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1 Introduction

Differential homological algebra, a branch of math developed by topologists, has been
applied to great effect in commutative algebra. This project proposes to continue this
transfer of techniques from topology to algebra by applying generalized twisting cochains,
which codify higher homotopies or A∞-structures, to study modules over commutative
rings.

Free resolutions with a differential graded (dg) algebra or module structures are an
important tool in commutative algebra. They were introduced by Tate in [44], they are
at the center of work Buchsbaum and Eisenbud [15] on the structure of codimension 3
Gorenstein ideals, and form one of the main themes of the book by Avramov on infinite
free resolutions [4]. The existence of an algebra or module structure rigidifies a free
resolution while opening it up to new tools of study. A central example of the power of
these structures comes from the Buchsbaum-Eisenbud-Horrocks rank conjecture, which
would follow if for a given a finite free resolution, one could find an appropriate Koszul
complex over which it is a dg-module.

While not every resolution of an algebra is a dg-algebra, it is an algebra up to homotopy,
or an A∞-algebra. This fact has not received much attention in commutative algebra.
The main goal of this project is to exploit this structure to study free resolutions and
homological algebra over commutative rings. Until recently, much of the machinery of
generalized twisting cochains was only defined over augmented objects, and the objects one
studies in commutative algebra are usually not augmented. For example, any resolution
of a quotient ring over the base ring will never be augmented. Positselski has shown how
to add a “curvature element” to overcome a lack of augmentation.The first objective of
this project is to generalize his machinery, especially the curved Koszul-Moore duality
arising from a twisting cochain, from a field to the case of an arbitrary commutative ring.
This will provide the foundation for the rest of the work in the project.

A large part of this project is concerned with complete intersection (CI) rings. Over such
a ring, the Koszul-Moore duality may be interpreted as a generalization of the classical
BGG-correspondence [12]. The exterior algebra is replaced by the Koszul complex and the
symmetric algebra is generalized to include a curvature element (this curvature is behind
the phenomenon of matrix factorizations). This gives both theoretical insight into, and
computational tools for, the study of free resolutions over CI rings. If R = Q/I is such a
ring, and M is an R-module, the higher homotopies on a Q-free resolution of M are well
known and have been studied by several authors. However, there are higher homotopies
on the R-free resolution of M , and from these one can recover the Q-free resolution. This
has not been studied previously. The duality also gives a new approach to study the
lattice of thick subcategories and the dimension of the derived category of R. Baranovsky
[8, 9] has studied a similar setup for graded complete intersections defined over a field.
But he considers A∞-structures over the field, and he doesn’t include applications for his
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results. In particular, his results do not imply those contained here and the machinery he
uses does not apply to our setup.

Another focus of the project is on Golod rings. These are in a sense orthogonal to CI
rings: a ring is both CI and Golod if and only if it is a hypersurface, and while complete
intersections are characterized by polynomial growth of free resolutions, Golod rings are
characterized by a strong exponential growth of free resolutions. For Golod rings, the
Koszul-Moore duality gives a way to construct the minimal free resolution of any module
in a fixed finite number of steps. Studying these minimal R-free resolutions, how they
relate to Q-free resolutions (if R = Q/I is a Golod ring with Q regular), what form the
A∞-structures take, and what the global structure of the derived category of R is, are all
objectives of this project related to Golod rings.

In [4] Avramov lists eleven questions on infinite free resolutions over local rings. These
are all known for CI rings and many are known for Golod rings. For rings outside of these
classes, all of the questions are open. Finding “small” acyclic twisting cochains for classes
of rings that are neither CI nor Golod will shed light on free resolutions over these rings
and give an approach to some of Avramov’s questions. This will be the third major focus
of the project. The first class to consider will be codimension 3 Gorenstein rings (every
codimension 2 ring is CI or Golod). If R = Q/I is such a ring, the Q-free resolution of R
is known by Buchsbaum and Eisenbud [15]. The defining feature of a Gorenstein ring is
a symmetry in this Q-free resolution. Finding a way to account for this symmetry in the
context of higher homotopies will be key.

The last part of this project is a proposal to generalize Boij-Soederberg theory from
polynomial rings to certain graded hypersurface rings. While not directly related to higher
homotopies, it is similar in spirit to the other objectives considered here.

Finally, let us mention that all of the machinery and much of the motivation of this
project extends to non-commutative rings. I don’t plan to pursue this in the immediate
future, but a long term goal will be to examine the application of this to non-commutative
rings; a starting point will be restricted Lie algebras, whose homological algebra has much
in common with CI rings.

2 Twisting cochains and A∞-structures

2.1 Twisting cochains

Let A be a differential graded (dg) algebra and C a dg coalgebra, both defined over
a commutative ring k. A twisting cochain between C and A is a degree -1 k-linear map
that allows one to define an adjoint pair of functors between the homotopy category of
dg C-comodules and dg A-modules.

(2.1) comod(C)
A⊗τ− //

mod(A)
C⊗τ−

oo

See e.g. [36] for the full definition. The notation (and terminology) is due to the fact that
τ “twists” the tensor product differential on C ⊗M to make it a dg C-comodule, and
similarly for A⊗τ N .

These were introduced by Brown in [14] in the context that C = C∗(X, k) is the chains
of a toplogical space X and A = C∗(ΩX, k) is algebra of cochains of the Moore path space
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of X (the Moore path space is defined so that this is a dg-algebra under composition).
Brown used the machinery to compute the homology of the total space of a fibration of
simply connected CW-complexes.

Twisting cochains always exist: given a dg-algebra A, one can form a dg-coalgebra
Bar(A), called the bar complex, and a twisting cochain τA : Bar(A)→ A. Similarly, if C is
a dg-coalgebra, one can form the cobar complex and a twisting cochain τC : C → Cob(C).
Any twisting cochain C → A induces a map of dg-coalgebras C → Bar(A) and a map of
dg-algebras Cob(C)→ A. For details, see again [36].

It is important and interesting to know when the functors in (2.1) are inverse equiva-
lences up to “weak equivalence.” Lefévre-Hasegawa studied this in [33] where he defined
the coderived category Dco(C) of dg C-comodules and he showed that (2.1) descends to
an adjoint pair between (co)derived categories.

(2.2) Dco(C)
A⊗τ− //

D(A)
C⊗τ−

oo

Definition 2.3. A twisting cochain is acyclic if the functors above are an equivalence.

In [33], six equivalent conditions are given for τ to be acyclic. They include:

2.4. Acyclicity conditions.

(1) the co-unit A⊗τ C ⊗τ M →M of (2.2) is an isomorphism for all M in D(A);
(2) the co-unit A⊗τ C ⊗τ A→ A of (2.2) is an isomorphism;
(3) the map C → Bar(A) is a weak-equivalence.

Much of this goes back to the “constructions” of Cartan and Moore [1]. In [32] Keller
shows how this machinery generalizes and removes boundedness conditions from classical
Koszul duality, as in e.g. [10]. For these reasons (perhaps) this setup has been called
“Koszul-Moore” duality.

An acyclic twisting cochain can be a powerful way to study a dg-algebra. For instance
it gives a standard resolution of every A-module via 2.4.(1), as well as a possibly smaller
model of the bar complex via 2.4.(3). This can make working with higher homotopies, or
A∞-structures, much easier (I’ll say more about this in the next subsection). However, for
subtle reasons that are still slightly opaque to me, the machinery as presented above only
works when A and C are (co)augmented. (Here, A is augmented if there is an algebra
map A→ k that splits the unit; coaugmented is defined dually.) However, the dg-algebras
that I plan to study are not augmented. The über-example is the Koszul complex A on
an element f ∈ k. Then

A = 0→ k
f−→ k → 0,

where the nonzero modules are in degrees 1 and 0. There is never a map of chain complexes
A→ k, unless f = 0. Thus A is only augmented when f = 0.

Positselski presents a program for working without an augmentation in [39]. He showed
that one should replace dg-coalgebras with curved dg-coalgebras. He then defined a
twisting cochain τ : C → A to a non-augmented dg-algebra A, and defined curved C-
comodules and showed that they form a replacement for dg-comodules in (2.1). Let us
emphasize that curved coalgebras and curved modules are objects whose differential does
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not square to zero. In particular one cannot take homology and thus there are no quasi-
isomorphisms to invert. Positselski found a way around this and defined the coderived
category of curved comodules. He used this to give an analogue of the functors (2.2).

The material on coalgebras in [39] assumes that k is a field. Additionally, there are no
analogues of the equivalent conditions for a twisting cochain to be acyclic as in 2.4. For
the applications I have in mind, it is important that this machinery applies to the case
when k is an arbitrary Noetherian commutative ring and to have an analogue of 2.4 in
the curved setting. Thus the first objective of this project is:

Objective 1. Generalize the machinery of coderived categories of curved comodules from
a field to a commutative ring; generalize the functors of 2.2 to this context and investigate
when they are equivalences, especially investigate which of the conditions of 2.4 still hold
in this setting.

This should be fairly straight-forward, however coalgebras and comodules over arbitrary
rings can exhibit some pathological behavior.

2.2 A∞-structures and twisting cochains

Twisting cochains are intimately connected to A∞-structures. Recall that if A is a com-
plex over k, an A∞-algebra structure on A means that A is an algebra “up-to-homotopy”,
and this is encoded in maps mn : A⊗n → A for n ≥ 1. Positselski has shown in [39, §7],
that putting a strictly unital A∞-structure on A is equivalent to finding a coderivation of
the coalgebra Bar(A) =

⊕
i≥0(A/k · 1A)⊗i that makes it a curved dg-coalgebra. He then

defines a generalized twisting cochain

τ : C → A

for C a curved dg coalgebra and A a strictly unital A∞-algebra.

Objective 2. Generalize the functors (2.2) and the conditions (2.4) to the setting of
strictly unital A∞-algebras.

If A is an A∞-algebra, a complex M is an A∞ A-module if there is a coderivation on
Bar(A)⊗M that makes it a curved Bar(A)-comodule. The following, in the non-curved
context, is a folklore result I learned from [30], which credits the idea to Stasheff and
Halperin [42].

Proposition 2.5. Let A be an A∞algebra, C a curved dg coalgebra and τ : C → A an
acyclic twisting cochain. Let M be a complex of k-modules that is a free k-module in every
degree. Then the following are equivalent:

(1) an A∞ A-module structure on M ;
(2) a coderivation on C ⊗M that makes this a curved dg C-comodule.

For instance if C = Bar(A), the result above holds by definition. However, if C is
smaller than Bar(A), this can make working with A∞-structures considerably easier.

The dual of the statement should also hold: if C is a curved A∞ coalgebra and N is
a complex of free k-modules, then an A∞ C-comodule structure on N is equivalent to a
differential on A⊗N that makes it a dg A-module.
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Objective 3. Write a detailed proof of the above statements in the generality of an
arbitrary commutative ring k and an acyclic twisting cochain C → A, with C a curved
dg-coalgebra over k and A a strictly unital A∞-algebra over k.

2.3 Applications to commutative rings

Let Q be a commutative ring and let R = Q/I for an ideal I in Q. We let k = Q in the
above notation. I’ve recently proven the following result. This is the first step in applying
generalized twisting cochains to homological algebra over commutative rings.

Proposition 2.6. Let R = Q/I be a commutative ring, M an R-module, and let A
∼=−→ R

and G
∼=−→ M be Q-free resolutions. Then A has the structure of an A∞-algebra over Q

and G an A∞-module over A.

This generalizes a result of Buchsbaum and Eisenbud [15] who noted that A is an
algebra up to homotopy, but they didn’t pursue the higher homotopies. The proof of the
proposition uses the obstruction theory of [33, Appendix 1].

Let us fix A and G as above, and let τ : C → A an acyclic twisting cochain (we know
that C = Bar(A)→ A is at least one such). This gives the following tools and approaches
to study the homological algebra of R relative to Q.

2.7. Tools from twisting cochains.

(1) the equivalences of derived categories

Dco(C)
A⊗τ−
∼=

//
D(A)

C⊗τ−
oo ∼=

//
D(R)oo

from (2.2) and the quasi-isomorphism A
∼=−→ R;

(2) the resolution of A-modules via 2.4.(1);
(3) a convenient encoding of the higher homotopies on the A∞ A-module G in the

C-comodule C ⊗G, via Proposition 2.5;
(4) intuition from the classical BGG correspondence.

The following is the over-arching objective of this project:

Objective 4. Use the tools of 2.7 to study the homological algebra of R = Q/I relative
to Q, where Q is a Noetherian commutative ring.

To show that this will not be entirely fruitless, let me state a recent theorem I’ve proven
which generalizes a result of Iyengar [31]. Let M be an R-module. The theorem takes any
Q-free resolution of R and any Q-free resolution of M and produces an R-free resolution
of M . The resolution depends on a choice of acyclic twisting cochain.

Theorem 2.8. Let R = Q/I be a commutative ring, M an R-module, and let A
∼=−→ R

and G
∼=−→ M be Q-free resolutions, with A∞-structures. Let τ : C → A be an acyclic

twisting cochain. Then, there is a natural map

R⊗ C ⊗G→M

which is an R-free resolution.
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Iyengar assumed that C was the bar complex of A, and required that both A and G
have dg-structures (as opposed to A∞). In the case R is a Golod ring, the theorem gives
a free resolution that hits the defining bound of Poincare series, which was not previously
known to exist (see Section 4 for definitions). In the case of a complete intersection ring,
where A is the Koszul complex and C is a symmetric coalgebra, this recovers the standard
resolution of [19]. The proof of the theorem follows almost immediately from 2.4.(1).

3 Complete intersection rings

In this section we concentrate on the special case that R = Q/I, where I is generated
by a Q-regular sequence f = (f1, . . . , fc). Let A be the Koszul complex on f. Since f is
Q-regular, the natural map A→ H0(A) = R is a quasi-isomorphism.

Let U be a rank c free Q-module in homological degree 2, with basis X1, . . . , Xc. Let
C be the curved dg-coalgebra with underlying coalgebra the symmetric coalgebra on U ,
zero differential, and curvature projection onto U followed by the map f1X

∗
1 + . . .+fcX

∗
c :

U → Q. We have the following:

Proposition 3.1. The degree -1 map

τ : C → A Xi 7→ ξi

is an acyclic twisting cochain, where ξ1, . . . , ξc is a basis of A1 with d(ξi) = fi.

The coalgebra C is much smaller than the bar construction of A and this is in some
way behind most of the work in this section.

3.1 Generalized BGG duality

Applying (2.2) to the acyclic twisting cochain of 3.1 we have an equivalence

(3.2) Dco(C)
A⊗τ− //

D(A)
C⊗τ−

oo .

The Bernstein-Gelfand-Gelfand (BGG) correspondence [12] for dg-modules over the sym-
metric and exterior algebras, as formulated in e.g. [24, 5] was shown in [23] to come from
an acyclic twisting cochain between the symmetric coalgebra and exterior algebra. Thus
3.1 is a direct generalization: by adding a differential to the right hand side, we com-
pensate by adding a curvature term to the left hand side. The BGG correspondence is
a fundamental tool to study modules over the symmetric algebra and I think it has the
potential to be very useful in the study of complete intersections.

The duality of (3.2) gives a duality between the Q-free resolution and R-free resolution
of an R-module M in the following way. Let G→M be a Q-free resolution and F →M
be an R-free resolution. Then G has the structure of an A∞ A-module by 2.6, and this
makes C ⊗ G into a curved dg C-module by 2.5. This structure is exactly the higher
homotopies introduced in [19].

It was also shown in [19] that there is an “up-to-homotopy” R[X1, . . . , Xc]-comodule
structure on F . However, the homotopies have not been pursued. I think they will be

an integral part of the duality. Let us write F = F̃ ⊗Q R, where F̃ is a graded free

Q-module. By [26, Theorem 2.2], there is a differential on A ⊗ F̃ that makes it a dg
A-module and this dg-module is quasi-isomorphic to M . By the dual of 2.5, this makes
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F̃ a curved A∞ C-comodule (applying − ⊗Q R we get the classical “up-to-homotopy”
R[X1, . . . , Xc]-comodule structure on F ).

We now have the following:

(3.3) C ⊗G ∈ Dco(C)
A⊗τ− //

D(A) 3 A⊗ F̃
C⊗τ−

oo

and since G,F are resolutions of M , it’s not hard to see that there are isomorphisms in
the derived categories

C ⊗τ (A⊗ F̃ ) ∼= C ⊗G A⊗ F̃ ∼= A⊗τ (C ⊗G).

Hence the “duality” between F and G.

Objective 5. Relate a free Q-resolution G with its higher homotopies to a free R-
resolution F with its higher homotopies, and vice versa, especially in the case that R
is local and G,F are minimal resolutions.

This has been a dominant theme of study for free resolutions on complete intersections
since the topic was first studied by Tate in [44]. However, there has been no previous
indication that the higher homotopies on F and G are linked as above.

Often in a BGG situation like this, computing a quantity on one side of the equivalence
becomes easier after transferring to the other side. Recent work of Eisenbud and Peeva
[21] on minimal resolutions over local complete intersection rings has shown that the
regularity of Ext∗R(M,k) as a graded module over the ring of polynomial operators (the
action of these can be seen in the current setup as the algebra HomQ(C, k) acting on
HomQ(C ⊗ G, k)) is key to understanding the minimal R-free resolution. A part of the
above objective is to compute the regularity of Ext∗R(M,k) (and other invariants, such as
the depth) directly from the Q-free resolution G and its higher homotopies.

Let me also note that in everything above, we have not had to pick generators for the
ideal I. This may be helpful in approaching some aspects of Eisenbud and Peeva’s work,
where they have to pick generators for the ideal I depending on the module in question.

3.2 Classification of thick subcategories

It is an interesting question to try to classify the thick subcategories of the finite derived
category of a ring. This was done for zero-dimensional CI rings in [18]. Using the duality
of (3.2), we can apply the main steps of the argument of [18] to the larger class of rings
considered in this section.

Applying HomQ(−, R) to 3.1, we have an acyclic twisting cochain

(3.4) E∗ := ∧∗ (A1 ⊗Q R)→ Sym(U ⊗Q R) =: S

where E∗ is the exterior coalgebra and S the symmetric algebra. Let E be the dg R-
algebra HomR(E∗, R). Since E is a finitely generated free R-module, every E∗ comodule
is an E-module and vice versa 1. Applying (2.2) to (3.4) and restricting to bounded

1Given M an E∗-comodule, the E-action on M is given by E ⊗M
1∼=∆M−−−−→ E ⊗ E∗ ⊗M →M .



8

derived categories gives

Df(R)
β //

Df(E)
φ

∼=
//

α
oo Df(S)

ψ
oo

where φ and ψ are induced by the twisting cochain, α is restriction along the unit map
R→ E, and β = −⊗R E.

In [18, 3.2], thick subcategories of perfect objects over any dg-algebra with zero differ-
ential are classified in terms of support. In particular the result applies to perfect objects
in Df(S). Also, as pointed out by Iyengar, if M is in Df(R), then α (β (M)) = M ⊗R E
and M generate the same thick subcategory. Thus, thick subcategories of R-modules that
are perfect over Q are classified by the support of their images in Df(S).

To finish the classification of thick subcategories that are perfect over Q, we have to
settle the following:

Objective 6. Determine which closed subsets of homogeneous primes of S arise as the
support of the images of objects of Df(R).

In [43], Stevenson classified the thick subcategories of Db
sg(R) = Df(R)/ perf(R) and

showed that the classification depends on the singularities of SpecR in SpecQ. If suc-
cessful, the above objective would presumably recover his result, while extending it to the
case that Q is not necessarily regular.

Another novelty of this approach is that the support of φ(β(M)) can be computed
using Fitting ideals of the higher homotopies on a Q-free resolution of M . We could thus
determine, using e.g. Macaulay2 [25], when one module is in the thick subcategory of
another.

3.3 Obstructions to dg-(co)module structures

Let Q be local, and M an R-module that has finite projective dimension over Q. Let

G and F = F̃ ⊗Q R be minimal Q and R-free resolutions of M . We know G is an A∞ A-

module and F̃ an A∞ C-comodule. It is very interesting to know when they are actually
dg (co)modules (that is, when the higher homotopies are zero).

Objective 7.

(1) find obstructions that characterize when G is a dg A-module;

(2) find obstructions that characterize when F̃ is a strict C-comodule.

This has strong consequences and has been studied by several authors. Buchsbaum
and Eisenbud showed that if G is a dg A-module, then the rank of G is at least the
rank of A [15]. This led to their famous rank conjecture, and led them to ask whether
G is always a dg-module. Avramov developed an obstruction theory in [6] and gave an
example of a module with non-vanishing obstruction, showing that G need not be an
A-module. However, he noted that his obstructions do not necessarily characterize when
G is a dg-module, and that such a characterization would be a large step towards solving
the Buchsbaum-Eisenbud rank conjecture (and would solve it if one could always find
regular sequences for which the obstructions vanished).



9

In [19], Eisenbud asked whether F̃ is always a dg-comodule. However, in [7], the authors

developed a spectral sequence which degenerates on the E2 page if F̃ is a dg-comodule
and then found an example where this is not the case. This example did not rule out the

possibility that a high truncation of F̃ is a dg-comodule. The construction of minimal
free resolutions of high syzygies by Eisenbud and Peeva [21] would be much simplified if

we knew that a high truncation of F̃ were always a dg-comodule.
The machinery of this project gives several new approaches to this problem. First, it

creates a new obstruction theory, although we cannot compute these obstructions yet.
Second, it shows an unsuspected relation between the two obstruction theories described
above.

The first approach is the most naive. As noted in 3.1, we know A⊗ F̃ is a dg A-module

which is quasi-isomorphic to M . In particular, A⊗ F̃ is a Q-free resolution of M . Since
G is minimal, there is a surjection of Q-complexes

φ : A⊗ F̃ → G.

If we can pick φ such that kerφ is a dg A-submodule of A ⊗ F̃ , then G must also be a
dg A-module. Since G is bounded there are only finitely many degrees to check. We can

dualize the idea: there is an injective map F̃ → C ⊗ G. If the cokernel is a curved dg

C-comodule, then F̃ is as well.
The obstruction of Avramov to G being a dg A-module [6] is

ker
(
TorQ∗ (M,k)→ TorR∗ (M,k)

)
(Tor+Q(R, k))(Tor∗Q(M,k))

where k is the residue field (he also shows the numerator is exactly the submodule of
decomposable matric Massey products of TorQ∗ (M,k), which should be connected to A∞-
structures, but I don’t yet see how). We can compute the map TorQ∗ (M,k)→ TorR∗ (M,k)
in two different ways. We know G is a Q-free resolution of M and by the twisting cochain
machinery C ⊗G⊗R is an R-resolution of M . Therefore, we have

TorQ∗ (M,k) = G⊗ k → H∗(C ⊗G⊗ k) = TorR∗ (M,k).

But also, we know that A⊗ F̃ is quasi-isomorphic to M and a complex of free Q-modules;
thus we have

TorQ∗ (M,k) = H∗(A⊗ F̃ ⊗ k)→ F ⊗R k = TorR∗ (M,k).

It is very intriguing that the higher homotopies on F̃ and G are connected in this way.
Moreover, these maps are very explicit and perhaps computable.

In [7, §4], the following spectral sequence is constructed:

2Eq
p = Hp (K(Ext∗R(M,k)))q ⇒ Extq−pQ (M,k)

where K(Ext∗R(M,k)) is the Koszul complex on Ext∗R(M,k) over the polynomial ring of
cohomology operators. Using that C ⊗G is a dg C-comodule, I can show that this is an
Eilenberg-Moore spectral sequence, and thus the differentials may be computed in terms
of matric Massey products using the theory of [26]. This is worth investigation and may
give some new insight on the spectral sequence and the obstruction theory it represents.
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3.4 Morphisms between higher homotopies

A corollary of the setup of twisting cochains is that we get a notion of morphism between
higher homotopies. Let G,H be Q-free resolutions of R-modules M,N . We know that
C ⊗G and C ⊗H are curved dg C-comodules, and we may consider

Hom∞A (G,H) := HomC(C ⊗G,C ⊗H),

the A∞-maps between G,H. We can then mimic Buchsbaum and Eisenbud’s original
approach to the rank conjecture. Let us assume for simplicity that M = R/I is cyclic,
but everything extends to the general case.

In [15], the authors showed that if φ : A → G is a map of complexes lifting the map
R → R/I of Q-modules, then φc is injective (where c = dimQ − dimR). If G is a dg
A-module, then there is a unique map of dg A-modules A → G lifting R → R/I. If the
A-linear map A→ G has a nonzero kernel, it must contain An, as this is the socle of the
algebra. However, φn being injective makes this impossible. Thus A→ G is injective and
G has Betti numbers bounded below by those of the Koszul complex A.

If G does not have the structure of dg A-module, we can lift a map of complexes
φ : A→ G to a map of higher homotopies

φ̃ : C ⊗ A→ C ⊗G.

Objective 8. Show that ker φ̃ = 0.

This would give the asked for bounds on G.

3.5 Graded matrix factorizations

Matrix factorizations were introduced by Eisenbud in [19] to study free resolutions over
hypersurface rings Q/(f). They have been a useful tool in commutative algebra since
their introduction, and have recently gained a wider audience due to their rediscovery in
string theory2.

In [17] Mark Walker and I generalized Eisenbud’s result on hypersurfaces to complete
intersections in the following way.

Theorem 3.5 (Burke-Walker, [17]). If R = Q/(f1, . . . , fc) is a complete intersection,
there is an equivalence

[mf(Pc−1
Q ,O(1),W )]

∼=−→ Db
sg(R),

where mf(Pc−1
Q ,O(1),W ) is the category of “matrix factorizations” of locally free sheaves

on Pc−1
Q of the element W = f1T1+. . .+fcTc ∈ Γ(Pc−1

Q ,O(1)), and Db
sg(R) := Db(R)/ perf(R)

is the singularity category of R.

The impetus of this entire project was to generalize the above theorem to graded matrix
factorizations over a ring, instead of locally free matrix factorizations (in the hope of
computing examples). And the machinery does this. By substituting contramodules, see
[39], for comodules over C we have the following.

2There was a meeting at Oberwolfach in September 2013 on “Matrix Factorizations in Algebra, Ge-
ometry, and Physics.”
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Theorem 3.6. Let R = Q/(f1, . . . , fc) be a complete intersection. There is an equivalence

[gr-mf(S,W )]
∼=−→ Db(R)

where S is the symmetric algebra HomQ(C,Q) ∼= Q[T1, . . . , Tc] with W = f1T1+. . .+fcTc ∈
S−2, and [gr-mf(S,W )] is the homotopy category of graded matrix factorizations of W .

The two theorems above are related by the following commutative diagram.

[gr-mf(S,W )]
∼= //

(̃−)
��

Db(R)

��
[mf(Pc−1

Q ,O(1),W )] ∼=
// Db

sg(R)

In [17, §7], we constructed from every object of mf(Pc−1
Q ,O(1),W ) a free resolution.

Objective 9. Understand how the free resolution of [17, §7] is related to the free resolution
from Theorem 2.8.

4 Golod rings

Let Q be a local ring. For a finitely generated Q-module M , the rank of the n-th free
module in a minimal free resolution of M is the nth Betti number of M . The Poincare
series PR

M(t) of M is the generating function of the sequence of Betti numbers. For a
module finite ring homomorphism f : (Q, n, k) → (R,m, k), and an R-module M , it is a
result of Serre that there is a coefficient-wise inequality

(4.1) PR
M(t) 4

PQ
M(t)

1− t
(

PQ
R(t)− 1

) .
Let R = Q/I, where (Q,m) is a regular local ring and I ⊆ m2. Then an R-module M is
a Golod module if (4.1) is an equality; R is a Golod ring if the residue field is a Golod
module. These rings are fairly mysterious, yet they abound. For instance [29] shows that
if I is any proper ideal in a regular local ring Q, then Q/Ik is a Golod ring for all large k.

The connection to twisting cochains is as follows. Let R = Q/I be a Golod ring and

M a finite R-module. Let A
∼=−→ R be a Q-free resolution of R, and G

∼=−→ M a Q-free
resolution. Pick A∞-structures on A and G using 2.6. Let C = Bar(A) → A be the
universal twisting cochain. From Theorem 2.8 we have an R-free resolution

A⊗τ Bar(A)⊗R
∼=−→M,

and the generating series of the ranks of the free modules of this resolution is exactly the
right hand side of (4.1). Thus we have a free resolution which achieves the defining bound
of Golod modules. No such construction of this was previously known.

Lescot [34] proved that when R is Golod, for every R-module M , the dimQ−depthMth
syzygy of M is a Golod module. Thus if we do this construction on the dimQ−depthMth
syzygy of any M , we get the minimal R-free resolution of M .

Why this is happening is not clear; thus:
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Objective 10. Find a conceptual explanation for why the bar complex gives a minimal
resolution of syzygies of modules over Golod rings.

We can also study similar objectives as for complete intersections.

Objective 11. Let R = Q/I be a Golod ring and M an R-module. Use the setup of
twisting cochains to relate the minimal Q-free resolution of M with higher homotopies to
the minimal R-free resolution of M with higher homotopies.

For instance, once we know the Poincare series of M over Q, we have found the Poincare
series of M over R, and vice versa. This could be helpful to study the Q-free resolution
of M (or R) and the higher homotopies on it.

There are several open questions on R-free resolutions that we might be able to ap-
proach. For instance, it is known by Peeva [38] that all modules over Golod rings have
Poincare series of exponential growth. Avramov introduced curvature to measure this
type of growth and asked what curvatures can arise for modules over a local ring; see [4].
If M is in the thick subcategory generated by N , then the curvature of M is at most that
of N . Thus one approach to Avramov’s question is the following:

Objective 12. Use Bar(A) to set up a theory of supports that classify thick subcategories
of Df(R).

5 Non CI/Golod rings

Let R = Q/I, where (Q,m) is a regular local ring and I ⊆ m2. Let A be a Q-free
resolution of R and C = Bar(A). If the free resolution 2.8 is minimal for any module M ,
then as we saw in the last section, M will be a Golod module. By a result of Levin [35],
this implies that R is also Golod. Thus if R is not Golod, the resolution from Theorem
2.8 with C = Bar(A) will never be a minimal resolution. On the other hand, by a result
of Gulliksen [27], if the free resolution of the residue field k has polynomial growth, then
R is a complete intersection. Avramov showed in [2] that if R is not a CI, then the free
resolution of k has exponential growth. Thus if R is not a CI and C → A is an acyclic
twisting cochain, then the rank of Cn must grow exponentially in n. This gives background
to the following.

Objective 13. Find classes of rings, which are neither CI nor Golod, and acyclic twisting
cochains which are smaller than the bar complex and give a minimal resolution for some
module.

If dimQ− depthR ≤ 2, then by a result of Scheja [40], R is either CI or Golod. Thus
the first interesting case is dimQ − depthR = 3. When, in addition, R is Gorenstein,
Buchsbaum and Eisenbud [15] describe explicitly the Q-free resolution of R. This will be
a very good starting point for the work on this objective. An essential problem will be to
take account of the symmetry present in the Q-free resolution of R.

Lurking in the background of this objective is the homotopy Lie algebra of R. This
was defined by Avramov in [2]. It is the graded Lie algebra whose universal enveloping
algebra is the Hopf algebra Ext∗R(k, k). The difference between CI and Golod rings can
be explained by the fact that the Lie algebra of the first is abelian and 2-dimensional over
k, while the second is a free Lie algebra on a finite dimensional vector space.
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Objective 14. Understand the relation between acyclic twisting cochains and the homo-
topy Lie algebra of R.

Generalized Golod rings of level n, with n ≥ 1, were defined in [3] as those rings
for which the truncation of the homotopy Lie algebra above degree n − 1 is a free Lie
algebra (thus R is Golod of level 1 if and only if R is Golod). It is shown there that if
dimQ − depthR = 3, then R is generalized Golod of level 2. This may be helpful in
constructing an acyclic twisting cochain.

6 Boij-Söderberg theory for hypersurfaces

The aim of this part of the project is to continue a generalization, started in [11], of
Boij-Söderberg theory from standard graded polynomial rings to hypersurface rings.

Let S be a standard graded polynomial ring over a field. For a finitely generated graded
S-module M , the Betti table is the matrix of positive integers which records the degrees
of the minimal generators of all syzygies of M . Boij and Söderberg, motivated by the
multiplicity conjecture of Herzog, Huneke, and Srinivasan [28], studied the cone spanned
by the set of all Betti tables of S-modules in [13]. They conjectured that the Betti tables
of pure modules spanned the cone of all Betti tables and this cone was simplicial. They
showed these conjectures imply the multiplicity conjecture. Eisenbud and Schreyer proved
the conjectures in [22]. See e.g. [41] for further details.

Let us take Boij-Söderberg theory to mean the project of describing the convex cone of
Betti tables of graded modules over a ring R. There are two ways to do this: describe
generators of the cone, and describe functionals that cut out the cone. One can also hope
the cone is simplicial (as it has been in all cases so far). In [11], my three coauthors and
I accomplished the above for rings of the form k[x, y]/(q), where q is a quadric. This was
the first known example of Boij-Söderberg theory for singular rings. This leads to the
following:

Objective 15. Study Boij-Söderberg theory for graded hypersurface rings R = S/(f),
where f is homogeneous and char(k), deg f are coprime.

My idea to approach this is to use the following result of Orlov. In his theorem on
graded Gorenstein rings [37] (on which Greg Stevenson and I have recently written an
expository paper [16]), he shows that there is a functor bi : Db

sg(grA)→ Db(grA≥i), where

Db
sg(grA) is the singularity category of A. He describes a decomposition of the minimal

free resolution of every object in Db(grA≥i) into a bounded complex of free modules and
something in the image of bi. In [11, 3.5], we (implicitly) described the Betti table of all
objects in the image of bi. Thus to describe the Betti table of all complexes, we need to
describe the Betti tables of bounded complexes of free modules. But this should follow
by taking a Noether normalization of R and applying the result of Erman and Eisenbud
[20] on bounded complexes of free modules over a polynomial ring. The above argument
should give a set of spanning elements of the cone of Betti tables of R-modules. Whether
this cone is simplicial, what the equations of the facets are, etc. is still unclear and will
be a large part of this objective.



14

7 Broader impacts

This is a multi-disciplinary project that involves techniques from algebraic topology
applied to concrete problems in commutative algebra. Many of the techniques are formal
homological algebra, thus may also be of interest to representation theorists considering
non-commutative rings. One of the broader impacts of the project will be to foster new
interaction between practitioners of these areas. If successful, this project will publicize
classical, difficult problems on free resolutions in commutative algebra to topologists,
whom we hope will be enticed to approach them with new techniques. Conversely, a
successful project would give further evidence to commutative algebraists of the power
of topological techniques. I plan to encourage specific interaction in two ways. First, by
organizing an AMS Special Session on higher homotopies in algebra and topology. And
second, by writing an expository set of notes covering curved objects, twisting cochains,
and some of the details of the applications I’ve listed above. In the existing literature in
the field, many details are left out and this can be a barrier to newcomers. Having an
explicit reference will help encourage people to take up these techniques.

Much of this project was motivated by the desire to compute examples. The functors
involved are all very concrete and potentially able to be implemented in Macaulay2.
Moreover, the process of finding higher homotopies will be implemented. This could be
very interesting, especially for Golod rings, as previously higher homotopies were only
computed for complete intersections. All code will be released to the public, and will
provide additional tools for people to explore this theory.

This project will also have an impact on undergraduate and graduate education. This
summer I supervised an undergraduate student in a reading course on Lie algebras. This
was a very rewarding experience, and if this project is funded it would allow me to continue
and expand this activity.
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