
Characterization of sub-Gaussian heat kernel
estimates on strongly recurrent graphs

Martin T. Barlow ∗

Department of Mathematics,
University of British Columbia,
Vancouver, V6T 1Z2, Canada

barlow@math.ubc.ca

Thierry Coulhon †
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Abstract

Sub-Gaussian estimates for random walks are typical of fractal graphs. We characterize
them in the strongly recurrent case, in terms of resistance estimates only, without assuming
elliptic Harnack inequalities.
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1 Introduction

1.1 Statement of the main result

Let Γ be an infinite locally finite connected graph. That is, Γ is a set whose elements are
called vertices; some of the vertices are connected by an edge, in which case one says that they
are neighbours. If x, y ∈ Γ are neighbours, one writes x ∼ y. That Γ is locally finite means
that every vertex has a finite number of neighbours. That Γ is connected means that for every
pair x, y of vertices in Γ, there is at least one path in Γ joining x and y, that is a sequence
x0 = x, x1, ..., x` = y such that xi ∼ xi+1 for i = 0, ..., `− 1. The length of such a path is `. The
smallest possible length of a path joining x, y ∈ Γ is denoted by d(x, y), which defines a metric
on Γ.

Assume that the graph Γ is endowed with a weight (or conductance) µxy, that is a symmetric
nonnegative function on Γ× Γ such that µxy > 0 if and only if x ∼ y. We call the pair (Γ, µ) a
weighted graph. Such an object may also be viewed as an electric network, in which there is a
wire of resistance µ−1

xy between each pair x, y with x ∼ y.
Now, define µx =

∑
y∈Γ µxy for each x ∈ Γ. Set µ(A) =

∑
x∈A µx for each A ⊂ Γ; µ is then

a measure on Γ, and (Γ, d, µ) is a metric measure space.
Denote by B(x, r) the ball in Γ of radius r ≥ 0 centered at x ∈ Γ with respect to the metric

d and by V (x, r) its measure, i.e.

B(x, r) := {y ∈ Γ; d(x, y) ≤ r}, V (x, r) := µ(B(x, r)).

We will consider graphs satisfying the volume doubling condition, that is we shall assume
that there exists C > 0 such that

V (x, 2r) ≤ CV (x, r), x ∈ Γ, r ≥ 0. (VD)

It follows easily from (VD) that there exist C, α > 0 such that for all x, y ∈ Γ, r ≥ s ≥ 0,

V (x, r) ≤ C
(r

s

)α

V (x, s), (1.1)

and consequently, for all x, y ∈ Γ, r ≥ s ≥ 0,

V (x, r) ≤ C

(
d(x, y) + r

s

)α

V (y, s). (1.2)
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We shall say that (Γ, µ) satisfies the condition (V G(α)) if (1.1) holds, and we shall say that
(Γ, µ) satisfies the stronger condition (V G(α−)) if (V G(γ)) holds for some γ ∈ (0, α). In
particular (V G(α)) holds if (Γ, µ) has polynomial volume growth of exponent α:

V (x, r) ' rα, r > 0, x ∈ Γ,

and (V G(α−)) holds if (Γ, µ) has polynomial growth of exponent γ with 0 < γ < α. (Through-
out this article, if f and g depend on a variable ζ ranging in a set I, f ' g means that there
exists C > 0 such that C−1f(ζ) ≤ g(ζ) ≤ C f(ζ) for all ζ ∈ I.)

For each x ∼ y, define
p(x, y) = µxy/µx.

In this paper, we will consider the discrete time Markov chain {Xn, n ≥ 0, Px, x ∈ Γ}, with
transition probabilities p(x, y). The chain X is reversible with respect to µ since

p(x, y)µx = µxy = µyx = p(y, x)µy.

The associated Markov operator P , given by

Pf(x) =
∑
y∈Γ

p(x, y)f(y),

is self-adjoint on `2(Γ, µ).
For n ∈ Z+ := {0, 1, · · ·}, let pn denote the n-th convolution power of p, that is

p0 (x, y) = δx,y :=

{
0, x 6= y,
1, x = y,

and
pn(x, y) =

∑
z∈Γ

pn−1(x, z)p(z, y), n ≥ 1.

Alternatively, pn(x, y) is the transition function of the random walk Xn, i.e.

pn(x, y) = Px(Xn = y),

or the kernel of the operator P n with respect to the counting measure. Define the heat kernel,
that is the kernel of P n with respect to µ, or the transition density of Xn, by

hn(x, y) :=
pn(x, y)

µy

.

Clearly, hn is symmetric, that is hn(x, y) = hn(y, x). As a consequence of the semigroup law
Pm+n = PmP n, the heat kernel satisfies the Chapman-Kolmogorov equation

hn+m(x, y) =
∑
z∈Γ

hn(x, z)hm(z, y)µz, (1.3)

for all x, y ∈ Γ, n, m ∈ Z+.
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Our aim is to give a geometric necessary and sufficient condition for sub-Gaussian heat
kernel upper and lower estimates to hold:

hn(x, y) ≤ C

V (x, n1/β)
exp

(
−
(

d(x, y)β

Cn

) 1
β−1

)
, for all x, y ∈ Γ, n ∈ N (UHK(β))

and

hn(x, y) + hn+1(x, y) ≥ c

V (x, n1/β)
exp

(
−
(

d(x, y)β

cn

) 1
β−1

)
, (LHK(β))

for all x, y ∈ Γ, n ∈ N such that n ≥ d(x, y). The reason (LHK(β)) uses hn(x, y) + hn+1(x, y)
instead of hn(x, y) is that if Γ is bipartite, then h2n+1(x, x) = 0, and so no non-trivial lower
bound can hold just for hn(x, y).

The conjunction of (UHK(β)) and (LHK(β)) will be denoted by (HK(β)).
A priori β > 1, but in fact, the estimates (HK(β)) can hold only if β ≥ 2. One way to see

this is to observe that the upper bound hn(x, x) ≤ CV (x, n1/β)−1 which follows from (UHK(β))
is compatible with the lower bound from [48], hn(x, x) ≥ cV (x, n1/2 log n)−1, which always holds
under (V D), only if β ≥ 2. Further, if (Γ, µ) has polynomial volume growth of exponent α, the
estimates (HK(β)) can hold only if β ≤ α + 1. This can be seen in several ways: for instance,
the lower bound hn(x, x) ≥ c n−α/β, which follows from (LHK(β)), must be compatible with
the upper bound hn(x, x) ≤ C n−α/(α+1) from [12]. Conversely, it was proved in [4] that for
every couple α, β such that 2 ≤ β ≤ α + 1, there exists a graph (Γ, µ) with polynomial volume
growth of exponent α such that (HK(β)) holds.

The graphs associated with many regular fractals, such as the Sierpinski gaskets, carpets,
and the Vicsek sets, do satisfy (HK(β)). However, the existing proofs all use some kind of
Harnack inequality. While this is sometimes very easy to prove (so easy it is often not stated
explicitly) for some families of finitely ramified sets, for infinitely ramified sets such as Sierpinski
carpets the argument is considerably harder. See [37], [2], [3], [4], [9], [10], and the references
therein.

In this paper, we will characterize the estimates (HK(β)) in the so-called strongly recurrent
case, that is the case where the volume growth of the graph (Γ, µ) is limited by the exponent β,
which governs the scaling between time and space, in the sense that (V G(β−)) holds. Note that
the Sierpinski gaskets, the Vicsek graphs and the two-dimensional Sierpinski carpet are strongly
recurrent, and that our method probably gives the quickest way so far to check (HK(β)) (see
Section 5 below for the treatment of some examples).

In the case β = 2, it was proved in [22] that (HK(2)) is equivalent to (VD) plus the standard
Poincaré inequality (PI(2)). For β > 2 the situation is more complicated. Characterizations
of (HK(β)) have been given in [29], [52], [53], [30], but these all involve the elliptic Harnack
inequality (EHI) (see Section 1.2 for a definition), whose geometric characterization remains
an open question. In particular, it is not known whether or not (EHI) is invariant under rough
isometries (see Section 1.3). In [11], a characterization of (HK(β)) was given in terms of a
β-Poincaré inequality (PI(β)) (see Section 1.2), and a condition, denoted (CS(β)), requiring
the existence of suitable families of cut-off functions; these two conditions are known to be
invariant under rough isometry (see [34]). In this paper we give in the strongly recurrent case
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a more transparent and geometric characterization, in terms of electrical resistance, which is
also clearly invariant under rough isometry, as we shall explain in Section 1.3.

For an introduction to the connection between random walks and electrical networks see
[24]. For f ∈ RΓ, define

E(f, f) =
1

2

∑
x,y∈Γ
x∼y

(f(x)− f(y))2µxy, (1.4)

and for f, g ∈ RΓ such that E(f, f), E(g, g) < +∞ define

E(f, g) =
1

2

∑
x,y∈Γ
x∼y

(f(x)− f(y))(g(x)− g(y))µxy. (1.5)

A straightforward computation shows that, for f, g ∈ `2(Γ, µ),

E(f, g) =< (I − P )f, g >, (1.6)

where < ., . > denotes the scalar product in `2(Γ, µ). We abbreviate E(f, f) as E(f). In terms
of electrical networks, we can regard E(f) as the energy dissipation in the network Γ associated
with the potential f .

We shall use the fact that E is a Dirichlet form, and in particular the fact, which is easily
checked, that for f ∈ RΓ and a ∈ R,

E((f − a)+) ≤ E(f). (1.7)

Let A, B be subsets of Γ. We define the effective resistance between A and B as follows.

R(A, B)−1 = inf{E(f); f ∈ RΓ, f |A = 1, f |B = 0}, (1.8)

where we take inf ∅ = +∞. We write R(x, y) for R({x}, {y}). Taking f = 1A or f = 1− 1B in
(1.8) we see that R(A, B) > 0 if A ∩ B = ∅ and one of A, B is finite. It is easy to prove (see
Lemma 2.1 below) that the infimum in (1.8) is always attained, and that R(A, B) < ∞ for any
A, B ⊂ Γ. Note that if A ⊂ A′ and B ⊂ B′ then R(A, B) ≥ R(A′, B′).

In fact, R(x, y) defines a metric on Γ (this is non-trivial, see [3], Proposition 4.25, or [40]);
note that in [14], section 6, the metric considered is δ2(x, y) =

√
R(x, y).

The following easy lemma will play a key role in this paper.

Lemma 1.1 For all f ∈ RΓ and x, y ∈ Γ,

|f(x)− f(y)|2 ≤ R(x, y)E(f). (1.9)

Furthermore, for each x, y ∈ Γ, there exists f ∈ RΓ such that equality holds in (1.9).

The inequality (1.9) is an immediate consequence of the definition of R. For the second
assertion, see Lemma 2.1 below.

Definition 1.2 Following [23], we say that a graph is strongly recurrent if there exists p1 > 0
such that, writing TA = min{n ≥ 0 : Xn ∈ A}, Ty = T{y}, τ(x, r) = TB(x,r)c,

Px(Ty < τ(x, 2r)) ≥ p1, for all x ∈ Γ, r ≥ 1, y ∈ B(x, r). (1.10)
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This property is called ‘very strongly recurrent’ in [4], but in [53] ‘strongly recurrent’ is used
for the property that there exists c > 0, M > 1 such that

R(x, B(x, Mr)c) ≥ (1 + c)R(x, B(x, r)c) for all x ∈ Γ, r ≥ 1. (1.11)

It is easy to see that either of (1.10) or (1.11) implies that Γ is recurrent.

We now introduce the following condition:

p(x, y) ≥ p0 > 0 for all x, y ∈ Γ, x ∼ y. (p0)

For x, y ∈ Γ, define V (x, y) = V (x, d(x, y)). If (V D) holds then by (1.2) there exists C such
that V (x, y) ≤ CV (y, x) for all x, y ∈ Γ.

Our main theorem is the following:

Theorem 1.3 Let (Γ, µ) be a weighted graph satisfying condition (p0). Assume (V G(β−)) for
some β ≥ 2. Then (HK(β)) holds if and only if

R(x, y) ' dβ(x, y)

V (x, y)
, x, y ∈ Γ. (R(β))

In this case (Γ, µ) satisfies both (1.10) and (1.11).

The condition (R(β)) can be decomposed into a lower estimate:

there exists c > 0 such that R(x, y) ≥ c
dβ(x, y)

V (x, y)
for all x, y ∈ Γ, (RL(β)),

and an upper estimate:

there exists C > 0 such that R(x, y) ≤ C
dβ(x, y)

V (x, y)
for all x, y ∈ Γ. (RU(β))

Note that the conditions (V G(β)), (V G(β−)), (PI(β)) and (RU(β)) all become weaker as
β increases, while (RL(β)) becomes stronger.

In Section 2.2, we will see that, under some additional assumptions, (PI(β)) and (RU(β))
are equivalent. This helps to give a geometric understanding of (R(β)). Indeed, (PI(β)) (and
therefore (RU(β))) is a quantitative connectivity property: balls of all radii are sufficiently
connected, to an extent governed by β. Conversely, one can see (RL(β)) as a property saying
that there are no more connections than the exponent β allows. In other words (R(β)) contains
at the same time a β-Poincaré inequality and the matching anti-Poincaré inequality.

Here is a plan of this paper. In Section 2, we will show that the resistance estimate (RL(β))
can be strengthened and discuss the equivalence of (PI(β)) and (RU(β)) under some additional
conditions. In Section 3, we shall show that for any β ≥ 2, (V G(β−)) (and, in fact, a weaker
volume growth condition, see (2.1) below) and (R(β)) suffice for (HK(β)) to hold. The first
step, in Section 3.1, is to observe that (RU(β)) together with (V G(β)) is enough for on-diagonal
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upper estimates. In Section 3.2, we estimate the exit time of the random walk from a ball in
terms of its radius. One can then conclude that (HK(β)) holds by using the results in [30],
but we will give a shorter proof by taking advantage of our strong recurrence assumption. In
Section 4, we shall show that, together with (V G(β−)), (HK(β)) implies (R(β)). This will use
the implication from (PI(β)) to (RU(β)) proved in Section 2.2. In Section 5, we give examples.

We note that, applying the technique in this paper, one of the authors obtained the measure
metric space version of our results using resistance forms (see [44]).

Throughout the paper, we will use c, C with or without subscripts, to denote strictly positive
constants whose values are not important, and which may change from line to line.

In the remainder of this section we give the comments on Harnack inequalities, and invari-
ance under rough isometry that we already announced.

1.2 Harnack and Poincaré inequalities

Let L = P − I. We say that u : B(x, r) → R is harmonic in B = B(x, r) if u is defined on
B = {y : y ∼ x, x ∈ B}, and Lu(x) = 0, x ∈ B.

We say that (Γ, µ) satisfies the elliptic Harnack inequality (with constant C) if for all
x ∈ Γ, r ≥ 0, and for any non-negative harmonic function u in B(x, 2r), the following holds

max
y∈B(x,r)

u(y) ≤ C min
y∈B(x,r)

u(y). (EHI)

The statement of the parabolic Harnack inequality is a little more complicated, and depends
on the index β. We say (PHI(β)) holds if whenever u(n, x) ≥ 0 is defined on [0, 4N ]×B̄(y, 2R)
and satisfies

u(n + 1, x)− u(n, x) = Lu(n, x), ∀(n, x) ∈ [0, 4N ]×B(y, 2R), (1.12)

then
max

N≤n≤2N
x∈B(y,R)

u(n, x) ≤ C min
3N≤n≤4N
x∈B(y,R)

(u(n, x) + u(n + 1, x)), (1.13)

when N ≥ 2R and N ' Rβ. Clearly, (PHI(β)) implies (EHI). It is known that (PHI(β)) is
equivalent to (HK(β)) – see Theorem 3.1 in [30]; the original proof for the case of β = 2 goes
back to [45] in a continuous setting, see [22] for an adaptation to the graph case.

For B ⊂ Γ set

EB(f, f) =
1

2

∑
x,y∈B
x∼y

(f(x)− f(y))2µxy, (1.14)

We say that (Γ, µ) satisfies a scaled Poincaré inequality of order β if there exist C > 0, C ′ ≥ 1
such that for every f ∈ RΓ and every ball B := B(x0, r), x0 ∈ Γ, r ≥ 0,∑

x∈B

(f(x)− f̄B)2µx ≤ CrβEC′B(f), (PI(β))

where C ′B := B(x0, C
′r) and f̄B = 1

µ(B)

∑
x∈B f(x)µx.
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1.3 Invariance under rough isometry

Definition 1.4 Let (Γ(1), µ(1)), (Γ(2), µ(2)) be weighted graphs satisfying condition (p0). A map
T : Γ(1) → Γ(2) is called a rough isometry if the following holds.
There exist positive constants a, c > 1, b > 0 and M > 0 such that

a−1d(1)(x, y)− b ≤ d(2)(T (x), T (y)) ≤ ad(1)(x, y) + b ∀x, y ∈ Γ(1), (1.15)

d(2)(T (Γ(1)), y′) ≤ M ∀y′ ∈ Γ(2), (1.16)

c−1µ(1)
x ≤ µ

(2)
T (x) ≤ cµ(1)

x ∀x ∈ Γ(1), (1.17)

where d(i)(·, ·) is the graph distance of (Γ(i), µ(i)) for i = 1, 2.
If there exists a rough isometry between two spaces, they are said to be rough isometric. (One
can check this is an equivalence relation.)

The concept of rough isometry was introduced (for manifolds) by M. Kanai in [38, 39], but
without the condition (1.17). Under the assumption given in those papers, (1.17) could be
proved. A general definition similar to the above one was given in [21], see also [34].

In [34], it is proved that (PHI(β)) is stable under rough isometry. It is known that condi-
tions (V G(α)) and (V G(α−)) are also stable under rough isometry, see [21], Proposition II.2.
Thus, we see by Theorem 1.3 that (R(β)) is stable under rough isometry assuming (V G(α−))
or (V G(α)).

2 Resistance estimates and Poincaré inequalities

In this section, we shall only need a weaker form of (V G(β−)), namely

V (x, r) ≤ ϕ
(r

s

)
V (x, s) (2.1)

for all x ∈ Γ, r ≥ s ≥ 0, where ϕ satisfies

lim sup
t→+∞

ϕ(t)

tβ
= 0. (2.2)

In other words, it will be enough to assume that the volume growth of (Γ, µ) is uniformly
strictly below (V G(β)), without necessarily being polynomial of a smaller exponent than β.
We shall often use (2.1) in the following form: for any ε > 0, there exists η > 0 such that

sβ

V (x, s)
≤ ε

rβ

V (x, r)
, (2.3)

for every x ∈ Γ and every r, s ≥ 0 such that s ≤ ηr.

We start with some basic properties of resistance.
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Lemma 2.1 Let (Γ, µ) be a weighted graph, and A, B ⊂ Γ with A ∩B = ∅.
(a) Then R(A, B) < ∞. Further if

inf
x∼y

µx,y = c > 0, (2.4)

then
R(A, B) ≤ c−1d(A, B). (2.5)

(b) There exists a function f which attains the infimum in (1.8).

Proof. (a) Let f ∈ RΓ, ` = d(A, B), and a = x0, x1, ..., x` = b be a shortest path joining
a ∈ A, b ∈ B. Let f satisfy the constraints in (1.8), and let 0 < κ ≤ mini µxi−1,xi

. Then

1 = |f(a)− f(b)|2 ≤ `

(
`−1∑
i=0

|f(xi)− f(xi+1)|2
)

≤ κ−1`

(
`−1∑
i=0

|f(xi)− f(xi+1)|2µxixi+1

)
≤ κ−1`E(f).

Thus R(A, B)−1 ≥ E(f) ≥ κ`−1 > 0. If (2.4) holds then we can take κ = c and obtain (2.5).
(b) Let fn be a sequence satisfying the constraints in (1.8) with E(fn) → R(A, B)−1. We can
assume that 0 ≤ fn ≤ 1. A diagonalization argument gives a sequence gk = fmk

such that gk

converges pointwise to a function g, and using Fatou

E(g) = E(lim inf gk) ≤ lim inf E(gk) = R(A, B)−1.

Thus a minimiser exists. tu
In general, R(x, y) can be substantially smaller than d(x, y), but there are extremal situa-

tions, such as trees, where the two quantities are comparable. In particular, on an unweighted
tree one has R(x, y) = d(x, y). See Example 2 in Section 5 below.

We now show that the lower resistance estimate (RL(β)) self-improves in the presence of
the other assumptions. Consider the condition:

there exists c > 0 such that R(x, Bc(x, r)) ≥ c
rβ

V (x, r)
for all x ∈ Γ, r > 0. (SRL(β))

It is easy to see that (SRL(β)) implies (RL(β)), since if d(x, y) = r ≥ 2 then

R(x, y) ≥ R(x, B(x, r − 1)c) ≥ (r − 1)β

V (x, r − 1)
≥ c2−β rβ

V (x, r)
.

(If r = d(x, y) = 1 then the bound (RL(β)) always holds, since R(x, y) ≥ R(x, {x}c) = µ−1
x ≥

V (x, 1)−1.)

In fact, in the presence of (RU(β)) and (V G(β−)), the converse is true.

Lemma 2.2 Let (Γ, µ) be a weighted graph. Assume (2.1) and (R(β)). Then (SRL(β)) holds.

9



Using this, in the presence of (RL(β)) and (V G(β−)), the upper estimate (RU(β)) is equiv-
alent to (PI(β)).

Lemma 2.3 Let (Γ, µ) be a weighted graph.
(a) (2.1) and (R(β)) imply (PI(β)).
(b) (V G(β−))1 and (PI(β)) imply (RU(β)).
In particular, if (Γ, µ) satisfies (V G(β−)) and (RL(β)), then (PI(β)) and (RU(β)) are equiv-
alent.

2.1 Improvement of the lower estimates

In this section, we prove Lemma 2.2, obtaining it as a particular case of a more general result.

Lemma 2.4 Let (Γ, µ) be a weighted graph satisfying (VD). Assume that

R(x, y) ' η (d(x, y))

V (x, y)
, x, y ∈ Γ (2.6)

holds, with η increasing and satisfying

sup
x∈Γ
r>0

η(λr)V (x, r)

η(r)V (x, λr)
→ 0 as λ → 0+. (2.7)

Then there exists c > 0 such that

R(x, Bc(x, r)) ≥ c
η(cr)

V (x, r)
, ∀x ∈ Γ, r > 0. (2.8)

Proof. Fix x0 ∈ Γ and r > 0, and let A = B(x0, r) − B(x0, r/2). For x ∈ A let hx be the
function on Γ given by Lemma 1.1, such that hx(x) = 0, hx(x0) = 1, and E(hx) = 1/R(x0, x).
Let λ < 1

2
. As hx is harmonic on Γ \ {x, y}, hx(y) is maximised over B(x, λr) by a y1 with

d(x, y1) = λr. So, for y ∈ B(x, λr), by (1.9) and the upper bound in (2.6),

|hx(y)|2 ≤ |hx(y1)− hx(x)|2 ≤ C
η(λr)

V (x, λr)
E(hx) = C

η(λr)

V (x, λr)R(x, x0)
. (2.9)

Using the lower bound in (2.6), and (VD), if y ∈ B(x, λr) then

|hx(y)|2 ≤ C
η(λr)V (x, x0)

V (x, λr)η(d(x0, x))
≤ C ′η(λr)V (x, r/2)

V (x, λr)η(r/2)
. (2.10)

Thus, by (2.7), there exists a constant δ > 0 such that x ∈ A, d(x, y) ≤ δr, implies that
hx(y) ≤ 1

2
. We can assume δ < 1/6.

Now use (VD) to cover A by balls B(xi, δr), 1 ≤ i ≤ j, with xi ∈ A. Here j is bounded from
above, the bound only depending on the volume doubling constant. Let g = min{i=1,..,j} hxi

,

1A careful reader will notice in the proof below that, again, one can slightly weaken (V G(β−)) here, by
assuming (2.1) with

∑∞
i=0 2−iβϕ(2i) < +∞ instead of (2.2).
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h = 2(g − 1
2
)+, and h′ = h1B(x0,r). Then h′(x0) = h(x0) = 1, and h′ ≡ 0 outside B(x0, r), so

that
R(x0, B

c(x0, r))−1 ≤ E(h′).

But it is clear that E(h′) ≤ E(h) since h = 0 on A. Also, by (1.7),

E(h) ≤ 4E(g).

Now, for x, y ∈ Γ such that g(x) ≥ g(y), if g(y) = hxi
(y), then

(g(x)− g(y))2 = (g(x)− hxi
(y))2 ≤ (hxi

(x)− hxi
(y))2 ≤

j∑
i=1

(hxi
(x)− hxi

(y))2.

Summing over x, y, we obtain

E(g) ≤
j∑

i=1

E(hxi
). (2.11)

Now using the lower bound in (2.6), and (VD),

E(hxi
) =

1

R(x0, x)
≤ C

V (x0, x)

η(d(x0, x))
≤ C ′V (x0, r)

η(r/2)
≤ C ′′V (x0, r/2)

η(r/2)
.

Combining this with (2.11) implies that E(g) ≤ CV (x0, r/2)/η(r/2), and this yields (2.8). tu
Proof of Lemma 2.2. For this it is enough to observe that if η(r) = rβ then (2.6) follows
from (R(β)), (2.7) from (2.1), and use Lemma 2.4. tu

2.2 Upper estimates and Poincaré inequalities

This section, where we prove Lemma 2.3, can be skipped in a first reading. Indeed, the
implication from (V G(β−)) and (R(β)) to (PI(β)) will not be used in the proof of the main
result, and, furthermore is in any case be a consequence of Theorem 1.3 and Proposition 4.2,
although this route is rather indirect. As for the implication from (PI(β)) to (RU(β)), it is
used only in the end to deduce the converse part of Theorem 1.3 from Proposition 4.2.

We first need a version of Lemma 3.5 in [18], to compare resistance in Γ with resistance in
a large ball. Recall the definition of EB in (1.14), and for B ⊂ Γ set

RB(x, y) = inf{EB(f) : f(x) = 0, f(y) = 1}. (2.12)

Lemma 2.5 Assume (2.1) and (R(β)). Then there exists C ′ ≥ 1 such that

R(x, y) ≤ RB(x,C′d(x,y))(x, y) ≤ 2R(x, y). (2.13)

Proof. Since EB(f) ≤ E(f) the left side of (2.13) is immediate.
For the right hand side we begin by proving the inequality

1

R(x, y)
≤ 1

RB(x,2C′d(x,y))(x, y)
+

1

R(x, B(x, C ′d(x, y))c)
. (2.14)

11



Let C ≥ 1, and write B = B(x, Cd(x, y)), B′ = B(x, 2Cd(x, y)). Let f1, f2 be functions
which attain the infimum in the variational problems for RB′(x, y) and R(x, Bc). Thus f1(x) =
f2(x) = 1, f1(y) = 0, and f2 = 0 on Bc. We can take f1 = 0 on (B′)c. Let f = min(f1, f2).
Then, using (2.11) in B′, and the fact that f = 0 and so constant on (B′)c,

R(x, y)−1 ≤ E(f) = EB′(f) ≤ EB′(f1) + EB′(f2) = EB′(f1) + E(f2)

= RB′(x, y)−1 + R(x, Bc)−1,

proving (2.14). Using (RU(β)), (SRL(β)) it follows that there exists C ′ (not depending on x, y)
such that

R(x, B(x, C ′d(x, y))c) ≥ 2R(x, y),

and (2.14) therefore gives
1

2R(x, y)
≤ 1

RB(x,2C′d(x,y))(x, y)
,

completing the proof of (2.13). tu

We now return to the proof of Lemma 2.3.

Proof of (2.1) + (R(β)) ⇒ (PI(β)).
Fix B = B(x0, r). By Lemma 2.5, there exist C, C ′ > 0 such that

|f(x)− f(y)| ≤ C
[d(x, y)]β/2√

V (x, y)

√
EC′B(f), ∀f ∈ RΓ, x, y ∈ B.

Thus, for x ∈ B, we may write

|f(x)− f̄B| ≤
1

µ(B)

∑
y∈B

|f(x)− f(y)|µy ≤
C
√
EC′B(f)

µ(B)

∑
y∈B

[d(x, y)]β/2√
V (x, y)

µy.

Note that, since x, y ∈ B, d(x, y) ≤ 2r, therefore

|f(x)− f̄B| ≤
C
√
EC′B(f)

µ(B)

2r∑
s=1

sβ/2µ({y : d(x, y) = s})√
V (x, s)

≤
C ′rβ/2

√
EC′B(f)

µ(B)

2r∑
s=1

V (x, s)− V (x, s− 1)√
V (x, s)

.

Recall that for any sequences {as}s≥1, {bs}s≥1, the following holds

2r∑
s=1

asbs =
2r−1∑
s=1

As(bs − bs+1) + A2rb2r,

where As :=
∑s

n=1 an. Applying this with

as = V (x, s)− V (x, s− 1), bs =
1√

V (x, s)
,

12



we obtain

2r∑
s=1

V (x, s)− V (x, s− 1)√
V (x, s)

=
2r−1∑
s=1

√
V (x, s)√

V (x, s + 1)
(
√

V (x, s + 1)−
√

V (x, s)) +
√

V (x, 2r)

≤ 2
√

V (x, 2r) ≤ C
√

µ(B).

In the last inequality we used the fact that x ∈ B = B(x0, r) and (VD). Taking squares and
summing, we have∑

x∈B

(f(x)− f̄B)2µx ≤
Crβ

µ(B)
EC′B(f)

∑
x∈B

µx = CrβEC′B(f),

that is (PI(β)).tu
Proof of (V G(β−)) + (PI(β)) ⇒ (RU(β)).
This can be proved by modifying Proposition 3.3 of [18]. First, note that by applying Cauchy-
Schwarz to (PI(β)), we obtain for each B = B(x, r),

1

µ(B)

∑
z∈B

|f(z)− f̄B|µz ≤

(
1

µ(B)

∑
z∈B

(f(z)− f̄B)2µz

)1/2

≤
(

C1r
β

µ(B)
EC′B(f)

)1/2

≤
(

C1r
β

µ(B)
E(f)

)1/2

. (2.15)

Fix x, y in Γ and f ∈ RΓ. Write Bi = B(x, 2−id(x, y)), i ∈ Z+. We have

|f(x)− f̄B0| ≤
∞∑
i=0

|f̄Bi
− f̄Bi+1

| ≤
∞∑
i=0

1

µ(Bi+1)

∑
z∈Bi+1

|f(z)− f̄Bi
|µz

≤ C
∞∑
i=0

1

µ(Bi)

∑
z∈Bi

|f(z)− f̄Bi
|µz ≤ C ′

∞∑
i=0

(
(2−id(x, y))β

µ(Bi)
E(f)

)1/2

.

Here we have used (VD) and (2.15). Now (V G(β−)) implies that

1

µ(Bi)
≤ C2iα

V (x, y)
,

with α < β. This yields

|f(x)− f̄B(x,d(x,y))|2 ≤ C
dβ(x, y)

V (x, y)
E(f). (2.16)

Similarly,

|f(y)− f̄B(y,d(x,y))|2 ≤ C
dβ(x, y)

V (x, y)
E(f). (2.17)

Finally, under (VD),

|f̄B(x,d(x,y)) − f̄B(y,d(x,y))| ≤
C

V (x, 2d(x, y))

∑
z∈B(x,2d(x,y))

|f(z)− f̄B(x,2d(x,y))|µz. (2.18)
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Using (2.15), we have

1

V (x, 2d(x, y))

∑
z∈B(x,2d(x,y))

|f(z)− f̄B(x,2d(x,y))|µz ≤ C

(
d(x, y)β

V (x, y)
E(f)

)1/2

. (2.19)

By (2.16), (2.17), (2.18) and (2.19), we obtain

|f(x)− f(y)|2 ≤ C
dβ(x, y)

V (x, y)
E(f), ∀f ∈ RΓ, ∀x, y ∈ Γ,

which is the claim. tu
The proof of Lemma 2.3 is complete.

3 From resistance estimates to heat kernel estimates

In this section, we shall prove that (R(β)) together with (V G(β−)) implies (HK(β)). In fact,
we shall only need the weaker form of (V G(β−)) given by (2.1).

3.1 On-diagonal upper heat kernel estimate

We obtain the on-diagonal heat kernel upper estimate from the resistance upper estimate and
a volume upper bound in a relatively direct way, and this is the first main simplification in our
case with respect to [30]. Here, we need only assume that the volume growth exponent does
not exceed β.

Theorem 3.1 Assume (V G(β)) and (RU(β)). Then there exists C > 0 such that

hn(x, x) ≤ C

V (x, n1/β)
, ∀x ∈ Γ, n ∈ N. (DUHK(β))

We obtain this from a more general result. Note that in the following statement, we do not
assume (VD).

Proposition 3.2 Assume that there exists a one-to-one increasing function η from [0,∞) to
itself such that

R(x, y) ≤ η (d(x, y))

V (x, y)
, ∀x, y ∈ Γ, (3.1)

and such that for some A > 0, η(r)/V (x, r) satisfies

η(s)

V (x, s)
≤ A

η(r)

V (x, r)
,∀x ∈ Γ, r, s such that 0 ≤ s ≤ r. (3.2)

Then there exist C, c > 0 such that

hn(x, x) ≤ C

V (x, η−1(cn))
, ∀x ∈ Γ, n ≥ 4. (3.3)

The above estimate holds also for small n if one assumes that µx ' µy for x ∼ y.
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Proof. Fix x0 ∈ Γ. For n ∈ N and x ∈ Γ, set fn(x) = hn(x0, x) + hn+1(x0, x).
Let r > 0. Write B(r) = B(x0, r) and V (r) = V (x0, r). If x− ∈ B(r) is such that

fn(x−) = minx∈B(r) fn(x),

fn(x−)V (r) ≤
∑

x∈B(r)

fn(x)µx ≤
∑
x∈Γ

hn(x0, x)µx +
∑
x∈Γ

hn+1(x0, x)µx ≤ 2,

so that fn(x−) ≤ 2/V (r).
Using (1.9), (3.1) and (3.2), we can write

f 2
n(x0) ≤ 2

(
f 2

n(x−) + |fn(x0)− fn(x−)|2
)
≤ 8

V 2(r)
+ 2R(x0, x−)E(fn)

≤ 8

V 2(r)
+

η (d(x0, x−))

V (x0, x−)
E(fn) ≤ 8

V 2(r)
+

Cη(r)

V (r)
E(fn).

It is easy to check, using (1.3) and (1.6), that

0 ≤ E(fn) = f2n(x0)− f2n+2(x0). (3.4)

We obtain therefore

f 2
n(x0) ≤ 8V (r)−2 + Cη(r)V (r)−1 (f2n(x0)− f2n+2(x0)) .

Fix N ≥ 2 and sum this from N to 2N − 1:

2N−1∑
n=N

f 2
n(x0) ≤ 8NV (r)−2 + CV (r)−1η(r)(f2N(x0)− f4N(x0)).

Since for each even n ∈ {N, ..., 2N − 1} we have, using (3.4), fn(x0) ≥ f2N(x0), it follows
that

1

2
(N − 1)f 2

2N(x0) ≤ 8NV (r)−2 + CV (r)−1η(r)f2N(x0).

Then
f 2

2N(x0) ≤ CV (r)−2 + C ′N−1V (r)−1η(r)f2N(x0).

Take r = η−1(cN), with c > 0 small enough, to obtain

f2N(x0) ≤ CV (r)−1 =
C

V (x0, η−1(cN))
,

that is

h2N(x0, x0) + h2N+1(x0, x0) ≤
C

V (x0, η−1(cN))
,

from which (3.3) follows. tu
Taking η(r) = Crβ, and using (V D) once more in the end to obtain exactly the desired

estimate, we obtain Theorem 3.1.
The above argument can also be used without any volume growth assumption or resistance

estimate. The following proposition obtains an estimate similar to that in [12], Theorem 2.1,
but with much weaker hypotheses.
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Proposition 3.3 Let (Γ, µ) be a weighted graph satisfying assumption (2.4). Then there exists
C > 0 such that

hn(x, x) ≤ C

V (x, w−1(n))
, ∀x ∈ Γ, n ∈ N,

where w(r) := rV (x, r).

Proof. We use the same notation as in the proof of Proposition 3.2. Proceeding as before
and using Lemma 2.1, we obtain

1

2
f 2

n(x0) ≤ 4V (r)−2 + CrE(fn),

and hence
f 2

n(x0) ≤ 8V (r)−2 + C ′r(f2n(x0)− f2n+2(x0)).

This leads to
f 2

2N(x0) ≤ CV (r)−2 + C ′rN−1f2N(x0).

So taking rN = sup{s : sV (s) ≤ N} we obtain

f2N ≤ C ′V (rN)−1.

tu
Instead of using R(x, y) ≤ C d(x, y), the universal estimate from Lemma 2.1, one could also

derive other upper estimates of hn(x, x) under assumptions of the form

R(x, y) ≤ θ (d(x, y)) ,

where θ(t) << t. We leave this to the reader.

3.2 Off-diagonal upper heat kernel estimate

If β = 2, (DUHK(2)) and (VD) imply (UHK(2)). (See [35] for the case when the volume growth
is polynomial, and [16] or [17] for the general doubling volume case). The situation is quite
different when β > 2, and further tools are needed.

Recall the definition of τ(x, r), and consider the following estimate for the expected exit
time from a ball:

Ex[τ(x, r)] ' rβ, r ≥ 1. (Eβ)

Proposition 3.4 Assume η is increasing and satisfies (VD), (2.6), (3.2) and (2.7). Then there
exist C, c > 0 such that:

Ex[τ(x, r)] ≤ Cη(r), Ex0 [τ(x0, r)] ≥ cη(cr), ∀r ≥ 1, x0 ∈ Γ, x ∈ B(x0, r). (3.5)

In particular, taking η(r) = rβ, (2.1) and (R(β)) imply (Eβ).
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Proof. The argument for the upper bound in (3.5) goes back to [51], and is quite general.
Let XB

n be the random walk on (Γ, µ) killed on exiting B := B(x0, r). The associated sub-
Markov kernel is defined by

pB(x, y) :=

{
p(x, y) x, y ∈ B,
0 otherwise.

Define the transition function pB
n (x, y) as the n-th convolution power of pB, and let hB

n (x, y) :=
pB

n (x, y)/µy. The Green kernel gB(x, y) of XB
n is defined by gB(x, y) =

∑∞
n=0 hB

n (x, y). It is
easy to check that gB(x, ·) is harmonic on B \ {x} and that LgB(x, ·) at x is −(µx)−1. Thus
gB(·, ·) has the following reproducing property:

E(gB(x, ·), f) = f(x) for all f ∈ RΓ such that f |Bc = 0. (3.6)

Set

px(y) := Py(Tx < τ(x, r)) =
gB(x, y)

gB(x, x)
.

The second equality is because both functions are 1 at x, 0 outside B and harmonic elsewhere.
Using the reproducing property of gB and the fact that px is an equilibrium potential for
R(x, Bc), we have

R(x, Bc)−1 = E(px) = gB(x, x)−1. (3.7)

Since px(y) ≤ 1 for all y ∈ Γ,

gB(x, y) ≤ gB(x, x) ∀x, y ∈ Γ. (3.8)

Summarizing, we have

R(x, Bc) = gB(x, x) =
∞∑

n=0

hB
n (x, x) ∀x ∈ Γ. (3.9)

By the monotonicity of resistance,

R(x, Bc) ≤ R(x, y) ∀x ∈ Γ, y ∈ Bc.

Thus, by the upper bound in (2.6),

gB(x, x) = R(x, Bc) ≤ C
η(r)

V (x, r)
. (3.10)

Now, since, for x ∈ B,

Ex[τ(x0, r)] =
∑
y∈B

gB(x, y)µy, (3.11)

we have

Ex[τ(x0, r)] ≤ Cη(r)

V (x, r)
V (x0, r) ≤ C ′η(r),

where we use (3.8), (3.10), and (VD). We thus obtain the upper bound in (3.5).

17



For the lower bound, by (1.9) and (3.6) we have

|1− px0(y)|2 ≤ R(x0, y)

gB(x0, x0)
=

R(x0, y)

R(x0, Bc)
.

Thus, if d(x0, y) = λr, using the upper bound in (2.6), and (2.8) (which holds due to Lemma
2.4) we obtain

|1− px0(y)|2 ≤ C
η (λr)

η(cr)

V (x0, r)

V (x0, λr)
.

Hence, by (2.7), there exists δ > 0 such that

px0(y) =
gB(x0, y)

gB(x0, x0)
≥ 1/2 ∀y ∈ B(x0, δr). (3.12)

On the other hand, by (3.9) and (2.8) , we have

gB(x0, x0) = R(x0, B
c) ≥ cη(cr)

V (x0, r)
. (3.13)

Combining this with (3.12),

gB(x0, y) ≥ cη(cr)

2V (x0, r)
, ∀y ∈ B(x0, δr).

Thus, using (3.11) and (VD),

Ex0 [τ(x0, r)] =
∑
x∈B

gB(x0, y)µy ≥
cη(cr)

2V (x0, r)
V (x0, δr) ≥ c′η(cr),

where c′ > 0 depends on δ. We thus obtain the second estimate in (3.5).tu

As a by-product of Proposition 3.4, we obtain:

Proposition 3.5 Let (Γ, µ) be a weighted graph satisfying (VD), (2.6), (3.2) and (2.7). Then
it is strongly recurrent and satisfies the elliptic Harnack inequality (EHI).

Proof. (3.12), which was obtained in the proof of Proposition 3.4, implies immediately
that (Γ, µ) satisfies (1.10). This implies (EHI) by [4], Lemma 1.6. tu

We now come back to our main goal, which is to prove that (R(β))+(V G(β−)) ⇒ (HK(β)).
Given Proposition 3.4 we could finish its proof by using known results. By [30], Theorem
6.2, (VD)+(DUHK(β))+(Eβ) implies (UHK(β)). We could even have avoided Section 3.1,
since Lemma 2.2 and Proposition 3.4 show that (R(β))+(V G(β−)) implies (Eβ), while as we
just observed (EHI) is a by-product of Proposition 3.4. Now one concludes by invoking [30],
Theorem 3.1 (i), (iv), i.e. that (VD)+(EHI)+(Eβ) is equivalent to (HK(β)). We did not choose
this way because our Theorem 3.1 is of independent interest, and has a much simpler proof
than the general on-diagonal upper bound in [30].
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We will also give full details of the final steps of the proof, because again they are much
simpler in our strongly recurrent situation than in [30].

We also mention that yet another approach can be found in [27], where it is proved that
(DUHK(β))+ (Eβ) implies (and in fact is equivalent to) (UHK(β)), the intermediate step being
a β-version of the so-called relative Faber-Krahn inequality used for instance in [16]. See also
[42] for related sufficient conditions of (UHK(β)).

Finally, under the assumptions of Proposition 3.5, one could probably obtain general heat
kernel estimates in the style of [36], Section 5. We will not pursue this here, and we will limit
ourselves in this regard to the case where η is a power function. See [44] for this generalization.

Consider the following estimate of the repartition function of the exit time:

Ψn(x, r) := Px(τ(x, r) ≤ n) ≤ C exp

(
−
(

rβ

Cn

) 1
β−1

)
. (Ψ)

The next lemma is known (see for instance, Proposition 7.1 of [29]) but we will give a shorter
probabilistic proof based on an argument which dates back to [6], with several subsequent
variations.

Lemma 3.6 On any weighted graph (Γ, µ), (Eβ) ⇒ (Ψ).

Proof. Assume (Eβ). We first prove that there exist 0 < p < 1 and A > 0 such that

Px(τ(x, r) ≤ n) ≤ p + An/rβ ∀x ∈ Γ, r > 0, n ∈ Z+. (3.14)

Indeed, by the Markov property we have

Ex[τ(x, r)] ≤ n + Ex
[
1{τ(x,r)>n}EXn [τ(x, r)]

]
≤ n + Ex

[
1{τ(x,r)>n}EXn [τ(Xn, 2r)]

]
.

Applying (Eβ), we have

crβ ≤ n + CrβPx(τ(x, r) > n) = n + Crβ(1− Px(τ(x, r) ≤ n)).

Rearranging gives (3.14).
Next, let l ≥ 1, b = [r/l], and define stopping times σi, i ≥ 0 by

σ0 = 0, σi+1 = inf{m ≥ σi : d(Xσi
, Xm) ≥ b}.

Let ξi = σi−σi−1, i ≥ 1. Let Fm be the filtration generated by {Xi : i ≤ m} and let Gm = Fσm .
We have by (3.14)

Px(ξi+1 ≤ n|Gi) = PXσi (τ(Xσi
, b− 1) ≤ n) ≤ p + An/(b− 1)β ≤ p + A′n/bβ.

Since d(Xσi
, Xσi+1

) = b, we have d(X0, Xσl
) ≤ r, so that σl =

∑l
i=1 ξi ≤ τ(X0, r). So, by

Lemma 3.14 in [3],

log Px(τ(x, r) ≤ n) ≤ 2

(
A′ln

pbβ

)1/2

− l log

(
1

p

)
= C(r−βl1+βn)1/2 − cl.
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Now we optimize on l; namely, we consider the case rβn−1 ≥ a for some a > 0 and take l0 the
greatest integer l that satisfies

Cl/2 > c(r−βl1+βn)1/2. (3.15)

Note that by taking a large enough, (3.15) holds for small l ∈ N. Then

lβ−1
0 < (c2/4C2)rβn−1 ≤ (l0 + 1)β−1, and log Px(τ(x, r) ≤ n) ≤ −cl0/2.

We thus obtain (Ψ) when rβn−1 ≥ a. Adjusting the constant if necessary, (Ψ) clearly holds
also if rβn−1 < a.tu
Proposition 3.7 (VD) + (DUHK(β)) + (Ψ) ⇒ (UHK(β)).

Proof. We adapt the proof of Proposition 8.1 of [29], which is written for polynomial growth,
to the volume doubling situation – see also [8], Theorem 6.2. This uses the following general
inequality for reversible Markov chains:

hn+m(x, y) ≤ Ψn(x, r) sup
z

hm(y, z) + Ψm(y, r) sup
z

hn(x, z), ∀x, y ∈ Γ, n, m ∈ N, (3.16)

where r < d(x, y)/2.
Let us recall its proof for the sake of completeness. For x, y ∈ Γ distinct, let r < d(x, y)/2.

Then, since B(x, r) and B(y, r) do not intersect, and for n, m ∈ N,

hn+m(x, y) ≤
∑

z /∈B(x,r)

hn(x, z)hm(z, y)µz +
∑

z /∈B(y,r)

hn(x, z)hm(z, y)µz

≤ sup
z

hm(z, y)
∑

z /∈B(x,r)

pn(x, z) + sup
z

hn(x, z)
∑

z /∈B(y,r)

pm(y, z)

= sup
z

hm(y, z)Px(Xn /∈ B(x, r)) + sup
z

hn(x, z)Py(Xm /∈ B(y, r)).

Since Px(Xn /∈ B(x, r)) ≤ Ψn(x, r), (3.16) follows. Now, using Chapman-Kolmogorov,
Cauchy-Schwarz, and again the symmetry of hn,

h2n(x, y) =
∑
z∈Γ

hn(x, z)hn(z, y)µz ≤

(∑
z

h2
n(x, z)µz

)1/2(∑
z

h2
n(y, z)µz

)1/2

= h2n(x, x)1/2h2n(y, y)1/2.

Thus, by (DUHK(β)),

h2n(x, y) ≤ C√
V (x, n1/β)V (y, n1/β)

, ∀x, y ∈ Γ, n ≥ 1. (3.17)

Taking m = n in (3.16), applying (Ψ) and taking, say, r = d(x, y)/3 yields

h2n(x, y) ≤ C ′√
V (x, n1/β)V (y, n1/β)

exp

(
−
(

rβ

Cn

) 1
β−1

)
, ∀x, y ∈ Γ, n ≥ 1, (3.18)

and a similar estimate follows for odd n since

h2n+1(x, y) =
∑
z∈Γ

h2n(x, z)p(z, y) ≤ max
z∼x

h2n(x, z).

By (VD), these estimates are equivalent to (UHK(β)). tu
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3.3 Lower heat kernel estimates

We now prove the lower bounds. Our approach is much more direct than the one in [30],
essentially because we rely fully on the assumption (V G(β−)) and incorporate some arguments
from [15]. The first step is an argument of Benjamini-Chavel-Feldman [13] in the case β = 2
(see also Lemma 7.1 of [8]), which can easily be adapted (see [15], proof of Theorem 3.1), to
show that the upper estimate (DUHK(β)) together with (VD) always implies an on-diagonal
lower heat kernel estimate. We sketch a proof for the sake of completeness.

Proposition 3.8 Assume (VD) and (DUHK(β)). Then there exists a constant c > 0 such
that

h2n(x, x) ≥ c

V (x, n1/β)
, ∀x ∈ Γ, n ∈ N. (DLHK(β))

Proof. Using (V D) and (DUHK(β)), one checks that, for C large enough, every n ∈ N and
every x ∈ Γ, ∑

y 6∈B(x,Cn1/β)

hn(x, y) µy ≤ 1/2,

(see the computations in [28], proof of Theorem 3.2). Thus∑
y∈B(x,Cn1/β)

hn(x, y) µy = 1−
∑

y 6∈B(x,Cn1/β)

hn(x, y) µy ≥ 1/2

Write now

h2n(x, x) =
∑
y∈Γ

h2
n(x, y) µy ≥

∑
B(x,Cn1/β)

h2
n(x, y) µy

≥ 1

V (x, Cn1/β)

 ∑
B(x,Cn1/β)

hn(x, y) µy

2

≥ 1

4V (x, Cn1/β)
.

Adjusting for parity and using (VD), (DLHK(β)) follows. tu

We now prove a near-diagonal lower estimate. The next proposition is inspired by [15], pp.
800-801, with the usual additional difficulties due to discrete time. See also [20], Lemma 2.4.

We first need a lemma. For a fixed x0 in Γ, set fn(·) = hn(x0, ·) + hn+1(x0, .).

Lemma 3.9

E(fn) ≤ C

n
h2[n/2](x0, x0), ∀n ≥ 1. (3.19)

Proof. Set gn(·) = hn(x0, ·). One checks easily that Pgn = gn+1. Thus

E(fn) = < (I − P )(gn + gn+1), gn + gn+1 >

= < (I − P )(P n + P n+1)g0, (P n + P n+1)g0 >

= < (I − P 2)P 2ng0, g0 > + < (I − P 2)P 2n+1g0, g0 > .
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Using the fact that P is self-adjoint and contractive on `2(Γ, µ), write

E(fn) = < (I − P 2)gn, gn > + < (I − P 2)gn+1, gn >

≤ ‖(I − P 2)gn‖2‖gn‖2 + ‖(I − P 2)gn+1‖2‖gn‖2

≤ 2‖(I − P 2)gn‖2‖gn‖2 ≤ 2‖(I − P 2)P [(n+1)/2]g[n/2]‖2‖g[n/2]‖2.

Now

‖(I − P 2)P n‖2→2 ≤
C

n
, n ≥ 1

by spectral theory (this is because P 2 is a non-negative operator on `2(Γ, µ)); for details and
comments, see [19], p. 426). Therefore, for n ≥ 1,

E(fn) ≤ C ′

[(n + 1)/2]
‖g[n/2]‖2

2 =
C ′′

n
h2[n/2](x0, x0),

according to (1.3). tu

Set un(x, y) := hn(x, y) + hn+1(x, y).

Proposition 3.10 Assume (2.1), (RU(β)), and (DLHK(β)). Then, there exist c, C > 0 such
that

un(x, y) ≥ c

V (x, n1/β)
, ∀x, y ∈ Γ, n ∈ N such that d(x, y) ≤ C n1/β. (NLHK(β))

Proof. Let x0 ∈ Γ. Putting fn(·) = un(x0, ·) in (1.9) gives

|fn(x)− fn(y)|2 ≤ R(x, y)E(fn) for all x, y ∈ Γ. (3.20)

Since (DUHK(β)), (DLHK(β)) and (VD) hold,

h2[n/2](x0, x0) ≤ C fn(x0, x0).

Thus, using (3.19), one obtains

|fn(x)− fn(y)|2 ≤ C

n
R(x, y)fn(x0, x0). (3.21)

So, using (RU(β)),

|fn(x)− fn(y)|2 ≤ C ′dβ(x, y)

nV (x, y)
fn(x0, x0),

and using (DLHK(β)) again,

|fn(x)− fn(y)|2 ≤ C ′′d
β(x, y)

n

V (x0, n
1/β)

V (x, y)
f 2

n(x0, x0).

In particular, choosing x0 = x,

|un(x, x)− un(x, y)|2 ≤ C ′′d
β(x, y)

n

V (x, n1/β)

V (x, y)
u2

n(x, x).
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By (2.1), there exists δ > 0 such that

C ′′d
β(x, y)

n

V (x, n1/β)

V (x, y)
≤ 1

4

as soon as d(x, y) ≤ δn1/β. For such y,

|un(x, x)− un(x, y)| ≤ 1

2
un(x, x).

Thus

un(x, y) ≥ 1

2
un(x, x),

and (NLHK(β)) follows from (DLHK(β)). tu

The full heat kernel lower bound is now within reach.

Proposition 3.11 (p0) + (VD) + (NLHK(β)) ⇒ (LHK(β))

Proof. This is a classical iteration argument, see for instance [22], Theorem 3.8, for the
case β = 2. We write the proof for the sake of completeness, and also to emphasize the role
of condition (p0). We write p̃n(x, y) = un(x, y)µy = pn(x, y) + pn+1(x, y). We consider the
following cases:
Case 1: d(x, y) ≤ Cn1/β;
Case 2: Cn1/β < d(x, y) ≤ εn;
Case 3: εn < d(x, y) ≤ n,
where C is the constant in Proposition 3.10 and ε > 0 is a small constant chosen later.

In Case 1, (LHK(β)) follows from Proposition 3.10. In Case 3, (LHK(β)) becomes

p̃n(x, y) ≥ cµy

V (x, n1/β)
exp(−c′n), (3.22)

which can be deduced directly from (p0). Indeed, since there is a path from x to y of length

either n or n+1, the Px-probability that the random walk will follow the path is at least p
−(n+1)
0 .

Thus, p̃n(x, y) ≥ exp(−c′n). Clearly µy/V (y, n1/β) ≤ 1, so we obtain (3.22).
We now consider the main Case 2. Denote d = d(x, y), take k ∈ N such that

k ≤ d, (3.23)

and define m by m = bn/kc − 1. Since k ≤ d ≤ εn, we see that n/k ≥ ε−1 and m is positive.
Since n ≥ k(m + 1), by a simple calculation using (p0) condition and Chapman-Kolmogorov,
(cf. Lemma 13.6 in [29]), we have

Cn−mkp̃n(x, y) ≥ (p̃m)k(x, y), (3.24)

where (p̃m)k is a k-th convolution power of p̃m = pm + pm+1. Note that there exists a sequence
o1, o2, · · · ok ∈ Γ such that x = o1, y = ok and

d(oi, oi+1) ≤ dd(x, y)

k
e := r ∀i = 1, 2, · · · , k − 1. (3.25)
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Clearly, we have

(p̃m)k(x, y) ≥
∑

z1∈B(o1,r)

· · ·
∑

zk−1∈B(ok−1,r)

p̃m(x, z1)p̃m(z1, z2) · · · p̃m(zk−1, y). (3.26)

Assume that we have in addition
3r ≤ Cm1/β. (3.27)

Since d(zi−1, zi) ≤ 3r, by Proposition 3.10, we have p̃m(zi−1, zi) ≥ cµzi
V (zi−1, m

1/β)−1 for all
i = 2, · · · , k − 1. The same applies to p̃m(x, z1) and p̃m(zk−1, y). So, we obtain from (3.24) and
(3.26)

Cn−mkp̃n(x, y) ≥ ckµy

V (x, m1/β)

k−1∏
i=1

 ∑
zi∈B(oi,r)

µzi

V (zi, m1/β)

 . (3.28)

We now specify the choice of k to ensure that both (3.23) and (3.27) hold. Using the
definition of m and r, we see that (3.27) is equivalent to cd/k ≤ C(n/k)1/β or

k ≥ c′C−β/(β−1)

(
dβ

n

)1/(β−1)

. (3.29)

Let k be the minimal possible integer satisfying (3.29). By the hypothesis d ≥ Cn1/β, we have

k ≥ c′, k '
(

dβ

n

)1/(β−1)

. (3.30)

The condition (3.23) follows from the hypothesis n ≥ ε−1d provided ε > 0 is small enough. By
(3.25), (3.27), (3.30) and by the choice of m, we obtain

m '
(n

d

)β/(β−1)

, r '
(n

d

)1/(β−1)

. (3.31)

By (VD) and (3.31),

∑
zi∈B(oi,r)

µzi

V (zi, m1/β)
≥

c
∑

zi∈B(oi,r)
µzi

V (oi, m1/β)
=

c′V (oi, r)

V (oi, m1/β)
≥ c′′.

Combining this with (3.28), we obtain

p̃n(x, y) ≥ ckCmk−mµy

V (x, m1/β)
≥ ckC−(n−mk)µy

V (x, m1/β)
≥ µy

V (x, n1/β)
exp(−c′k), (3.32)

where we use the facts m ≤ n, n − mk ≤ 2k which follows from the definition of m. Putting
(3.30) into (3.32), we obtain (LHK(β)).tu
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4 From heat kernel estimates to resistance estimates

In this section, we prove that (HK(β)) together with (V G(β−)) implies (R(β)). In fact, we
shall prove that (HK(β)) alone implies (PI(β)) and (SRL(β)). The above claim then follows
from Lemma 2.3. Note that (HK(β)) ⇒ (VD) holds (see Proposition 7.2 in [53], or Theorem
3.1 in [30]).

We first give a lemma, which is a sub-Gaussian version of Lemma 5.1 in [25] (see also Lemma
3.9 in [22]).

Lemma 4.1 Let x0 ∈ Γ, r > 0, B := B(x0, r) and let hB
n (x, y) be the transition density of the

random walk Xn killed on exiting B. Suppose (HK(β)) holds. Given 0 < ε < 1, there exist
c, a > 0 such that

uB
n (x, y) := hB

n (x, y) + hB
n+1(x, y) ≥ c

V (x, n1/β)
for x, y ∈ B(x0, (1− ε)n1/β), n ≤ (ar)β.

Proof. Let x, y ∈ Γ, n ∈ N. By (LHK(β)), we have

un(x, y) ≥ c0

V (x, n1/β)
, for x, y ∈ B(x0, n

1/β), (4.1)

for some c0 > 0. Then, note that the following holds:

hB
n (x, y) = hn(x, y)− Ex[1{TB≤n}hn−TB

(XTB
, y)]. (4.2)

As a consequence,

hn(x, y)− hB
n (x, y) = hn(y, x)− hB

n (y, x) =
∑

0≤s≤n
ξ∈Bc

Py(Xs = ξ, TBc = s)hn−s(ξ, x). (4.3)

Now we estimate (4.3) from above. By (UHK(β)), for 0 ≤ s ≤ n (in fact we can assume
n− s ≥ r > 0 since otherwise hn−s(ξ, x) = 0)

hn−s(ξ, x) = hn−s(x, ξ) ≤ C

V (x, (n− s)1/β)
exp

(
−
(

d(x, ξ)β

C(n− s)

)1/(β−1)
)

.

If ξ ∈ Bc, x ∈ B(x0, (1− ε)n1/β), and n ≤ rβ, it follows that d(x, ξ) ≥ εr, hence

hn−s(ξ, x) ≤ C

V (x, (n− s)1/β)
exp

(
−
(

εβrβ

C(n− s)

)1/(β−1)
)

.

Also,

hn−s(ξ, x) ≤ C

V (x, n1/β)

(
V (x, r)

V (x, (n− s)1/β)
exp

(
−
(

εβrβ

C(n− s)

)1/(β−1)
))

≤ C ′

V (x, n1/β)
exp

(
−c′

(
rβ

n− s

)1/(β−1)
)
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by doubling . Now, if in addition n ≤ (ar)β, a ≤ 1,

rβ

n− s
≥ rβ

n
≥ a−β,

and

hn−s(ξ, x) ≤ C ′

V (x, n1/β)
exp

(
−c′a−β/(β−1)

)
.

Taking a small enough we can ensure that

hn−s(ξ, x) ≤ c0

4V (x, n1/β)
, (4.4)

for all ξ ∈ Bc and 0 ≤ s ≤ n. Gathering (4.3) and (4.4), we obtain

hn(x, y)− hB
n (x, y) ≤ c0

4V (x, n1/β)

∑
0≤s≤n
ξ∈Bc

Py(Xs = ξ, TBc = s) ≤ c0

4V (x, n1/β)
,

hence
un(x, y)− uB

n (x, y) ≤ c0

2V (x, n1/β)
.

Together with (4.1), this yields the result. tu

Proposition 4.2 1) (HK(β)) ⇒ (PI(β)).
2) (HK(β)) ⇒ (SRL(β)).

Proof. The proof of 1) is standard. It originates in [45]. We modify the argument given
in [50] (see also Theorem 3.11 in [22]). Let B = B(x0, r). Let {HB

n } be the discrete time
semigroup corresponding to EB (the corresponding process is the random walk Xn reflected at
{y : d(x0, y) = r}). If we denote the transition density as h̃B

n (x, y), then clearly h̃B
n (x, y) ≥

hB
n (x, y). Let B′ = B(x0, ar/2) where a > 0 is the constant in Lemma 4.1. For y ∈ B′ we have

by Lemma 4.1 (with ε = 1/2),

HB
[(ar)β ](f −HB

[(ar)β ]f(y))2(y) ≥ c

V (x, ar/2)

∑
z∈B′

|f(z)−HB
[(ar)β ]f(y)|2µz

≥ c

V (x, ar/2)

∑
z∈B′

|f(z)− f̄B′|2µz,

where in the last inequality, we use the fact that
∑

z∈B′ |f(z)−α|2µz attains its minimum when
α = f̄B′ . Summing up over B′, we obtain∑

y∈B′

HB
[(ar)β ](f −HB

[(ar)β ]f(y))2(y)µy ≥ c
∑
z∈B′

|f(z)− f̄B′|2µz.

On the other hand, we have∑
y∈B′

HB
[(ar)β ](f −HB

[(ar)β ]f(y))2(y)µy ≤ ‖f‖2
2,B − ‖HB

[(ar)β ]f‖
2
2,B ≤ CrβEB(f),
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where we write ‖f‖2
2,B =

∑
y∈B f(y)2µy. Here the first inequality is a simple computation of

the variance (plus the fact ‖HB
n f 2‖1,B ≤ ‖f‖2

2,B) and the second inequality is a general estimate
of Dirichlet forms (Lemma 1.3.3 (i) in [26]). We thus obtain (PI(β)).

We now prove 2). By (3.9), we have R(x0, B
c) =

∑∞
n=0 hB

n (x0, x0). Thus, by Lemma 4.1,

R(x0, B
c) ≥ c

[(ar)β ]∑
n=0

uB
n (x0, x0) ≥ c′

[(ar)β ]∑
n=1

V (x0, n
1/β)−1 + 1

 ≥ (ar)β

V (x0, [(ar)β]1/β)
≥ c′′rβ

V (x0, r)
,

where we use (VD) in the last inequality. We thus obtain (SRL(β)). tu

5 Examples

In this section, we give examples of weighted graphs where (HK(β)) holds. Let (Γ, µ) be a
weighted graph satisfying the (p0) condition.

Example 1: Case β = 2

We note that (RL(2)) always holds. Indeed, for x, y ∈ Γ, define f = fx,y ∈ RΓ by f(z) :=
d(x, z) ∧ d(x, y). Then clearly E(f) ≤ V (x, y). By this and (1.9), we have

R(x, y) ≥ |f(x)− f(y)|2

E(f)
≥ d(x, y)2

V (x, y)
,

as required. It follows that (RL(β)) can hold only if β ≥ 2, and, by using Theorem 1.3, one
recovers the well-known fact that (HK(β)) can hold only if β ≥ 2. Also, by Theorem 1.3, we
have the following equivalence under (V G(2−)) and (p0):

(HK(2)) ⇔ (RU(2)) ⇔ (PI(2)). (5.1)

It is known in general that (HK(2)) is equivalent to (VD)+(PI(2)) (cf. [22]), but (5.1) gives an
additional equivalence condition under (V G(2−)). In the even more particular situation where
(V G(1)) and (2.4) hold (the volume growth is then linear) (RU(2)) follows from Lemma 2.1.
One therefore recovers the well-known fact that, on a weighted graph with (V G(1)), (p0) and
(2.4), (HK(2)) always holds (see [20]).

Example 2: Trees
A graph Γ is called a tree if it has no cycle, a cycle being a sequence of vertices such that
x0 ∼ ... ∼ xn, with no repetition besides xn = x0, and n ≥ 2. A connected graph is a tree if
and only if any two points x, y are joined by a unique (non-oriented) path of length d(x, y).

Lemma 5.1 If Γ is a tree satisfying (2.4) and

sup
x∼y

µx,y = M < ∞. (5.2)

Then
R(x, y) ' d(x, y), x, y ∈ Γ.
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Proof. It follows from Lemma 2.1 that R(x, y) ≤ C d(x, y), ∀x, y ∈ Γ. Now take two
distinct points x, y in Γ, and let f ∈ RΓ be such that f(x) = 0, f(y) = 1, f is linear on the
geodesic path joining x and y, and constant on any other geodesic emanating from x, y, and
any intermediate point. This construction is of course possible only because Γ is a tree. Now
E(f) ≤ M

d(x,y)
, therefore

inf{E(f) : f ∈ RΓ, f(x) = 1, f(y) = 0} ≤ M

d(x, y)
,

hence MR(x, y) ≥ d(x, y). tu

As a consequence, if Γ is a tree satisfying (2.4) and (5.2), (RU(β)) (resp. (RL(β))) is
equivalent to the volume growth condition V (x, y) ≤ C d(x, y)β−1 (resp. V (x, y) ≥ c d(x, y)β−1),
i.e. to the fact that (Γ, µ) has polynomial growth of exponent β − 1:

V (x, r) ' rβ−1, x ∈ Γ, r ≥ 0.

Thus, as a corollary to Theorem 1.3, we have the following.

Proposition 5.2 Let (Γ, µ) be a tree such that 0 < inf
x∼y

µxy ≤ sup
x∼y

µxy < ∞. If (Γ, µ) has

polynomial volume growth of exponent α ≥ 1, then it satisfies the following heat kernel estimates

hn(x, y) ≤ C

n
α

α+1

exp

(
−
(

d(x, y)α+1

Cn

) 1
α

)
, for all x, y ∈ Γ, ∈ N

and

hn(x, y) + hn+1(x, y) ≥ c

n
α

α+1

exp

(
−
(

d(x, y)α+1

cn

) 1
α

)
.

Conversely, if (Γ, µ) satisfies (V G(β−)) and (HK(β)) for some β ≥ 2, then it must have
polynomial growth of exponent β − 1.

An interesting class of trees with polynomial growth is given by the Vicsek graphs considered
for instance in [12], Section 4.

Example 3: Finitely ramified fractal graphs

For α > 1 and I = {1, 2, · · · , N}, let {Ψi}i∈I be a family of α-similitudes on RD. An α-similitude
is a map Ψix = α−1Uix + γi, x ∈ RD where Ui is a unitary map and γi ∈ RD. We assume
the open set condition for {Ψi}i∈I , that there is a non-empty, bounded open set W such that
{Ψi(W )}i∈I are disjoint and ∪i∈IΨi(W ) ⊂ W . Since {Ψi}i∈I is a family of contraction maps,
there exists a unique non-void compact set K such that K = ∪i∈IΨi(K). We will consider the
case where K is connected.

Let Fix be the set of fixed points of the Ψi’s, i ∈ I. A point x ∈ Fix is called an essential
fixed point if there exist i, j ∈ I, i 6= j and y ∈ Fix such that Ψi(x) = Ψj(y). We write V0 for
the set of essential fixed points, we assume ]V0 ≥ 2. Following [34], K is called a (compact)
uniform finitely ramified fractal (u.f.r. fractal for short) if it satisfies the following finitely
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ramified property in addition to the above properties:
(FR) If {i1, . . . , in}, {j1, . . . , jn} are distinct sequences, then

Ψi1,...,in(K)
⋂

Ψj1,...,jn(K) = Ψi1,...,in(V0)
⋂

Ψj1,...,jn(V0),

where we denote Ψi1,...,in = Ψi1◦. . .◦Ψin . If we further assume the following symmetry condition,
then K is called a (compact) nested fractal as introduced in [47].
(SYM) If x, y ∈ V0, then the reflection in the hyperplane Hxy = {z ∈ RD : |z − x| = |z − y|}
maps Vn to itself, where

Vn = ∪i1,···,in∈IΨi1,...,in(V0). (5.3)

Thus, u.f.r. fractals form a class of fractals which is wider than nested fractals, and is included
in the class of p.c.f. self-similar sets ([40]).

We assume without loss of generality that Ψ1(x) = α−1
1 x and 0 belongs to V0. Let Γ =

∪∞n=0α
nVn. We now introduce uniform finitely ramified graphs. These will be graphs with

vertices Γ and a collection of edges B. In order to define the edges, we first define B0 :=
{{x, y} : x 6= y ∈ V0}. Then inside each αnΨi1,...,in(V0) (n ≥ 0, i1, · · · , in ∈ I), we place a copy
of B0 and we denote by B the set of all the edges determined in this way. Now, we assign
µxy = µyx > 0 for each {x, y} ∈ B. We assume that the weights are bounded from above and
below, i.e. there exist c, C > 0 such that

c ≤ µxy ≤ C, ∀{x, y} ∈ B. (5.4)

Then, (Γ, µ) is a weighted graph satisfying condition (p0). We call the weighted graph (Γ, µ)
a uniform finitely ramified (u.f.r.) graph. If we construct the graph starting from a nested
fractal, then it will be called a nested fractal graph. We denote the corresponding quadratic
form (1.5) as Eµ.

On a u.f.r. graph (Γ, µ), we can naturally define a renormalization map F as follows.

EF (µ)(u) = inf{Eµ(v) : v ∈ RΓ, v(αx) = u(x), x ∈ Γ}, ∀v ∈ RΓ.

In [34] (together with a result in [43]), the following theorem is proved.

Theorem 5.3 Let (Γ, µ) a u.f.r. graph and assume that there exists {µxy} satisfying (5.4) and
such that

F (µ) = ρ−1µ (5.5)

for some ρ > 0. Then, there exist C, c > 0 (which depend on µ) and 0 < γ1 ≤ γ2 such that for
each x, y ∈ Γ and n ≥ d(x, y),

hn(x, y) ≤ Cn−
S

S+1 exp

(
−
(

R(x, y)S+1

Cn

)γ1
)

,

hn(x, y) + hn+1(x, y) ≥ cn−
S

S+1 exp

(
−
(

R(x, y)S+1

cn

)γ2
)

,

where S = log N/ log ρ.
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In [34], it is also shown by counter-examples that in general one cannot take γ1 = γ2, and that
one cannot obtain the same type of heat kernel estimates with d(·, ·) instead of R(·, ·).

By Theorem 5.3 and Theorem 1.3, we have the following characterization of (HK(β)).

Proposition 5.4 Let (Γ, µ) be a u.f.r. graph satisfying (5.5). Then, (HK(β)) holds on (Γ, µ)
for some β ≥ 2 if and only if the following relation between the resistance metric and the graph
distance holds:

R(x, y) ' d(x, y)γ ∀x, y ∈ Γ, (5.6)

for some γ ≥ 1.

Proof. Suppose (5.6) holds. Note that µ(BR(x, r)) ' rS where BR(x, r) := {y ∈ Γ : R(x, y) ≤
r} (cf. Lemma 3.2 in [34]). Thus, we have V (x, r) ' rSγ. Similarly, since Ex[TBR(x,r)] ' rS+1,
we have Ex[τ(x, r)] ' rβ where β = (S + 1)γ. Thus (V G(β−)), (RU(β)) and (RL(β)) hold
with β = (S + 1)γ which implies (HK(β)) by Theorem 1.3.

Next, suppose (HK(β)) holds. Then, by comparing them with Theorem 5.3 for x = y, we
have n−S/(S+1) ' V (x, n1/β) for all n ∈ N and all x ∈ Γ. Thus,

V (x, r) ' rSβ/(S+1) ∀r ∈ N, x ∈ Γ, (5.7)

so that (V G(β−)) holds. Now, by Theorem 1.3, (RU(β)) and (RL(β)) hold. So, together with
(5.7), we obtain (5.6) with γ = β/(S + 1).tu

For nested fractal graphs, it is known that (5.5) and (5.6) hold. Thus, this proposition gives
another proof of the known fact that (HK(β)) holds for such graphs (cf. [34]).

Example 4: Graphical Sierpinski carpets

Let H0 = [0, 1]d, and let l ∈ N, l ≥ 2 be fixed. Set Q = {Πd
i=1[(ki − 1)/l, ki/l] : 1 ≤ ki ≤ l, ki ∈

N (1 ≤ i ≤ d)}, let l ≤ N ≤ ld and let Ψi, I ∈ I := {1, · · · , N} be orientation preserving
affine maps of H0 onto some element of Q. (We assume that the sets Ψi(H0) are distinct.)
Set H1 = ∪i∈IΨi(H0). Then, there exists a unique non-void compact set K ⊂ H0 such that
K = ∪i∈IΨi(K). K is called a (generalized) Sierpinski carpet if the following holds (cf. [9]):
(SC1) (Symmetry) H1 is preserved by all the isometries of the unit cube H0.
(SC2) (Connected) H1 is connected.
(SC3) (Non-diagonality) Let B be a cube in H0 which is the union of 2d distinct elements of
Q. (So B has side length 2l−1.) Then if Int(H1 ∩B) is non-empty, it is connected.
(SC4) (Borders included) H1 contains the line segment {x : 0 ≤ x1 ≤ 1, x2 = · · · = xd = 0}.

The main difference from p.c.f. self-similar sets is that Sierpinski carpets are infinitely
ramified, i.e. K cannot be disconnected by removing a finite number of points.

Let V0 be a set of vertices for H0 and define Vn as in (5.3). Then, one can define a graphical
Sierpinski carpet Γ in the same way as in Example 3 – see [10]. In [7] and [49] it is shown that
there exists ρ > 0 such that the resistance across a cube of side lk in Γ grows as ρk. In [10] it
is proved that Γ satisfies (V G(α)) for α = log N/ log l, and (HK(β)) with β = log(ρN)/ log l.

The proof in [10] relies on an elliptic Harnack inequality, which is proved in [9] by a difficult
probabilistic coupling argument. In the case ρ > 1 it may be possible to prove (R(β)) directly
using resistance bounds similar to those in [7] and [49]; this would then yield a much quicker
proof of (HK(β)) for these Sierpinski carpets. We remark that such classes of infinitely ramified
fractals are also studied in [46].
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with polynomial growth, to appear in Milan J. Math..

[19] Coulhon T. and Saloff-Coste L., Puissances d’un opérateur régularisant, Ann. Inst. Henri
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Iberoamericana, 11 (1995), 3, 687–726.

[22] Delmotte, T., Parabolic Harnack inequality and estimates of Markov chains on graphs,
Rev. Math. Iberoamericana, 15 (1999), 181–232.

[23] Delmotte, T., Graphs between the elliptic and parabolic Harnack inequalities, Potential
Anal., 16 (2002), 2, 151–168.

[24] Doyle P., Snell, J.L., Random Walks and Electrical Networks. Math. Assoc. America,
Washington D.C. 1984.

[25] Fabes, E.B. and Stroock, D.W., A new proof of Moser’s parabolic Harnack inequality via
the old ideas of Nash, Arch. Rational Mech. Anal., 96 (1986), 327–338.

[26] Fukushima, M., Oshima, Y. and Takeda, M., Dirichlet Forms and Symmetric Markov
Processes, de Gruyter, Berlin, 1994.

[27] Grigoryan A., Heat kernel upper bounds on fractal spaces, to appear in J. London Math.
Soc..

[28] Grigor’yan A., Hu J. and Lau K.S., Heat kernels on metric-measure spaces and an appli-
cation to semi-linear elliptic equations, T.A.M.S., 355 (2003), 5, 2065–2095.

32



[29] Grigor’yan A. and Telcs A., Sub-Gaussian estimates of heat kernels on infinite graphs,
Duke Math. J., 109 (2001), 451–510.

[30] Grigor’yan A. and Telcs A., Harnack inequalities and sub-Gaussian estimates for random
walks, Math. Annal., 324 (2002), 521–556.

[31] Haj lasz P. and Koskela P., Sobolev meets Poincaré, C. R. Acad. Sci. Paris Sér. I Math.,
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