by a
spring-loaded screw. In earlier batches of the cube, it was common for
a face centre piece to come unscrewed or for its spring to get entangled
with the screw, making the face too loose. If either of these happens,
peel off the sticky coloured square from the face centre piece to reveal
its cover plate. If the piece is off, you may be able to pop off the cover
plate by pressing the screw upward into the piece or you may be able to lever
it off. Otherwise, make a small neat hole in the cover plate sufficient
to insert a small screwdriver or to remove the screw and spring. If you
have & tangled spring, disentangle it and use a pliers to compress the
top turn of the spring so it will not slip over the head of the screw again.
Whichever problem you have, you can prevent repetitions by putting some
glue in the screw hole of the central spindle, lubricating the head of the
screvw (graphite is ideal) and by turning mostly clockwise.

If you dislike the colours on your cube, you can get sticky coloured
material at a stationer's. One friend has put pink dots on one colour
since he had trouble distinguishing two of the colours.

Very rarely, a cube arrives with some of the pieces accidentally glued
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together. You can carefully separate them with a sharp knife and then
smooth off the inner surfaces. (See page 60.)

3.  NOTATION.

In order to develop a notation, we need to make some first basic
observations. Problem. What happens to the centre cubes of the faces
as the faces are turned? What can you say asbout what happens to the
edge and corner pieces?

In fact, the observations required here border on the trivial. With
a little careful playing, you will make these observations, though you may
not consciously express them. I will give the answers shortly.

Meanwhile, I will point out that the starting pattern on the cube
varies from cube to cube. Problem 1. How many ways are there to place
six colours on the six faces of a cube? (We say two colourings are the
same if one can be changed to the other by a movement of the whole cube.)

The observations wanted in the first paragraph are: the centre of
a face always remains in place (though it does get turned - see section T-A);
the corner pieces are moved to corner places; the edge pieces are moved to
edge places. Hence we can never move a corner piece to an edge place, etc.

Thus we can always tell what the starting colour of a face was,
simply by looking at its centre. Further, there can only be one form
of the starting position, i.e. there is only one possible way to have each
face of a single colour. We shall refer to this position as START (or GO
or Square One (Cube One?)).

Conveniently, the six colours used all have different initials in
English: Blue, Green, Orange, Red, White,Yellow, so we can use these
initial letters for denoting the faces. However, as remarked sbove, the
arrangement of colours varies from cube to cube. Further it is useful to
have a notation which is independent of the orientation of the cube.

(Problem 2. How many orientations does a cube have?) Consequently, it

is best to develop a notation which is independent of colours and orienta-
tions. Inconveniently, the natural English words give Bottom/Back and
Right/Rear problems, so I have chosen the following six names: Right,
Left, Front, Back, Up, Down, which will be abbreviated by their initials.

We can now use our six letters to describe the six faces and the various
pieces and positions, e.g. UR, UF, UL, UB are the four edge pieces of the
U face and URF, UFL, ULB, UBR are the four corner pieces. Note that UR and RU
are the same piece. We agree to list the colours or directions at a corner
in clockwise order. Then URF, RFU and FUR are the same piece. We shall
draw diagrams showing the F, U
and R faces as in Figure 2.
Generally, we will only show the
colours on the F, U, R faces, but,
when necessary, we can indicate
colours on the unseen faces by
letters around the edge, as done
in Figure 2. However, Figure 2
does not completely define the
pattern on the cube (Problem 3.

Why not?) but will be adequate
for our purposes.

We further use our six letters
to describe the six face movements.
For right-handed people, the most
natural turning seems to be the fol-
lowing. Hold the cube in the left
hand with U up and F front (i.e. to-
wards you) so L is against the left
FIGURE 2 palm. Grasp the R face with the
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right hand with the thumb at D and the fingers at U (or at F and B) and
turn 90" clockwise, i.e. so the upper edge turns away from you. This
process, applied to the starting pattern, yields the pattern of Figure 3.
(We write our letters upright
even if we know they have turned.)
We denote this clockwise quarter turn
of the R face by R, and likewise
for all the other faces. We use

R? to denote a 180° turn and R3 or

R to denote a 270° turn, i.e.
a 90° turn anti~clockwise, and like-
wise for the other faces. (p 40)
We record a sequence of
moves by writing them from left
to right. E.g. RU means first
apply R, then apply U. Problem k4.
Draw the patterns produced by RU
and by UR. Are they the same?

Before leaving this section,
I will remark that in certain
'subgroups', there are other
ways of denoting moves and that
these may be easier to use in
the subgroups. (pp 20,21,36)

4, SOME GROUP THEORY.

This section is quite elementary and may be skipped or skimmed at
first and returned to as necessary.

Any sequence of moves rearranges the 54 (= 6 x 9) coloured faces of
the unit cubes. (Actually, we may reduce this to 48 since the 6 face
centres never move.) Such a rearrangement is called a permutation. In
order to understand what patterns are possible and to phrase and study
other questions, we need some terminology and some results about permu-
tations and groups of permutations.

It is easiest to describe these ideas in a simpler context. Consider
a square with corners labelled A, B, C, D as in Figure 4. A symmetry of

D A [+ >
A 4 ,//////Jr (2 B o »
FIGURE 5 FIGURE T
D ¢ \\\\\\\‘>\. ® A
FIGURE L4
C D

FIGURE 6
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the square is a movement of the square as a rigid body which returns it
to its original place, but generally with the cormers in different places.
Figures 5 and 6 show the effect of rotating the square clockwise by 90
and of reflecting it in the bisector parallel to AD. If we had an actual
square, we could put it back where it had been, but with drawings we must
imagine the drawn result as occupying the original place though it is
drawn elsewhere. We conventionally always place the labels right way up,
though if they were attached to the square, they would be in a different
configuration. This is shown in Figure T, which is how Figure 5 'ought'
to have been drawn. We shall denote our two example symmetries of the
square by R (for Rotation) and V (for Vertical reflection). Problem 5.
Describe all the symmetries of the square.

Each symmetry of the square gives a permutation of the labels A, B, C, D.
There are several ways to think of this permutation, depending on two
decisions as to points of view. Firstly, we can either think of the action
as 'is carried to' or 'is replaced by'. Secondly, we can either think of
the permutation as acting on the labels or symbols, regardless of where they
are, or as acting on the contents of positions, regardless of what symbol
is presently in that position. In the latter case, we will use the labels
to represent the corner positions and we can make this clearer by putting

the labels outside the square as in Figure 8.

The: first distinction is a duality equivalent to

the duality between a 'permutation and its inverse.

A B The second distinction is more significant and one

point of view may be much more suitable for a given
problem than the other. However, these distinctions
do not become noticeable until we multiply permuta-
tions a bit later.

We can represent permutations as in the follow-
ing diagrams, where the arrows represent 'is carried

D C to' or 'is replaced by'.

Is carried to Is replaced by

FIGURE 8 A B COD A B COD

R = +y ¥+ ¢+ ¢ vy ¥ 4+ ¥

B C D A D A B C

A B C D A B C D

V= + ¥ ¢ ¥ L 2E0E R 2R 2

B A D C B A D C

The arrows and the upper rows can clearly be omitted, e.g. leaving R as

B CDA. Note that the 'is replaced by' form of a permutation is the same
as the 'is carried to' form of its inverse. This is the same as noting
that reversing the arrows of one form gives the other. (This requires
rearranging the representation somewhat - e.g. reversing arrows in the

ABCD BCDA ABCD
first form of R gives 4+ + 4+ 4 , whichis + ¢+ ++ ,0r ++ 4+ + .) We
BCDA ABCD DABC

write B = R(A), etc., when using 'is carried to' and D = R(A), etc., when
using 'is replaced by'.

The result of applying first R and then V is called the product of
R and V and we will write it RV. WARNING. Most books would write this
as VR which is more convenient in the usual contexts since it agrees with
the usual practice for multiplying or composing functions. The calculation
of RV can easily be done using 'is replaced by' with peimutations acting
on symbols. Then R replaces A by D and V replaces D by C, so RV replaces
A by C; B is replaced by A which is replaced by B, etct So we get

ABCD
RV= ¢+ + ¢+, or simply C B A D, which is the reflection of the square in
CBAD
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the BD diagonal. (The usual mode of calculation would be: (VR)(A) =

V(R(A)) = V(D) = C and this is the convenience of the usual representation

of the product as VR.) One can compute, with some additional difficulty,

the result RV using 'is carried to' and this gives the same result as above.

The use of permutations acting on symbols means that V interchanges

A and B, wherever they may be. E.g. after applying R, V is the reflection

in the horizontal bisector of the square, which is the bisector parallel

to AD in the turned square. If we calculate with permutations acting on

positions, then V will always be reflection in the vertical bisector,

interchanging the contents of the NW and NE corners (i.e. the corners where

A and B originally were) and the SW and SE corners, regardless of the
ABCD

current contents of these positions. Then RV is 4 + + + or ADC B,
ADCB

which is easily computed using 'is carried to'. We have that R carries

A to B and V carries B to A, so RV carries A to A (i.e. it takes whatever

was in the A corner to the A corner), etc. One can see that the calculation

of RV using 'is replaced by' acting on positions gives the same answer.

The dichotomies between 'is carried to' and 'is replaced by' and
between symbols and positions are rarely made this explicit in texts and
often confuse beginners because 'is replaced by' acting on symbols, which
is the usual form (corresponding to composition of functions) does not
correspond to the physical symmetries in the way one would at first expect.

Problem 6. Using (a) 'is replaced by' on symbols and (b) 'is carried
to' on positions, compute VR, VRZ, VR3,

I shall generally use 'is carried to' on positions in describing
permutations on the cube, since the basic moves R, U, ..., are defined
in terms of physical positions. However, there are certain 'subgroups'
in which one can use 'is replaced by' on symbols.

Now we wish to describe a different representation for a permutation
which will be more informative. Consider any permutation P. The successive

2

applications of P are denoted P, P<, P3, ... These permutations carry (or

replace) a position (or symbol) A by P(A), P2(A), P3(A), .+« Beginning with
any convenient position (or symbol) A, this sequence must eventually repeat
(i.e. cycle). Because of the one to one (or invertible) nature of a perm-
utation, this sequence can only repeat by first returning to A at some stage,

say P%(A) = A and P'(A) # A for 1 < i <n. We represent this by enclosing

one complete cycle in parenthesis thus: (A, P(A), P2(A), cees Pn-l(A)).
This is called an n-cycle. E.g. for R on the square, using 'is carried to'
on symbols, we get ZA, B, C, D). We can graphically represent cycles as
in Figures 9 and 10. Since the starting point of a cycle is arbitrary, the
cycle (A, B, C, D) is the same as- (B, C, D, A), etc.

A P(A)

>
Y
xR

P?(A)

FIGURE 10



7

If there are any symbols (or positions) left over, we teke any
convenient one as the beginning of another cycle and coatinue till all
symbols (or positions) are exhausted. E.g. for V, we get two 2-cycles
(A,B)(C,D) which we draw as in Figure 10', while RV gives (A)(B,D)(C) which
is drawn in Figure 11. We usually omit cycles of length one, so we write

A8 ADQ B A B
P ¢ D & D c
FIGURE 10! FIGURE 11 FIGURE 12

RV simply as (B,D), as drawn in Figure 12. We say RV acts only on B and D
since it leaves all the other objects fixed. Problem 7. Find the cycle
representation of each symmetry of the square.

Consider now the moves on the cube. We consider permutations using
'is carried to' acting on positions. The cycle representation of the move
R is (FR,UR,BR,DR)(URF,BRU,DRB,FRD) and the cycle representation of
RU is (FR,UF,UL,UB,UR,BR,DR)(URF,RFU,FUR)(BRU,DRB,FRD,UFL,ULB,UBR,...).
Here we run into & notational complexity. The second cycle of RU involves
three triples which are the same corner of the cube but in different
orientations. That is, RU twists URF by 1/3 turn clockwise (as viewed
from outside the cube). We shall simply write this as (URF)4 where the
subscript + denotes a clockwise twist. Equivalently, + indicates that
each label is carried to the next one in the sequence URF. We shall call
this a twisted l-cycle. The third cycle of RU should have 15 entries but
they comprise three repetitions of the first 5 corners, with each repetition
obtained by turning the previous ones 1/3 turn anti-clockwise. We denote-
this twisted 5-cycle by (BRU,DRB,FRD,UFL,ULB)_. This means the fifth power
of this cycle will be (BRU)_(DRB)_(FRD)_(UFL)_(ULB)_. We can also have
twisted cycles of edges, but since an edge piece has only two sides, + and -
are the same and we will write (FR)+ for (FR,RF), etc. Problem 8. Find the
cycle representations of R2 and UR.

We now return to general considerations of permutations. If two
permutations P, Q act on disjoint sets, then clearly PQ = QP. E.g.
(A,B)(C,D) = (C,D)(A,B). Thus the order of disjoint cycles is irrelevant.
We say P and Q commute if PQ = QP. (This can happen when P and Q do not
act on disjoint sets, e.g. RR2 = R°R.) We then have that (PQ)2 = PQPQ =
PPQQ = P22, (PQ)3 = P3Q3, etc.

There is a special permutation, the identity I, which doesn't move
anything. On the square, I has the representations

ABCD
XX or (A)(B)(C)(D) or
ABCD
where the last, empty, cycle representation is subject to misreading so
we denote it by I. Note that IP = P = PI for any permutation P and that
I acts on no objects. 1

For any permutation P, there is an inverse permutation P, which
inverts the action of P. If P(A) = B, then P_l(B) = A. In our first

1

representation of P, P - is obtained by reversing all the arrows. The

1

cycle representation of P~~ is obtained by reversing each cycle of P.

E.g. for the squdre, R_1 has the representations:

a
ABCD ABCD A<« B
+444 or +¥++4 or + + or (D,C,B,A) or (A,D,C,B).
BCDA DABC D~+C

Note. FR + UR means that the F side of FR goes to the U side of UR, ete.
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R'1 corresponds to rotating the square 90O anti-clockwise. For any
permutation P, we have that PP-1 =I= P-lP. Generally, for permutations
P, Q, we have (PQ)~! = QP! (i.e. to undo something, you undo all the

steps in reverse order) and this is generally not equal to P'lQ-l unless

P and Q commute. Exercise. Check by examining (PQ)(Q-lP-l), RUUIR™T ana

rUR™ 1L, 1
A consequence of the existence of P~ is that PQ = PR implies Q = R.
(We haven't really demonstrated that a permutation has an inverse. It
can be shown by a general set theoretic argument if we formalise the
definition of permutation and it follows from the next paragraph, but I
think that it is sufficiently clear to require no formal proof.)
Now consider any permutation P written as a product of disjoint
_ 2 _ 2,242 m m_ m . m
cycles, say P =C,C,C,. Then P~ =C/C.C;, , .o., P =C.C,C, and
o e 1°2°3 1°2"3
P~ = Cl 02 C3 . Consider now any n-cycle C = (Al’A2"'°’An)' Now

. 2 .
C.carrles Al to A2, C™ carries Al to A

i .
C” carries Al to Al+i and Aj to Aj+i'

subscript back to 1. E.g. An+1 is Al’ An+2

of more, smaller, cycles than C. E.g. on the square, R = (A,B,C,D), so
R = (a,c)(B,D), RS = (A,D,C,B), Rl’ = (A)(B)(C)(D) = I. Note that C*
n-1

3 C3 carries Al to Ah and generally
(When j+i exceeds n, we cycle the

is A, ete.) C' may consist

carries each A. to Aj+n = Aj so that c? = I. Hence we have C
e.g. R3 = rL since we know R3R = Rh = I. For the cube (RU)2 = RURU is
(FR,UL,UR,DR,UF,UB,BR)(URF)_(BRU,FRD,ULB,BDR,LUF)+. Problem 9. Write

dgom (RU)3, (RU)™Y ana (RU)Y°.
A 2-cycle, like (A,B), is called a transposition or interchange.
Note that (A,B)2 =1I; (A,B)' =1 ifi is even; (A,B) =(A,B) if i is odd;

(A,B)_l = (A,B) and (B,A) = (A,B). It is not hard to see that any n-cycle
can be written as a product of n-1 (not disjoint) transpositions. E.g.
(A,B,C) = (A,B)(A,C). Problem 10. Write (A,B,C,D) as a product of

3 transpositions. Hence any 'permutation is a product of transpositions,
but in many different ways, e.g. I = (A,B)(A,B) = (A,C)(A,C). It is a
remarkable fact that the number of transpositions in these different ways
is always even or always odd. Permutations are classified as even or odd
according to whether they are a product of an even or an odd number of
transpositions.

{For those wishing to comsider this point further, let the objects
being permuted be numbered 1, 2, 3, ..., n. Let P(i) = j mean that the
i-th object is permuted to (i.e. is carried to or is replaced by) the j-th
object. Let Xys Xps vees X be n distinct numbers and consider

ni<j (xi - xj)

Tics U(a) = %p(j)]

It is not hard to see that Sign(P) is +1 or -1 and that Sign((A,B)P) =
-Sign(P), whence the sign of a product of s transpositions is just

(-1)®. Hence Sign(P) = +1 if P is even and Sign(P) = -1 if P is odd.}

It follows that eventeven = even = odd*odd and even-<odd = odd =
odd-even, that is, the combination of even and odd permutations is like
the addition of even and odd integers. An n-cycle is even or odd depend-
ing on whether n-1 is even or odd. Problem 11. Classify the symmetries
of the square as odd or even. On the cube, show that all patterns are
even permutations of START, considered just on the pieces, not on their

= C_l’

Sign(P) =
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orientations. Hence one can never obtain, e.g. (UR,UL) or (URF,UFL).
The order of a permutation P is the least positive integer m = ord(P)

such that P" = I, (We shall only consider permutations where such an m
exists.) We have that ord(P) = 1 if and only if P = I. The order of an
n-cycle is n. On the cube, the order of a twisted n-cycle of edges is 2n
and the order of a twisted n-cycle of corners is 3n. From the fact that

P is invertible, P PJ implies P = I. We now show that m divides i-j.
We write i-j = mq + r where O £ r < m, i.e. we divide m into i-j to get a

quotient q and a remainder r. Then r = i-j-mq and Pr=p9p™ = (1) %=1

so r is a smaller positive integer than m, with pT = I, contrary to our
deflnltlon of m, unless r is O, i.e. m divides i-j exactly. Consequently

we have P* = PY if and only if m divides i-j and P* = I if and only if

m divides i. Thus the powers I(= PO), P, P2, cees P form a cycle of
length ord(P).

If P is written as a product of disjoint cycles, say P = ClC2C3,

then P" = c’i‘c2 03 = I if end only if cm =1, c =1, cm = I which is if and

only if m is a multiple of the lengths (i.e. orders) of each cycle. That is,
ord(P) is the least common multiple (LCM) of the orders of the Ci's. E.g.

for the square, ord(R) = L4, ord(V) = 2, while on the cube, ord(R) =

ord(RU) = LCM(T,3,15) = 105, i.e. (RU)I® = I but no smaller positive
integral power of RU is I. One can show that if ord(P) = m, then we

have ord(P') is m divided by the greatest common divisor (= highest
common factor) of m and i.

Consider now all the permutations of the four letters A,B,C,D.
There are 4.3.2.1 = 2k of these. 1In general the total number of permuta-
tions of n things is n(n-1)(n-2)...3.2.1 and this product is denoted n!
(pronounced n factorial). It is convenient, consistent and conventional
to set 0! = 1, though we do not require this.

The set of all permutations of n objects forms a group, which is a
set G with operations of multiplication and inversion and containing I,
such that:

a) if P, Q are in G, then so is PQ (closure under multiplication)j

b) I is in G (existence of I or closure under I);

c¢) if P is in G, then so is Pl (closure under inversion);

d) if P, Q, R are in G, then P(QR) = (PQ)R (associative law);

e) if P is in G, then PI = P = IP;

£) if P is in G, the PP"- = I = P~p,

Properties 4, e, and f hold for any permutations. We have already noted
properties e and f as general properties of I and P-l1, Property d is true
for any functions P, Q, R since (P(QR))(A) and ((PQ)R)(A) are both, in the
conventional notation, just P(Q(R(A))) {or R(Q(P(A))), in our notation}.
Consider now any subset H of a group G. This will again be u group,
under the same operations, if properties a to f hold. Properties d, e, f
hold automatically in H since they hold in the bigger set G. If H is a
finite set, then property a implies properties b and c¢. (Let P be in H.

Then property a implies P2, P3, ... are all in H. Since H is finite, P
must have some finite order, say m. Thus P" = I and PP = L are in H.)
A subset of a group which is again a group under the same operations is
called a subgroup. The group G of all permutations on a finite set of
objects is finite, so any of its subsets are finite. Hence a subset of
G is a subgroup if and only if it is closed under multiplication. (The
group G is commonly denoted Sn if there are n objects being permuted.)
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For example, the symmetries of our square are a subgroup of the
permutations of A, B, C, D, since the product of two symmetries is again
a symmetry. Using this example, we can illustrate the two basic ways
of creating and describing subgroups. Firstly, we can describe a subgroup
as the set of permutations which preserve some structure or property.

E.g. the symmetries of the square preserve its 'squareness'. (This can
be more explicitly described as saying the letters A and C are never
adjacent in representations such as R = B C D A. For the cube, we have
48 moveable unit coloured faces (ignoring the face centres) and there is
a group of all permutations of these 48 objects. The set of all patterns
reachable from START forms a subgroup which might be said to preserve
the 'cubicity' in some sense.

Secondly, we can describe a subgroup as the smallest subgroup H
containing some given set S of permutations. This smallest subgroup
consists of all finite products of the given permutations (and their
inverses if G is infinite). Problem 12. Prove this. We say H is the
subgroup generated by S. If S = {P, Q, ...}, we write H = <P, Q, ...>.
E.g. the symmetries of the square are generated by R and V. Problem 13.
Verify this by showing that the symmetries of the square are the following:

I, R, R2, R3, V, RV, R2V, R3V. The subgroup generated by R, i.e. <R>,

is {I, R, R2, R3}, which is the group of direct symmetries or rotations

(i.e. reflections are not allowed) of the square. <R2> = {I, R2} and

<V> = {I,V}. The patterns on the cube are the subgroup generated by
{R, L, F, B, U, D}.
Problem 1l4. In any group of permutations, the even permutations
form a subgroup. If a group contains any odd permutations, then exactly
half of its permutations are odd. E.g. the even subgroup of the symmetries
of the square is {I, R2, V, R2V}. As another example, consider the
symmetries of a regular tetrahedron. This is the same as the group of all
permutations of A, B, C, D, if we allow reflections. If we permit only
rigid motions in space, we get just the even permutations of A, B, C, D.
However, as the square shows, the direct symmetries (i.e. those when
reflections are not permitted or those which preserve orientation) are not
always the even permutations. 2 -1
A permutation of order m generates the subgroup {I, P, P°, ..., P 1},
which is an example of a cyclic subgroup of order m. In our discussion
of even permutations, we saw that the group of all permutations of a set
of objects is generated by the set of transpositions (i.e. 2-cycles).
For the moment, let us assume that our set of objects is {1, 2, 3, ..., n}.
Problem 15. Show the group of all permutations on this set is generated
by 1(1,2), (1,3), (1,4), ..., (1,n)}. Problem 16. Show the subgroup of
even permutations is generated by the set af all 3-cycles or by the set of
all pairs of disjoint 2-cycles or by {(1,2,3), (1,2,4%), (1,2,5), ..., (1,2,n)}
or by {(1,2)(3,4), (1,2)(3,5), ..., (1,2)(3,n), (1,3)(2,4)}. (Assume n 2 6.)

5. SOME EXPLORATIONS.

In order to understand the behaviour of the cube, it helps to first
study some small or simple subgroups and to discover some processes which
move only a few pieces. I give a few examples below, though you may want
to start exploring on your own first.

A. The Slice Group.

(This group and its name were described to me by John Conway.)

Holding the cube in the standard position, as used on page 3 in
describing the move R, imagine turning both the R face and the L face
away from you. This is equivalent to turning the central 'slice' toward
you and would be denoted by RL-1 (= L-1R) in our notation. Consider the
subgroup generated by these slice moves. It is convenient when working
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in this group to let R denote the just described slice motion (i.e. RL-l
in our original notation). Notice then that R = L=l in this notation,
so this group is generated by the three slice moves R, U, F.

This group is not too large and contains some elegant patterns. It
is recommended to novices who want to play with the cube without getting
too lost. A little examination shows that each face will always display
a pattern of the type shown in Figure 13,
where a, b, ¢, d are four colours (not
necessarily distinct). Further, the face
opposite to this will have the same pattern

a t’ a with each colour replaced by its opposite.
(The opposite colours are R-L, F-B, U-D.)
CJ We shall denote the colour opposite to a by
C C a', e.g. R' = L. With some systematic

playing you should be able to -obtain
a t, o] patterns with all six faces having
a=b=c ('spot' or "box' or 'measles' face)
or with all six faces having a = d = b' = ¢!
("X! or 'cross' face) or with four spot faces
FIGURE 13 and two solid faces (i.e. a=b =c¢ =4d) or
with four faces having a' =b =c =4 ('+'
or 'plus' or 'Greek cross' face) and two X
faces. However, not all patterns which look
like Figure 13 can be obtained.

The full structure of this group is not too complicated. You may be
able to already determine the subgroup where a = b = ¢ on all faces. To
get further, it seems best to observe that the moves already defined are
not the best to work with. Hint. Contemplate the corners.

B. The Slice-squared Group.

Consider the subgroup generated by the squares of the slices, i.e.

<R2, U2, Fo> in the notation of subsection A. Hint. Compare R2U2 and U2R2.

C. Two Squares Group.

Consider the subgroup generated by the squares of two adjacent faces,
e.g. <F2, R2> in our usual notation.
D. The Antislice Group.

An entislice is a movement such as RL (= LR) in our original notation.
This corresponds to turning the R face away from you while turning the L
face toward you. If we denote this antislice by R, we have R = L in this
group. The square of an antislice is the same as the square of the corre-
sponding slice.The structure of this group is largely unknown but it con-
tains some pretty patterns. With considerable playing, you can obtain pat-
terns with four 'diagonal' faces (Figure 14) and two solid faces, with four
17! faces (Figure 15) and two solid faces, with six '2L' faces (Figure 16).
with four + faces and two solid faces and with four diagonal faces and two
+ faces.

alalad alald ala
7

a'lala "falad b la

r'a

a'ld ‘| a ala’la

FIGURE 14 FIGURE 15 FIGURE 16
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E. The Two Generator Group.

Consider the subgroup generated by two adjacent moves, e.g.
<F, R> in the usual notation.

F. Some Simple Processes.

If you have made some systematic explorations of the above groups,
you will have found processes (i.e. sequences of moves) which interchange
two pairs of edges, leaving everything else fixed, and which interchange
two pairs of corners, leaving all other pieces (or just all other edges)
fixed. If you haven't yet found such processes, look back again at the
Two Squares Group and the Two Generator Group. You may have found processes
which give just a 3-cycle on edges or on corners. You cannot find processes
to interchange a single pair of edges or of corners (see Problem 11). It is
possible to find a process which interchanges one pair of corners and one
pair of edges, though I don't know any one which is simple. (pp 35,36,45)
Once you have found these processes, can you now see that you can
interchange any two pairs of edges and any two pairs of corners? (Here
and elsewhere, reference to two pairs means two disjoint pairs.) If you
have found 3-cycles, can you see that you can 3-cycle any triple of edges
and any triple of corners? Further can you see that you can flip any pair
of edge pieces and twist any pair of corners in opposite directions?

6. THE BASIC MATHEMATICAL PROBLEM.

The problem is to restore the cube from any random pattern back to
its original position, START, with each face having just a single colour.
Inversely, this is also the problem of getting from START to any given
pattern and hence is also the problem of getting between any two patterns.

To solve this problem, we need to proceed in two directions. First,
by examining the cube and its group, we discover which patterns are possible
and, second, we show that we can achieve all possible patterns. In Ffact,
all the necessary processes have been discovered in section 5-F. We now
concentrate on the question of describing the possible patterns. If you
are ambitious, you may try to do this before going on to the next paragraph.
Even if you don't want to think exactly, perhaps you would like to make
a guess as to how many patterns are possible. Hint. Simple combinatorial
considerations will get you fairly close to the right number.

The group of all possible permutations is as follows. The 8 corner
pieces can be permuted among themselves in any way, giving 8! ways, and
the 12 edge pieces can be permuted among themselves in any of 12! ways,
except that the total permutation of corners and edges must be even.
Further, independently of the movement of pieces, we can flip the orientations
of any two edge pieces and we can twist any two corner cubes in opposite
directions. This means that we can orientate all but one of the edges
or corners as we please, the orientation of the last one being forced.
This means we have a8tota%20f

1 1
N = 8—'21—3‘- . -33—- - B- = 43252 00327 U898 56000 = k.3 x 107

= 227311&5372ll

different patterns. A computer might count one pattern per microsecond,

so it would take about 1.4 million years to count through all these patterns!
The numerator of N is the total number of ways you can reassemble the cube
and is the number you might have obtained in the previous paragraph. The
denominator of 12 means that there are 12 distinct orbits of constructible
patterns. (An orbit is the set of all patterns reachable from a given
pattern by application of our group. You cannot get out of one orbit into
another by use of the group of motions.) Initially, one might have expected
that all constructible patterns were achievable from START, but we see that
the group of possible patterns is only a twelfth as large as we might have
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expected. This also means that if we reassemble the cube at random,
there is only a 1/12 chance of being able to get back to START. (This
justifies the warning given in the middle of page 2.) (This description
of the possible positions was first given to me by John Conway who
attributes it to Anne Scott.)

Knowing the possible patterns, we can now see that we can get all of
them by using the simple moves described in section 5-F. (Can you see
this?) It suffices to see that we can use our simple processes to produce
any even permutation of corners, any even permutation of edges, any flip
of two edges and any twist of two corners in opposite directions. The
observant reader will notice that a pattern with an odd permutation of
corners and an odd permutation of edges is an even permutation overall
and hence is possible. However, we pass from the odd, odd case to the
even, even case by any single move, so we need only consider the even, even
case.

First, let us consider the edges. It suffices to show that we have
all pairs of 2-cycles or all 3-cycles since these generate the even
permutations (see Problem 16). You have, I hope, already discovered such
processes which leave everything else fixed. A little thought and playing
will show that just one of these processes is sufficient to generate all
of them in the following way. Any four (or three) edge pieces can be
moved to any four (or three) edge positions by a few moves. Further, the
last piece can be in either of its two orientations. After doing this,
we can apply our basic process on the four (or three) positions and then
invert the previous moves to move the pieces back to the original positions.
This accomplishes a pair of 2-cycles (or a 3-cycle) on the original positions.
(In group theory, this process is called conjugation. The general expression

for P conjugated by Q is QPQ_l. The conjugate of a permutation is a permu-
tation with the same cycle structure. Basically a conjugate does the same
thing but on different objects.) ‘(See also pp 57-59.) 2 2.3 223

My own favourite edge process is P, = Pl(F,R) = (F°R")° = (R°F°)
which is two 2-cycles: (FU,FD)(RU,RD). Note that P 'l'l = P,
and Pl(F,R) = Pl(R,F). This process is indicated in Figures 17 and 18,

=71, i.e. P

the latter being a schematic version of the first.

FIGURE 17 FIGURE 18
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Problem 17. Using Pl or otherwise, obtain the following.

A) i) (ur,UB)(UR,UL)

ii)  (UFr,UR)(UB,UL)

iii) (uUF,UR,UB)

iv)  (UF,UR,FR)

v) (UF,RU,FR)
B) (FR,BR) (FL,BL)
c) (UF) 4 (DF) 4

From Problem 17-C and the previous argument, we deduce that any flip
of two edges can be achieved.

Before continuing on to corners, let us examine the process of con-
jugation a bit further. We will illustrate by considering Problem 1T7-A-i

in detail. Applying FB_l to START produces Figure 19, then U gives
Figure 20. We are now in a position to apply Pl(R,U) = (R2U2)3 and this
will yield Figure 21. Then u~lgrl gives Figure 22 which is the desired

pattern. Thus the solution to the problem is FB LU(RPUZ)3U+BF T = qpqr,
where P = Pl(R,U) = (R2U2)3 and Q = FB™U. The process of conjugation
plays & major role in the theory of groups and its obvious utility in our
problem shows how useful it is in general. Using conjugation, the arguments
on the previous page and the result of Problem 17C, we have that we can

accomplish any possible edge manipulations. (Sections 9-A and 9-B of the
Supplement describe several other edge processes.)
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So now we can consider the corners. It suffices to show that we
have all the 3-cycles or all pairs of 2-cycles. One of these is sufficient
as we can move any four (or three) corner pieces into any four (or three)
corner positions. Further we must see that we can twist eny pair of
corners in opposite directions and it will suffice to see that we can
twist some one pair. Conceptually, we have the same kind of solution
as for the edges. The following shows that we can carry out these processes,
though the processes are not very efficient.

My processes are based on the following.

B, = P,(F,R) = FRF'R™' = (FLU,FUR),(FRD,DRB)_(FU,FR,DR)
Py = P = (FLU),(FUR),(FRD)_(DRB)_(FU,DR,FR)
P, - Pg = (FLU,URF)(FRD,BDR)

These are shown in detail in Figures 23, 24, 25 and schematically in Figures
26, 27, 28.
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Note that Pg = I and that P2(F,R)-l = P2(R,F). By combining P, with edge

processes or by using Ph’ we can move corners as we please. By combining

two P_'s and some edge processes, we can twist two adjacent corners in

3
opposite directions. Since edge processes, using Pl’ are easy to carry out,
I originally preferred to get all the corners correct by using P2 end P3,

ignoring the edges and then put the edges in place using Pl'

Problem 18. Obtain the following, ignoring edges. What happens to the
edges?
A)  (FLU,RUB,RFU)
B) (FLU,FUR),(BRU,LBU)_
¢) (FLU)4+(FDL)Z
D)  (FLU)_(FUR)-(RUB)_

(Sections 9-B and 9-C of the Supplement give better methods for these
results, mostly leaving the edges fixed! Section 9-D gives a much better
general algorithm than described below.)

Now I summarize my original process for restoring the cube to START.
This is not too efficient, but shows that it is possible.
1) Get all the bottom corners into place. (This requires no particular
process.)
2) If the top corners are in an odd permutation, apply U.
* 3)  Apply various P2’s to get all top corners in the correct positions.

4)  Apply various P3's to twist top corners into correct orientations.

5) Apply various P.'s to put edges into the right places with the

1
right orientations.

I £find that this algorithm takes little memory, since Pl and P2 are

simple processes, but sometimes the conjugation operations are sufficiently
complicated that I have to jot them down. I have counted the maximal
number of moves that this process requires and find it to be 277. (This

is a rather tedious calculation and may be a bit inaccurate.) By a move,

I mean any turn or its square or its inverse as these are all single moves
of the hand. Problem 19. Find a process with a smaller maximal number of
moves. In my process, the lengthiest single stage is that of Problem 18-D,

* Note. The phrase 'various Pa's' implies various conjugates of P2, ete.
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where my solution requires 26 moves. Problem 20. Can you do Problem 18-D
in less than 26 moves?

In group theory, a product PQP']'Q"l is called a commutastor. We have

PQP-lQ-l = I if and only if PQ = QP, so the commutator is an indication

of whether P and Q commute. Thus our process P2 is a commutator in our
group.

I have found that different people have quite different strategies
for restoring the cube to START. Several people get all the edges in
place first, then apply Ph's or other combinations of commutators to get
the corners in place. The process P2(F,R_l) = FRFrlR =
(FLU,RUB) _(FUR,FRD) , (FU,FR,UR) is often used instead of or in combination
with P,. (R. Penrose calls P2(F,R) a Z-commutator and P2(F,R-l) a Y-comm-
utator because of the arrangement of the affected corners.) Many people

get the whole bottom layer correct, then the middle layer, then the top
layer., Section 9-D describes such a process.

It remains for us to verify the statement that we can only flip
edges in pairs and can only twist corners as we have stated. This is
a somewhat tedious process but I hope the following argument is clear
enough to ceonvince you. The point is that we now consider our corner
and edge positions in some definite fixed orientations, so that we can
examine how a turn affects orientations. We write down the 12 edge pairs
and the 8 corner triples in some arbitrary sequence such as:

UF, UL, UB, UR, ... , UFL, ULB, UBR, URF, ...
This particular sequence makes the examination of the move U easy. Applying
U will permute the pieces but will not change any of the orientations of
pairs of triples. However, we cannot expect that the orientations will
always be so convenient. Let us see what happens if the orientation of
one corner is changed, e.g. if ULB is replaced by LBU. After this

UFL LBU UBR URF
replacement, the action of U on U corners is: ¥ ¥ ¥ v .
ULB BRU URF UFL

We see that the image of UFL is not LBU but is LBU shifted forward one
place and the image of LBU is not UBR but is UBR shifted back one place.
If we denote these shifts by +1 and -1, we have that the sum of the shifts
is 0. Technically, we must consider these shifts (mod 3), i.e. 3 shifts
of +1 brings us back to 0 so -1 = +26 etc. These shifts correspond to
rotations of the corner piece by 120° asbout its main diagonsal.

Now since the sum of orientation shifts is O for any one change of
orientation, it must be O for any changes of orientations, i.e. it will
be O for any orientations of the corner triples. Symmetrically, this
holds for any of our six basic turns and so it is a property preserved
by all members of our group. Since START is a pattern in which the
sum of orientation shifts was O, any possible pattern must have a O sum of
shifts. In particular, if we reach a pattern in which each corner is in
its correct place, we can readily see the orientation shifts as the amounts
the corners are twisted and so the total twist of corners must add to O.
This total is always taken (mod 3) so that the pattern of Problem 18-D,
with three twists of -1, is possible.

A similar argument shows that the sum of the edge flips must be O (mod 2)
i.e. the number of edge flips is always even.

(See page 32 for further discussion of ways to assign orientations.)
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T. FURTHER PROBLEMS.
A, The Supergroup.

Consider the centres of the faces. Though these never move, they
are turned. The total turn of R in a process (measured in units of
quarter turns or 90 ) is just the sum of the exponents of R throughout
the process. This sum must be considered (mod 4) since 4 turns is the:
same as none. E.g. for P, = (F2R2)3, R has turned 6 units, which is the
seme as 2 units.

How does considering the centre turns affect the group? One can
consider replacing the colour patterns on faces at START by some pictures
so that the centre squares must also be restored to their correct

orientations for correct pictures.

B. The Three Generator Groups.

What are the subgroups generated by three of the basic moves? There
are two types, e.g. <F, U, R> and <F, U, B>. In both cases, some pieces
are never moved. What if we take the squares of three basic moves?

C. The Four Generator Groups.

There are again two types, e.g. <F, U, R, D> and <F, L, B, R>.
The first never moves LB. The second can never flip two edge pieces.
Hence neither is the whole group. What if we take the squares of these
basic moves?

D. The Five Generator Group.

R. Penrose has shown that one generator can be ignored and we still
get the whole group. I have been told that he has a 28 move process to
produce the effect of one turn, using only the 5 other turns.

E. The Square Group.

What is the subgroup generated by {R2,'L N
F. The Maximal Order Problem.

What is the maximal order of a permutation in the group?.
G. _The Commutator Subgroup.

A commutetor is a product of the form PGP 1Q™. What is the
subgroup generated by all the commutators?

H. Pretty Patterns.

There are undoubtedly many more pretty patterns than have been seen
so far.

I. Super Problems.

One can consider almost all of the various problems discussed so far
within the supergroup of subsection A rather than within the original group.

(A number of further results on these problems and some further
problems are given in section 10.)

8. SOME ANSWERS AND COMMENTS.

Problem 1. (page 3) 30

Problem 2. (page 3) 24 (or 48 if reflections are permitted)

Problem 3. (page 3) As will be seen in section 6, we can indeed
permute and flip the unseen edge pieces, LB, LD, BD in a number of ways
(to be precise, inl2 patterns), but the unseen corner LBD will be fixed.
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Problem 4. (page 4) As seen from the drawings below, they are not
the same.

Problem 5. (page 5) There are 8 of them: rotations through Oo, 90°,

180° ana 270o and reflections in the vertical and horizontal bisectors
and the two diagonals, which we denote by I, R, R2, R°, V, H, D,, D,.
1 2

Problem 6. (page 6)

a) ABCD , ABCD 3 ABCD
VR + 4+ + VR R VR R R
ADCB DCBA CBAD

b) ABCD » ABCD 3 ABCD
VR + ¢+ ¢+ ¢ VR ¥+ ¥ VR Y4 d
CBAD DCBA ADCB

Changing between a) and b) is the same as reversing the order of the product.
Problem 7. (page 7) Using 'is carried to' on positionms,

I, R = (4,8,C,D), R2 = (A,C)(B,D), R3 = (4,D,C,B),

(a,8)(C,D), H = (A,D)(B,C), D, = (A,C), D, = (B,D).

Problem 8. (page T) R® = (FR,BR) (UR,DR) (URF,DRB) (BRU,FRD)
UR = (FLU,LBU,DRB,FRD,URF)_(UBR),(FU,LU,BU,RB,RD,RF,RU)
Problem 9. (page 8)
(RU)3 = (FR,UB,DR,UL,BR,UF,UR) (BRU,UFL,BDR,BUL,RDF)
(ru)~t = (FR,DR,BR,UR,UB,UL,UF) (URF)_(BRU,LBU,FLU,RDF,RBD) +
(RU)ls = (FR,UF,UL,UB,UR,BR,DR)

Problem 10. (page 8) (A,B,C,D) = (A,B)(A,C)(A,D) 5
Problem 11. (page 8) Referring to Problem T, we see that I, RS, V, H

I
v

are even and R, R3, D,, D, are odd. On the cube, any basic move is a
product of two W-cycleés, flence is even. Hence all possible positions
are even permutations of START (considering just the positions of pieces,
not their orientations).

Problem 12. (page 10) Any subgroup containing S must contain all finite
products of elements of S and their inverses. But this set of finite
products is closed under multiplication, has I (= a product of no terms

or = PP-l) and is closed under inverses, hence is already a group. Thus it
is the smallest group containing S.
Problem 13. (page 10) Referring to Problem 7 and multiplying, we

$ind RV = D_, B2V = H and ROV = D..

2° 1
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Problem 1L. (page 10) From the remarks on page 8. the even permuta-
tions are closed under multiplication and I is even. Further, from

PPL = I, it follows that P is even if and only if P~T is. Hence the

even permutations are also closed under inversion and hence are a subgroup
in any group of permutations. If P is an odd permutation, then PQ is odd
for every even permutation Q. Since Q # R implies PQ # PR and since any
odd permutation R can be written as PQ where Q is even, by letting Q = P-l
it follows that the mapping Q*PQ is one to one and onto from the even
permutations onto the odd permutations. This is, there must be as many even
permutations as odd permutations - if there are any odd permutations at all.

Problem 15. (page 10) Note that (1,2)(1,3)(1,2) = (2,3) and
(1,i)(3,30(1,1) = (i,j), so every 2-cycle is generated by
{(1,2), (1,3), ..., (1,n)} and so every permutation is.

Problem 16. (page 10) Any even permutation is a product of an even
number of 2-cycles. The product of two 2-cycles is either I, a 3-cycle or
the product of two disjoint 2-cycles. By pairing off the 2-cycles in an
even permutation, we see that any even permutation is a product of 3-cycles
and disjoint pairs of 2-cycles. So it suffices to see that any of sets
generates all 3-cycles and all pairs of disjoint 2-cycles. Now
(a,b,c)(a,b,d) = (a,d)(b,c) and (a.b)(c,d)*(a,b)(c,e) = (c,d,e) so the set
of 3-cycles and the set of disjoint pairs of 2-cycles each generate the
other. Now €1,j,2) = (1,2,j)2 and (1,2,3)(1,2,i)(1,j,2) = (1,i,j) and
(1,2,3)(1,2,i)(1,2,k)(1,i,2)(1,§,2) = (i,j.k), so every 3-cycle is
generated by {(1,2,i)|i = 3}. For the last case, we must assume n 2 6.
We shall show that everv 3-cycle (i,n-1,n), i < n-1, is generated. By the
previous case (with 1,2 replaced by p-l,n), this will suffice. We have
(132)(395-).((1’2)(3’11—1).(1’2)(3gn).(l’2)(3gi) = (isn-lsn) for )'" £i<n-l
and (1,2)(3,1'1-1)'(1,2)(3,1'1) = (3an"‘lan)
and (133)(29)"')'(h,n-l9n)°(l’3)(29h) = (2sn-19n)
and (1,3)(2,4):(3,n-1,n)-(1,3)(2,4) = (1,n-1,n), so we are done. Exercise.
Which of these results are false for small values of n? (Example on p 29)

5-A. The Slice Group. The subgroup where a = b = c on all six faces
corresponds to moving the coordinate axes determined by the face centres
with respect to the rest of the cube. This group is the same as the group
of even direct symmetries of the cube and has 12 elements (though we need
a bit more detail to complete the argument).

For dealing with this group, one notices that the eight corner pieces
of the cube always remain in the same relation to one another. So we can
consider them as fixed, with only the central slices moving. Thus we can
refer to a face by its corners rather than its centre. With respect to
the corner coordinates, we have three orthogonal slices which act on disjoint
sets of edges. This gives us 43 motions of the edges. A slice acts as a
lh~cycle on face centres, which is an odd direct symmetry of the face centres.
However, for the edges to be lined up with the corners, each slice must
be turned a multiple of 4 units and so the subgroup with a = b = ¢ contains
only even permutations of the face centres. Indeed, the same analysis as in
the beginning of section 6 shows this group hés 43.24/2 = 768 elements.

In the original coordinate system, try slice processes: FURF,

R,

F°R2U2, FURFFRDF, FURFFRDFFPR-U°. Exercises. Write each of these with
respect to the corner coordinate system. What is the maximal number of

slice moves required to restore the cube to START from a pattern in this
group? (Try also R2UF2U. See page 31.)

5-B. The Slice-squared Group. This is a commutative group of 8
elements and every element has order 2. .

5-C. Two Squares Group. This group has 12 elements. The FL, FR and RB
columns are moved as units while the pairs (RU,RD) and (FU,FD) are inter-
changed.

5-D. The Antislice Group. Inspection of the effect of an anti-slice
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shows that the four edge pieces in a central layer (i.e. in a slice) re-
main in a slice but are rearranged. E.g. after the antislice R, the slice
RL (i.e. between the R and L faces) remains unchanged, while the edges in
slice FB change from UR,RD,DL,IU to FR,RB,FL,LB and the edges in the slice
UD change from FR,RB,BL,LF to DR,RU,DL,LU, If we consider the slices as
fixed and the face centres as movesble (somewhat like we did in the slice
group), then our antislice moves carry each slice to itself. E.g. the anti-

B B F B
L R L R
slice R carries the edges of slice UD from: to: .
L R L R
F F B F
i.e. two of the edge pieces have been interchanged by reflection. A little
experiment will show that a slice can have only six possible configurations
(when we fix, e.g. the FR edge). One can recognise the UD slice since
it will be the only slice not containing any U's or D's. However, it is
easier to consider the corners. Though the corners of a face do not all
remain the same, the corners of a face display at most two colours and
they will be opposite colours. Hence we can identify the R and L faces
as being those which display only R and L in their corners. The RL slice
will then remain between the R and L faces. Since the antislice R is
the same as the antislice L, it doesn't matter which is R and which is L
of the two R, L faces, nor does this affect which is the RL slice. (pp 35,54)
Try the antislice processes (in the original notation):

(7R)3, (FR)%P0?, Fr~'r, (FR)3(RF)3, (FR)3(FU)3. Exercise. Write each
of these with respect to the above described coordinate system.

5-E. The Two Generator Group. I don't have a complete description
of this group. I find that edges cannot get out of orientation, but can
otherwise be moved as desired. (See pp 54-56.)

Problem 17. (page 14) Number of Moves
a) i) B Yu(%u?)3utert 11

ii)  R°DPBPD(F°L?)3p18°p%R2 1k

iii) (U232)3B‘1UB(U2R2)3B'lU'lB 18

iv)  Furis~lo(r%p?)3p teurtrtun(FPp?) 3t vl 25

v)  ren(v?®)3r-le g tpr1p~1(12r?) 3pRD7Y 23
B) (8%0?)3(v?12)3 or v’p%rPu2p?r? 11 or 6
c) (728%)3rp~RFL 1R (F2R%) 3P irr R Lor _ 22

See also sections 9-A and 9-B. (See also pp 43-45.)

Problem 18. (page 16) X Effect on edges Moves
A) P, (F,R)*U-B,(R,F) U” ¥U,RU,DR 10
B) P2(F,R)~U2-P2(R,F)°U2 (FU,BU,DR) 10
c) P3(F,R)-R'1-P3(R,D)-R (FU,DF,FR) 18
D) P3(F,U)'solution of C (FU,FL,RU,DF,FR) 26

See also sections 9-B and 9-C. (See also pp Lh-L5.)

Problem 19. (page 16) J. H. Conwsy asserts his method takes less
than 200 moves. (See section 9-E.) (See also pp 29,31-33,36,39-40.)

Problem 20. (page 17) R. Penrose says he has an 8 move solution but
it is not clear if this is for Problem 18-A or 18-D. (See section 9-B.)
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T-A. The Supergroup. The sum of all face turns in any permutation
which is I (ignoring centres) must be even since I is an even permutation
on the corners while each turn is an odd permutation of corners. Now we

have (RU)105 = I, so we have an I (ignoring centres) which turns two
adjacent centres 105 times, which is 1 unit (mod 4). Combining several

of these together, one obtains a 'centres' group of h6/2 = 2 = 2048
elements, which act independently of the other motions. Hence the super-
81 121 3B 21216 3891 3

z 3z 2 235 P11

= 885 80102 T0615 52250 88000 = 8.9 x 1022 elements.

At one per microsecond, a computer would take about 2.8 x 10”7 years to
count through all these patterns, i.e. somethinglike a third of the age
of the universe. (See also pp 3,18,34,38,45,46).

Basically, I haven't got much to say sbout the remaining problems.

2, B%> seems to have h!-23/2 = 96 elements and the

subgroup <F2, R2, B2, L2> seems to have h!-2h/2 = 192 elements. (See section

10-A.) The subgroup <F, R, B, L> can move, e.g. FU to FR,FD,FL,UR,BR,DR,
BU,BL,BD,UL,DL but to no other orientations. Hence the F is always at F or B
and/or the U is always at R or L. So the orientation of FU can never be
changed. (See also p 32.)

J. H. Conway asserted that dome element had order 2520 = 8957, but
it doesn't seem possible for any element to have such a large order.
FRBL has order 315. (See section 10-C.)

(Ssee section 10-D for an analysis of the commutator subgroup, 10~E for
some more pretty patterns and 10-F for some more magic polyhedra.)

group has 211°N =

The subgroup <F2, R

In late 1978, the following UK agent was appointed: Pentangle, Over
Wallop, Stockbridge, Hampshire, S020 8HT. They did not receive supplies
until mid-May and these were exhausted by the end of June. Further supplies
were received in late August and they will supply postal orders in the UK
(See page 37T.) Demand for the cube continues to outstrip production, even
in Hungary, despite the fact that over a million have already been made!

London, 23 Feb 1979 and 22 Sep 1979

Supplements

I have had numerous discussions and letters from many people on the
magic cube since the above material was first written. Consequently I now
have much better solutions for meny of the problems and a much better
general algorithm. I am deeply indebted to: Richard Guy for giving me a
copy of the manuscript section on the cube from the forthcoming "Winning
Ways" by E. R. Berlekamp, J. H. Conway and R. K. Guy (referred to as BCG
Below); D. E. Taylor for a copy of his manuseript "The Magic Cube"; Debbie
Green and Bob Parslow for typing of a preliminary version of this revision;
Ron Mills for drawing the diagrams; Tamas Varga, Katalin Fried, Roger
Penrose, Michael Vaughn-Lee, Peter Vamos, John Gaskin and F. J. Viragh for
informative correspondence; John Conway, Roger Penrose, Chris Rowley,

Peter McMullen, Michael Vaughan-Lee and many others for informative and
enjoyaeble discussions.

9. SUPPLEMENT ON THE BASIC MATHEMATICAL PROBLEM. (See also pp U3-L6.)

A, Improved Edge Processes.

Problem 17-A-iii. (pages 14 & 21)
L lru~LrLu2rRuR- Luru2R L (K. Fried - 14 moves)
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Problem 17-A-iv. (pages 14 & 21)

v s R uRsLF e (K. Fried - 10 moves)
If we set Q@ = RBLF, then this is U ~Q lUQ. Other combinations of Q and U

produce similar 3-cycles of edges, e.g. QUQ":I'U-l = (UF,UR,RF). Another
3-cycle on these pieces is the following.

Fa(RF)z(R-lF-l)3 = (UF,RF,RU) (A. Taylor (BCG) - 11 moves)
Problem 17-A-v. (pages 14 & 21)

rv?oe~tup~1reuloe 1l 1R (K. Fried - 13 moves)
Some other 3-cycles of edges are the following.

(F)2rut(r )2 = (ur,RF,UL) (BCG - 10 moves)

I P o = (UF,UB,DF) (Varga & Fried (BCG) - 6 moves)

- tertuvlrrtEmrt = (ur,LU,RU) (M. Bumby (BCG) - 11 moves)
Problem 17-C. (pages 1k & 21)

L BRL IR IFPIRIDLR T BIR MU? = (UF),(UB), (K. Fried - 18 moves)

See section 9-B for an even better method.
Another simple edge move is the following.

rer(v2B%)3R~18~1F ! = (uF,LU)(UR,BU) (D. Singmaster - 12 moves)
B. Monoflips and Monotwists.

Peter McMullen told me on the telephone that he had seen John Conway
using processes of this type. I devised some processes of this type before
I learned the details of Conway's processes from BCG. Below I describe
both Conway's processes and my own, which are longer but simpler.

The basic idea is to find a process which only affects one element
in a given face. Then that face can be turned and the inverse of the
process is applied and the face is unturned. Thus whatever was done in
the other part of the cube is undone and so only the two elements in the
face are affected. BCG attributes this idea to David Seal and David Goto
and uses the terms monoflip and monotwiddle.

Monoflip. (D. Seal) FuD1120%p%R = § flips the UF edge piece and

otherwise fixes the U face, though the whole U face has been turned anti-

clockwise. Thus SUS—tu~t produces (UF),(UR), in 16 moves and we can flip
any two edges in the U face in 16 moves, thus answering Problem 17-C more
efficiently than in subsection A. (Note that the use of a monoflip or
monotwist is always a commutator.) (See also pp 33,l4k.)

Monotwist. (D. Goto) RIDRFDF = T twists RFU positively and

leaves the rest of the U face fixed. The negative monotwist is just T—l.

mriy™t = (RFU)4+(RUB)= in 14 moves and we can twist any two corners

in the U face in 14 moves, answering Problem 18-C in fewer moves and leaving

the edges fixed! Using this process twice, we can twist any three or all

four corners of a face in 28 (or 27) moves, answering Problem 18-D in U4 (or 3)

more moves than on page 21 (where there are 24 moves) but leaving edges fixed.
It seems difficult to improve on the monotwist, but it is perhaps worth

noting that it is almost a product of commutators and P2(F,D)-P2(D'1, -1)
gives the same effect on the U face in T moves. (See also pp 4h,h6.)

Using the same idea, we note that P (F,R) = FRFIR™L =

(FLU,FUR) . (FRD,DRB) _(FU,FR,DR) only affects the FLU element of the L face.

Turning L, applying P2 and unturning L gives us
prle, ' = mRFUlRCYFCIL = (RFU,FLU,DLF) in 8 moves, which is
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a solution to Problem 18-A with fewer moves and leaving the edges fixed.

(Note that this appears to be 10 moves but RYL7IR = 10 in the middle.

This is apparently the solution Penrose was referring to.] Replacing
-1

P2 by P2

P'L'PL = RPROFLURFRL = (RFU,UFL,FDL) in 10 moves.

To solve Problem 18-A as stated, take R-le(L,U)RPz(U,L). Using the
Y-commutator, we have

gives

P2(B,L'1)RP2(L'1,B)R_1 = sLlB~lRBLB'R™ = (FLU,RUB,RFU) in 8 moves,
which is a solution of Problem 18-A as stated. Indeed there seems to be
much room for further investigation here as the Y-commutator affects only
one piece in 3 of the cube faces and the Z-commutator affects only one
piece in 2 of the cube faces. R. Penrose has found a number of these moves.
Extending the same idea, we observe that
P, = P = (FRF'R1)2 = (FLU),(FUR),(FRD)_(DRB)_(FU,DR,FR) is a
monotwist in the L face and a negative monotwist in the B face. This
allows us to twist any 2 corners in the L face in 18 moves (actually 16
because of cancellation), giving asnother good answer to Problem 18-C
leaving edges fixed. However, since P, has order 3, we can use it three
times to twist any three corners in a %ace in 2T moves, e.g.
P3L‘1P3L‘1P3L2 = (LUF),(LFD),(LDB),, which gives a better answer to
Problem 18-D. Using P

3 8s a monotwist, we can twist 4 corners in a face

in 32 moves, leaving edges fixed, but we can do better by noting that P3

is also a negative monotwist in the B face. We have
2 1 =1 -1 _-1

B P3B‘ L P3 LB = (LUF),(LDB),(LBU)_(LFD)_ (21 moves).
C. Some Further Improved Corner Processes.
Problem 18-C. (pages 16,21,23,24)
RFR™LFRFPR L 1P 1rlrFoL = P2(R,F)-P2(F2,R)-P2(L_1,F'l)-P2(F2,L_l)

(J. Trapp - 14 moves in two mirror image halves, leaving edges fixed)
Problem 18-D. (pages 16,21,23,2}4)

RYU%RUR"IUR = (URF),(UFL),(UBR),(UF,UB,UR) (K. Fried - 8 moves)

8]
FRF1R2U IR % ulr = P2(F,R_l)-P2(R,U_l)-P2(U,F-1)

= (FLU)+(FUR)+(FRD)+(FU)+(FR)+ (M. Vaughan-Lee - 10 moves) The
square of this process gives three minus twists of corners in 19 moves, thus
solving Problem 18-D with edges fixed in the best way so far, and the cube
gives two edge flips, thus giving another solution to Problem 17-C.

URFURF-1u-1ruF-1u-1FU- 17 11-101LUL-10L (K. Fried - 19 moves fixing edges)
Another useful corner process is the following.
(Flur ez tu)2 = [P2(F‘l,u)-P2(R,U‘1)]2 = (RUB),(LUF),(FUR)_(FRD)_

(R. Penrose - 16 moves) The two commutators involved are mirror images.
Conjugating by LD gives four twists in the U face: (RUB),(LBU).(FUR)_(FLU)_
in 20 moves.

2

D. An Improved Algorithm.

The following is my present method though some of the above processes
would shorten it considerably. I estimate that it takes at most 175 moves
and I can do it in 3 to 5 minutes. It is almost entirely based on my simple

processes Pl and P2 and so I find it easy to remembér. The problem of
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complicated conjugation which occurred in my earlier algorithm has been
eliminated.
1) Put all bottom edges correctly in place.
2) Put all bottom corners correctly in place.
3) Put middle slice edges correctly in place.
Flip top edges so all U faces are up.
Make top orientation correct.
Put top edges correctly in place.
Put top corners in their right positions.
Twist top corners into their correct orientationms.

@ O\ &
—

Generally, I carry out stages 1 and 2 on the top and then turn
the cube over. It is helpful if this face has the most distinctive
colour. Stage 1 is carried out by moves like F2 (which puts FD into FU)

and F-1R (which puts FD into UR). Stage 2 is carried out by moves like FD™'F~"
which moves BDR to URF or by combining two of these when the desired piece
is in the top layer or has its U face down.

For stage 3, there are several techniques. One wants processes which
affect only the top layer and one position in the middle layer. The
following are some of the processes for this.

FU(R2U2)3‘U-]‘F_1 moves UF to RB in 9 moves.
This is just a conjugate of Pl(R,U). It is easy to determine the last

two moves as being those required to restore the D face, so no memory is
really required.
-1.-1_..-1_-1

FIUL "F "LU L moves UR to LF (G. Clarke - 8 moves)
FiveLluruPr moves UF to FR (D. E. Taylor - T moves)
“lp-ly-lp-lyp - -1 _-1
URU U™ F"UF = P2(U,R)~PE(U ,F7©) moves UF to RF  (BCG - 8 moves)
and P2(U_1,F_ )-PQ(U,R) moves UR to FR  (BCG - 8 moves)

0f course any of the solutions of Problems 1T7-A-iv or v and some of the

other 3-cycles of edges can be used, as can the inverses of any of these.
. If a piece is already in the middle layer but not where it should be, it
can be removed by one of these processes to the top layer. Note however

that F(rR2U2)3F™! = (UF,RB)(UB,LF) moves two pieces from the middle layer,
so you may be able to use it (or a simple conjugate of it) to put in two
pleces at once or to put in one piece while taking out another. Alterna-
tively, one may be able to use some of the 3-cycles of edges to move edges
within the middle layer. The process RL-1URLR-1F2 = (UF,UB,DF) of Varga
and Fried is especially useful in this case.

For stage 4, we observe that BP2(L,U)B_l operates only on the U face
and flips the two pieces which were ~at the UF and UB positions, while

,BPQ(U,L)B-l flips the pieces which were in the UL and UB positions. So
we can get all the U faces up fairly easily. (You are welcome to work out
variations on this theme.) Now we can easily inspect the sides of the U
edges to see if they form an even permutation. If not, apply U or U-l and
this is stage 5.
For stage 6, I use my solution of Problem 17-A-iii or Problem 17-A-ii.

For stage 7, I use my processes of the form P2(U,R)L-1P2(R,U)L = (UBR,LBU,LUF)
or B[P2(L,U)]3B_l = (UFL,FUR)(ULB,BRU). With some observation, one can
usually insure that one or two of the top corners come out in the correct
orientation. For stage 8, I use my monotwist process based on Pg = P3.

Any process which affects just one face can be useful for stages

4,6,7,8.
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Though some of the other improved processes will shorten the number
of moves for the general algorithm, my method uses only the iwo basic
processes Pl and P2 and most steps involve just two faces. Consequently

I personally find there is little memory and little thinking time so I
can carry it out rapidly. If you are willing to remember more basic
processes, you can undoubtedly cut down the number of steps and perhaps
speed up the time.

E. Problem 19. BCG asserts that their method, which works
from the bottom up, but in quite a different way than I have just described,
takes at most 160 moves. K. Fried estimates that her method takes at most
150 moves, but I don't have details of it. R. Penrose believes that his
method, which puts edges in place first, takes about 100 moves, but he
hasn't analysed it in detail. It is certainly true that the average number
of moves required is usually only sbout 50% of the maximal number. (39,40)

One can estimate a lower bound on the number of moves as follows.
There are 18 first moves and then 15 second, third, ..., moves (since there
is no point in turning the same face in two consecutive moves). Hence

there are at most 1 + 18 + 18:15 + 18°152 + ... F 18-15n_1 positions

after at most n moves. This expression is equal to 1 + 18(15%-1)/1k
and setting this equal to the number of patterns N which we saw was

about 4.3 % 1019, we obtain n = 16.60, so some patterns require at least 17
moves. We can improve on this argument slightly by considering that opposite

face turns commute, e.g. FBF = F2B. We define an axial move to be, e.g FlBJ,

where i,j = 0,1,2,3 but (i,j) # (0,0). There are thus 15 axial moves for

each axis and at most 1 + 45 + 45:30 + h5°302 + ...+ 14‘5-3Om-1 positions
after m axial moves. Setting this equal to N yields m = 13.16, so some
patterns require at least 14 axial moves. But an axial move corresponds
to 24/15 = 1.6 ordinary moves on average, so we should expect some
patterns to require at least 14+1.6 = 22.4, i.e. at least 23, moves.

This argument could be made more determinate by considering the binomial
distribution of the number of ordinary moves as a function of the number
of ordinary moves. It would be most interesting if some argument could
be found to improve this lower bound substantially. (See also p 3k.)

10. SOME RESULTS ON FURTHER PROBLEMS.

A. Orders of Subgroups. Let |P, Q, ...| denote the order of (i.e.
the number of elements in) the subgroup <P, Q, ...>. D. E. Taylor has
provided the following results. (See also pp 30,35,36,57.)

|72, 82, U°| = 2592 = 2°3
|¥?,8%,B%| = 96 = 23
|¥2,8%,82,0°| = 165888 = 213
|¥?,8%,8%,12,0°| = 6 63552 = 213"
|7,R| = 734 83200 = 2638527

|F,R,B] 15999 35016 96000 = 2t431353¢2
|F,R,U| 17065 97351 hokoo = 2183125242

B. The Five Generator Group. R. Penroce's 5 generator simulation
of the sixth generator can be seen by starting with, e.g.

RPr2u1e2rPu182R282F?12F2u™ L, This acts as though D has been used and

the remaining corners are where they should be. It is fairly easy to
restore the edges from this position, though doing it efficiently is

]
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tricky. One of Penrose's complete solutions is:
Rr2urslurPR2rP2u? v R Pu?RPu Ry tRPe PR PR P L B F Y = b

(31 moves). We can also see that one square is dependent on the other
five squares, e.g. F2B2U2F2B2R2L2(F2U2)3R2L2(B2U2)3 = D% (21 moves).
Observing that Penrose's solution uses only U to an odd power, we ask
if <F2,R2,B2,L2,D2,U> is the whole group? (See pp 31,32.)

C. The Maximal Order Problem. Conway's assertion that FRBL
requires 2520 moves to return to START is based on counting FRBL as
8 moves (four turns of faces and four turns of the whole cube) rather
than as a single element of ths group. Thus he gets eight times the
order of FRBL.

Since each permutation has the sum of the lengths of its edge cycles
being 12 and the sum of the lengths of its corner cycles being 8 and
since the order of a permutation is the LCM of these lengths (with
possible factors of 2 or 3 for twisted cycles), it is possible to deter-
mine just what orders can appear. A cursory examination indicates that
the maximal order occurs when we have a 7-cycle and a twisted 2-cycle of
edges and a twisted 5-cycle and a twisted 3-cycle of corners, with the other
3 edges permuted in any twisted way. (We cannot replace the twisted
2-cycle by a twisted l-cycle as this gives an odd permutation on positions.)
Thus the maximum order appears to be T:2:2.5.3.3 = 1260. It is easy to
see that such an element is possible, but I haven't tried to find a
sequence of moves to produce such an element. (See also pp.49,50.)

D. The Commutator Subgroup. Michael Vaughan-Lee writes that the
commutator subgroup has index 2, i.e. it comprises half the whole group.
This is not too hard to see as his process,involving the product of
three commutators which is described in section 9-C, shows that any
edge flips and any corner twists can be achieved by using commutators.
Further, we have 3-cycles of edges either using P2 (ignoring edges) or

using some of the solutions of Problem 17-A-iv which are commutators.

We can also get pairs of 2-cycles of corners from Pg

corners from P2(F,R)L_1P2(F,R)_1L. Now the conjugate of any commutator

or a 3-cycle of

is a commutator and the conjugate of a product is the product of the
conjugates since

p(Qa~ R )Pt = (pqp~t)(pRP~1) (P iR 7Y) (PR7IPTY)
(pep~t) (PrE™Y) (Pep~h) " (PRPTH) Y ama
P(qR)P ! = (pqr~l)(pRP7Y).

From all these results and our discussion in section 6, we see that we
can obtain every even permutation of edges and every even permutation of
corners by commutators. Combined with the ability to flip and twist, we
know that we can obtain half of the whole group.

To see that we do not get the whole group, we define the motion of
a sequence of moves as the sum of all the exponents in the sequence, e.g

FPRB™IL has motion 2+1-1+1 = 3. This motion must be considered (mod L)

since Fh = I, etc. Now the permutations of motion O or 2 are closed under
multiplication, so they form a subgroup. Since there are permutations of

odd motion, e.g. F, the argument of Problem 14 shows the permutations of
even motion are half the group. Since every commutator has motion O, the
commutator subgroup is contained in the group of even motions, and since the
former is at least as big as the latter, they must be identical. (The
astute reader may notice that the commutators are contained in the subgroup
of permutations of motion O, which appears to be a proper subgroup of
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the permutations of even motion, since, e.g. F2 has motion 2. However,

as discussed on page 22 under the supergroup, there are permutations of
motion 2 which are I (ignoring face centre turns). Hence the permutations
of motion O and the permutations of motion 2 are identical when we ignore
face centre turns. However, if one works in the supergroup, then the
commutator subgroup will be precisely the patterns where both the edges
and corners are evenly permuted and where the motion of each face is O.
This means the index of the commutator subgroup is 4° in the supergroup,
i.e. it comprises 1/4096 of the group.) It follows from this analysis
that F< and FR must be products of commutators but I haven't done this.

E. Pretty Patterns. Several new pretty patterns have been found.
First, consider the two 2x2x2 subcubes with outer corners at URF
and DBL. These overlap in the centre of the cube and comprise 14 visible
unit cubes. These can be rotated as a unit about their common diagonal
while the rest of the cube remains fixed! This is a most striking pattern
and I have no easy way of doing it. I apply the solution of Problem 1T7-A-v
around URF and then its inverse about DBL to move the edges. Then the
spot process of the slice group is used to move the centres and the
solution of Problem 18-C is used to twist the corners. Using K. Fried's
solution for Problem 1T7-A-v and D. Goto's monotwist, this can be done
in 50 moves. Peter McMullen says he has a way to move the 'girdle' of
the other 12 visible cubes by a 60° rotation but I cannot see that this
is possible. (Double Cube pattern; see also pp 29,30,u48.)
Another rotational pattern appears to rotate the set of corners
as a unit asbout a main diagonal with respect to the set of edges. The
centres can be turned as well. This makes patterns with six X faces or
six + faces and most people will immediately think that these are in
the slice group. I do this using

U'lLP2(F,D)U‘1P2(D,F)UL‘1U = (FRD,UFL,RUB) (12 moves).

I then apply the inverse of this about DBL and twist the centres and
corners as before. This takes 52 moves. (6-X and 6+; pp 29,30,47-49)

The result of F2R2L232R2F232L2 is 4 vertical 'bar' faces (i.e.

a=c=5b'=4a"'in Figure 13). Replacing the last I2 by R2 gives ki bar
faces with the bars at right angles ('crossbars' pattern). From this one
cen get to a number of similar simple patterns, e.g. with two X faces and
four plain faces. One is also led to ask if one can form any pattern with
six mutually orthogonal bar faces. One such pattern is not even constructible
and another one is constructible, but involves an odd permutation on
positions, so cannot be achieved in our group. There may be some such pattern
which is possible. This leads to the further question (or 11 questions) of
determining the pretty patterns in each of the other (11) orbits of patterns
of the cube. E.g. if we disassemble the cube and reassemble with RU and RB
interchanged, then a whole new set of possible patterns arises. (pp UT,48)

P. McMullen says he can rearrange the edges and centres so that all six
colours show on each face. K. Fried can flip all 12 edges in 36 moves.(31,35)

F. More Magic Polyhedra. If your mind is not sufficiently boggled
by the magic cube, you may ask if other shapes of puzzles of this nature
can be made or contemplated. T. Varga says that the 2 x 2 x 2 version is
in prototype. I have seen the Hungarian patent specification for the cube
and it includes the 2 x 2 x 2 version, which is mechanically much trickier
then the 3 x 3 x 3 version. Indeed it took several people most of an
evening and models carved from corks to figure out what the diagrams meant.
Varga also says the 2 x 3 x 3 (sic!) version will appear soon. (34,35)

(I can't figure out what this would look like - can you?) Conceptually,
the 2 x 2 x 2 version is just the corners of the 3 x 3 x 3 cube, so we
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already know how to solve it. It has 8!'38/3 = 881 79840 patterns. (31,53,60)

The edges of the 3 x 3 x 3 cube haye 12!°212/2 = 98 09952 76800 patterns.

A number of variations involving fewer colours have been proposed
but none seem to be of any real interest. I have recently come ‘across
a cube in which two adjacent faces accidentally received the same colour.
This cube has two Oranges and no Green. Though one might think this
would meke the problem easier, the presence of two indistinguishsble
OR's and OY's and the presence of an 00 mean that you cannot be sure
of putting these pieces in the right places or with the right orientation
until you get all the other pieces correct. Hence you either go along
and then rectify things at the end or you rearrange your strategy to put
these pieces in place last (which is difficult as they are not all on
the same face). Further, one can move the cube into patterns which appear
to be impossible by interchanging two of the indistinguishable edges or
by flipping the 00 piece. It takes most people some time to recognize
how this has happened.

A. Taylor has shown that the group for any magic solid (apparently
meaning with three elements along each edge) has the same general structure
as for the 3 x 3 x 3 cube, except that the total corner twist must be
0 modulo the greatest common divisor of the corner valences. (The valence
of a corner is the number of edges at the corner. I cannot see how to
imagine the corner pieces if different corners have different numbers of
edges’ at them.) One can imagine the 4 x 4 x L cube or the 3 x 3 x 3 x 3
hypercube. The first might be mekeable but its group seems to be much
more complicated. The second is unmakeable (?) but its group structure
may be determinable. (See pp 51,52,60.)

London, 23 Sep 1979

ADDENDUM NUMBER ONE

Michael Vaughan-Lee has just sent me a detailed analysis of his general
algorithm, which works by doing the edges first and takes at most 173 moves
and he says one of the 3-cycles on corners would cut this down by 8 moves. (40)

25 Sep 1979

I am indebted to’'Richard Ahrens and Frank Barnes for further ideas
and to Suzanne Lowery of The Observer and Sue Finch for the cover drawing
which was originally done by Sue Finch for my article in the Observer on
17 June 1979.

Richard Ahrens has found

rRYFrrL.ourtutr.u~ Rt = P2(R-l,F)P2(U,F-1)P2(U-1,R)
= (RFU),(LUF)_(FU,UR,RF) (12 moves).
This rotates the RFU corner and its three adjacent edges as a unit clockwise

and anti-twists the adjacent corner LUF. If we denote this move as A(R,F,U),

then L-A(R,F,U)-L-l-A(\D,B,L)-l followed by slice moves BLDB (spot pattern)
yields the first pretty pattern of section 10-E in 34 moves. One can also
apply A to produce rotations of 4 non-adjacent corners and their adjacent

edges in 48 moves. (See also p 48.) ’

Ahrens points out that the three Y-commutators at a corner all act
only on the corner, its three adjacent edges and its three adjacent corners
and he states that the 3-Y subgroup generated by these 3 Y-
commutators has order 1296. We can see this because M. Vaughan-Lee's
move of section 9-C is in this group and it allows us to flip and twist

as desired, giving 23/2 flippings and 3h/3 twistings. Inspection shows

that we can only permute the 4 corners as pairs of 2-cycles (which illustrates
the failure of Problem 16 for n = 4). There are just four of these (counting
I) and they can be obtained as cubes of Y-commutators (leaving edges fixed).
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Further, every commutator is an even permutation of edges (and of corners)
so we can only get the three even permutations (i.e. the three 3-cycles) on
our three edges and these can be achieved using Ahrens' move A or using

a Y-commutator, though neither of these fixes the corners. Thus we have

22-33-h-3 = 1296 = 2h3l‘ elements in this group.

Frank Barnes has also examined the Y-commutators and observes that
-1,2 -1
P,(F,R )22 (U™ ,R)% = (RDF)_(RUB), (UF),(RF), .
Perhaps I should note that group theorists have a standard notation
for commutators: PQP-lQ-l = P2(P,Q) is denoted [P,Q].

Ahrens has also pointed out that the 6-X pattern of section 10-E

cen be followed by the slice moves FoUR? (the 6-X pattern in the slice

group) to produce an even more confusing 6-X pattern. I have found that
combining the earlier 6-X pattern with half or all of the first pattern
of section 10-E produces several nice patterns, including (FL,RD,UB)(FD,RB,UL
which may be the pattern that Peter McMullen was referring to. This pattern
can be achieved more directly. It consists of ‘the 6 edges not adjacent
to the RFU and LDB corners and they form a hexagon which appears to have
been turned 120° with respect to the rest of the cube. Ahrens also pointed
out that a 'belt' of the 6 centres and 6 connecting edges, with each
edge-centre-edge triple forming a right angle, can be turned 120° with
respect to the rest of the cube. This is done simply by applying the 6-spot
pattern to the previous pattern. There is another way to meke a 6 centre
and 6 edge belt, with two edge-centre-edge triples being in a straight line,
but it does not seem possible to turn this belt.

I have recently tried combining slice moves and antislice moves. Some
new patterns have emerged but none are quite as interesting as previous
patterns. (Central hexagon, worm, snake; see pp 31,48,49.)

Ahrens suggests "a big public competition in the manner of the great
cubic solving contest of 16th century Italy. Masters of the cube could com-
pete before the television cameras to reproduce various patterns posed by
their rivals. It is too long since mathematics was a spectator sport."(38,39)

As this is now going off to be printed, let me wish you all
"Happy Cubing".
London, 2 October 1979

ADDENDUM NUMBER TWO

A number of typographical errors have been corrected. My thanks to Chris
Rowley, Richard Ahrens, Lytton Jarman, Frank Barnes, Morwen Thistlethwaite,
Kate Fried and Peter Neumann for pointing these out and for further infor-
metion. I should also like to express my indebtedness to Trevor and Beryl
Fletcher. Trevor introduced me to Tamés Varga, who gave me my first cube,
at the Helsinki International Congress of Mathematicians in 1978. They also
contributed a number of ideas which are contained in the main part of these
notes.

While the first printing was in press, I had a visit from Dave Benson,
one of Conway's Cambridge Cubists (CCC). They have made most of BCG obsolete
They have shown that the cube can always be restored in at most 9% moves. (40)

CCC are compiling an inventory of good, processes for all the patterns

L
involving a single face. There are ——— LT Y, h' 2 3h 62208 = 2835 of these which
split into 288 permutations of p051tlons and 516 changes of orientation.
Using the symmetries of the face and identifying positions that differ
only by a turn of the face, their inventory consists of 13 permutations of
positions and 30 changes of orientation which they can do in at most 13
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and 19 moves respectively, though these numbers are being constantly
improved. (See also pp 32,L49.)
Benson has reduced Penrose's solution of the 5 generator problem

(sections T-D and 10-C) to 13 moves. Let A = RL™-FZB°RL™', then AUA = D.
Benson also showed me how to construct more general bar patterns, where

each face has three colours in three parallel bars. These can be built

up by using & mono-column-flip such as C = R2FDR2D-1R. Then CB2C-1 gives

the beginning of such a pattern. Repeat on the opposite face and then apply

(FU,FD) (BU,BD) (see Problem 17-B) and then RL to complete the pattern. (48)
Richard Ahrens has shown that the corners can be rotated as a unit

by 180° about an axis joining the midpoints of two edges. For example,

take B_1P2(R,U)3B-U2R-1P2(F,U)3RU2. He has also shown that the second

'belt' mentioned on page 30 can be turned by 180°, A variation of this
gives the effect of interchanging the 6 edges and centres adjacent to one
corner with the corresponding pieces adjacent to the opposite cornmer. (47-49)

Kete Fried notes that slice moves R2UF2U yield the 4 spot and 2 plain
pattern in only U4 slice moves rather than the 8 I give on page 20. Her
method of inverting all 12 edges is based on the following.

L~ URL Y BRLIDRLIF = (FR),(FD),.(BD)(BU), (12 moves)

Using this three times over gives the desired result. This can be conjugated by

U1 to act only on the RL slice. (12-flip, 4-flip, see pp 28,35,47,48)

The centre of a group is the subgroup of elements which commute with
all the elements of the group - i.e. P is in the centre if and only if
PQ = QP for every Q in the group. (Exercise. Check that the centre is
a subgroup.) I asked Peter Neumenn what the centre of the group of the
cube was and he replied that it has two elememts: I and the pattern with all
edges flipped. With a little thought, you can see that any element of the
centre must act on all corners in the same way and on all edges in the same
way and that there is just one such pattern other than I. (See pp 59-60.)
Several group theorists have pointed out that the interaction between
the permutations of positions and the changes of orientations is an
example of a wreath product of groups. Apparently the commutator subgroup
and the centre can be determined easily from this fact. (See pp 58-60.)
Morwen Thistlethwaite has come up with a novel strategy for restoring the
cube and has shown that it can always be done in at most 85 moves. (39,40)
Thistlethwaite, Barnes and others have observed that the number of
patterns on the 2 x 2 x 2 cube (see page 29) can be divided by 2k to
get 36 TL160 since there is no fixed orientation for this cube.

London, 5 October 1979
and 22 October 1979

ADDENDUM NUMBER THREE

Meny typographical errors have been corrected. Thenks to Frank O'Hara,
Frank Barnes and G. S. Close for pointing these out.

My sister, Karen Rowland, writes that a silicone spray (e.g. WD-LO)
is a good lubricant for stiff cubes. (See also pp 1,2,37,38.)

The Slice Group. The 6-spot pattern (FURF on page 20) is a commutator

(FLF'lL'l) in the corner coordinate system. Fried's observation shows that

the U-spot (R2UF2U above) is also a commutator (RzU-lRQU) in the corner
coordinate system. The maximal number of slice moves required to restore
a given position in the slice group is at most 7 since we can get all the
edges right with three slices, leaving either I, a 6-gpot or a ?-§pot.
Frank O'Hars has shown this can be reduced to 5 and that 32 positions do

require 5 slice moves.
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Frank Barnes observes that the group of the cube is generated by
two moves:

1’0111 = (RF,RU,RB,UB,LD,LB,LU,BD,DF,FL,RD) "

1 .1 .y (FUR,UBR,LDB,LBU,DLF,BDR,DFR);
g = UFRURUF - = (UF,UL)+(UR)+(UBR,UFL)_(URF)4.

Observe that a7 11 is a T-cycle of corners,
that B affects the edge and corner left fixed by a and that

32 = (UF)+(UL)4+(UBR).(UFL).(UFR). (which is similar to Vaughan-Lee's solution

of Problem 18-D on page 24). The remaining details are left as an exercise.
CCC have a program to generate all 4 move positions and compare them.

I don't know if they have found anything new yet. Morwen Thistlethwaite

has a program which searchsall sequences of moves from a set of faces

and prints out those which move few pieces. He is up to T move sequences

on 5 faces and 10 move sequences on U4 faces. Surprisingly, nothing really

new has appeared, though the above process B was found. This is equivalent

[+]

is an ll-cycle of edges and o

to my process BP2(L,U)B"l (page 25, stage 4), followed or preceded by U.

I had not used this variant, but CCC had. At first, I did not believe

such processes were possible as I thought (UF,UL)+ must correspond to

two changes of orientation. However, some thought shows that any untwisted

cycle corresponds to O (mod 2 or 3) changes of orientations ~ since the

first piece returns to its place after passing through all the changes -

and a twisted cycle is obtained by a single flip or twist at the last posi-

tion. So a twisted cycle of edges is equivalent to one flip and a twisted

cycle of corners is equivalent to a twist in the direction of the subscript.
Further analysis of edge orientations resolves the problem asked in

section 10-B. Consider a choice of edge orientations for the 12 edge

pieces and positions. We refer to the first face and the second face of

an orientation. The choices begun on page 17 can be completed as:

UF, UL, UB, UR, DF, DL, DB, DR, FR, FL, BR, BL. The first faces are

U or D if possible, otherwise F or B. Alternatively, the first faces are

U or D and/or the second faces are R or L. We see that the moves U, D, R, L

produce no changes of orientation, while F, B produce 4 changes. Hence,

if a process is to produce a change of orientation (e.g. a monoflip), then

it must contain an odd number of F and B moves which affect the piece.

By symmetry, we can say the same for U and D and for R and L. Hence a

group such as <F2, R2, B2, L, D2, U> cannot be the whole group. There

is a natural orientation of edges such that each 90° turn produces 4 changes
of orientation. There seems to be no way to define a natural orientation
on corners. .

I have been inundated with algorithms and improved processes. I can
only summarize them here as I have not space nor time to analyze them
in detail. An article on the cube appeared in Computer Talk on 5 September
and a solution, due to Colin Cairns and Dave Griffiths, appeared on T Novem-
ber. They get a face, then position the other corners, then orient them,
then do the other edges. John Conway and Dave Benson (??) have prepared
an article for the Journal of Recrestional Mathematics (?) showing how to
always restore the cube in at most 100 moves. They do bottom edges, then
bottom corners and middle edges together and then use their tables to
first position and then orient the top layer, in at most 13 and 19 moves
respectively. (See also pp 30, 40, k9.

Roy Nelson does bottom and middle, then orients top corners, then positions
them, then orients top edges, then positions them.

Thistlethwaite's 85 move process involves first doing a 2 x 2 x 3
block, leaving say the F and R faces to do. He then correctly orients
all the remaining edges (this requires using U or D), then positions FU,
FL, FD and then puts UFL and DFL correctly in place. He then does the
R edges and the R corners in at most 13 and 10 moves respectively. The
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technique requires some look-ahead to make sure pieces will be in acceptable
places at later stages. More importantly, he has found a repertoire of
3-cycles of corners on a face which do all the possible orientation changes
while doing the 3-cycles and take at most 10 moves. He can also do all
reorienting 3-cycles of edges on a face in at most 10 moves. (31,36,39,4k4)

The most interesting new move is a new Monoflip due to Frank Barnes.

W= UTFRIUF flips UF but leaves the rest of the RL slice fixed.

By commuting with the R slice, we can flip any two edges in the RL slice

in 14 moves. (Note that the R slice moves the centres.)
v-1FR-10F-1-R-1L-DF-1RD-1F-RL-1 = (FU)+(FD)+ solves Problem 17-C in 14 moves.
Thistlethwaite modified this somehow to get:

FPLD L F2B2UR LFUTRFPB2LIDF = (FU)L(RU), (1§ moves). (p 35)
Some further shorter solutions. (See also pp 43-45.
Problem 17-A-i. (pages 14,21)

RPL2DRP12U%RPLPDR?L? = (UF,UB)(UR,UL) (R. Nelson - 11 moves)
Problem 17-A-iii. (pages 14, 21, 22)

F2B°DFLBR2FB™LDF2B2 (UF,UR,UB) (K. Fried - 11 moves)

’2D " F2RL1UPR1IDR® = " (Thistlethwaite - 10 moves)

T e " ( " - 9 moves)

(The latter two are conjugates of the Varga & Fried move on page 23.)
Some other edge moves.
-1 -1 -1 _-1_-1

3~y iBLFRURIF L = (UF,UR,BU) (Thistlethwaite - 10 moves)
Fier e lu?rier vl = (UF,RU,UB) (R. Nelson - 11 moves)
115 1rlurBLruirt = (UF,RU,BU) (Thistlethwaite - 10 moves)
R~1uRrBLFUPF 1L 1Bt = (UF,RU,UB) ( " - 10 moves)
Fir1or1p tRL1FU = (FR,UB,UR) (Cairns & Griffiths - 10 moves)
BPR2BAR2URBRUL~ 'RBLR~1U%B2 =(UF)+(UR)+(UB)+(UL)+ (Thistlethwaite -
Problem 18-D. (pages 16,21,23,24) 16 moves)
(ur 2 151)3 = (UFL)_(URF)_(UBR). - a T-cycle and & 5-cycle of edges
v2B2uRL 1 B2R L LuB?rulF Ly trulr Tt = (UFL)_Eﬂﬁth?3§§): 1%ngvfsi7 moves )

F-11-1FR-1P-1LFRBRIRBR2B-112BR2B=(UFL) - (URF) - (UBR) - (Thistletlwaite - 17 moves)
(The last two both split into two interesting halves.)
F2D-1FURF-1DFURL~1BLFL-1B-11=(UFL)- (URF)-(UBR)- ( n =15 moves)

(R2L2DR2L2U2)2 = (UBR,UFL) (URF,ULB) (R. Nelson - 12 moves)

(If this move is repeated, acting on the D face, the result looks like the
corners have been rotated as a unit by 180° about the U-D axis. This can

be obtained in 14 moves using the second solution of Problem 17-B and then a

slice. The 90° rotation is possible though I don't see a simple way to do it.)

I have been told of several people who have restored the cube from a
random position in less than 2 minutes. The best time I have heard of is
85 seconds by Steve Rogerson. The DEC-10 at the University of Essex can
do it in 2 seconds. I have been told of a sixth-form student who managed
to restore a cube within half a day of first seeing one! (See pp 38,39.)

Some problems. What is the shortest non-trivial identity? We have

(7382)6 = 1 = FRIFRUF Ul FRUIR™MU (both of lengthl2) and (FPB2R°LZ)Z

(length 8). 1Is 8 the best? (See p 36.)
One can define a figure of merit M for a move as M = LN, where L is
the length of the sequence and N is the number of pieces moved. For L =1,
N =8, so M =8, We are only interested in the case N # O. Then the process
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P, = (F°R%)3 nas M = 2l and the Varga-Fried move FPRLSU°R™'L has M = 18.
Is this the lowest possible value?
What is the most efficient way to turn two face centres, leaving
everything else fixed? (See pp 3, 18, 22, 38, 45, U6.)

Finally, I would like to acknowledge that the revision of the main
part of these Notes, the addenda and the publishing were carried out
while I was a Visiting Research Fellow at the Open University. I am
indebted to them for the tolerance they have shown to my fanaticism.

The 2 x 3 x 3 Magic Domino is being produced. Two examples have
reached the UK, though I haven't yet got one. (See below.)

London, 30 November 1979

ADDENDUM NUMBER FOUR
Again, a few typographical errors have been corrected. Thanks to
John Gaskin, Frank O'Hara, Morwen Thistlethwaite and to many unnamed
persons who have also found some of these errors many times over!

Minimum Number of Moves. O'Hara and Thistlethwaite have pointed out
that my heuristic discussion of axial moves on page 26 is faulty. The
sample space over which averages are taken is not clear. The average
ordinary length of an axial move can be computed by considering all
sequences of moves with no two consecutive moves on the same face nor
three consecutive moves on the same axis. Consider any move whose
predecessor is not on the same axis. Then its successor is equally likely
to be any one of the other five faces, so the average length is
2¢1/5 + 1+4/5 = 6/5 = 1.2. Now 14 « 1.2 = 16.8, so this argument is no
improvement over the original argument. There are other ways to work out
this average - I have three other answers and O'Hara has two more.

We can explicitly count the number S_ of sequences of length n with
no two consecutive moves on the same face nor three consecutive moves on
the same axis, and we can also identify, e.g. RFB with RBF, in the process.
We have So =1, Sl = 18, 82 =12 Sl + 27 = 243 and Sn =12 Sn-l + 18 Sn-
for n 2 3 -- since either the last move is one of the 12 moves not on the
same axis as the penultimate move or the last two moves are one of the 18
pairs of axial moves not on the same axis as the antepenultimate move.

(The case n = 2 requires a slight modification.) This recurrence is
readily solvable by standard means and the cumulative number T of sequences
of length < n is also obtainable. Setting T = N yields n =" 1T7.3, so some
positions require at least 18 moves and we have made a small gain.

The values of T  increase rapidly (T~ 1.M7 (13.35)%). In view of the

rather low redundancy in sequences, even for the most common source, one
is tempted to conjecture that every position can be achieved in at most 20
moves. This minimax value might be called the length of God's algorithm.

The Magic Domino. I have recieved a Magic Domino from Tamés Varga.
It really does exist! It behaves like a cube with one middle slice missing -
let us say the UD slice is missing. The domino group is then the same as the

cube subgroup <U,D,R2,L2,F2,B2> provided we identify positions differing in

just the UD slice. (Group theorists say we have a quotient group.) It is
easy to see that the U and D faces of pieces must always remain in the U or D
directions, that is, the pieces always stay in orientation. The domino

has two colours of pieces - black and white - and just the U and D faces

are marked with 1 to 9 spots as on & domino. The initial position has the
numbers in sequence with the whites on one face and the blacks on the other.

2

. Now P (U,B) yields a single 2-cycle of edges (since it interchanges a
pair of noli-existent edges) so we can easily obtain any permutation of the

8 edge pieces. However the commutators P2 are not in our domino group.
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But URPU™Y = (ULB,DFR)(UBR,DRB)(UB,DR)(FR,ER)

(where the last 2-cycle vanishes on the domino) affects only ULB on the
L face. Hence we can apply the same reasoning as on pages 23-24 and obtain

vr?utt2ur?™? = (ULB,DLF,DFR) (8 moves)

which is a short 3-cycle of corners both in the cube group and in the
domino group. This, together with U, shows that we can obtain any
permutation of the corners (at first affecting edges, but these can be
permuted by the previous moves). We thus have (8!)2 = 16257 02400
positions. However, only 1/4 of these are distinguishable since we
cannot detect rotations of the domino about its UD axis. Thus we really
have (8!)2/4 = LO6L 25600 = 2123%5272 pogitions.

Unfortunately, the fact that the even numbers are on the edges means
there is no way to arrange the numbers 1 to 9 in a Magic Square - i.e.
with all row, column and diagonal sums being equal (hence to 15). One
cannot even make all row totals the same as the first and third row totals
must be even while the second is odd. Nor can one make all the outer
row and column totals be equal. I cannot see any makeable magic pattern.
Martin Gardner suggested trying for an Antimagic Square - i.e. one with
all the totals different. I find 8 of these. (See also page 60.)

129 1k9 169 189 129 149 169 189
658 658 254 254 856 856 M52  Ls52
3k7 327 387 36T T3 723 783 763

‘The mechanical linkage of the Magic Domino is more complicated than
for the Magic Cube. I leave it as an exercise.

Ahrens, Thistlethwaite and Benson have independently found that the
antislice group has 6144 = 2113 elements. I am told this factors as
384 edge positions times 4 edge orientations times 4 corner arrangements.
The 8 edges in the F and B faces can all be flipped by the antislice
moves (RFU)2. Further the 4 edges in the FB slice can be flipped by

« = F2BLFoD tur?BLeReF1repy~lpeRt (Thistlethwaite — 16 moves).

The product of these two flips all 12 edges in 28 or 26 moves. (One way
has a cancellation.) (8-flip, U-flip, 12-flip. See also pp 28, 31, 47, 48.)
Thistlethwaite has shown that the 12-flip (i.e. the flip of all 12
edges) is not in the subgroup generated by slice and antislice moves.
Consider the orientation of edges with U or D first and/or R or L second,
as discussed on page 32. Consider the three edge pieces UF, UR, FR
adjacent to the UFR corner. (These can be considered as representatives
of the three slices.) Any slice or antislice move will disorient either
0 or 2 of these edges. Hence one can never get 1 or 3 edges disoriented.
This shows also that there are four edge orientation patterns,
accounting for one of the factors in the order of the antislice group.

Thistlethwaite's computer has found

Furru R v lR%uR = (UF,DF)4+(UR,RD)+ (10 moves)
which is a twisted (perverted ?) form of Pl. From this he derives

R2r2R%P2RUIRPUFRUFSU™IF =  (UF),(UR), (Thistlethwaite - 14 moves).

Thus any two edges in a face can be flipped in 14 moves. He can flip any

even number of edges in the whole cube in at most 26 moves.
Thistlethwaite has found a 90° rotation of the corners as a unit

with respect to the UD axis

UR?L2pR?L2utp 1 R%L2u R 24D (1k moves)
andehis computer has found a shorter 180° rotation
UDLRU2D?LRUDFB2 (12 moves).

In section 5-F, I said I didn't know any simple process to interchange
one pair of edges and one pair of corners. Of course, the move B described

on page 32 does do this, but it is twisted and twists some single piecesas well.
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Some neater solutions are

uF i rPwnturltF = (UF,UR)(URF,LBU)  (Thistlethwaite - 12 moves)

and the conjugate of this by B which yields (UF,UR)(URF,UBR) in 14 moves.
Thistlethwaite has reduced his strategy to a maximum of 80 moves.

He has a new strategy for which the maximum has not been determined.

This has three stages: get edges into their slice with correct orientation;

move corners so as to get into the square group <F2,B2,U02,D2,R2,L2>;

use slice and antislice moves to get to START. He believes the maxima

for the stages are 10, 16 and 15 respectively. (See also pp 31-33,39.)
The square group is contained in the group <A,S> generated by slices

and antislices and comprises 1/24 of it. 16

|A,8] = 159 25248 = 2169

|L,R,F2,82,02,02| = 1 95084 28800 = 216355272
Thistlethwaite's computations show that the shortest identities are of

length 8 and are all instances of the commutativity of the slice-squared

group. There are no identities of length 9 and lots of length 10. %p 33)
Two general techniques of process construction might be noted here.

One can find processes which fix corners by using slice and ordinary moves,

say S and M, in the form of a commutator SMS—lM_l, provided we use
coordinates such that a slice move is considered as a rotation of the
centre layer with respect to the coordinate system. In these coordinates,

the Varga-Fried move (page 23) is of the form (RL_l)Fz(R-lL)F2 since the

R slice move carries the U centre to the F face. In simple cases, these
coordinates are defined by the corners, but in more complicated cases it

is easy to lose track of the coordinates so I have generally avoided using
this system. Slice moves have no effect on the corners in this system,

S0 the effects of M and M1 cancel. The second solution of Problem 17-B
(page 21) is of the form (U2D2)L2(U2D2)L2 in these coordinates and K. Fried's
4~f1lip is ((RL-1)U)4. Numerous other processes may be expressed more simply
or discovered in this system - particularly those with the corners fixed.

If we have a process such as RULB, then ULBR = R-1(RULB)R is a conjugate
of it and so it has the same cycle structure as RULB. This is an easy way
to rearrange a process and to look for useful variations, especially to
obtain cancellations in combining with other processes. Note that the
shift can be repeated, i.e. we also look at LBRU and BRUL. (See also P 60.)

There are several ways to form a reflection of a process. A few of
these have been used but I don't know of any systematic study of such
processes.

Pentangle (page 22) is now distributing a summary algorithm due to

G. S. Howlett which uses the Y-commutator (page 1T), the move B described
on page 32, their powers and simple conjugation. Abbreviated versions of
my second algorithm of section 9-D have been prepared by John Gaskin and
Richard Maddison. (And now by myself as A Step by Step Solution of Rubik's
'"Magic Cube', pp S1-S4 of these Notes.)

London, 16 January 1980

Slightly revised on 3 August 1980

ADDENDUM NUMBER FIVE

A number of new features have been added to this version, as ex-
plained in the new preface. Once again, a fair number of errors have
been corrected - many thanks to Michael Holroyd, Roland J. Lees, Frank
O'Hara and especially to David C. Broughton who checked all the processes
with a computer program. I have added a lot of cross references in the
preceding text and in the present Addendum.
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Many thanks also to the following for useful communication:
R. Ager, Peter Andrews, J. D. Beasley, Dave Benson, Tom Brown, Joe Buhler,
J. B. Butler, Uldis Celmins, Paul Coates, Marston D. E. Conder,
Krystyna Dalek, Charlotte Franklin, Alexander H. Frey, Jr., Kate Fried,
John Gaskin, Ron Graham, Richard K. Guy, Nicholas J. Hammond,
Guy Haworth, Michael Holroyd, Gerzson Kéri, Gil Lamb, Charles Leedham-Green,
Roland J. Lees, Steven Mai, Bill McKeeman, Kersten Meier, Susan Mills,
Roberto Minio, Jane Nankivell, Peter Neumann, Frank O'Hara,
Dame Kathleen Ollerenshaw, Zoltén Perjés, Oliver Pretzel, Steve Rogerson,
Chris Rowley, Itsuo Sakane, Sam L. Savage, Zbigniew Semadeni, Peter Strain,
Bela J. Szalai, Don E. Taylor, Paul B. Taylor, Morwen B. Thistlethwaite,
John Trapp, Trevor Truran, Peter Vdmos, Tamés Varga, Michael Vaughan-Lee,
Richard Walker. I should especially like to thank Krystyna and Jurek Daiek
for arranging a visit to the Universities of Warsaw and Gdafisk during which
I started work on this edition. Ron Mills has again provided diagrams.

5.1. LUBRICATION.

Steven Mai says that French chalk is a good lubricant for the cube.
Others and I have found that WD-4O can make the cube and one's hands a
bit tacky. I am told that silicone grease or other silicone sprays may
be better.

5.2..  DISTRIBUTION OF THE CUBE.

As of early 1980, a large US firm, Ideal Toy Co., has acquired the
distribution rights for most of the western world. Ideal has subsidized
a number of improvements in the manufacture and new packaging. The new
version is now being sold in the US at prices in the $7.50 to $15.00 range,
based on a wholesale price of about $5.00. However the UK wholesale price
is about £4.00 (including 15% VAT) and the retail price is £6.00 to £10.00.

Ideal has renamed the cube as "Rubik's Cube" on the grounds that
'magic' tends to be associated with magic, as in magicians. Consequently,
I have retitled these Notes. Ideal is promoting the cube in the US with
TV ads, tee-shirts, Rubik and Zsa-Zsa Gabor (who must be among the least
cubical of Hungarian exports!). Meanwhile production of the Magic Domino
seems to have been suspended.

Logical Games, Inc., 4509 Martinwood Drive, Haymarket, Virginia, 22069,
USA, tel: TO3-T54 4548, has set up a US production of the cube, using white
plastic. They are selling them at $9.00 postpaid in the US. Postage to
gurope is $1.00 by sea and $2.00 by air. Their wholesale price is about

5.00.

Pentangle (address on page 22, tel: 0264 78-481) now supplies cubes,
as an agent of Ideal, for £6.00 in the UK, £9.00 in Europe and £10.00
elsewhere, all postpaid. Optikos, 12 Heath Grove, Buxton, Derbyshire,

SK1T 9EH, UK, tel: 0298-2T7T79, will also supply at similar prices.

I am told that the cube is being made in Hong Kong and will sell for

1980 yen (approx. $9.00) in Japan.

5.3. INDEPENDENT INVENTION.

Itsuo Sakane, an arts and sciences correspondent for Asahi Shimbun, in-
forms me that Terutoshi Ishige, a self-taught engineer and owner of a small
ironworks about 100 km east of Tokyo, has also invented the Magic Cube.

This was about five years ago, first in the 2 x 2 x 2 form and then in
the 3 x 3 x 3 form with two somewhat different mechanisms. Sakane has
kindly sent me copies of the three Japanese patents, which show first
(filing?) dates of 1976 and 1977, second (issuing?) dates of 1978 and
third (publication?) dates of 1980. Rubik's Hungarian patent shows three
dates of 1975, 1976 and 1977, so he seems to have priority. Ishige's
patent drawings show mechanisms conceptually equivalent to Rubik's, but
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quite different in details. To me, Ishige's designs appear less simple
and less robust than Rubik's but I feel that further development would
have led to something like Rubik's.

James Dalgety, of Pentangle, and I have received a number of other
independent designs for the cube. Some of these are just reinventions of
Rubik's design and none of the others seems sufficiently practicable.

5.4. GENERAL ANECDOTES.

A colleague of mine, Paul Taylor, while walking in the South Downs
at Easter, found a cube in a pub with a bottle of Scotch offered to
anyone who could restore it. He managed to do it after a while, but the
landlord accused him of cheating (magic ?) and refused to pay up!

A Los Angeles department store offered $50 to anyone who could put
one face right in three minutes. They lost $600 to a group (sic!) of
Don Goldberg's students at Occidental College.

Several reports tell me that John Conway now restores the cube
behind his back, with only four or five 'looks'.

Barratt Developments Ltd., a major UK home builder based in Newcastle
upon Tyne, printed two of their company logos on opposite faces of cubes
and sent them as invitation to the press reception and opening of their
showhouse at the Ideal Home Exhibition in London on 3 March 1980. The
printing makes it essential that the two centres be correctly oriented
(see p 18, 22). That is, we must work in the supergroup. Processes for
centre moves will be given in section 5.8-F.

Dame Kathleen Ollerenshaw, lately Lord Mayor of Manchester and a
well known recreational mathematician, writes that she has developed
'cubist's thumb' - a form of tendonitis requiring minor but delicate
surgery for its relief. It has afflicted her left thumb even though
she is right-handed. The problem seems to occur most commonly among
teenage disco freaks as a result of too much finger-snapping, but it
also occurs in over-enthusiastic users of (non-electric) hedge clippers,
and it used to be common in car starting handle crankers. It also
afflicts horse's fetlocks.

Kate Fried says she has been able to invert up to 7 random moves from
START. This is the basis of a good exercise or a two person competition.
One person makes a given number, say 6, moves from START and gives the
cube to the other who must get back to START in the given number of moves.

5.5.  COMPETITIONS AND SHORTEST TIMES.

In early 1980, Kate Fried organized cube competitions in Budapest,
at the Youth Mathematical Circle (Ifjdsdgi Matematikai K8r) and at a
Magic Cube Fans Club. Each competitor provides his own cube in its
cardboard box with his name on it. (The original Hungarian packaging is
an ingenious blue cardboard cubical box. Some similar boxes were used
in Germany and the UK.) The judge(s) then randomize the cubes identically
and put them back in their boxes. In the firstcompetition, on 4 January,
a student named Viktor Téth won in 55 seconds. After this competition,
the winner and the runner-up had a play-off or second dimension competition
in which each randomized the other's cube. Téth won again.

For the second competition, in March, over a thousand people came,
overflowing several rooms and into the street. A request for persons who
could do the cube in less than 90 seconds yielded nine people and a
competition was held among them. The winner did his in 40 seconds.

A number of UK cubists have become 'speed merchants'. This involves
hours of careful filing, greasing and oiling to obtain a cube of optimum
smoothness. Peter Strain told me he had achieved 46 seconds just a few
days after I had heard of the 40 second record. He also said that he had
counted a total of 6704 moves in a hundred restorations. Nicholas J.
Hammond says he has achieved 36 seconds, but as he admits, this was a bit
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of a fluke as the cube was nearly correct when the first layer was done.
Also,he allows himself some viewing time before starting. I think this
makes it difficult to compare with competition situations and I suggest
that viewing time ought not to be allowed. Hammond insists that single
times are not a true measure of speed and suggests taking the total time
for ten consecutive restorations. His best average for ten is 54.7 seconds!
He reports that a smooth cube can be turned 100 to 120 times in a minute.
(He does FRBLFRBL...)

J. B. Butler says his computer can restore a cube in 3 second of
CP time. (See also p 33.) I don't really know if it is meaningful to
compare computer times of this sort of length.

5.6. PROBLEM 19 - MAXIMUM NUMBER OF MOVES TO RESTORE THE CUBE.
(See pp 16, 26, 29-32, 36 for earlier work.)
A. THISTLETHWAITE'S ALGORITHM.

Morwen B. Thistlethwaite, henceforth denoted by MBT, shares my office
at the Polytechnic. He has been the most diligent user of computing to
find efficient processes and algorithms. His current algorithm requires
at most 52 moves, but he hopes to get it down to 50 with a bit more computing
and he believes it may be reducible to 45 with a lot of searching. The
method involves working through the following sequence of groups:

Gy = <L, R, F, B, U, D>;

G, = <L, R, F, B,U2,D2>;

1 .
G <L, R,F2,B2,U2,D2>;

20
Gy = <12 ,R2,F2,B2,U2,D2>
Gh = {I}-

Once inG;, one onlyuses moves in Gy to get into Gy4q. The ratio | G3 | /| Gi+1|

is called the index of G. in G.. The indices involved are:

—_— 1+l i 2 13.3
2048; 10 82565; 29400; 6 63552 = 2y 37.3P5.11; 233.5%¢2; 21333,
The factors of 211 and 37 in the first two indices correspond to the fact
that these stages rectify the orientations of edges and corners. The present
state of knowledge is summarized as follows, where stage i is the step from

G. to G..

i-1 i

STAGE
Maximum number
of moves 1 2 3 L TOTAL

Proven T 13 15 17 52
Anticipated T 12 1h4? 17 50?2
Best possible T 10% 137 15?2 hs?

The results for stages 3 and 4 require extensive tables comprising about
500 and 172 entries respectively as well as some preliminary reductions.
However, MBT has told me today that he has reorganized stage 3 and that
it no longer requires such extensive tables.

An earlier MBT algorithm proceeded to first orient the edges and get
them into their slices (18 moves) by a process similar to the above algorithm.
The edges were then put in place {9 moves) and the cormers were done
(36 moves) making a total of 63 moves at most.

B. OTHER ALGORITHMS.

I have received a large number of algorithms in various stages of prep-
aration and publication. I summarize them below. Bibliographic details are
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in the Bibliography (pages Bl,B2), or else the item is a private
comunication.

James Angevine's solution is distributed by Logical Games (page 37).

It proceeds in the same sequence as Cairns and Griffiths (page 32).

J. D. Beasley sends a 'downmarket' solution, i.e. with no mathe-
matical notation. He does cormers, then edges, then centres!

The draft article described as CCC on page 32 is by Dave Benson,

John Conway and David Seal. I shall denote it as BCS. Most of the
previous attributions to CCC are to early unsigned versions of BCS.
Richard Guy has sent a recent revision of BCG. This gives a number of
new ideas and says the BCS method is down to 85 moves.

Hanke Bremer did a solution without having a cube. He gets corners
in place, then oriented, then edges in place,then oriented. Joe Buhler
has produced a solution which is being distributed in the US but I haven't
seen it. Michel Dauphin, a sixth year student at a lycée in Luxembourg,
gives a method similar to Bremer's.

3-D Jackson (apparently 3-D is a pseudonym for Bradley W.) has compiled
"The Cube Dictionary" giving about 177 one layer processes and 16 edge(s)-
into-middle-slice processes. He asserts these allow the following two
algorithms. I: D edges (10); D corners (22); middle edges (28); U corners
in place (8), then oriented (1L4); U edges (10) making a total of 92 moves.
II: a2 x 2 x 3 block (30); a remaining face (20); the other face (20)
making a total of at most TO moves. (Compare with MBT, page 32.)

Gerzson Kéri says he can do two layers in at most 57 moves and that
he believes any one layer process can be done in at most 18 moves (see
section 5.10-A). He says he has over 100 one layer processes of at most
15 moves. He has published a lengthy two-part article in Hungary and
apparently the manufacturers objected to his making the solution too clear!
One of his methods is entirely tabular - proceeding one piece at a time,
you see where it is and then look up a process to get it correctly in place.
This does D corners, U corners, FB slice edges, RL slice edges, then UD slice
edges. The table contains 24 + 21 + ... +3 + 24 + 22+ ... + 2 = 264
entries of which 5 are impossible and 20 are trivial. This takes at most
182 moves.

Bill McKeeman sends an algorithm due to Adam Kertesz which does two
layers, then U corners in place, then U edges in place, then orients U edges
and then U corners. Kersten Meier sends a layer by layer algorithm but
doesn't detail the working for the last layer. Dame Kathleen Ollerenshaw's
method does the D face, then U corners, then middle slice edges, then U edges.
She reports an average of 80 moves.

Zoltén Perjés has written out an algorithm, based on Penrose's (page 26),
which does D edges, middle slice edges, U edges, then corners in place and
then oriented. He also outlines Rubik's original fast method: D corners,

U corners in place, then oriented, three D edges, three U edges, the other
D and U edges, then the middle slice edges.

Don Taylor does D edges, D corners, middle edges, U corners in place,
U edges in place, U corners oriented, then U edges oriented.

Michael Vaughan-Lee has made a careful study of an edge first process:
D edges (13), three middle edges (14), U edges and last middle edge (17)
(hence 44 for the edges), corners in place (30) and then in orientation (38),
but the last two steps can be reduced to 26 + 24, 32 +.22 or 28 + 22,
giving a meximum of 98 moves.

5.T7. NEW NOTATION AND DIAGRAMS.

Several people have suggested that R~! be written R'. I had hesitated
at doing this since I sometimes use P' to denote another permntation than P.
However there seems to be little danger of confusion and it is much easier
and neater to use ', so we shall adopt it henceforth. I shall use -l ina
few situations.
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I shall write URF, for (URF),, etc.

After several thoughts about ways of writing slice and antislice
moves within ordinary processes, I have decided to write:
R = L; for RL' = L'R;

s

R = L for RL = LR;
a a

R! = L! for R'L' = L'R'.

R2 = R2 = 12 = 12 for R2L2 = L2R2,
< a S a

Clearly s stands for slice and a for antislice. WARNING. These are normally
taken with respect to our ordinary centre coordinates, not the corner
coordinates (pp 20-21) nor the fixed spatial coordinates described on page 36.

T shall also use [F,R] for P_(F,R) = FRF'R' on occasion (page 30).

Various notations have been used for computer output, e.g. R', R3, r.
Several people have asked for a notation to represent physical turning of
the cube. I find this is only needed when one wants to apply the same
process at different places on the cube within a large process, e.g. with
P, P, or Ahrens' A (p 29), etc. I have not felt sufficient need to set
up su%h a notation. Zbigniew Semadeni points out that FR can mean a piece,
a position or a process and that this can get confusing. I have generally
not found this to be a difficulty but one must be careful in writing out
an elementary algorithm. You are welcome to use different styles of letters
for the different uses, but I will just try to be careful of my language
when necessary.

Dame Kathleen Ollerenshaw uses the diagram of Figure 5.1 with a
separate 3 x 3 square for the D face. In most processes, the D face is
unchanged, so it is normally omitted. Exercise. If only Figure 5.1 is
filled in, how many possible D faces are there? (I get 12, 2 or 1.) The
diagram of Figure 5.2 came from an unknown source. This shows the whole
cube except for one centre. Though both of these are elegant, I find them
too complex to work with.

\__/ \__/
B -]
L v R L vl | R
1 N 11
F F
[ \ L\

FIGURE 5.1 FIGURE 5.2

A. U NOTATION.

I have recently been using a simplified diagram and notation for
dealing with one (face) layer processes, based on BCS, MBT, 3-D Jackson
and Ollerenshaw's work. Since I always put one layer processes in the
U face, I will call them U processes to indicate their superiority over
non-U processes. The following will be called U diagrams and U notation.

Consider a typical U process:

P = BLUL'U'B' = B[L,U]JB' = (ULB,UBR),(UFL,URF)_(UF,BU,UL).
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B
g —_—
L Py — Alals
+ R / + a b
> - D c c
—< «—
F
FIGURE 5.3 FIGURE 5.4 FIGURE 5.5

I diagram this as in Figure 5.3. The figure shows only the U face and

I usually omit the F, R, B, L around the edges which are then assumed.

The arrows show the change of position. A sign by an arrow head indicates

the change of orientation of the piece moved by the arrow to the position

vhere the arrow head is. If we begin at START, these changes of orientation

are easily seen by just looking for the U faces of each piece. Thus the

UF piece goes to the UB position and the + shows that its orientation is

changed, i.e. it goes to BU in our usual notation. The U diagram can be

drawn without the 3 x 3 grid as in Figure 5.4. One can put the sign at

the middle of the arrow rather than by its head. For complicated processes,

one may draw the corner and edge diagrams separately. Pieces which remain

in place but are flipped or twisted have just a sign shown at the position.
It also helps to have an abbreviated notation for pieces and effects

of U processes as is done in 3-D Jackson's Dictionary. He numbers both

the corners and edges from 1 to U and then he must specify whether (1,2,3)

is an edge 3-cycle or a corner 3-cycle. I think two kinds of symbols is

better and I will use the the lettering shown in Figure 5.5. (The corners

are the same .as my canonical example of the symmetries of the square (p 10).

Signs are used to represent flipped or twisted orientations. Thus we can

write

P = BLUL'U'B' = (ULB,UBR),(UFL,URF)_(UF,BU,UL)
as (A,B)¢  (D,C)_  (c,a+,d)
or (A,B), (c,D-)_ (a,d+,c+)

corresponding to (ULB,UBR),, (URF ,LUF)_(UB,LU,FU).

Note that in this notation, as in our original notation, a cycle records
the sequence of images of its first element. This makes it easy to read
off the powers of the permutation, e.g. P2 = A B,C_D_(a,c+,d+). However,
it is sometimes more informative to see the change each piece undergoes
as is shown in the sbove U diagrams. For example, we have a -+ d+ which
shows that the piece at a will be flipped in going to 4, but 4+ - c+
shows that the piece at d is not flipped in going to c. The signs shown
in the U diagrams can thus be considered as the differences between the
signs in the U notation. Note that the sum of the arrow signs in a cycle
gives the twist of the cycle.

The two usages of the signs are perhaps a bit confusing at first, but
both are useful in different cortexts so it is
best to understand both. The two usages of
signs behave slightly differently under ¥ >
inversion. For example, P' is diagrammed
in Figure 5.6 and we have
P' = (B,A)_(D-,C)4(c+,d+,a)

= (AsB')-(C,D)‘F(aaC""d”')'
In the diagram, arrows are reversed and v+
signs are inverted, where the inverse of a < +
twist is a twist of the opposite sign but
the inverse of a flip is still a flip. The FIGURE 5.6
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signs are on the same arrows as before, so one may want to place them

at the middle of the arrows so that they are not moved by the inversion.

In the cycle notation the cycles are all reversed and the twists are
inverted, but the orientation signs on positions are not changed. Once

the inverse is computed in this way, one can easily shift the cycles to

get any desired element first. E.g. (A,B+,C-)3} = (C-, B+,A)_ = (B+,A,C+)_
= (A,C+,B)_. Exercise. Translate the processes of Problems 17-A, 18-A,
18-B, 18-D into U notation and draw U diagrams for each. Also do all their
inverses.

5.8. A SMALL CATALOGUE OF PROCESSES.

I have received a great many letters giving improved processes.
Sometimes the same or equivalent processes have come from several people
so I have no way of attributing them to any one person. I will attribute
these to 'well known', denoted by WK. I shall abbreviate the most common
sources as follows.

BCS Benson, Conway & Seal as quoted in BCG
BCG Berlekamp, Conway & Guy

3DJ 3-D Jackson

GK Gerzson Kéri

KO Dame Kathleen Ollerenshaw

DBS David Singmaster

MBT Morwen Thistlethwaite

MBTC Morwen Thistlethwaite's computer

My apologies to anyone who feels that he has not been credited with his
invention, but most of these processes have probably been discovered by
many people. An attribution such as (WK - 103 17-A-i, pp 14,21,33) means
that the process is well known, it takes 10 moves, it is a solution to
Problem 17-A-i (or closely related) and that it (or close relatives) are
on pages 14, 21 and 33 of these Notes.

When there are several equivalent processes with the same result, I
usually give only one of them, chosen for convenience of representation
or execution. There are now so many processes that it is necessary to
impose some order and some selectivity on them. I have begun on this
below. I will be concentrating on U processes, on edge processes and on
corner processes. I give complete repertoires of U 3-cycles on edges
and on corners and of U flips and U twists. I list the cycle structure
first for convenience of use and I have tried to include all non-obsolete
processes from earlier in these Notes. After the catalogue, I will discuss
some interesting new methods.

Note, of course, that use of U, U2, U' and/or physical rotation of
the cube may simplify a given U position into one of those catalogued.

A. U EDGE PROCESSES.
(i) Two 2-cycles.

There are 16 possible cases heré, which can be reduced to 10 by
symmetry and inversion, but not all have nice known solutions.

(a,b)(c,d) = F3D'IRFERRFZDFZ (R. Walker & 3DJ - 12; 17-A-ii, pp 14,21)
(a,b+)(c,d) = RBUB'U'RRF'U'FUR  (D. E. Taylor & 3DJ - 11)

(a,b+)(e,d+) = FuR(URB2)3R'F} (DBS - 12; p 23)

(aye)(b,d) = RaURR,*FoURF, (WK - 10; 17-A-1, pp 14,21,23)

(a,c)+(b,d)+ = F'U'L'URLFURURR' (3DJ - 10)
(ii) One 3-cycle.

There are 4 possible cases here. I write them in the form (a,c,b)
since that is the form used in 17-A-iii and on p 33. The triple of signs
shows whether the corresponding piece is flipped as it is moved, i.e. they
are the arrow signs of the U diagram.
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(a,c,b) = 000 = RZU'FSRZF;U'RZ (MBT & WK - 9; 17-A-iii, pp 14,21,22,33
(a,c,b+) = O++ = RD2L2BL2D2R2FR (R. Walker - 9; p 33)
(a,ct,b) = ++0 = L'B'R'URBLFU'F' (MBT - 10; p 33)
L'[R,UILIR',F] (0. Pretzel - 10; p 33)
(a,c+,b+) = +0+ = B'U'BLFRUR'F'L' (MBT - 10, p 33)

giii) Flips.
There are 3 possible cases here. The quadruple of signs shows
the effect on a, b, c, d.

ayby = ++00 = B'U2B2UB'U'B'U2FRBR'F' (MBTC - 13; pp 23,2k4,35)

a4Cy = +0+0 = U'FR'UF'RSUB'RU'BR; (F. Barnes - 14; 17-C, pp 1k,
= LF'UL'FS-U-R'FU'RF;°U' (BCS - 1b; 21,23,24,33

apbycydy = HH++ = RZBZRZUZRS-B-R;U2R2B2R2oU (MBT - 14; pp 31,35)

B. U CORNER PROCESSES.
(i) Two 2-cycles.

There are S5U possible cases here which can be reduced to 18 by
symmetry and inversion. Surprisingly few of these have come up simply.

(A,B+)(C,D+) BLL,U13B! (DBS - 14; p 25)
(FDF2D2F2D'F'U2)2  (BCS - 163 p 25)
R'F'RLZB'R'BLzrsRB (MBT - 12)

(4,B),(C,D-)_

(a,c)(B,D) = RaUzR;~F;U2Fa-U2 (N. J. Hammond & BCS - 11; p 33)
R2F§L23-32r§L2U (R. Walker - 103 p 33
(4,C),(B,D+)_ = B'U'BU'BUB2UB2U2B'U2 (MBT - 12)
(ii) One 3-cycle.

There are 9 possible cases here. I write them in the form (A,D,B)
since that is the form of my favorite 3-cycle (p 25), though it is inverse
to the form of Problem 18-A (pp 16,21,24). The triple of signs shows how
the corresponding piece is twisted as it is moved.

(A,D,B) = 000 = B2L2BRB'L2BR'B = B2[12,[B,R]]B2 (MBT - 9)
= LF'LB2L'FLB%1L2 = 12B2[B2,[L',F']1B2L2 (GK - 9)
(A,D,B+) = O+- = LB'D2BU2B'D2BU2L' = LB'[D?,[B,U2]]1BL' (MBT - 10)
(A,D,B-) = O-+ = R'FRB'R'F'RB = [[R',F],B'] (3pJ - 8)
= BLFL'B'LF'L' = [B,[L,F]] (ko - 8)
(A,D+,B) = +-0 = LFR'F'L'FRF' = [L,[F,R']] (307 & GK - 8; p 2L)
= B'R'BL'B'RBL = [[B',R'],L'] (MBT & KO - 8; p 24)
(A,D+,B+) = +0- = R2F2R'B2RF2R'B2R' = R[[R,F2],B21R'(MBT & KO - 8)
(A,D+,B-) = +++ = URU'L'UR'U'L = [[U,R],L'] (DBS & WK - 8; pp 23,25)
= BU'F'UB'U'FU = [B,[U',F']] (DBS - 83 pp 23,25)
(A,D-,B) = -+0 = B2D'BU2B'DBU2B = B2[D',[B,U2]1182 (GK - 9)
(A,D-,B+) = ——- = FL'B2L'F2LB2L'F212F' = FL'[BZ [L*,F2]1]LF* (DBS - 11)
= BD'B2D'F2DB2D'F2D2B' = BD2[[D, 52] F]DZB (Ko - 11)
(A,D-,B-) = -0+ = F'L2F'RRFISF'RRFR2 = F'[I<,[F', R217F (MBT & KO - 9)

(iii) Twists.
There are five possible cases here. The quadruple of signs shows the
effects on A, B, C, D.

ALB_ = +-00 = L(U2LB'D2BL')2L' (E. Rubik & WK - 13; 18-C, pp 16,21,23,2h)
AC_ = 40-0 = (U2BR'D2RB"')? (E. Rubik & WK - 12; pp 23,2h4)

AB,C, = +++0 = U2LF'L2FLF'L2FU2BLB'L' (MBT -14; 18-D, pp 16, 21,23,24,%,39)
AB,C_D. = ++-- = L'FD2LF2D'F.U2+F'DF2L'D2F'L-U2 (MET - 16, pp 23,2h4)
AB_C,D_ = +-+- = L(FU'RUR'UF'U')2L" (BCS - 18; pp 23, J2L)

C. SOME OTHER U PROCESSES.

Below is a selectionof U processes which are particularly short or




simple.

(A,B)(a,b)
(4,B-)(a,a)

(A,C+)(a,d)
(a,C) B+a+(b ey
MBthJ(mbu) = FLU,RIF'

(4,B)+(C,D-)_(a,d+,c+)
(A,C),(B,D+)_(a,c,b)

(A D+ B)b.,.c.,.

AyB_ayby

A4B4Cy(a,b,c)
AB.C,(a,b,d)
A,B,Cra,by

A B4C_D_ (a,b)(c a)

A{B,C_D_(a,c+,b)
A+B+C_D_(a,c+,d+)

A+B—C+D—(a:b »e)

F'UBU'FU2B'UBU2B!
R'URUzR;URU'LUz

FRUR'F2LFL2ULU'
= URBUB'U'R'

[F,Ul[U2

45

(3DJ & MBT - 11; p 36)
(3. Trapp - 11)

(6K - 11; p 36)

= UR[B,UIR® (F. Barnes & BCS - T; p 32)

(DBS - 6)

B[L, U]B' (DBS - 6; p 25)

JF1 0 (J. Trapp -7

R'U2R2UR'U'R U2FRF (MBTC - 13)
B2R2F[B,R'JF'R2B2[U,R] (MBT - 1k4)

= U2LUL'ULU2L! (BCS & KO - 8)

= U2B'U2BUB'UB (K. Fried - 8; p 24)
= B'U'B2L'B'L2U'L'U2 (D. Benson - 9; p 2h)
= F[U,RIF'+B[L,U]B' (MBT - 12)

= F[U,R]%F!' (DBS - 10)

= B[L,U]2B!' (DBS - 10)

= ([F,UI[U2,F])2 (J. Trapp - 11)

D. SOME NON-U PROCESSES.
(UF,DF)(UR,DR) = (F2gR2)3 (DBS - 6; p 13)
(ur,DF) (UB,DB) = F2R§B2R§ (DBS & WK - 6; 17-B, pp 1k4,21)
(UF,DF),+(DR,UR); = FUF2U'R'F'U'R2UR (MBTC - 10; p 35)
(uF,DB) (UB,DF) = RsugLspg (DBS - 8)

(See also various flips in Pretty Patterns.)
(BU,FU,FD) = FZRSUZR; (T. Varga & K. Fried - 63 p 23)
(FU,UR,RF) = RU'R'F'L'B'U'BLFRU2R' (GK - 13; 17-A-v, pp 14,21,28)
(FD,UL,RB) = .U2DFDBR'B'D'F'U'RU' (GK - 13; p 28

(The last two are rotations about the FUR-BLD axis.)

UR,DR,UL, DL,

(URF,ULB) (DLF,DRB)

(FRD,UFL,RUB)

(ULB,DLF,DFR)

FLU4+FUR,FRD_DRB_(FU,DR,FR) = [F,R]?
ULB,UBR_URF,UFL_(FL,BU,LU)(FR,FU RU)

= F2LF2U RZBngF'LZU;BZR'(MBT - 163 p 35 slice 4-flip)
(FLU,FUR) .(FRD,DRB) _(FU, FR ,DR) =

. (R2U2F2 ) 6

FRF'R' = [F,R] (DBS - 4; p 15)

(A. J. Adamyck & WK - 18)

= U'LFDF'U'FD'F'UL'U = U'L[[F,D],U'IL'U (DBS - 12; p 28)
(This last is also a rotation about FUR-BLD exis.)
= UR2U'L2UR2U*12 = [[U,R2]1,L2] (DBS - 8, p 35)

(DBS - 8, p 15)
U'F2U2F'y2F2 (? - )

ULB+UBR URF,UFL_(FL,FU,LU)(FR,BU,RU) = UB2D2FD2B2 (MBT - 6)
ULB4+UBR_URF_UFL_DBL_DRB4+DFR4DLF+ =

Chris Rowley asks for an easy ll-cycle on edges and an easy T cycle
on corners.

EDGE(S) INTO MIDDLE SLICE PROCESSES. (See also p 25.)

(LR2F2B!' )" (MBT - 16)

(A. H. Frey, Jr. - T)

E.
UF -~ FR -~ LU by F'U2L'ULUZF (D. E. Taylor - T)
LU >~ FR + UB by FR'F'RF'U'F
LU > FR~+>UB by RU'R'U'F'UF (BCG - T)
FU - FR - RU by LF2UFU'F2L' (A. Kertesz - T)

u2
UF'
uD!'

F.

SUPERGROUP PROCESSES.

Here we list some processes which only turn face centres, which are
indicated by F, etc. on the left of the following. See also pp 3, 18,22, 34, 38.

2Rp1)2
(URaU Ra)

' U'T,'F'.
F LU -F'-UILIF!-U
R, F2R “U-R F2R .D!
R FZR'-U ‘R F2R D!

a a &

(MBT - 12)

(MBT - 14)

(D. Benson - 14; p 31)
(Z. Perjés - 1h)
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No simple UF is known to me.
G. COMMENTS ON USEFUL NEW PARTIAL PROCESSES.

The following are some new partial processes with fairly simple
structure which can be combined in various useful ways. The most
important forms of combination are the following.

P is a process which acts on a face or slice in a minimal manner,
such as the monoflip or monotwist. If P acts minimally on the U face,
then PUPP'U-D will only act on U.

P is a process which moves the pieces of one face to another.
If P moves all the U pieces to D, then PDRP' will only act on U.

In either case, if P has order 2, then P2 = I, P = P' and things
are simpler. The reader is advised to study these processes carefully
and note how they have been used in the above subsections as it is
difficult to explain all the ways in which they might be used.

RaU2Ré exchanges the RF and LB vertical columns and the adjacent
edges UF, UB. This process has order 2.

R2B2R2U2Rs moves all U pieces onto the B face, with two edges
flipped.

R2F§L2 moves all U pieces onto the D face, with two edges
exchanged. This has order 2.

FDF2D2F2D'F' = M exchanges only (URF,FRU) = (C,D+) in the
U face and has order 2. BCG call this a Monoswap. Perhaps it could
be called a unicycle? This makes an easy way to get U corners in place
once they are in an even permutation.

BR'D?RB' exchanges only (ULB,RFU) = (A,C+) in the U face and has
order 2. Though it is a monoswap, its shape is not very useful. However
BR'D2RB'U2 gives A,C_ and a lot of 2-cycles. Hence its square yields
A_C,. Gerzson Kéri says he had this from Rubik himself, so I call it
Rubik's Duotwist.

L'FD2LF2D'F only moves (A,C-)D- in the U face. This allows you to
construct a number of twisting moves. Being due to Thistlethwaite I
call this Thistlethwaite's Tritwist, though this is a thongue thwister!

5.9. PRETTY PATTERNS.
A. SYMMETRIES OF THE CUBE AND THE CENTRES GROUP.

Since many pretty patterns are based on symmetries of the cube,
let us first examine the symmetries. There are three kinds of symmetry
axis of a cube, exemplified by FU-BD, FUR-BLD and UD, with orders 2, 3
and 4 respectively. We can call these an edge axis, a corner axis (or
main diagonal) and a face axis. The cube pieces fall into various orbits
under these rotations and it is easy to see precisely which orbits or
combinations of orbits can be rotated by processes on the cube. We already
know how to carry out all the rotations about a corner axis. A corner
axis rotation has six 3-orbits and two l-orbits. Rotation about a face
axis preserves layers and hence it is easy to obtain any achievable
rotations. A 90° rotation has five t-orbits, so it is not possible to
rotate all the orbits together. A 180° rotation has ten 2-orbits and
can be achieved, yielding the 4-spot pattern. Rotations about an edge
axis have been less studied but the most interesting cases are given below.
There are nine 2-orbits and two l-orbits, so one cannot rotate all the
orbits at once.

Reflections have been less studied, mostly because neither any corner
nor the configuration of centres can be reflected. So any reflectional

pattern must be viewed as reflecting just edges. Reflection With respect
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to the plane of a slice has four 2-orbits and four l-orbits and can be
readily carried out to yield a 2-X pattern. Reflection with respect to
the plane through the FR and BL edges has five 2-orbits and two l-orbits,
so cannot be done in entirety. Reflection with respect to the plane of
a central hexagon (i.e. the plane which perpendicularly bisects a main
diagonal) has three 2-orbits, so again cannot be accomplished in
entirety. Reflection or inversion with respect to the central point
of the cube involves 6 2-orbits. This can be achieved by F§U§R§.
In all the cases where a rotation involves an odd number of 2-orbits,
it is not possible to rotate all the pieces as a unit with respect to
the centres. This leads us to see precisely how the centres can be
considered as moving with respect to the rest of the cube. The centres,
being held together physically, can only be moved like the direct symmetries
of the cube (i.e. reflections are not permitted). There are 24 of these
(pp 3, 18). These are actually equivalent to S, which can be seen by
considering S, as acting on the four main diagonals of the cube. However,
we have only found 12 movements of the centres: I, eight 6-spots (two
about each main diagonal) and three L-spots (one sbout each face axis).
The other 12 direct symmetries of the cube are odd permutations of the six
centres and correspond to the rotations by 90° about face axes or 180°
about edge axes. From the first paragraph, we know such rotations of all
the pieces with respect to the centres are impossible. So the centres can
only. be moved with respect to the rest of the cube (or vice versa) by even
direct symmetries of the faces of the cube. We call this the centres group.
We can view movement of the centres as resulting from physical movement
of the cube. It is sometimes easier to view a pattern with respect to
the main body of pieces and think of the centres as having been moved.
Examination of all the symmetries of the cube shows that they are all
even permutations considered on the set of all 26 pieces - 8 corners,
12 edges and 6 centres. Indeed they are all even on the set of 8 corners
and on the set of 18 non-corners. Since all the achievable patterns on
the cube, considering the centres as fixed, are even on the same 26
pieces, we have that all achievable positions of the 26 pieces are even
permutations. For example, the 6-spot pattern can be viewed as six
three cycles and two twists on the corners and edges or as two 3-cycles
of centres. In the latter case, we must bring the cube back to having
all the non-centre pieces in their original places by using a symmetry
of the cube. That is, the two viewpoints differ by a symmetry of the cube,
which is an even permutation. In particular, we can obtain only even
permutations of the centres when everything else is fixed.

B. THE SIMPLER PRETTY PATTERNS.

Here we summarize and give standard names to the simpler and better
known of the pretty patterns. Note: These names are based on the facial
appearance. There are patterns which have the same facial appearances but
a different relationship of faces. For example, there are at least two
other examples of a 6-X pattern than given here. (pp 28, 30).

2-X : giig;?ﬁ%;%;2)3 (WK - 12) (See p 53 for an 8-move.)

4+ = (FaRa)3(RaFa)3 (DBS - 24; pp 11,21) (See p 48 for a 10-move.)
h-Xx = two 2-X patterns along different axes or 4+ & lL-spot

(Slice) b-flip = FgLF UstBRgF'LZU;BZR' (MBT - 163 p 31,35,36,45)
L-spot = R§USF§US (K. Fried & WK - 8; pp 11,20,31

Lz = (FaRa)sUz (DBS - 14; pp 11,21)

6-2L = F,UR! F, (DBS - 8; pp 11,21)

6-bar is not achievable (DBS; p 28)
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6-spot = RFUR, (WK - 8; pp 11,20)
6-X = Rgpgug (WK - 6; pp 11,20)
8-flip - (Ra;-aua)2 (MBT - 123 p 35)
12-flip = 8 flip and (slice) 4-flip (MBT - 263 %E 28,31,35)
Tricolours = C(R,F,D)B2C(R,F,D)-1C(L,B,D)F3C(L,B,D)-1+F2RZBRR

vhere C(R,F,D) = R2FDR2D'R (D. Bemson - 31; p 31)
U-b-flip = RszRzUzRS‘B-RéUszBsz-U (MBT - 14; pp 4k)
Zig-Zag = (FaRa)3 (WK - 12; pp 11,21)

C. MORE COMPLEX PRETTY PATTERNS.

Richard Walker has extensively studied these patterns and found
improvements to most of them.

The 4-bar pattern on page 28 can be viewed as rotating the 4 vertical
corner columns with respect to the rest by 180°. (The phrase 'with respect
to the rest' will henceforth be omitted and understood.) The pattern is
achieved by

FZR§BZR2F§L2 (DBS - 8; p 28),
Rauzniuzna (N. J. Hammond - 8),
(R2F21.2)2 (R. Walker - 6).

Replacing the last L2 by R? in the first and third of these gives Crossbars,
as does replacing the last Ra by R; in the second of these.

My Double-cube pattern described in the first paragraph of section
10-E (pp 28, 29) can be achieved more easily by moving the rest of the cube
instead. Consider
(RDF,UBR,FLU) (RD,UB,FL) = BL'D2LDF'D2FD'B' (R. Walker - 10).

This acts on three corner-edge pairs such as RDG, RD based at the three
corners closest to URF. It rotates them 120° anti-clockwise about the FUR-BLD
axis. Combining this with an appropriate reflection of itself, namely
(RBD,ULB,FDL) (RB,UL,FD) = F'RU2R'U'BU2B'UF

yields the double cube in 20 moves.

Walker also gives
(FUR)+(FU,UR,RF) (FRD) _(BUL)+(BU,UL,LF) (BLD) _ =RqUR4F4UFg (R. Walker - 10),

which is equivalent to two of Ahrens' processes A of page 29. Using this

once and two of Ahrens' processes yields the rotation of four non-adjacent

corners and their adjoining edges in 34 moves instead of k8.
U(Rng)ZU'(RzF§)2 (R. Walker - 14) rotates the corners 90° clock-

wise about the UD axis. (Directions of rotation are given with respect to

looking at the first named end of the axis. E.g. here I am looking at the

U face to see the 90° clockwise rotation.) This is a 4+ pattern. (pp 33,35)
F§R§UF§R§D (R. Walker - 10) rotates the U corners as though U had

been agplied and the D corners as though D had been applied.
FaUaF§R§p° . (F. 0'Hara - 12; pp 11,21,33,35)
or F§R§U2F§R§D2 (R. Walker - 10; pp 11,21,33,35)
rotates the corners 180° sbout the UD axis. This is the usual U+ pattern.
Conjugating the latter by R, and noting that slice-squares commute, we get

an 11 move process which rotates the corners 180° about the FU-BD axis as
first given by Ahrens on page 31. This is a 6+ pattern.

Consider
W(R,U,F) = RUF2U'F'R'U'R2UF = (FL,RD),(FD,RB)4 (R. Walker - 10). Then
w(R,U,F)-w(F,R,U) = (FL,RD,UB)(FD,RB,UL) (R. Walker - 19; p 30)

is a 120° anticlockwise rotation of the central hexagon about the FUR-BLD
axis. :
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U'RzFaUzF'R'UB'RUSF'RU'FR'U;RZFZU = FL,(FD,LU)(RD,BU)RB, (Walker-22)

is a rotation of the same central hexagon about the FL-UB axis.
There are two belt patterns on pages 30 and 31.

RUFZD’RSFSD'F'R'FZRUZFR F'R'U'F'U2FR (R. Walker - 23)

obtains the first one which Walker names the Worm.

BRSD'RZDR;B'RZ-UBZU'DRZD‘ (R. Walker - 16)

obtains the second onei which Walker names the Snake. Modifying the last to
BRSD'RZDR;B'RLUBZU'DB RaUzR;‘BZD' (R. Walker - 22; p 31)

gives the pattern of Ahrens on page 31 in which the 12 edges and centres
adjacent to RUB and LFD are rotated 180° about the FR-BL axis. This is
perhaps the best example where it is easier to describe the pattern as if
the centres had moved and they have been moved in an odd permutation.

The corners can be rotated 120° anticlockwise about the RUB-LFD axis,
as discussed on pages 28 and 30, by using the 11 move 180° rotation about
a face axis, applying it two times as follows:

R'L2F§U2R§F§D2R' -D'UZF§R2U§F§LZDv (R. Walker - 22).

This is a 6+ pattern. We can then rotate the centres as well to get the
6-X pattern of page 28 and 30. The result can also be viewed as rotating
the edges and the following accomplishes the result directly.
B'R;U;FSUZRgFgDZR-DU2F§R2U§F§L2D (R. Walker - 25)

Oliver Pretzel sends a 6-U pattern, which is like the worm but with
alternate edges missing.
L'R2.F'L'B'UBLFRU'R' -R%L, = (FL,UB,RD) (13 moves) followed by the 6-spot:

RstUsRs gives the pattern in 18 moves. There is also a 4-U:

RaUZRé-FaU2Fé (DBS - 10).

5.10.  THEORETICAL DEVELOPMENTS AND PROBLEMS.

A. THE U GROUP.

This is the group of U processes. Analysis as in the general case
hrhtsh2b oo = o8
2 3 2 -~ B
face, as previously on page 30. The shortest non-trivial U processes seem
to be of the form B[L,U]B' (6 moves). The tables in BCS show that any
pattern is achievable in at most 31 moves. The most difficult patterns
in their lists are: (A,B)(b,d) (with any orientation); A,B_a;bycid,;
A4B_C4D_ requiring 13, 18 and 18 moves respectively. Gerzson Keri
conjectures that any U process is achievable in at most 18 moves.

B.  GENERATION OF THE WHOLE GROUP.

Frank Barnes has shown that the group of the cube is generated by
just two elements (page 32). Marston D. E. Conder has shown that it can
be generated by two elements y, § of orders 2 and 4 and that orders 2 and
3 will not suffice. It is well known that two elements of order 2 can
only generate the symmetries of a regular n-gon, where n is the order
of y§. (When n =1 or 2, the n-gon is a bit degenerate.) Elements of
orders 3 and 3 can only generate even permutations on corners and on edges,
hence cannot generate the whole group. It is not clear if Conder's
generators also generate the supergroup.

Explicitly, Conder shows that the following serve:

(UR,RB)(DR,UB) (FR,FL)(UL,LB) (RFU,RUB) (DFR,DBL) (UFL, BUL)

(UR, BR,IR,FR) (UF,UB,DF,DB)(UL, FL, DL, EL) (RFU, DFR, LFD, UFL) (RUB, BDR) (DBL,ULB) .
He gives 92 and 8T move processes for these results, noting that one could
do them in many fewer moves. In a revised version of his note, he uses
y' = (FL,LB)(BR,FR)(DL,UB)(DR,UF)(DF,DB)(RFU,RUB) (DFR,DBL) (UFL ,BUL)
and he shows that y'$ has the maximal possible order of 1260 (pp 18,22,27).

shows there are 35 possible patterns on one

Y
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C.  PRESENTATIONS.

Krystyna Dalek asks about presentations for various cube groups.
A presentation is a definition of a group by giving two sets: a set
of elements, called generators, and a set of identities (which group
theorist call relations or relators). The group defined is the smallest
group containing the elements and satisfying the identities. For example,
the group of symmetries of the square‘(pi 4-10, 18, 19) is defined by

<R,V[R* = V2 = I, VR = R'V> or by <V,D.|V2 = D2 = (VD_)* = I>. (The
vertical bar can be read as 'such that',) Normally on€ wants the sets
to be irredundant and/or minimal in some sense but this is not a clear
idea nor an easy task. Except for the simplest cases, such as the
slice-squared group, I do not know of any presentations for cube groups.

D. ORDERS OF ELEMENTS.

J. B. Butler has sent the following example of an element of the

maximal order 1260.
RF2B'UB' = (DFR,FDL,LUF)_(URF,BLD,DRB,UBR,BUL) ,.(FU,FD,LU,BR,DR ,FL,FR) ;. *
(LB,UR)(UB,DB) v
He asks if this is the minimal number of moves or the minimal length for
an element of order 1260. By the length of a process, we mean the total
number of 90° turns in the process. Thus R and R' count as length 1 but
R2 counts as length 2. For example, Butler's element has length 6. The
effects of a process on both corners and edges is even if and only if its
length is even. Since any process of order 1260 seems to have an even
effect on corners, it must have even length. Since processes of length
2 cannot affect enough pieces, Butler's question can be resolved by checking
the processes of length 4.

Butler has a program to determine orders of processes. He finds that
about one process in a thousand has order 1260, but that elements of
order 3 are scarce. This led me to comsider the following.

Problem. What are the possible orders of elements in the group of
the cube?

To attack this problem, one needs to know a corollary of Lagrange's
Theorem (the first basic result of group theory): The order of any element
must divide the order of the group (i.e. the number of elements in the
group). In our case, the order is N = 227314537211, Hence we can have
no element of order 13, 17, 19, ... It is easy to find elements for each
order less than 13, so 13 is the first nonorder. However, this is such
an obvious reason that we will call a nonorder trivial if it does not
divide N. The first nontrivial nonorder is 25, though this is still fairly
obvious since an element of order 25 must contain a 25-cycle! A nonorder
is trivial exactly when it is divisible by a prime greater than 12. We
say that a nonorder is obvious if it is divisible by a prime power greater
than 24 (which is the longest possible twisted cycle length). The obvious
cases cover most of the cases. The first.nonobvious case appears to be
385 = 5+7+11 which cannot be an order since we cannot have 5, 7 and 11
cycles simultaneously.

Problem. How many elements are there of each possible order?

It is feasible, though tedious, to actually compute the number of
elements of each order. We sketch the method for the case of m = 3,
which is fairly simple. If P has order 3, then it can only contain
3-cycles, l-cycles and twisted corner l-cycles. The number of elements
of orders 3 or 1 can be separately computed for corners and for edges and
the product of the results will be the total number of elements of orders
3 or 1. Since only I has order 1, we merely subtract 1 from the product
to obtain the number of elements of order 3.

Consider the case of a l-cycles and b 3-cycles of corners. Note that
a+ 3b =8. For a=D» =2, the typical form of P is
P = (c1)(c2)(c3,ch,c5)(C6,CT,C8).
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The 8 corners Cl, C2, ..., C8 can be written into the typical form in

8! different orders (we are ignoring orientations for the moment). But
the b 3-cycles can be permuted among themselves in b! different ways

for the same P. Similarly the a l-cycles can be permuted in a! ways.
Further, a 3-cycle can be cycled in 3 ways without changing P. That is,
(c3,ck4,05) = (C4,c5,C3) = (C5,C3,C4). Teking all b 3-cycles into account

gives 3° = 9 ways of cycling without changing P. If we ignore orientatiomns,
1
we get ———%:——S- permutations P with a l-cycles and b 3-cycles and it is
all™p!3

easy to see how this generalizes to arbitrary cycle structures in S_.

Now we must account for orientations. Each of the 8 corners ° has
3 orientations, which would seem to give a factor of 38. But consider
a 3-cycle. If we twist all three pieces the same way, it is the same
3-cycle, e 8- (ULB,UBR,URF) = (LBU,BRU,RFU) = (BUL RUB FUR) Thus we
only have 3% different forms for each 3-cycle, giving 9P for all b 3-cycles.
For l-cycles, all the orientations are the same. But the l-cycles may
be twisted, provided the total twist is O (mod 3). In order to avoid
getting confused with the a! ways to permute the objects in the l-cycles,
we associate the twisting with the objects, rather than the positions
within the typical form. (That is, we want our permutations of the
l-cycles to take C1,C2_ to C2_Cl, rather than C2,Cl_, say.) There are
3% ways to associate twists with the a corners in the l-cycles and
precisely 1/3 of these will total to O (mod 3). Thus we have 321 ways
to twist a l-cycles. Putting this all together, we have
8!3aF19b
2!1%13°
Computing for (a,b) = (8,0), (5,1), (2,2) and adding yields
2187 + 81648 + 272160 = 3 55975 corner elements of orders 3 or 1.

Similar reasoning on edges yields the same expression with 8!3a-19b, re-
placed by 1214P and calculation for (a,b) = (12,0), (9,1), (6,2), (3,3),
(0,4) yields 1 + 1760 + 591360 + 31539200 + 63078400 = 952 10721.
Multiplying the two results together and subtracting 1 gives us

2245 55950 08000 = 2.25 x 103 elements of order 3. Dividing this by

N = 4.33 x 1019 gives a probability of about 5.17 x 10~7 of finding

an element of order 3 at random. That is, there is about half a chance
in a million of doing so. So Butler's observation seems pretty much
spot on.

For composite orders, the analysis is a bit more involved. First,
the kinds of cycles occurring are more complex and more numerous. Second,
one obtains all the elements whose orders divide the order and these must
be subtracted in a more complicated manner.

E. THE TWO-DIMENSIONAL PROBLEM.

Nicholas J. Hammond asked me sbout the L x h 'cube'. Consequently
I have examined the 2 x 2, 3 x 3 and 4 x k4 cases. There are two
conceptual decisions one must make. I. Are the squares two-sided or
not? That is, if we have a pattern: i 2 and we invert the bottom row,

3

do we recognise that the 3 and 4 are now turned over? On the 2 x 2, it
is easy to deal with this - a number is upside down if and only if it is
in a position of the opposite parity. On the 3 x 3, the edge pieces
remain in place and can be flipped over. II. On the 4 x 4 and larger
squares, can we turn over all rows and columns or just the edge ones?
In the latter case, the square is equivalent to the 3 x 3 two-sided
square. Hence we will assume the first case, i.e. that all rows and
columns can be turned.

In the 2 x 2 one-sided case, we get all 24 permutations of the
4 corners, but since there is no fixed orientation, we can divide by

elements in the cube group with a l-cycles and b 3-cycles.
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4 by rotating the square, or by 8 if we can also turn the whole thing
over which is equivalent to allowing reflections. In the two-sided
case, we get 24 patterns, but rotation by 90° yields another 24. The
symmetry allows us to divide by either 4 or 8 as before.

In the 3 x 3 one-sided case, the Greek cross or + pattern of edges
and the centre can be used to define the orientation of the whole square.
Then the corners can be put into all 24 permutations with respect to this

orientation and there is no symmetry factor to divide by. In the two-sided

case, the corners give 24 permutations as above and the edges can be
flipped in pairs. Since the number of edﬁe flips has the same parity
as the permutation of corners, we get 4!2%/2 = 192 patterns and this
group is the same as <F2,R2,B§,L2> on the cube. (Group theorists say
the groups are isomorphic.) This group can also be considered on the
Magic Domino and the problem can be simulated by a domino with a pair
of U-D pieces clipped together so that the turns of the U and D faces
cannot be done.

For the 4 x 4 case, both the one-sided and the two-sided problem
appear to have the same group. There are four orbits of order L, but
each move is an even permutation of the 16 squares. All (4!)%/2
= 1 65888 positions can be achieved but there are 4 possible symmetries,
so there are only 41472 distinct patterns.

For larger problems, I cannot yet see if all the expected patterns
can be achieved or if there is some reason to expect fewer patterns.
Once this is resolved, one could attack the m x n problem. ’

F. CAYLEY GRAPHS AND ANTIPODES.

For any group given in terms of generators, say A, B, ...,
the Cayley graph of the group is the diagram consisting of points
corresponding to all the elements of the group with an arrow labelled
A pointing from P to Q if Q = PA.
We normally indicate the labelling
by using different kinds of lines
or arrows. Generators of order R2V
2 can be denoted by two-way arrows.
For example, if we consider the
symmetries of the square (pp 4-10,
18,19) as generated by R and V,
then the Cayley graph is shown in RV
Figure 5.7.
A path in a Cayley graph is |
a sequence of generators. E.g. | 1
there are two paths from I to RV:
RV and VR'. (Note that going R
backward along an arrow means
taking the inverse of the
generator.) A closed path is an
identity, e.g. RVRV = I.
In the Figure we see there
is a unique antipode to I, i.e. a I
point at maximal distance 3 from I.
This distance is called the FIGURE 5.7
diameter of the graph or the group.
Michael Holroyd has examined
the Cayley graphs of the slice-
squared group, <F2,R2,B2>, <F2,R2,B2,L2> and <F_,R >, where the last one
is taken with respect to corner coordinates (p 20)5 In the last case and
in general, the Cayley graph is neater if we do not consider F2, etc. as
generators. However this means that the distance in the graphswill be
the length of a process (p 50) rather than the number of moves. Hence
the diameter may be greater than the maximum number of moves. The groups
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considered by Holroyd have 8, 96, 192 and 192 elements respectively and
each has a unique antipode: the 6-X pattern of distance 3;

(FU.FD)(BU,BD) = F2R2F2R2F2B2R2B2R2B2 of distance 10:

(FU,FD) (RU,RD) (BU,BD) (LU,LD) =FRLRF2IRRRF2IRBR of distance 8 (a 2-X pattern);
and (UF,DB)(UR,DL) (UB,DF)(UL,DR) = F_R_F_R ‘R FIR'F_ of distance 8 (in slice

moves). The last pattern has all the U and D edge reflected with respect
to the centre of the cube. It has 2 X faces and 4 H faces (a=c =4 #b in
Figure 13 on page 11) and is two slice-squared moves away from the L-spot.
Holroyd wonders if the whole group of the cube has a unique antipode.
Resolving this may require the complete description of God's algorithm
(p 34). He suggeststhat either the 12-flip (pp 28,31,35,48) or the
12-f1ip combined with the ordinary 6-X pattern of the slice-squared group
(pp 11,20,48) might be an antipode.
However,multiple antipodes can occur. The slice group has 32
antipodes at 5 moves from I. (See page 3l.) The square group acting
on corners, ignoring both edges and centres, which is the same as the
square group on the 2 x 2 x 2 cube, has 5 antipodes at distance U, as
described in the next section.

G. THE SQUARE GROUP - 2 x 2 x 2 CASE.

On the 2 x 2 x 2 cube, square moves and antislice moves are the
same. Hence the following analysis also is of interest in understanding
the antislice group.

Since we have no orientation forced on us, we may fix some cornmer.
Let us fix the BLD corner by agreeing that whatever piece is there is
correct. Then we need only consider the actions which leave BLD fixed,
i.e. <F2,R2,U2>, The square group has two orbits of corners: the four
corners at distance O or 2 from BLD and the four corners at distance
1l or 3. Here distance is measured as steps along the edges of the cube,
so the first orbit comsists of BLD, UFL, UBR, DFR and the four corners
are at the edges of a regular tetrahedron. Once BLD is fixed, the first
orbit has only three remaining elements and the other has four elements.
Each square turn is two 2-cycles, one in each orbit. Square turns do not
lead to changes of orientation - each U or D face is always in the U or
D direction - so we need only consider positions.

After some playing, we decide that the action on the L-orbit actually
determines the action on the 3-orbit, so that there are only 24 possible
patterns. Exercise. Can you see this?

To see this result, we first need to have a convenient labelling
for the corners. Let us label them as in Figure 5.8. Then we have

F2 = (A,B)(1,2), RZ = (A,c)(2,3), U2 = (A,D)(1,3).
D
1 3
A
B (¢}
2

FIGURE 5.8
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Now consider the tetrahedron with vertices at the lettered cormers,
as shown in Figure 5.9. Three of the tetrshedron edges correspond
to the numbered corners and we number the three remaining edges with
the numbers of their antipodal edges. E.g. the edge AD has the same
number as the edge BC. Then we see that the three square moves can
be considered as reflections of the tetrahedron with respect to the
planes through two of the edges of the set B, C, D. That is, F2
acts like (A,B)(1,2) which is a reflection of the tetrahedron with
respect to the central plane through the vertices B and C. In this
reflection, the edges labelled 3 are carried to themselves but the
two edges labelled 2 are carried to the two edges labelled 1. Thus
the cycle (1,2) simply describes what happens to the pairs of edges
when the symmetry (A,B) of vertices is carried out. Stated another way,
the action of the square group on vertices determines its action on
edges. Translating this back to the cube, we say that the action on
the 4b-orbit determines the action on the 3-orbit. Hence we can get
at most 24 patterns corresponding to the 24 permutations of the 4-orbit.
It is easy to see that we can indeed get all these permutations.

The Cayley graph is awkward to draw but one finds 5 antipodes at
distance 4, namely the three pairs of 2-cycles and the two 3-cycles
not affecting A. There are four permutations of the LU-orbit which
are the identity on the 3-cycle, namely I and the three pairs of 2-cycles.
These permutations form what is called the kernel of the action of
Sh on the 3=orbit.

H. THE ANTISLICE GROUP.

Thistlethwaite has written out his analysis of the antislice group,
but we cannot find any way to simplify the details for presentation here.
Instead we provide a more detailed outline of the structure than was
given on page 35. (See also pp 20-21 for the idea of corner coordinates.)
He proceeds by fixing one corner and then examining one slice. The edges
of the slice can be permuted in all 24 ways. However one can then only
permute the other two slices in 4 ways each (comprising I and the three
pairs of 2-cycles). Thus there are 24-L4.4 = 384 edge positions. For
a given permutation of the edges, one can only flip all the edges in
0 or 2 slices (the 8-flip, see pp 35, 48) giving 4 orientation patterns
of edges. Then one can only achieve four motions of the corners and
centres as produced by the zig-zag pattern (pp 11, 21, 48), which gives
just the two pairs of 2-cycles on the corners not in the orbit of BLD and
also on the centres. This gives us a total of 384-Lek = 614k = 2113
positions. Frank O'Hara is trying to find the diameter of this group.

I. THE SQUARE GROUP - 3 x 3 x 3 CASE.

In section 5.10-G, we have seen that the square group, considered
only on corners and ignoring centres and edges, has 24 elements. We
proceeded by fixing the BLD cormer first. Now BID has four possible
positions in relation to the centres, so we have 244 = 96 positions of
corners with respect to the centres. We can view the four possibilities
as the ways of moving centres with respect to the corners and these turn
out to be just the identity and the three L-spots. (Exercise. Show
the 4-spots are in the square group. Is there an easy way to see that
the 6-spots are not in the square group?)

One can get the corners right with respect to the centres in at most
four moves, despite the fact that it can take four moves ignoring the
centres. The answer is to skilfully choose the cormer in the previous
approach. If both the corner orbits are in even permutations, put BLD
in place. We now have an odd permutation of the h-orbit and all these
can be achieved in three moves. If either orbit has a corner correct
with respect to the centres, take it as BLD and restore the rest in
at most four moves. Now suppose the orbit of BLD is in an odd permutation

and no corner of it is correct. Then the orbit must be in a 4-cycle.
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Applying one of B2, L2, D2 will put BLD correct with respect to the
centres and leaves a 3-cycle. Now we can restore the l-orbit in three
moves unless it is one on the antipodal positions. These are the three
pairs of 2-cycles and the the two 3-cycles leaving A fixed. But the
pairs of 2-cycles correspond to the identity on the 3-orbit, which we

do not have. Hence the L-orbit must be in one of the two 3-cycles

which leave A fixed. But since we started with a move that did not affect
A, A must have been in its correct place and we could have used it as

BLD.,

Thistlethwaite seays it is probably easier to do all the positions
than try to dream up an argument like the preceding paragraph.

Now we consider the edges. The square group never changes
orientations of edges. Further each move carries each slice of four
edges into itself and each move is an even permutation of edges comprising
2-cycles in two different slices. Thus there can be at most (41)3/2
= 6912 = 2833 edge patterns. Now (F2R2U2R2)2 = (FD,FU,BU) (MBT - 8)
which allows us to get any even permutation in one slice and
(F2R2)3 = (FD,FU)(RU,RD) which allows us to make any two slices odd,
with both processes leaving everything else fixed. Hence all 6912
edge positions can be achieved, leaving corners and centres fixed and
the square group has 966912 = 6 63552 = 21334 elements as given
on page 26.

Thistlethwaite has found that 6900 edge patterns can be obtained in
at most 12 moves and the remaining 12 can be obtained in at most 1k,
but he hasn't shown that they can't be done in less than 14. By combin-
ation of corner and edge processes, he has shown that every position in
the square group is achievable in at most 17 square moves and some positions
require 15. It is possible that these numbers could be reduced by use
of non-square moves.

J. THE TWO GENERATOR GROUP.

Alexander H. Frey, Jr., has asked about finding a restoring
algorithm for <F,R>. That is, if someone confuses your cube using
only F and R moves, how do we restore it using only F and R moves?
Conceptually this is the same as understanding what patterns are in
the group, since we can only be sure that we understand the group if
we can see how to achieve every pattern in it. Frey asks the same
problem for other groups, but now we consider just <F,R>. Using
results from Frey, BCG, Benson, D. E. Taylor and Thistlethwaite, I
have a nice analysis of this group and it turns out to contain a
remarkable and unique phenomenon of group theory.

First we observe that edge orientations do not change - a F or B
face of a piece is always F or B or U or D, while a R or L face is
always R or L or U or D. Otherwise stated, FR can only go to FU, FL,
FD, UR, BR, DR. Now it is not too hard to see that we can move any
four edges (of the seven affected by F and R) onto the R face. Then
F2R2F puts the four edges of the R face into UF, DF, UR, DR. Then
P, = (F2R2)3 gives just two 2-cycles of edges and the pieces can be
conjugated back to wherever they came from. Hence we can achieve and
even permutation of the seven edges without affecting corners. Since
F or R is odd on edges, we can get all of S, acting on the seven edges,
thoughwe are then affecting corners. 7

Now we consider the action on the corners. We might expect to
obtain all 6! permutations of the 6 corners which the R and F faces
contain. We shall see that we only get 5! Number the six corners
as shown in Figure 5.10. Then F = (1,2,3,4) and R' = (3,4,5,6).
Xe want to determine what subgroup of 86 is generated by these two

-cycles.




56

Consider the 6°5/2 = 15 distinct
pairs of numbers ij, 1 < i <5 j < 6.

These can be viewed as the diagonals 5 6
(and sides) of a hexagon, forming a
graph known as the complete graph 3
on six vertices, Kg, and one can
imagine these pairs as the edges of
the S-simplex. (The 2-simplex is an
equilateral triangle, the 3-simplex is
a regular tetrahedron, ...) We form
five triples of these edges as follows. 1 5
{12, 35, L6}
{16, 23, L5}
{15, 26, 3k}
}1&, 23, 32{ 4

13, 24, 5

Now if we examine carefully the behaviour FIGURE 5.10
of F and R, we see that they permute our
five triples among themselves as follows:
F = (A,B,C,D), R = (8,C,D,E). E.g.
F carries 12 to 23, 35 to 45, 46 to 16,
so F carries A to B. Group theorists say that we have induced an action

of <F,R> on the set {A,B,C,D,E}. We can now see why we only get 5!
positions of corners in our group, but there are two details to check.

We must verify that different elements of <F,R> give different
actions on the set {A,B,C,D,E}. Because of the group properties, we have
only to check that the identity action on our edge triples only arises
from the identity in <F,R>. Suppose we have some permutation P of
{1,2,3,4,5,6} which gives rise to the identity on {A,B,C,D,E}. Suppose
P(1) = 2. Then 12 must be carried to 12 and we must have P(2) = 1. Then
B being fixed says that 16 must be carried to 23 and we must have P(6) = 3.
Likewise 23 must be carried to 16 and P(3) = 6. But now C being fixed
requires 15 to be carried to 26 so P(5) = 6, contrary to P(3) = 6. Similar
reasoning shows that P(1) cannot be 2, 3, 4, 5, 6, so P(1) = 1 is the only
case left. Then the same sort of reasoning shows P(2) = 2, ..., P(6) = 6.
That is, the only way P can induce the identity on our edge triples is if
it is already the identity on corners.

Thus our mapping of actions is a one-to-one correspondence between
<F,R> and <(A,B,C,D),(B,C,D,E)>. Group theorists call this an isomorphism
since it is also a correspondence of the operations of the two groups.

The other detail to check is that we can achieve all of S_. One
can work in either of the two groups. The action on the 5 edgz triples
is easier to calculate but less easy to visualize, so we will work on
the set of 6 corners of the cube. The commutator [F,R] gives (2,3)(4,5)
when considered just on the cornmers, and its cube actually does this action
without affecting anything else. Using conjugates of [F,R13, we can
easily get corners 1 and 2 into their correct places without affecting
edges. This gives already 30 cases. Now the only permutations of {3,4,5,6}
which act correctly on our edge triples are those generated by R. Of these,
only I and R? are even. Then I or F'R2[F,R13R2F allows us to obtain the
effect without affecting edges. (If we don't care about edges, then I or
R2 suffices and all of the argument in this paragraph can be similarly
simplified.) Since F or R is odd on corners, we can get all of SS’ though
we must affect edges for the odd permutations.

[Since every element of S_ has a corresponding element of S,., group
theorists say we have a represgntaxion of S. in S,. This represéntation
is called faithful because the correspondenge is one-to-one. This
representation is a famous and unique phenomenon in group theory and
worth describing a little bit further. S_ has 24 S5-cycles which fall into

6 cyclic subgroups of order 5. The actiofi of S5 on these 6 subgroups

HYOQW®
nwaunun
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is the action induced by conjugation of elements. It turns out that
this action is identical to the action of <F,R> on our six corners.
A correspondence between corners and subgroups of S_ considered on
{A,B,C,D,E} is given by: 2

1+ <(c,D,A,B,E)>

2 + <(D,A,B,C,E)>

3 + <(a,B,C,D,E)>

4 » <(B,C,D,A,E)> = <(A,E,B,C,D)>

5 -~ <(A,D,E,B,C)>

6 -~ <(A,C,D,E,B)>
The action is identical to the group of collineations of the projective
line over the field Z_ of five elements and to the group PGL(2,5) of
2 x 2 nonsingular mat?ices over Z_ with scalar multiples identified.

(See BCG, where this phenomenon ig studied as the Tricky Six Puzzle
and see also pp 107-109 of "Groups and Geometry" described in the
Bibliography.)]

Returning to the group <F,R>, we need to analyse the orientation
changes which corners can enjoy. Now A = (R'FRF'R'F)3 leaves edges
fixed and only twists corners as 1_2_344_5.64 (using an obvious notation).
Then AF'A'F = 3_l, and we can use this to obtain any corner twists that
we are allowed, and without moving edges. (If we don't care about edges,
things are much easier). All together then, the two generator group
has T!5!/2 + 35/3 = 734 83200 = 2638527 elements as given on page 26.

K. THE GROUP <F,R2>,

Having analysed the groups <F,R> and <F2,R2> (see p 20 for the latter),
I decided to examine <F,R“>., First note that neither edge nor corner
orientations ever change. (Edges are as in the previous subsection, but
even easier. The F face of a corner is always.F or B.) Clearly RU and
RD are always either fixed or exchanged. If F' puts xF into RF, then
FR2F(F2R2)3F'R2F-i = (RU,RD)(RB,xF). Hence we can obtain any permutation
of the 5 edges {FD, FL, FU, FR, BR} and of {RU, RD} such that the actions
on the two sets have the same parity, i.e. the permutation is even overall,
and these are obtainable without moving corners. Using F, which is odd
on edges, we can get all possible 5!2! permutations, but then we move
corners.

For corners, we proceed as in our discussion of F,R , but we shall
not try to find corner processes leaving edges fixed. We observe that
FR2F'R¢ = [F,R2] = (2,3,4,6,5) is a 5-cycle on corners (we are ignoring
the edges). If corner 1 is not in place, apply the 5-cycle until it is
at position 3 and then apply F2. We then use the 5-cycle to get corner
2 in place. Now in <F,R>, we know the only even permutations leaving
1 and 2 fixed are I and Ri, and these are achievable by applying I or R2.
Hence can achieve all the even pérmutations of S.. Since F is odd on
corners, we also get the odd ones. Hence <F,R> gnd <F,R2> have the

samg ngects or corner positions. Thus |F,R2 |= 515121/2 = 14400
= 293<5

L. CONJUGATION AND CYCLE STRUCTURE.

Recall that the conjugate of a permutation is a permutation with
the same cycle structure. (See p 13.) We need to examine this in more
detail . Suppose P carries A to B. In normal mathematical notation,
we write this as P(A) = B (as on pp 5-6). Now PQ(A) normally means
P(Q(A)), i.e. first apply Q and then P. But we have defined PQ to mean
that P is applied first, so we must read PQ(A) as Q(P(A)) as mentioned
on page 9.

Now P(A) = B means that (...,A,B,...) occurs somewhere in the
cycle representation of P. Consider now Q~1PQ applied to Q(A). This
is Q(P(Q~1(q(A)))) = Q(P(a)) = Q(B). Thus we will have (...,Q(A),Q(B),...)
in the cycle structure of Q~1PQ and the cycle representation of Q1PQ
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is the same as that for P with each entry A replaced by Q(A). For
this reason, group theorists usually call Q"JPQ the con;ugate of P by
Q. In our usage, it was easier to have QPQ™! as then Q is the process
which moves the pieces into the positions on which P acts.

We now wish to consider the inverse problem: if two permutations
have the same cycle structure, are they conjugates? (Cycle structure
can be formally defined as the number of l-cycles, the number of 2-cycles,
++sy SO two permutations have the same cycle structure if they have the
same number of cycles of each given length.)

The answer to the inverse problem is certainly positive when the
group is S - simply write down the cycle representations of both
permutations with the cycle length increasing and then let Q be the
correspondence of the elements of the two sequences. For example,
if P = (6)(1,2)(3,5,4) and P' = (4)(2,3)(1,5,6), then Q is the
S1237tora=231651h= (1,234,605,

We note that Q is not unique - if we rewrite P' as (4)(3,2)(1,5,6),
we obtain Q' = (1,3)(2)(4,6)(5), which is Q*(2,3) corresponding to
the fact that 2 and 3 have been interchanged in P'.

Clearly, if a group has enough permutations, then all possible Q
are in it and we have a positive answer to our question. It certainly
holds in S_ and it is not too hard to see that it holds for the
constructible group (i.e. the group of positions of the cube obtained
by taking it apart and reassembling it). Of course we must treat the
edges and corners separately - a 3-cycle of edges is not conjugate to
a 3-cycle of corners.

Uldis Celmins asked if the inverse problem has a positive answer
in the cube group. We show the answer is negative. Let P be a position
consisting of a T-cycle of corners and an ll-cycle of edges (e.g. the
position o on page 32), say P = (C1,C2,...,CT7)(C8)(E1,E2,...,E11)(E12).
Let P' be P with two corners exchanged, say P' = (C2,C1l,...,CT)...

Then P and P' are both achievable positions on the cube and the conjugating
Q is (C1,C2) which is an odd permutation and hence not in the group.

Now there are other conjugating elements corresponding to rewriting P'.
These correspond to multiplying Q by (c2,C1,...,CT)1(E1l,E2,...,E11)J

and hence are still odd. Hence any possible conjugating Q is not in

our group and so P and P' are not conjugates.

The above analysis depends on the fact that the conjugating element
is determined on each position since P and P' act on almost all the
corners and edges. Other examples arise, e.g. if P contains an 8-cycle
of corners and P' is P with one corner twisted. However, if P leaves
either (two corners and an edge) or (two edges and a corner) fixed,
then there is enough freedom of choice for Q that we can make Q be
in the group. Thus all 3-cycles of edges are conjugate to one another,
etec. Indeed, this point was why we only had to find one 3-cycle of
edges.

M. WREATH PRODUCTS.

On page 31, I mentioned that the cube group is an example of &
wreath product of groups. Peter M. Neumann has written a chepter
on "The Group Theory of the Hungarian Magic Cube" as part of the lecture
notes on "Groups and Geometry". (See the Bibliography for details.)

Don Taylor's preprint "The Magic Cube" and the Neumann chapter discuss
the use of the wreath product and I have finally come to more or less
understand it.

Neumann describes the cube group as a subgroup of the constructible
group which is the group of positions which can be obtained by taking
the cube apart and putting it back together. Then none of the restrlctlons
described on page 12 are applicable and the constructible grou
12N = 8! 12! 38 212 = 5 19024 03929 38782 72000 = 22931 537211
elements. In group theory, we say the cube group has index 12 in the

correspondence:
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constructible group. (See p 39 for an earlier use of index.) We now
describe the constructible group Q. Q is the direct product of its
action on corners and its action on edges. That is, the actions are
independent (because they act on different sets) so each element of
Q can be expressed as a pair consisting of a corner action and an

edge action. We denote this by writing Q = Q x Qe.

Recall that S is the group of all n! permutatlons of n objects
(p 9) and let zZ, d8note the cyclic group of n elements (p 10) - e.g.
the group generated by an n-cycle or the group of rotations of a

regular n-gon. Let Z denote the direct product of k examples of Z .
Its elements are then k-tuples (a 855 B35 ey ak) which combine

by independently combining each component separately. Exercise.
show that the slice-squared group is the same as 22 The wreath product
Z3 wr S8 is a way of defining a multiplication on the product set Z3 x S8
which corresponds precisely to the way in which the 8 corners can be
arbitrarily permuted in position while each corner can be 'independently'
changed in orientation. 'Independently' must be in quotes because the
multiplication of orientation changes does depend on where the pieces
have been moved to by the previous permutation.

Conceptually we have an orientation (i.e. an element of Z3) attached

to each object being permuted - whether a symbol (i.e. piece) or a location.
(Recall the dichotomy between permutations acting on symbols and on
locations which was discussed in section 4.) We then have 2U4 oriented
objects in the product set Z3 x {1,2,...,8} and this is the set on which

we shall define Zg x SB as acting in the following manner. Consider

any element (al, By eees ae) of orientation changes (i.e. elements of

Z3) with any permutation P of SB' When this is applied to an oriented
object (a, i), the result is (aP(i)-a, P(i)). So if the object is carried

to object j, the j-th orientation change is appliedto the orientation at

i to get the new orientation at j. It is difficult to explain the behaviour
in words, but perhaps the best way to visualise the wreath product is

as the U diagrams used on page 42. The arrows show the permutation of
pieces being done just as expected and the signs attached to the arrows

show that an orientation change takes place as the piece is moved. So

the new orientation at j depends on the previous orientation of the piece

at 1 which is comlng to j and on the orlentatlon change sssociated with

the movement from i to j. Once the action of Z3 x 88 on the oriented

objects is defined, it is not difficult to verify that one has a group
structure and this is the wreath product.

Thus Qc = Z3 wr SS and Qe = Z2 wr 812 and this gives a fairly

explicit description of the comstructible group. Getting the cube
group is just the same argument that we used on pages 8,9,12,17T.

The centre of Q is not hard to find now. One must find the centre
of Q and of Q . It is easy to see that because we have the complete

permutation group S in @ = Z, wr Sgs then an element of the centre
must have all its orlenta.%lon éha.nges the same and its permutatlon must
be in the centre of S Now PQ = QP for all Q if and only if Q™ PQ

for all Q, that is to say, every conjugate of P must be just P 1tself.
But our study of conjugation and cycle structure in the previous section
shows that the conjugates of P in S, are all the permutations with the
same cycle structure and there are ?ots of them. Even restricting to
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the cube group does not change this. Thus the only possible central
elements are those which leave everything in place but change all
orientations in the same vay. There are 2 of these in @ and 3 in Q s
but only the former occur in the cube group, and these are the 1dent1ty
and the 12-flip. (See pp 28, 31, 35, 48.)

N. THE 2 x 2 x 2 CUBE.

Gerzson Kéri asserts that he can get the pieces correctly positioned
relative to one another in at most T moves. Thistlethwaite says that
he can obtain almost any twisting of corners on the 3 x 3 %x 3 cube
in at most 18 moves, but he is leaving edges fixed. So we should already
have a method which works in at most 25 moves and this should be be much
improved if we had a repertoire of twists, ignoring edge effects.
Problem. Determine the diameter of the 2 x 2 x 2 cube group.
Because we have no fixed orientation, we can choose the BLD piece
be correci®’and then only make F, R, U turns. Reasonlng as on page 26,
there are at most 1 + O + 96 + 9-62 + ... + 9-68-1 =1 + 9(68-1)/5
positions after n moves. Setting this equal to 36 7h160 (see pp 28,29,31),
we get n = 8.11, so some positions will require at least 9 moves.

5.11 MISCELLANY.

Krystyna Dalek asks about the groups generated by commutators of
basic moves. For example, what is <[F,R],[F',R']>? This acts on five
edges and six corners. It is not hard to see that: edges do not change
orientation; all 5!/2 even permutations of edges are achievable; the corners
form two orbits of order 3; the action on one 3-orbit determines the action
on the other; all 3! permutations of an orbit can be achieved without
disturbing edges; all corners of an orbit can be twisted the same way
without affecting edges; all 27 orientations of one orbit can be achieved
but affecting edges. It is not clear whether all the orientations can be
achieved without affecting the edges or not.

Datek also asks if the commutator subgroup (pp 18,27,28) is generated
by the commutators of basic moves. Recall that the commutator subgroup
is generated by all possible commutators.

Uldis Celmins has given a graphical analysis of the result of
A. Taylor (p 29) regarding other magic polyhedra. He assumes that each
corner has three edges at it, no two faces have more than one edge in
common and each face has at least four edges, and then he gets the result
of Taylor. It is not clear if all these assumptions are necessary or
if BCG's report of Taylor's work left out some of the assumptions.

I have occasionally seen cubes which had some pieces stuck together
from the glue used on the cover pieces (2,3), This leads to interesting(?)
questions as to what patterns are achievable. It may not be possible to
turn some faces either all the time or just sometimes.

Dave Fyfe said that his eight year old son had been so dismayed at
messing up a cube that he tried to restore it by peeling off some of
the coloured stickers. How would you recognize and correct sticker
rearrangement? I have even heard of people doing this to other people's
cubes as a subtle and malicious form of torture.

Frank Barnes observes that the idea of shifting a process described
on page 36 can be used to solve the 'misprint problem'. That is, if a
process has a single error in it, one can examine the rotations of it.

When the error comes last, it is easy to see what it should be corrected to.

Joe Buhler and David Sibley are preparing an article on the
n-dimensional magic cube.

One can get patterns with all outer row and column sums the same
on both sides of the Magic Domino, but only with different values on
the two sides,e.g. 127 983

6 52 opposite 4 58
361 Tho.
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A _STEP-BY-STEP SOLUTION TO RUBIK'S MAGIC CUBE

©1980 by David Singmaster
(May not be reproduced without written permission from
Enslow Publishers, Box 777, Hillside, NJ 07205)

The notation explained below is the same as given in section 3 of
my "Notes on Rubik's Magic Cube". Some familiarity with section 3, with
cycles and even permutations (section 4) and with the -basic processes
Py, Py, P3, P4 and conjugation (section 5) will help you to understand this
methoﬁ, but you can apply the solution without any of this knowledge.

You may want to practice the individual steps of this method separately
before trying to restore the cube completely. It is especially easy to.see
what is happening if you start with the cube correct, either by taking it
apart or by getting (bribing?) someone to do it for you.

The six faces of the cube are lsbelled Right, Left, Front, Back,
Up, Down and are abbreviated to their initials R, L, F, B, U, D. The
centres of the faces will remain fixed in
space during each substage, so we always L B
know which colour is R - namely the colour
of the centre of the R face. Pairs and
triples of letters will define both

positions and pieces, as in Figure S1. L B
E.g. UF is the edge between the U and F F R
faces, URF is the corner of the U, R L N F 3 R |~ B
and F faces. At the beginning, each S Y R |~ R
piece is in its correct position (or [ \/ K /
place), but they soon move about. We L \ F F / B
will say UF is at RB if the UF piece F R K
is at the RB position with the U side \ FINTR V
of UF in the R face. D\ F KV D
The letters R, L, F, B, U, D are D \V )]
D

also used to describe turns of the
faces of the cube. E.g. R is a 90°
clockwise turn of the R faces, as shown FIGURE

in Figure S2. Note that DFR is now at

FUR, DR is at FR, etc. Each face rotation is taken 90° clockwise as
viewed when looking at the face from outside the cube. RZ? will denote

a 180° turn (in either direction!) and R' will denote a 90° anticlockwise
turn of the R face. E.g. to correct Figure S2, we will want to apply R'.
A sequence of moves, such as RUF means apply first R, then U then F. Note
that RR = R%2, RRR = R3 = R', RR' = R'R is the process I of doing nothing.
RU is shown in Figure S3. R:U is sometimes used for RU, etc.

B
L

R
vd
b
B

FIGURE S2 FIGURE S3



62

THE METHOD

Choose a colour to do first and hold that face centre up. (I often
choose white as being the easiest colour to see.)

The first three stages are described for one piece but each must be
applied four times with the whole cube turned 90° between applications.
The descriptions are for the hardest cases and are memorable rather than ef-
ficient. With experience you can find more efficient processes. If your cube
has been reassembled incorrectly, The Method may fail at stage 4, 7, or 8. If
the coloured stickers have been deranged, The Method may fail at any stage!

1. Put U edges correctly in place.

Let us suppose that we want to put the UF edge piece into its
proper place. First find the piece. We shall describe how to get it
into place without disturbing any other U edges. But if UF is already
somewhere in the U face, we first move it off the U face by turning the
side face which contains it. So we have the UF piece not in the U face.

l.a. If UF is in the D face with its U side down, then turn
D until UF is in the F face and apply F2. E.g. if UF is at DB, apply D2F2.
1l.b. If UF is in,the D face with its F side down, then turn

D until UF is in the F face and apply F'U'RU. E.g. if UF is at BD, apply
D2F'U'RU.

l.c. If UF is in the middle layer, then it can be rotated into
the U face by either of two side turns. One of these side face turns would
put the U side of UF in the up direction. First turn the U face so that
the UF position is in this side face, then turn the side face and then turn
the U face to put the UF piece in place. E.g. if UF is at RB, apply U2BUZ,
while if UF is at BR, apply U'R'U.

You should now have a correct + pattern of U edges.

2. Put U corners correctly in place.

Let us suppose that we want to put the URF corner piece into its
proper place. First find the piece. We shall describe how to get it
into place without disturbing any U edge or any other U corner. But if
URF is already somewhere in the U face, we first move it off the U face
by turning a side face that contains it, then applying D? and then turning
the side face back. (It is easier if you ensure that the U side of URF
does not go down.) So we have the URF piece in the D face.

Now turn the D face so that our piece is at the FRD cormer.

2.a. If URF is at FRD, apply D'R'DR
2.b. If URF is at RDF, apply DFD'F'
2.c. If URF is at DFR, apply FD2F'.D2:R'DR

You should now have a solid U coloured U face with its sides agreeing
with the side face centres. Now turn the whole cube over so the correct
face is now down (i.e. D). It will remain D through the rest of the method.

3. Put middle layer edges correctly in place.

Let us suppose that we want to put the FR edge piece into its proper
place. First find the piece. We shall describe how to get it into place
without disturbing the D face or any other middle layer edge. But if FR
is already somewhere in the middle layer, we move it into the U face as
follows: turn the whole cube so that the offending piece is at the FR
position, apply B'U-R2U2R2U2R2U2.U'B (which moves the piece to BU), then
turn the whole cube to where it was. So we have the FR piece in the U face.

3.8. If the F side of the FR piece is up, turn the U face until
the FR piece is at UL, then apply LU-U2F2U2F2U2F2-U'L'.
3.b. If the F side of the FR piece is not up, turn the U face

until the FR piece is at BU, then apply B'U-R2U2R2U2R2U2-U'B.
You should now have the bottom and middle layers correct.

4, Orient U edges.

An even number of U sides of U edges will now be up. By turning the
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cube, you can apply one of the following.

4.a. If the pieces at UB and UF are incorrectly oriented,
apply B-LUL'U'-B'.
4.b, If the pieces at UB and UL are incorrectly oriented,

apply B-ULU'L'-B',
.C. If all four pieces are incorrectly oriented, apply k4.a,
turn the cube 180° and then apply 4.b.
You should now have & + pattern of U edge faces in the U face.

&=

5. Make the U edges into an even permutation.

Examine the 4 U edge pieces and compare their side faces with the
side face centres. Turn U so that UF is at UF.
If a total of two U edge pieces are now in their proper places,

apply U.
You should now have O, 1 or 4 U edge pieces in place.

6. Put U edges in place.

6.a. In one case out of six, the U edges are now all in place.
Do nothing. B B

6.b. In four cases
out of six, there will be
just one U edge correctly in \\\ ‘i\k
place and the other three \\‘ AN
want to be cycled. Turn the L R R
cube so the correct piece is //’ /;a
at UL.

6.b.i. If the three ¥ ‘;/
U edges want to be cycled
clockwige, ag in Figure 84, F F
apply RZD ‘U2R LF2RL DR2 FIGURE S)-l FIGURE S5

6.,b.ii. If the three
U edges want to be cgcled anticlockwise, as in Figure 85,
apply R2D'+R'LFRRL'U

.C. In one case out of six, there

will be no U edge pieces correctly in place
and two adjacent pairs of edges want to be
exchanged. Turn the cube so you want to
exchange UF with UR and UL with UB, as in
Figure S6. Apply
R2D2B2D-L2F2L2F212F2 D 'B2D2R2,

You should now have all the U edges
correctly in place.

T. Put U corners in place.

FIGURE S6
T.8. In one case out of twelve, _—

the U corners are now all in their correct
places, though perhaps disoriented. Do nothing.
T.b. In eight cases
out of twelve, one U corner
is in its correct place, though
possibly disoriented, and the
other three want to be cycled. 4
Turn the cube so the correctly //// ///A
placed piece is at the URF »
corner. I K V
T.b.i. If the three
U corners want to be cycled
clockwise, as in Figure ST,
apply L'.URU'R'-L-RUR'U'.

N

N\
N

FIGURE 8T ~  FIGURE S8
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T.b.ii. If the three U corners want to be cycled anticlockwise,
as in Figure S8, apply URU'R'°L'-RUR'U'-L.

T.c. In two cases out of twelve,
there will be no U corners correctly <

placed, and there will be two pairs of
adjacent corners that want to be
exchanged. Turn the cube so the exchanges
are along the UF and UB edges of the cube,
as in Figure S9. Apply

BeLUL'U'-LUL'U' -LUL'U'-B'. <
T.d. In one case out of twelve,
there will be no U corners correctly
placed and the two diagonal pairs of FIGURE S9

corners want to be exchanged, as in
Figure S10. Apply
R'B2.FRF'R'+FRF'R' -FRF'R' *B2R.

You should now have all the U corners
in their correct places, though possibly
disoriented.

8. Orient U corners.

Turn the cube so some incorrectly
oriented U corner piece is at the URF

position.
8.a. If the piece at URF wants
to be twisted clockwise (viewed from FIGURE S10

outside the cube), apply
FDF'D' -FDF'D'.

8.b. If the piece at URF wants to be twisted anticlockwise.
apply DFD'F'-DFD'F',

This should make the piece at URF be correctly oriented, though it
temporarily confuses the rest of the cube.

Now turn just the U face to bring another incorrectly oriented U
corner piece into the URF position. Apply 8.a or 8.b as needed. Continue
in this way until all U corner pieces are correctly oriented. You will
then need to turn the U face to bring UF back to the UF position and
the cube should now be-completely correct!

9. (Optional step). Scream HOORAY! Buy a round of drinks.
Send me a cheque. Tell the orderlies that they can let you out now.
Etec., etc.

L R
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INDEX

Since the text has grown by accretion and is very dense with material,
I have made lots of cross references. Nonetheless I think an index is
needed as well.

For references to genersal classes of processes, e.g two 2-cycles,
consult section 5.8 (pp 43-46). For references to particular groups and
pretty patterns, look under Groups and Pretty Patterns. There are entries
for Problems (and their answers and continuations) and for Figures.

Many concepts are used before they are defined, so the first page
reference may not be a definition of,the term.

Notation and numeric information precede the alphabetic listing.

The Index does not cover the Introduction nor the-Step by Step
Solution.

NOTATION
P(A)  5,9,5T Axial move 26,3k
p2 6
-1 7 B - corner of a square U4
- corner of U face 4o

(A,B,C) 6
(a,B) (a,B) 7 - face of cube 3

pE I AT b - edge of U face 42
Ay, A_ L1
p! 40 Back .3
<P,Q> 10 Back, Doing cube behind 38
e 11 Barnes, Frank 29-34,4k4 45,49 ,60
|p.q 26 Barratt Developments Ltd. 38
[P’Q] 30 Basic Mathematical Problem 1,12-17,22-26
a ’ 30 See also Algorithms
8 32,35,36 Basic Mechanical Problem 1-3,35,37,38, 65,66
R . R W BCG (Berlekamp, Conway & Guy) 22,23,25,
a’ s 26’30,40942945’46955’579B1
n! 9 BCS (Benson, Conway & Seal)  32,40,42
NUMERIC ENTRIES bl ,45,49.65
2x2,3x3, 4xh 51,52 Beasley, J. D.  37,40,65
2L 11 Bedecs, Eva 65
2 x2 x2 28,29,31,53,60 Benson, David - see also BCS & CCC
2 x2x3 32,40 30-32,35,37,40,45,55
2x3x3 See Magic Domino Berlekamp, Elwyn R. - see BCG
hox b x) 29 Blow, G. 66
3x3x3x3 29,60 Box - see Spot
3DJ See Jackson Bremer, Hanke 40,65

Broughton, David C. 36

ALPHABETIC ENTRIES Brown, Tom 37

Buhler, Joe  37,40,60,65
Bumby, Margaret 23
Butler, J. B. 37,39,50,51

A - Ahrens' process 29,41,48
- Corner of a square 4,42

- Corner on U face 42
a - Edge on U face k2
C - corner of a square U4
ig::ycg’ A J. 45 a7 - corner of U face 42
s . - - ~-f11 L
Ahrens, Richard 29-31,35,48 ¢ - 2322 gglgm¥a£i1P i;’ °

Algorithms - see also Problem 19
16,17,21,24-26,29,31-34,36,39-40
God's Algorithm 34,53

Cairns, Colin  32,33,40,65
Cayley graph 52-54
CCC - see Conway's Cambridge Cubists

Andrews, Peter 37 i i
. Uldi 8,60,65
ﬁggev1ne, James 40,65 gzzz;:séf a fzce 32’5 -60,65

timagic square 35

i of a group 31,59-60

Antipodes 31,52,53 Clarke Gerrg P 25,59
Antislice 11,41,53 01ose,,Gil s. 31
Arrow signs k2 Coates, Paul 37

Asahi Shimbun 37,66



Colour a cube, ways to 3,18
Colours, how to change 2
Commutative 7,13,20,59

Commutator - see also Y,Z,P2,

P4uP), - 17,23,24,27,30,60
Commute - see commutative
Competitions 30, 38,39
Computers, use of 32,33,35,36,39

See also Thistlethwaite's c.
Conder, Marston D. E. 37,49,65
Conjugation 13,1%,25,27,36,57-59
Constructible 12,58
Conwey, John H. 10,13,21-23,27,

32,37,40 - see also BCG, BCS

and next entry
Conway's Cambridge Cubists (CCC)

= {Benson,Conway ,Goto,Seal,

A.Taylor,...} 30,32,40
Coordinates - centre 3,41

- corner 20,21,31,41,54
- spatial 36,41
Corner 3
Coverplates 2
Cross - see X
-, Greek - see +
Cube, n-dimensional 29,60
number of orientations of
3,18
number of ways to 6 colour
3,18
symmetries of 3,18,46,47
with coloured stickers
rearranged 60
with pieces glued together
2,3,52,60
with two colours the same
29
" Cube Dictionary"
see also Jackson
Cube one - see START

k0,65 -

Cubist's thumb 38
Cutler, William 33
Cycle 6

, twisted T
Cycle representation 6,7,57,58
Cycle structure 13,36,57,58,59

D - corner of a square 4

- corner of U face 42

- face of cube 3
d - edge of U face 4o
Dl’D2 19
Dazek, Jurek 37
Dalek, Krystyns 37,50,60
Dalgety, James 38

see also Pentangle

Dauphin, Michel 40,65

DBS - see Singmaster
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De Koven, Bernie
Dénes, Jozsef 1
Diagonal face - see also Zig-zag 11
Diameter 52,60

Direct product 59

Disassembly of cube 2

65

Distribution of cube 22,37
Down 3
Duotwist 4k 46
Edge 3
Even permutations 8
form a group 10,19,20

of the square 10,19
generation of 10,19
Exercises, miscellaneous 8,20,21,31,43,54, 59

F - face of cube 3

Faithful

Figure: 1-pl;
10'/12-pT;

36

2-p2; 3/T-ph; 8-p5; 9/10-pb;

13/16-pll; 17/18-pl3;
19/22-p1k; 23/24&26/27-pl5; 25&28-pl6;
RU&UR-p19; 5.1/2-pll; 5.3/6-ph2;
5.7-p523 5.8/9-p5335.10-p56

Figure of merit 33

Finch, Sue 29

Fletcher, Trevor & Beryl 30

Flip 12,14 - see also flips under
Pretty patterns and in section 5.8.

Franklin, Charlotte 37
French chalk 37
Frey, Alexander H., Jr. 37,45,55

Fried, Katalin 22-24,26,28,30,31,33,

36-38,45 - see also Varga-Fried move
Front 3
Fyfe, David J. 60
Gebor, Zsa-Zsa 37
Gardner, Martin 35
Gaskin, John 22,34,36,37,65
Generate 10
Generators 50,52
Girdle 28 - see also central hexagon

under Pretty patterns
GK - see Kéri
GO - see START
God's Algorithm 34,53
Goldberg, Don 38
Goto, David 23,28 - see also CCC
Graham, Ron 37
Graph, Cayley 52-54

» complete, K¢ 56

Greek cross - see +
Green, Debbie
Griffiths, Dave

Group - general
Definition 9
Cyeclic, Zn 10,59

22
32,33,40,65
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Group - general - cont. I 7,19

PGL(2,5) 5T Ideal Toy Co. 37,65

Quotient group 3k Identity element 7,50,52

Subgroup 9 , shortest 33,36
generated by a set 10,19 IfjlGs4gi Matematikai K8r 38

Symmetric group S_ 9 Index of a subgroup 39,58
generatlon of 10,20 Interchange 8

S), Y 5 56,573 S6 55,56  Inverse T

S. 55: 59 Inversion game 38

T > "8 Ishige, Terutoshi 37,38,65

Group - particular cube groups Isomorphism 52,59

g_; 2x2 ggzgg,31 Jackson, 3-D (Bradley W.) 40-45,65
Antislice, A 11,20,21,35,54  Jarmen, Lytton 30
Centre 31,59,60

Centres 46,47 - see also K 56
4-spot & 6-spot Pretty p. Kaposi, Agnes
Commutator 18,27,28,60 Kéri, Gerzson (GK) 37,40,43-46,49,60,66
Constructible, @ 12,58 Kernel 54
Cube group, G 12ff Kertesz, Adam 40,45
generated by two elements KO - see Ollerenshaw
32,49,50
Domino group 34,35 L 3 - see also 2L under Pretty p.
Five generator 18,26,27,31 Lagrange's theorem 50
Five squares 26,27 Lamb, Gil 37
Four generator 18,22 Leedham~-Green, Charles 37
Four squares 22,26 ,52-54 Lees, Roland J. 36,37
5G. G, 56,5 39 Left 3
QOQ lQ 2 3 h 58-60 Length of a process 50
d Logical Gemes, Inc. 37,40,65
Slice, S 10,11,20,31,36,53 Lowry, Suzanne 29
Slice-antislice <A,S> 35,36 Lubrication 1,31,37,38
Slice-squared 11,20,53,54%,57
Square, G, 18,36,39,53-55 M - figure of merit 33,34
Supergroup 18,22,28,34,38,45,49 Maddison, Richard 36,66
Three generators 18,26 Magic Cube Fans Club 38
Three squarcs 22,26,53,5L4 Magic Cube packaging 37,38
Two commutators 60 Magic Domino  28,34,35,37,52,60
Two generators 12,21,26,54-56 Magic polyhedra 28,29,60
Two slice 53-5k Magic square 35,60
Two squares 11,20,57 Mai, Steven 37
U gro g Maximal order problem 18,22,27,49,50
<L,R,F2,B2, U2 D2> 26,27,32, Meximum number of moves - see Problem 19
36 39 =G, " in slice group 3lh
2 D2s= " in square group 54,55
<L,R,F,B,U4,D*> Gl 32,39 Maxted, M. S. 66
"Groups and Geometry" 57,66 MBT, MBIC - see Thistlethwaite (& his
Guy, Richard K. 22,37,40,65 computer)
see also BCG McKeeman, Bill 37,40
McMullen, Peter  22,23,28,30
H - face pattern 53 Measles - see spot
- symmetry of square 19 Mechanism - see Basic Mechanical Problem
Hammond, Nicholas J. 37-39,hk,  Meier, Kersten 37,40
48,51 Mills, Ron 22,37
Haworth, Guy 37 Mills, Susan 37
Hints 11,12 Minimum number of moves 26,34,60
Holroyd, Michael 36,37,52,53 Minio, Roberto 37,65

Howlett, G.S. 36,65 Misprint problem 60



Mono-column~-flip 31,48

Monoflip 23,33,45
Monoswap 46
Monotwist 23,25,28,45
Motion 27

N - order of cube group
12,26,34

Nenkivell, Jamne 37

Nelson, Roy 32,33,66

Neumann, Peter M. 30,37,58,66

see also "Groups and Geometry"

Non-U 41,45
Nonorder 50
Notation 3,L4,40-43

Number of moves to get lost 1,38

Number of permutations of a
given order 50,51

Observer 29,66
0dd permutation 8

O'Hara, Frank 31,34,36,37,48,54

Ollerenshaw, Dame Kathleen (KO)
37,38,40,41,43-45,B2
Optikos 37
Orbit 12,46,47,53-55
Order of a group 10,26,50
of an element 9,50
Maximal order problem
18,22,27,49,50
Number of permutations of
a given order 50,51
Order of the cube group,
N -2,26,34
Orientation of pieces and
positions 17,21,22,32,35
Natural, on edges 32

P 13,14,23,25,26,34,35,45,55
P, 15,16,23-26,30,34,45

Py 15,16,24 45

P, 15,16, 44,56

Parslow, Bob 22
Patents 37,65,66
Penrose, Roger 17,18,21,22,24,
26,27,31,40
Pentangle 22,36-38,65
Perjés, Zoltén 37,40,45,66
Permutation
Cycle representaion of 6,7
Definition L4
Dichotomies in 5
Even and odd 8
Identity T
Inverse 7,8
Order of 9
Product of two 5
Representations of 5-T
Sign of 8

72

PGL(2,5) 57
Plus - see +
Presentation 50

Pretty Patterns
In general 11,18,28,29,46-49
In other orbits 28
Various unnamed patterns, mostly
rotational 28,30,31,33,35,46-49

Particular Pretty Patterns

2-X 28,47
b+ 11,21,47,48
L-bar 28,48

4-f1ip (slice) 31,35,36,45,47,48
4-spot 11,20,31,46,47,5L

h-u L9

h-x g

b-7 11,21,k47
6+ 28,48,49
6-2L 11,21,47
6-bar 28,47

6-spot 11,20,28,30,31,46-48,53,54
6-U L9

6-X 11,20,28,30,48,49,53
8-f1ip 35,48,54

12-flip 28,31,35,48,53,60

Belts -~ see worm and snake
Central hexagon 30,48

Crossbars 28,48

Double cube 28,29,L48

Girdle 28 - see also Central hexagon
Measles - see 6-spot

Snake (2nd belt) 30,31,49
Tricolours 31,48
U-b-£lip 4L, 48

Worm (1st belt) 30 4o
Zig-zag 11,21,48,54

Pretzel, Oliver  37,4k4,49
Probability of being in right orbit 13
of having order 3 50,51

Problems
Miscellaneous 1,2,3,60 - see also
Exercises
Problems set
1/3-p3; 4-pl; 5-p5; 6-p63 T/8-pT;
9/11-p8; 12/16-p10; 1T7-plh;
18/19-p16; 20-plT
Problems answered
1/3-p18; 4/13-p19; 14/16-p20;
17/20-p21
Problems used or answered better
1k 27
17-A-1 33,43
-ii 25,43
-iii  22,25,33,43,4%
-iv 23,25,27
-V 23,25,28,45
-B 31933936’)'.’5
-C 23,24,33,44
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18-A 24 Taylor, Andrew 23,29,60
-C 23,24,28,44 see also CCC
-D 23,2k4,32,34 Tayior, Dogald E. 22,25,26,37,4%0,43,
- 5,55,58,66
Progéfﬁol9 2k4,26,29,31-33,36, Taylor, Paul B. 37,38
Thistlethwaite, Morwen B. (MBT)
Projective line 57 30-37,39-U41,43-46,54,55,60
& his computer (MBTC) 32,35,36,
Qs Q.5 Q 58-60 39,43-k5
Thompson, E. C. 66
R - face of cube 3 Time to count to 2048.N 12
- symmetry of square 5,19,52 to first solve the cube 1,33
Reflection of patterns L6-kT to restore cube 33,37,38
of processes 2k,36 by computer 33,39
Relations, Relators 50 Téth, Viktor 37
Repair of cube 2 Transpositon 8
Representation of a group 56 Trapp, John  24,37,45
of a permutation Tricky Six Puzzle 57
5=7 Tritwist U6
Right 3 Truran, Trevor 37,65,66
Rogerson, Steve 33,37 Twist 12
Rotation of a process 36,60 Twisted cycle 7
Rowland, Karen 31
Rowley, Chris 22,30,37,45 U - face of cube 3
Rubik, Ern8 1,37,38,L0,44.66 - face pattern 49
Rubik's Cube 37,65 U diagrams & U notation U41-43
U problem 49
8, - see under Group U processes 30,31,40,43-45
Sakane, Ttsuo 37,66 Unicycle 46
Savage, Sam L. 37 Up 3
Scott, Anne 13
Seal, David 23,10 v 5,19,52
see also CCC & BCS Vémos, Peter 22,37

Varga, Tamfs 22,30,34,37

Bemadeni, Zbigniew 37,41 Varga-Fried move 23,25,34,36,45

Shift - see rotation

Sibley, David 60,65 Vaughan-Lee, Michael 22,24,27,29,32,
Sign of a permutation 8 X 3?,&0 .

Signs, use of 4o-}43 Viewing time 39

Simplex 56 Viragh, F. J. 22

Smfgai;e;é Pevid (DBS) 1.23,4345,  yaiker, Richard 37,13,44,48,49
Slice . 10 Warnings 1,2,5,41

38 Washing of cube 1

Spot 11 - see also Pretty p. WD-ho 31,37

: "Winning Ways" - see BCG
Square, syTﬁe;glgz of 4-10, WK = Well Kmown 43-U5
:H] ]

Wreath product 31,58-60

Speed merchants

Square one - see START

START 3,12,16,17,19,27,36,38,42 X 11
Stoy, Gabrielle A. 66

Strain, Peter 37,38 Y commutator 17,24,29,30,36

Subgroup 9
7 commutator 17,24
generated by a set 10,19 % face pattern 11

of even permutations

10,19,20 Z_, 2% 57,59
Supergroup - see under Group
Symmetry

direct 10,46,47
see also Cube, Permutation
and Square
Szalai, Bela J. 37
see also Logical Games
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