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BBS (Benson-B-Stevenson) Correspondence

@ commutative ring  f,..., - C Q

S = Q[Tl,..., TC] with |T,| =-2
A= /\Q(@le Qe,-) with |e,-] =1
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BBS (Benson-B-Stevenson) Correspondence

Q commutative ring  f1,...,f. C Q

S=Q[T,..., T ]with |T;|=-2 W=> T,
N = No(Pi_; Qej) with || =1
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BBS (Benson-B-Stevenson) Correspondence

Q commutative ring  fi,...,f. C Q

N=No(Pi_; Qei) with |e| =1  d(e) = f;
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BBS (Benson-B-Stevenson) Correspondence

Q commutative ring  fi,...,f. C Q

N=No(Pi_; Qei) with |e| =1  d(e) = f;
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BBS (Benson-B-Stevenson) Correspondence

Q commutative ring  fi,...,f. C Q

N=No(Pi_; Qei) with |e| =1  d(e) = f;

~

IR

Df

fe(Sw) = Di,(A)

_—

By



BBS (Benson-B-Stevenson) Correspondence

@ commutative ring  fi,...,fc C Q

A= /\Q(@le Qei) Wlth |ei’ =1 d(e;) — f;
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BBS (Benson-B-Stevenson) Correspondence

Q commutative ring  f1,...,f C Q

A= /\Q(@le Qei) Wlth |ei’ =1 d(e;) — f;

~

Dfgg(Sw) T = Diy(A)
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where Sy = (S, W) and A = (A,
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f
Dcdg

(S) is the derived category of curved dg-Sy, modules.

Objects: (P, d) where P graded S-module, d : P — P degree -1
derivation with d? = W.

Morphisms: when P, P’ are graded free S-modules, a morphism is
a homotopy class of a morphism of S-modules that commutes with
the given derivations. Every object is isomorphic to an object with

underlying free module; thus Didg(S) = [gr-mf(S, W)].
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Q =2/3Zlx,y,z] f=(x3y3 2%
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Example of object of [gr-mf(S, W)]

Q =2/3Zlx,y,z] f=(x3y3 2%
S: Q[Tl,Tl,T3] A:KOS(f)
W = X3T1 +y3T2 +Z3T3.

p= sosers saresor o= (§ %)

where
do

pev Podd (1)

Podd di pev ( 1)



T
S@®S(2)f — 2o 5(2)* @ S(4)

S1)P @ S(3)° 2~ 5(1) @ S(3)7



S@®S(2)f — 2o 5(2)* @ S(4)

S @ S(3)® —2~ (1) @ S(3)7

=

Tay® + Tayz. T
'l“'/ my:j LS 0 Tay’
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c-parameter 1st order deformation; corresponds to element
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Proof of equivalence?

Dqg(Sw) D (A)

_

~
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By

Heuristic reason:
AN~ A

c-parameter 1st order deformation; corresponds to element
(fi,...,f) € (HH*(N))“.
but HH?(S) =2 HH?(N); corresponding deformation is
S~ Sw

Deformation theoretic proof seems out of reach; instead use Koszul

duality to check equivalence.
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Proof using Koszul duality

A = (A, d) Koszul complex on (fi,..., f)
Cw = (Q[X1, ..., Xc], W) curved graded coalgebra dual to Sy

7:C—= A

degree —1 Q-linear map defined by 7(X;) = e; and zero elsewhere.
T is a twisting cochain and so gives an adjoint pair

AR —
D(Cw) " D™(A)

-

CRT—



Main Theorem of Koszul Duality (-)

Let A be an A-algebra, Cyy a curved dg-coalgebra and
7: C — A a twisting cochain. The adjoint above is an equivalence
if and only if the counit

ARTCR™TA— A

is a quasi-isomorphism.
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Main Theorem of Koszul Duality (-)

Let A be an A-algebra, Cyy a curved dg-coalgebra and
7: C — A a twisting cochain. The adjoint above is an equivalence
if and only if the counit

ARTCR®TA—A
is a quasi-isomorphism.
Such a twisting cochain is called acyclic.

In the case A is the Koszul complex, C divided powers coalgebra
the map
ARTCRTA—=A

was shown to be a quasi-isomorphism by Avramov and Buchweitz
in 2000.
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Precedents for this type of Koszul duality

m E. Brown, H. Cartan, Moore, ... (prehistory)

m Keller (idea to use twisting cochains for Koszul duality)

m Lefevre-Hasegawa (details for coaugmented dg (co)algebras
over field)

m Positselski (can relax assumption of (co)augmentation on one
side by adding curvature on other)

This version generalizes Positselski to A-algebras (messy, but
mostly formal) and to commutative base ring (real work)
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1) A arbitrary A-algebra, can form curved dg-coalgebra Bar A
BarA— A

is an acyclic twisting cochain

2) (Q,n, k) local ring, R = Q/I quotient
A = R minimal Q-free resolution

A has an A-algebra structure (-)
(but not necessarily dg-algebra (Avramov))

if @ — R Golod, Bar A is minimal, hence only acyclic twisting
cochain; proves several new results about Golod maps and
consolidates existing theory

For non-Golod rings, deform Koszul dual of algebra underlying
minimal model?



3) g restricted Lie algebra with k-basis (xi,...,x,); set
yi = xl-[p] —xP e U(g)

O(g) := Sym(a™) = kly1, ..., yal C U(g)

U is a finitely generated free O module.



3) g restricted Lie algebra with k-basis (x1,...,x,); set
yi =xPl = xP € U(g)
O(g) := Symi () = kly1, -, yal € U(g)

U is a finitely generated free O module.

O(g)
(y17 L ,)/n)
restricted enveloping algebra; set A = Kos(yi,...,yn) so

u(g) = U(g) ®o

U®o A= u(g)

is quasi-isomorphism.
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We know A has Koszul dual Cyy; if U has Koszul dual D (over
O!), then Cyy ® D is Koszul dual of u(g) ~ U ® A.
For example, g = ga, so U = k[x] and O = k[xP]. What is Koszul

dual of k[x] over k[xP]?

More generally, are trying to study the family of algebras

O(g)

Ay =U®o (1 = x01)s -+, Yo — x(vn))

for character y : gV — k.
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(Back to) complete intersection rings

f="f, .. CQ A=Kos(f,...,f)

Assume H;(A) =0 for i >0,s0 A= Q/(f)=:Ris a
quasi-isomorphism.
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(Back to) complete intersection rings

f="f, .. CQ A=Kos(f,...,f)

Assume H;(A) =0 for i >0,s0 A= Q/(f)=:Ris a
quasi-isomorphism.

Eg. Q=k[z1,...,z] and f; = Z.

By

Dzdg(SW)

14
~ 1R
1%

Zh

D'(R)

If M is an R-module, what are representatives in these categories?




Fix @ and R free resolutions:
G=>M R®QF=>M

with Gﬁ, Ft graded free @-modules.



Fix @ and R free resolutions:
G=>M R®QF=>M
with Gﬁ, Ft graded free @-modules.

Proposition (Eisenbud, 1980)

There exists a system of higher homotopies {o,|a € N} on G,
with o, : G — G a degree 2|a| — 1 endomorphism. These
determine a differential d on S ® G such that

(S® G, d) € Dig,(Sw).



___________________________________________
Example of higher homotopies

Q=12/3Zx,y,z] f=(x3y3 2%
S=Q[T1,Ti, T3] W=x*Ti+y*T,+2°Ts.



___________________________________________
Example of higher homotopies

Q=12/3Zx,y,z] f=(x3y3 2%
S=Q[T1,Ti, T3] W=x*Ti+y*T,+2°Ts.

M= Q/(xz+yz,y* + 22,52,y 2°)
C=0-Q@® == QR*=- Q=0

P=5S®G=>(S®S(2)° @ (S1)* @ S3)?)



S@®S5(2)f — 2o 5(2)* @ S(4)

S(1)* @ S(3)° %~ 5(1) @ S(3)°

~Tz—Tyz 2 0 yz
~Tyy 0 0
Tsa + T3z —Ty —yz
do=| -2 Ty 0 y -z
-2 0 Tya® + Toyz — Tyz? ~Tyaz - Thyz — Tyz* ~Tay?
-2 Tory — Tyrz + Toyz — T3z Tuy: Toy? + Tsyz ~Ta? - Tyxz + Tyaz + Ty2? +Tayz  Tsay + Tayz
-2, Ty + Tayz + Toz* ~Tyxz — Toyz — Tz 0 Toy? — Tp2?  ~Tia? Tz

0 z? y?+ 22 yz?

0 Toy Tz -Tyz 0 0

0 0 ~Tyr —Tyz —Toy —Tyz 0
=10 —Thx —Trz 0 ~Tay —Toz —Ty2? — Tyzz

-2 0 ~Toy v —Tyz —Toy?

-2 Tyx+ Tyz 0 Tiw 0

-2, Tyx Tyx 0 Tyaz + Toyz + Ty2?
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matrix factorization = G+ (higher) homotopies

constant terms = differential of G; e.g.

Ty —Tyz —y? -2 0 0 2 22— 2% vz
~Tay z? —az+ 22 0 —2? 0 0
Tsx + Taz 0 Pt —yz —rz—2* —a? —zy —yz
do= Ty 0 0 -2 y 0 —z
0 Tsa? + Toyz — Ts2? ~Ta? + Tyaz — Tyaz + Ty2? 0 ~Tyxz — Tyyz — Ts2* ~Toxy + Tayz —Toy?
~Tix — Tz Thay — Tyaz + Toyz — Tyz? ~Tyy? + Ty Tayz Toy® + Tayz ~TNa® — Tyxz + Tyaez + T32?  Taa? + Tayz Taoy + Tayz
0 ~Tsay — Toxz — Tyyz — Th2? Tyzy + Tyyz + Tp2? ~Tyxz — Toyz — T3z 0 Toy® - Tp2>  ~Tia? - Tyxz



matrix factorization = G+ (higher) homotopies

constant terms = differential of G; e.g.

~Tiz— Tz -y -2 0 ? zz — 2% yz
~Thy r? 0 0 0
Tsr + Tsz 0 —yz —a? —zy —yz
do = Ty 0 T —z ¥ 0 -z
0 Taz? + Toyz — Tsz? ~Tyz? + Tiaz — Tawz + Tsz? 0 ~Tyay + Tayz —Toy?
~Tix—Tfz Thay — Ty Toyz — Tyz* Toy? + Tayz ~Ta? Tsa? + Toyz  Tary + Tayz
0 ~Tyay — Toxz — Tayz — Tp2? ~Tyxz — Toyz — T32* Toy® —Tpz>  —Ta? - Tyzz




matrix factorization = G+ (higher) homotopies

constant terms = differential of G; e.g.

0 0 # z—22 z
—22 0 0

~Tiz —Tzz -2
~Toy r? —zz+2% 0
Ty + Tsz 0 ¥+ —yz —zz—2? —a? —ry—yz
do = T 0 0 Tz y 0 —z
0 Tya? + Tayz — Ts2? ~Tiz® + Tyaz — Tawz + Tye? 0 ~Tyzz - Thyz = Tyz? ~Tyay + Toyz ~Tyy?
~T3y? + Thaz — Toyz Toy? + Tayz ~Ta? - Tywz + Tsaz + T322 Tasa? +Tayz  Tawy + Tayz
0 Toy® —Tpz>  —Ta? - Tyzz

~Txz — Toyz — T2*

Tz —Tjz Toay - Taaz + Toyz — Tsz?
0 Tyzy + Tayz + Tp2?

~Tyay — Toxz — Tayz — Tp2?

G
S(2)° 2= 5(2) 90 G 2%, 5(2) w0 G = S5(2)*
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linear terms = homotopies for multiplication by f;; e.g.



matrix factorization = G+ (higher) homotopies

linear terms = homotopies for multiplication by f;; e.g.

~Tiz - Tz — -2 0 0 2 zz- 2 vz
~Tay a? —az+22 0 - 0 0
Tz + Tzz 0 Y+ —yz —xz— 2 —a? —ry—yz
do= Ty 0 0 -z y 0 -z
0 Tya? + Toyz — Ts2? —Tya? + Tyaz — Tsaz + Ty2? 0 —Tizz — Toyz — Ts2? —Tyay + Thyz —Toy?
yz — Tsz? ~T3y? + Thyaz — Tyyz Toy? + Tayz ~Tya® — Tyaz + Taaz + Tyz®  Taa® + Toyz  Tsay + Tayz
—Tyzy — Toxz — Tyyz — Tr2® Tyzy + Tyyz + Tp2? —Tyzz — Tyyz — Ts2? 0 Ty — Tpz?  ~Ta? - Tz,



matrix factorization = G+ (higher) homotopies

linear terms = homotopies for multiplication by f;; e.g.

~Tiz —Tzz -2 0 0 T2 - 22 e
~Toy z? —rz+ 2% 0 0 0
Ty +Tsz 0 ¥+ 2? —yz —az— 22 —a? —ay - yz
do = T 0 0 -2 y 0 —z
0 Taz? + Toyz — Tsz? ~Ty7? + Tiaz — Tawz + Tyz? 0 ~Tyzz — Tayz — Ts2? —~Tyay + Tayz ~Toy?
~Tix — Tz  Thay — Tyaz + Toyz — Tyz® ~T3y? + Thaz — Toyz Toy? + Tayz ~Ta® - Tyzz + Tsaz + T322 Taa? +Tayz  Tawy + Tayz
~Tyay — Toxz — Tayz — Tp2? Tyzy + Tayz + Tp2? ~Tyxz — Toyz — T32* 0 Toy® —Tpz>  —Tia? - Tyzz



matrix factorization = G+ (higher) homotopies

linear terms = homotopies for multiplication by f;; e.g.

~-Tyz - Tyz —y? -2 0 0 22 zz - 2 yz
~Thy a? —rz+2% 0 —2? 0 0
Tyx + Ty 0 Y+ —yz —rz— 2% —z? —zy —yz
o= 7 0 0 -z y 0 —z
0 Tya? + Tayz — Ts2? —Tya? + Tyaz — Tywz + Tyz? 0 ~Tyrz — Thyz — Ty2* ~Tyzy + Tayz ~Tay?
~Tix—Tfz Ty - Tswz + Tayz — Ts2? —Tyy? + Tyzz — Toyz Toy? + Tyyz —Tya? - Tywz + oz + T32® Tya® + Toyz Tyay + Toyz
0 ~Tywy — Tywz — Tyyz — Trz? Tizy + Tyyz + To2? —Tywz - Toyz — Ty? 0 Ty -T2 ~Tia? - Tiaz
—X 0 —z

0 —y 0
+ 1> + T3 X4z

0 0 0
:ZTi®0i:5®Go—>5(1)®G1

U,‘ZGO—>G1



matrix factorization = G+ (higher) homotopies

quadratic term = higher homotopy



matrix factorization = G+ (higher) homotopies

quadratic term = higher homotopy

~Tyz - Tyz —y? -2 0 0 22 zz - 22 yz
~Tay 22 —rz+2% 0 —2? 0 0
Tyx + Tsz 0 Y+ 22 —yz —rz— 2% —z? —zy —yz
do = T 0 0 z—z y 0 —z
0 Tya® + Tayz — Tyz? —Tya? + Tyaz — Tyoz + Tyz? 0 —Tywz — Toyz — Tyz? ~Tyay + Toyz ~Toy?
~Tjx—T§z Thay—Tywz + Toyz — Tyz? —Tyy? + Tyxz — Toyz Toy? + Tyyz —Tya? = Tyaz + Tz + T32® Toa® +Toyz  Tyay + Tyyz
—Tyay — Tywz — Tyyz — To2® Tizy + Tyyz + Thz* —Tywz — Toyz — Tyz? 0 Ty? -T2  ~Ta? - Tiez,



matrix factorization = G+ (higher) homotopies

quadratic term = higher homotopy

~Tyz - Tsz —y? -2 0 0 22 2 = 22 yz
~Thy a? —rz+2% 0 —2? 0 0
Ty + Tyz 0 y?+ 22 —yz —rz— 2% —z? —xy —yz
do = T 0 0 z-z y 0 —z
0 Tya? + Tyyz — Ts2? —Tya? + Tyaz — Tywz + Tyz? 0 ~Tyaz — Thyz — Tyz* ~Tyay + Toyz ~Tay?
~Tr—T§z  Tyry - Tywz + Tayz — Ty2? —Tyy? + Tyzz — Toyz Toy® + Tyyz —Tya? = Tywz+ Tyoz + Tyz® Tya® + Toyz  Tywy + Toyz
~Tywy — Tywz — Tyyz — Trz? Tiay + Tyyz + Toz? Tz — Toyz — Tyz? 0 Ty -T2 ~Tia? - Tiaz



matrix factorization = G+ (higher) homotopies

quadratic term = higher homotopy

~Tya —Tsz —y? -2 0 0 Tz = 2° yz
~Tay a2 —zz+2° 0 0 0
Ty + Tsz 0 y?+ 2 —yz —a? —zy—yz
do = T 0 0 z—z 0 —z
0 Tya? + Tyyz — Ts2? ~Tya? + Tyaz — Tywz + Tyz? 0 ~Tyaz — Tyyz — Tyz? ~Tyay + Toyz ~Toy?
—Tix—T3:  Thwy — Tyez + Toyz — Ty2? —Tyy? + Tz — Toyz Toy® + Tyyz —Tya? — Tyzz+ Tyaz + T32® Tsa? +Toyz Thoy + Tayz
0 —Tyry — Tywz — Tyyz — T2? Tyzy + Tyyz + Tp2® —Tywz — Toyz — Tyz? 0 Tyy? — T2 —Tha? - Tyaz

0
T32 —XxX—z | = T32®O'(070’2) : 5@60—)5(4)®G3.
0



matrix factorization = G+ (higher) homotopies

quadratic term = higher homotopy

~Tiz —Tzz -2 0 0 22 72— 22 e
~Tay 2? —rz+ 2% 0 -2 0 0
Tsx + Tsz 0 ¥+t —yz —rz—2? —z? —zy—yz
0 = Ty 0 0 -2 y 0 -z
0 Taz? + Toyz — Tsz? —Ty7? + Tiaz — Tawz + Tyz? 0 —~Tyzz — Tayz — Ts2? —Tyay + Tayz ~Toy?
Tir —Tiz  Toay — Tywz + Tayz — Ty2? ~T3y? + Thaz — Toyz Toy? + Tayz ~Ta® - Tyzz + Tsaz + T322 Taa? +Tayz  Tawy + Tayz
0 ~Tyay — Toxz — Tayz — Tp2? Tyzy + Tayz + Tp2? ~Tyxz — Toyz — T2 0 Toy® —Tpz>  —Ta? - Tyzz

0

T3 | x—z]|=T2 ® 0(0,02) S © Go — 5(4) © Gs.
0

0(0,0,2) only nonzero o with |J] >2



R-free resolution from higher homotopies

S$*® G® R = RM an R-free resolution; differentials given by
higher homotopies.



R-free resolution from higher homotopies

S$*® G® R = RM an R-free resolution; differentials given by
higher homotopies.

(52)* ® GO . (52)* ® Gl (54)* ® GO

0(—G0<—G1<— G2 G3 <~ (52)*®G2

with — ® R applied to above.



Explanation for higher homotopies: we can transfer the R-module
structure on M to an A,, A-module structure on G — M.



Explanation for higher homotopies: we can transfer the R-module
structure on M to an A,, A-module structure on G — M.

This is encoded in an extended Bar A-comodule structure on
Bar A® G. But by Koszul duality,

BarA~ Cy

is a homotopy equivalence, and so BarA® G ~ Cyy ® G. Now
dualize C to S.



Proposition (-, Eisenbud, Schreyer)

There exists a system of higher operators
{ti 1 < i <...<ij<c}, with t"5: F — F a degree j
endomorphism. These determine a derivation d on A® F such

that (A® F,d) is a dg A-module quasi-isomorphic to M.




Proposition (-, Eisenbud, Schreyer)

There exists a system of higher operators
{ti 1 < i <...<ij<c}, with t"5: F — F a degree j
endomorphism. These determine a derivation d on A® F such

that (A® F,d) is a dg A-module quasi-isomorphic to M.

These are dual to the higher homotopies, via the generalized BGG
correspondence.
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Representatives of M

~1|IR|=

S® G €Dy, (Sw) Dig(A) 2 AR F

IR
1R

M € D(R)




-
Representatives of M

Di,(A) 5 A®F

~1|IR|=

S®Ge Df:dg(SW)

IR
1R

M € D(R)

Want to use this BGG to study numerical invariants of M.




Assume (Q,n, k) is local and the resolutions G, R ® F are minimal.
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Assume (Q,n, k) is local and the resolutions G, R ® F are minimal.

Guiding questions: what are the shapes and sizes of G and F?
How are they related? Set

BY(i) = dimk G; @ k = dimy Tor®(M, k)
BR(i) = dimy F; @ k = dimy Ext%(M, k)
PR(t) =D Ba(n)t"

n>0

PR(t) = Br(n)t"

n>0
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Mehk=Ae
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Apply — ®¢ k to BGG diagram:

_ _ R .
S®GeDi,(S)___= "Di(N>3A®F

We have

RHomg(M, k) 2 5 ® G = RHomjg(k, M @ k) (by BGG)

I\/I®'(‘\)k%/_\<£<>l-= since A® F = oM



Apply — ®¢ k to BGG diagram:

We have

RHomg(M, k) = 5 G = RHomj(k, M @4 k) (by BGG)

M®b k= A® F = koL RHomg(M, k) (by BGG)
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Eilenberg-Moore spectral sequence

For dg-modules M, N over dg-algebra B, have Eilenberg-Moore
spectral sequence:

E? = Extjy gy (H(M), H(N)) = H(RHomg(M, N))

and analogous for Tor.
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Applying to:

R Homj(k, M @% k) = S ® G =2 RHomg(M, k)

k ®% RHomg(M, k) =A@ F = M ®} k

gives

E? = Ext}(k, Tor®(M, k)) = Exti(M, k)

E» = Tor’ (Ext(M, k), k) = TorQ(M, k)



These were previously known by Avramov-Buchweitz, and
Avramov-Gasharov-Peeva, respectively. The second was inspired by
spectral sequence of Benson-Carlson (TAMS '94).



These were previously known by Avramov-Buchweitz, and
Avramov-Gasharov-Peeva, respectively. The second was inspired by
spectral sequence of Benson-Carlson (TAMS '94).

In particular, gives (from first page) well known inequalities:
PR (t)
PR(t) < —M
M( ) = (1 _ tz)c

PE(t) < PR()(A+ 1)

with equality if and only if the corresponding spectral sequences
collapse on the first page if and only if higher homotopies (resp.
operators) are minimal.



Putting these together:

Po(t)

PR() < PR+ 0)° <

so we see that both cannot collapse at once.



Putting these together:

Po(t)

PR() < PR+ 0)° <

so we see that both cannot collapse at once. What's happening?
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———
Analogy with equivariant cohomology

X is a smooth manifold, T torus acting smoothly on X

Goresky, Kottwitz and MacPherson (GKM) show that there is a
commutative diagram

D (S) Dge (M)

~ IR

1%
1%

S = Hi(pt) = R[Ty,..., T] A= H,(T)
DY (X) equivariant derived category of X.




So we have ok
D% (X) = D'(R) ~=%% Dy (pt)



So we have ook
D%(X) = Df(R) —== D%(pt)

Considering numerical invariants of M as above is analogous to
pushing forward an object of the equivariant derived category of X
to that of a point; roughly this results in a T-vector bundle on a
point, i.e. a vector space with T-action.



So we have ook
D%(X) = Df(R) —== D%(pt)

Considering numerical invariants of M as above is analogous to
pushing forward an object of the equivariant derived category of X
to that of a point; roughly this results in a T-vector bundle on a
point, i.e. a vector space with T-action. In the inequalities,

Q
PS(t) < PR(E)(1+ 1)° < %

equality in first corresponds to free action, equality in second is
trivial action.



This is about spectral sequences collapsing on first page.
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This is about spectral sequences collapsing on first page. Adapted

GKM arguments, and beautiful lemma of Deligne, characterize
second page collapsing: iff object is formal.

Use this to compute invariants of Exts(M, k) or TorR(M, k) using
BGG for graded modules? This is related to, and motivated by,
current work of Eisenbud, Peeva, and Schreyer.
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Future Directions

Localization theorem - ring structure on equivariant cohomology
determined by fixed points and “extra data”, e.g. moment graph

Fixed point related to free summands of S in Extjz(M, k)

Can we use this intuition for any Koszul duality situation?



