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Abstract. On a doubling metric measure space endowed with a “carré du
champ”, we consider Lp estimates (Gp) of the gradient of the heat kernel and
scale-invariant Lp Poincaré inequalities (Pp) for p ≥ 2. We show that the com-
bination of (Gp) and (Pp) always implies the Gaussian heat kernel upper bound
and the Lp boundedness of the Riesz transform (Rp). Moreover, this combination
is shown to also yield the matching heat kernel lower bound if p > ν, where ν is
the doubling exponent. If p ≤ ν, the same implication holds under the additional
assumption of a Lp De Giorgi type property. As a by-product, we give a shorter
proof of the well-known fact that the L2 Poincaré inequality implies Gaussian
upper and lower bounds of the heat kernel as well as of the main result in [47].
Instrumental in our approach is a new notion of Lp Hölder regularity for a semi-
group. Finally we improve known results on the Lp boundedness of the Riesz
transform for p > 2.
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1. Introduction

Let M be a locally compact separable metrisable space equipped with a Borel
measure µ, finite on compact sets and strictly positive on any non-empty open set.
For Ω a measurable subset of M , we shall often denote µ (Ω) by |Ω|.

Let L be a non-negative self-adjoint operator on L2(M,µ) with dense domain
D ⊂ L2(M,µ). Denote by E the associated quadratic form

E(f, g) =

∫
M

fLg dµ,

for f, g ∈ D, and by F its domain, which contains D. Assume that E is a strongly
local and regular Dirichlet form (see [37,45] for precise definitions). As a conse-
quence, there exists an energy measure dΓ, that is a signed measure depending in
a bilinear way on f, g ∈ F such that

E(f, g) =

∫
M

dΓ(f, g)

for all f, g ∈ F . A possible definition of dΓ is through the formula

(1.1)

∫
ϕdΓ(f, f) = E(ϕf, f)− 1

2
E(ϕ, f 2),

valid for f ∈ F ∩ L∞(M,µ) and ϕ ∈ F ∩ C0(M). Here C0(M) denotes the space
of continuous functions on M that vanish at infinity. According to the Beurling-
Deny-Le Jan formula, the energy measure satisfies a Leibniz rule, namely

(1.2) dΓ(fg, h) = fdΓ(g, h) + gdΓ(f, h),

for all f, g, h ∈ F , see [37, Section 3.2]. One can define a pseudo-distance d associ-
ated with E by

(1.3) d(x, y) := sup{f(x)− f(y); f ∈ F ∩ C0(M) s.t. dΓ(f, f) ≤ dµ}.

Throughout the whole paper, we assume that the pseudo-distance d separates
points, is finite everywhere, continuous and defines the initial topology of M (see
[68] and [45, Subsection 2.2.3] for details).

When we are in the above situation, we shall say that (M,d, µ, E) is a metric
measure (strongly local and regular) Dirichlet space. Note that this terminology is
slightly abusive, in the sense that in the above presentation d follows from E .

For all x ∈ M and all r > 0, denote by B(x, r) the open ball for the metric d
with centre x and radius r, and by V (x, r) its measure |B(x, r)|. For a ball B of
radius r and λ > 0, denote by λB the ball concentric with B and with radius λr.
Finally, we will use u . v to say that there exists a constant C (independent of the
important parameters) such that u ≤ Cv and u ' v to say that u . v and v . u.

We shall assume that (M,d, µ) satisfies the volume doubling property, that is

(VD) V (x, 2r) . V (x, r), ∀ x ∈M, r > 0.

It follows that there exists ν > 0 such that

(VDν) V (x, r) .
(r
s

)ν
V (x, s), ∀ x ∈M, r ≥ s > 0,
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which implies

V (x, r) .

(
d(x, y) + r

s

)ν
V (y, s), ∀ x, y ∈M, r ≥ s > 0.

An easy consequence of (VD) is that balls with a non-empty intersection and com-
parable radii have comparable measures.

We shall say that (M,d, µ, E) is a doubling metric measure Dirichlet space if it
is a metric measure space endowed with a strongly local and regular Dirichlet form
and satisfying (VD).

The Dirichlet form E gives rise to a strongly continuous semigroup (e−tL)t>0 of
self-adjoint contractions on L2(M,µ). In addition (e−tL)t>0 is submarkovian, that
is 0 ≤ e−tLf ≤ 1 if 0 ≤ f ≤ 1. It follows that the semigroup (e−tL)t>0 is uniformly
bounded on Lp(M,µ) for p ∈ [1,+∞]. Also, (e−tL)t>0 is bounded analytic on
Lp(M,µ) for 1 < p < +∞ (see [67]), which means that (tLe−tL)t>0 is bounded on
Lp(M,µ) uniformly in t > 0. Moreover, due to the doubling property (VD), the
semigroup has the conservation property (see [41,68]), that is

e−tL1 = 1, ∀ t > 0.

Such a semigroup may or may not have a kernel, that is for all t > 0 a measurable
function pt : M ×M → R+ such that

e−tLf(x) =

∫
M

pt(x, y)f(y) dµ(y), a.e. x ∈M.

If it does, pt is called the heat kernel associated with L (in fact with (M,d, µ, E)).
Then pt(x, y) is nonnegative and symmetric in x, y since e−tL is positivity preserving
and self-adjoint for all t > 0. One may naturally ask for upper and lower estimates
of pt (for upper estimates, see for instance the recent article [13] and the many
relevant references therein; for lower estimates, we will give more references below).
A typical upper estimate is

(DUE) pt(x, y) .
1√

V (x,
√
t)V (y,

√
t)
, ∀ t > 0, a.e. x, y ∈M.

This estimate is called on-diagonal because if pt happens to be continuous then
(DUE) can be rewritten as

(1.4) pt(x, x) .
1

V (x,
√
t)
, ∀ t > 0, ∀x ∈M.

Under (VD), (DUE) self-improves into a Gaussian upper estimate (see [43, The-
orem 1.1] for the Riemannian case, [24, Section 4.2] for a metric measure space
setting):

(UE) pt(x, y) .
1

V (x,
√
t)

exp

(
−d

2(x, y)

Ct

)
, ∀ t > 0, a.e. x, y ∈M.

The proof of this fact in [24, Section 4.2] relies on the following Davies-Gaffney
estimate which was proved in our setting in [69]: for all open subsets E,F ⊂ M ,
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f ∈ L2(M,µ) supported in E, and t > 0,

(1.5)

(∫
F

|e−tLf |2dµ
)1/2

≤ e−
d2(E,F )

4t

(∫
E

|f |2dµ
)1/2

,

where d(E,F ) denotes the distance between E and F . For more on the Davies-
Gaffney estimate, see for instance [24, Section 3].

It is well-known on the contrary that the matching Gaussian lower bound

(LE) pt(x, y) &
1

V (x,
√
t)

exp

(
−d

2(x, y)

ct

)
, ∀ t > 0, a.e. x, y ∈M

does not always follow from (DUE) (see [9]). Conversely, under (VD), (LE) implies
(UE) (see [11] and [26]).

It is not too difficult to prove in our situation that the conjunction of the upper
and lower bounds (UE) and (LE) (that is, (VD) and (LE)) is equivalent to a
uniform parabolic Harnack inequality, see [35] as well as [8, Section 1]. One also
knows ([45, Thm 2.32]) that this Harnack inequality self-improves into a Hölder
regularity estimate for the heat kernel: there exists η ∈ (0, 1]

(Hη) |pt(x, z)− pt(y, z)| .
(
d(x, y)√

t

)η
pt(x, z),

for all t > 0 and a.e. x, y, z ∈M such that d(x, y) ≤
√
t. Note that, if (Hη) holds,

pt admits in particular a continuous version.
What is also true, but much more difficult to prove (see [42], [62], [63], [64], [65],

[70], as well as [45, Theorem 2.31]) is that (UE) + (LE) is also equivalent to (VD)
together with the following scale-invariant Poincaré inequality (P2):

(P2)

(
−
∫
B

∣∣∣∣f −−∫
B

fdµ

∣∣∣∣2 dµ
)1/2

. r

∫
B

dΓ(f, f),

for every f ∈ D and every ball B ⊂ M with radius r. Here −
∫
B
fdµ = 1

|B|

∫
B
fdµ

denotes the average of f on B. A somewhat simplified proof of the main implication,
namely the one from (VD) + (P2) to (UE) + (LE), has been given in [47]. One of
the outcomes of the present article will be to provide a further simplification (see
the proof of Theorem 5.3 below) as well as a short proof of the main result in [47]
(see Theorem 5.4 below).

In the present work, we shall study in particular the transition from (UE) to
(LE) in the spirit of [20] and [12]. The main novelty here will be a notion of Lp

η-Hölder regularity of the heat kernel: for p ∈ [1,+∞] and η ∈ (0, 1], we shall say
that property (Hη

p,p) holds if for every 0 < r ≤
√
t, every pair of concentric balls

Br, B√t with respective radii r and
√
t, and every function f ∈ Lp(M,µ),

(Hη
p,p)

(
−
∫
Br

∣∣∣∣e−tLf −−∫
Br

e−tLfdµ

∣∣∣∣p dµ)1/p

.

(
r√
t

)η ∣∣B√t∣∣−1/p ‖f‖p,

with the obvious modification for p = +∞.
Crucial to our approach is Theorem 3.5 below where we prove the equivalence,

under (VD) and (UE), between the lower Gaussian bound (LE) and the existence
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of some p ∈ [1,+∞) and η > 0 such that (Hη
p,p) holds, a property which turns out

to be independent of p ∈ [1,+∞).

The above scale-invariant Poincaré inequality (P2) quantifies the control of the
oscillation of functions by the Dirichlet form. As we have just seen for the Hölder
regularity of the heat semigroup, it is important to have at hand a full scale of
conditions for p ∈ [1,+∞], not just p = 2. This requires, beyond the notion of L2

norm of the gradient provided by the Dirichlet form, to have a notion of Lp norm
of the gradient, hence a pointwise notion of length of the gradient.

The relevant notion in our general setting is the one of “carré du champ” (see
for instance [45] and the references therein). The Dirichlet form (or its energy
measure) admits a “carré du champ” if for all f, g ∈ F the energy measure dΓ(f, g)
is absolutely continuous with respect to µ. Then the density Υ(f, g) ∈ L1(M,µ) of
dΓ(f, g) is called the “carré du champ” and satisfies the following inequality

(1.6) |Υ(f, g)|2 ≤ Υ(f, f)Υ(g, g).

In the sequel, when we assume that (M,d, µ, E) admits a “carré du champ”, we

shall abusively denote [Υ(f, f)]1/2 by |∇f |. This has the advantage to stick to the
more intuitive and classical Riemannian notation, but one should not forget that
one works in a much more general setting (see for instance [45] for examples), and
that one never uses differential calculus in the classical sense.

We shall summarise this situation by saying that (M,d, µ, E) is a (doubling)
metric measure Dirichlet space with a “carré du champ”.

We can now formulate the Lp versions of the scale-invariant Poincaré inequalities,
which may or may not be true and, contrary to the Hölder regularity conditions for
the heat semigroup, do depend on p ∈ [1,+∞). More precisely, for p ∈ [1,+∞),
one says that (Pp) holds if

(Pp)

(
−
∫
B

∣∣∣∣f −−∫
B

fdµ

∣∣∣∣p dµ)1/p

. r

(
−
∫
B

|∇f |pdµ
)1/p

, ∀ f ∈ F ,

where B ranges over balls in M of radius r. Recall that (Pp) is weaker and weaker as
p increases, that is (Pp) implies (Pq) for q > p, see for instance [46], and the p =∞
version is trivial in the Riemannian setting (see however interesting developments
for more general metric measure spaces in [33]).

On the Euclidean space, (Pp) holds for all p ∈ [1,+∞]. On the connected sum
of two copies of Rn, (Pp) is valid if and only if p > n, as one can see by adapting
the proof of [46, Example 4.2]. More interesting examples follow from [48, Theo-
rem 6.15], see also [34, Section 5]. On conical manifolds with compact basis, (Pp)
holds at least for p ≥ 2 (see [22]). A deep result from [53] states if that (Pp)
holds for some p ∈ (1,+∞), then (Pp−ε) holds for some ε > 0. Finally the set
{p ∈ [1,+∞]; (Pp) holds on M} may be either {+∞}, or [1,+∞], or of the form
(pM ,+∞] for some pM > 1.

We will also use estimates on the gradient (or “carré du champ”) of the semigroup,
which were introduced in [4]: for p ∈ [1,+∞], consider

(Gp) sup
t>0
‖
√
t|∇e−tL|‖p→p < +∞,
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which is equivalent to the interpolation inequality

(1.7) ‖|∇f |‖2
p . ‖Lf‖p‖f‖p, ∀ f ∈ D

(see [25, Proposition 3.6]). Up to an arbitrarily small loss in p, one can reformulate
(Gp) in terms of integral estimates of the gradient of the heat kernel. More precisely,
in presence of (VD) and (DUE), for 2 < p0 ≤ +∞, (Gp) for all p ∈ (2, p0) is
equivalent to

(1.8) ‖|∇x pt(., y)|‖p ≤
Cp

√
t
[
V (y,

√
t)
]1− 1

p

, a.e. y ∈M, t > 0,

for all p ∈ (2, p0), see [4, Proposition 1.10]. Also, under (DUE), (G∞) is equivalent
to the stronger estimate

(G̃∞) |∇xpt(x, y)| . 1√
tV (x,

√
t)

exp

(
−d

2(x, y)

Ct

)
, a.e. x, y ∈M, t > 0

(see [25, Section 4.4], [32, Theorem 1.1]). As far as examples are concerned, (G̃∞)
holds on manifolds with non-negative Ricci curvature ([54]), Lie groups with poly-
nomial volume growth ([61]), and co-compact covering manifolds with polynomial
growth deck transformation group ([31], [32]). On the other hand, conical mani-
folds with a compact basis provide a family of doubling spaces (M,d, µ, E) with a
“carré du champ” satisfying (UE) and (LE) such that for every p0 > 2 there exist
examples in this family where (Gp) holds for 1 < p < p0 and not for p ≥ p0, see
[55],[56],[22].

Property (Gp) is closely related to the Lp boundedness of the Riesz transform
R = |∇L−1/2|. One says that (Rp) holds if the Riesz transform is bounded on
Lp(M,µ), which means that

(Rp) ‖|∇f |‖p . ‖
√
Lf‖p, ∀ f ∈ D.

Since by definition

‖|∇f |‖2
2 = E(f, f) = ‖

√
Lf‖2

2, ∀f ∈ F ,

(R2) trivially holds and (G2) follows from the analyticity of (e−tL)t>0 on L2(M,µ).
Moreover for p ∈ (1, 2), (Gp) also holds always, see [16, Proposition 2.7], and (Rp)
holds due to (DUE), see [21]. Now, by interpolation, (Gp) as well as (Rp) are
stronger and stronger as p increases above 2. It is easy to see that (Rp) implies
(Gp) (due to the fact that the semigroup is bounded analytic on Lp) or equivalently
(1.7). Conversely, [4, Theorem 1.3] (which is stated for Riemannian manifolds, but
does extend to our current setting, as hinted on p.122) says that under (VD) and
Poincaré inequality (P2), for any p0 ∈ (2,+∞) one has

(Gp) for all 2 < p < p0 ⇐⇒ (Rp) for all 2 < p < p0.

Another outcome of the present article will be to prove the same equivalence under
(Pp0) instead of (P2) (see Theorem 7.1 below).

In the present paper, we are going to look at the combination (Gp) + (Pp) for
1 ≤ p ≤ +∞, and especially for 2 ≤ p < +∞. For 1 ≤ p ≤ 2, (Gp) + (Pp) is
nothing but (Pp) and therefore is weaker and weaker as p goes from 1 to 2. On the
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contrary, for 2 ≤ p ≤ +∞, since (Gp) is stronger as p increases, whereas (Pp) is
weaker, (Gp) + (Pp) does not exhibit a priori any monotonicity.

At one end of the range, (G∞) + (P∞), at least in the Riemannian setting, is
nothing but (G∞), which does not seem to have consequences in itself. However, it
has been shown in [25, Corollary 2.2] that, in presence of (VD), the stronger version

(G̃∞) implies (UE) and (LE), therefore, by [21] and [4], (Rp) for all 1 < p < +∞,
and finally

(Ep) ‖|∇f |‖p ' ‖
√
Lf‖p, ∀ f ∈ D.

At the other end of the range, for p = 2, we already recalled the fundamental fact
that (G2) + (P2) = (P2) implies (UE) + (LE).

We are going to complete the picture for 2 < p < +∞ and by the same token
simplify the proof of the case p = 2.

First, assuming (VDν), we will prove that for ν < p < +∞, (Gp) + (Pp) also has
strong consequences. We obtain in Proposition 2.1 that under the doubling property
(VD), for any p ∈ [2,+∞) the combination (Gp)+(Pp) implies the upper estimates
(DUE) and therefore (UE). Using this step, we further show in Theorem 4.1, in
the spirit of [20] and using Theorem 3.5, that under (VDν) and for ν < p < +∞,

(1.9) (Gp) + (Pp) =⇒ (LE).

Putting together these two results,

(Gp) + (Pp) =⇒ (UE) + (LE)

for ν < p < +∞ (it is known anyway that (LE) =⇒ (UE), see [11, Theorem 1.3]
and [26]). As a by-product, we shall see in Corollary 4.5 that finally (Gp) + (Pp)
for some p > ν implies (Gq) + (Pq) for all q ∈ [2, p).

If ν < 2, the relevant range p ∈ [2,+∞) is covered by the above. One expects
things to be easier in this case (see for instance [13, Corollary 2.3.6, Proposition
4.1.8]. This is not only a folklore case (see [23] for a discrete example), but certainly
a marginal case, and we certainly have to consider the more common situation where
ν ≥ 2.

The case p ∈ [2, ν] is more complicated. This is not a priori obvious, and it
means that in the couple (Gp) + (Pp) it is more efficient to have a stronger (Gp)
at the expense of a weaker (Pp), than the opposite. In this range, we will have
to introduce an extra assumption in order to ensure the validity of the implication
(1.9), namely a non-local Lp-version of De Giorgi property (DGp) (see Section 6
for details and definitions) and we shall prove in Theorem 6.4 that, again under
(VDν), for p ∈ [2, ν],

(Gp) + (Pp) + (DGp) =⇒ (LE).

It is easy to see that (DGp) always holds for p > ν, so this result is an extension of
(1.9). This can be understood in the following way: for p > ν, the corresponding
Sobolev inequality, that is the so-called Morrey inequality (4.1), suffices to deduce
from Lp gradient bounds L∞ Hölder estimates on the heat kernel (see the short
proof after Remark 4.3 below); for p ∈ (2, ν], however, one has to use an elliptic
iterative argument to get from Lp gradient bounds up to L∞ Hölder estimates,
and the property (DGp) precisely incorporates such an iteration. We do not know
whether this new assumption (DGp) is really necessary in this range; it may well
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follow from (Gp)+(Pp) as in the case p = 2 (see Appendix A), but we have not been
able to prove it. Note that along the way we introduce and prove an Lp Caccioppoli
inequality (6.1) which may be of independent interest.

In any case, (DGp) is not far from being optimal since under (Gp) for some p > 2,
(P2) (hence (LE) as we already explained) implies (DGq) for every q ∈ (2, p] (see
Proposition 6.7 below). Again, together with Proposition 2.1 (or by [11, Theorem
1.3] adapted to our setting), we can conclude, for p ∈ [2, ν],

(Gp) + (Pp) + (DGp) =⇒ (UE) + (LE).

For p = 2 the well-known implication (P2) =⇒ (UE) + (LE) then follows from the
fact that (G2) is always true and that (P2) =⇒ (DG2). The latter can be seen by
an elliptic Moser iteration, much easier than its parabolic counterpart.

Since (UE) + (LE) implies (P2) (see [62–65]), one can a posteriori summarise the
above by saying that under (VDν) and (Gp), (Pp) self-improves to (P2), without
any further condition if p > ν, and together with (DGp) if p ≤ ν. In particular,
under (Pp) if p > ν and (Pp) + (DGp) if p ≤ ν, (Rp) can only hold if (P2) holds.

Note that in the range p > ν, (Pp) is particularly simple: for instance, if V (x, r) '
rν , it is equivalent to the Morrey inequality

|f(x)− f(y)| . [d(x, y)]1−
ν
p ‖|∇f |‖p, ∀ f ∈ D,

see [19, Théorème 7.3]. In particular, it is stable under the operation of glueing,
say, two manifolds with this volume growth along a compact. Now, if we glue two
such manifolds satisfying (Rp) and (Pp) for p > ν > 2, the implication

(Rp) + (Pp) =⇒ (Gp) + (Pp) =⇒ (P2),

shows that (Rp) cannot hold on the new manifold, since it is easy to see that (P2)
is false on a manifold with a least two ends having polynomial growth of exponent
ν > 2. This remark is nothing but a systematisation of the counter-example in
[21, Section 5]. This also explains why glueing is not allowed in the second assertion
of [29, Theorem 1.1]. For a different statement in this direction, see [14, Corollary
7.5].

Finally, we will see in Theorem 7.7 that for any p0 ≥ 2, that is even when one
cannot use Theorem 4.1 to rely on (LE), or (P2), the combination (Gp0) + (Pp0)
implies (Rp) for p ∈ (p0, p0 + ε). This improves the main result of [4], which gives,
up to an arbitrary small loss in p, the equivalence between (Gp) and (Rp) for p > 2,
under a L2-Poincaré inequality (P2), as well as the main result of [3] which treats
the case p0 = 2. It follows that, under the assumption (Gp0)+(Pp0) for some p0 ≥ 2,
the range of exponents p ∈ (1,∞) for which (Gp) holds coincides with the one for
which (Rp) holds, and this range is an open interval of the form (1, p1), for some
exponent p1 ∈ (p0,+∞] (see Theorem 7.8).

We can summarise most of our results in the following way:

Theorem. Let (M,d, µ, E) be a metric measure Dirichlet space with a “carré du
champ” satisfying (VDν). Assume (Gp0) and (Pp0) for some p0 ≥ 2. Then (DUE)
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holds. Moreover there exists p1 ∈ (p0,+∞] such that

{p ∈ (1,∞), (Rp) holds} = {p ∈ (1,∞), (Gp) holds} = (1, p1).

If either p0 > ν or else 2 < p0 ≤ ν and (DGp0) holds, then (LE), and therefore
(P2), holds.

The plan of the paper is as follows. Section 2 is devoted to the proof of upper
estimates (UE) under (Gp) + (Pp) for any p ∈ [2,+∞). In Section 3, we obtain the
crucial self-improvement property of Lp Hölder regularity estimates (Hη

p,p) for the
semigroup (Proposition 3.1), and their equivalence with (LE). As an application,
in Section 4, (LE) is shown to be implied by (Gp) and (Pp) for p > ν (Theorem
4.1). The counterpart p ≤ ν (Theorem 6.4) is investigated in Section 6, through the
study of a suitable De Giorgi property called (DGp). In Section 5, we give a simple
proof of the implication from (VD) + (P2) to (UE) + (LE); the only remaining non
trivial part is the implication from (VD) + (P2) to the most classical De Giorgi
property (DG2), which is recalled in Appendix B. With similar arguments, we also
obtain a new proof of the result from [47] that the elliptic regularity together with
a scale-invariant local Sobolev inequality imply the parabolic Harnack inequality
(Theorem 5.4). Finally, in Section 7, we improve the main results of [3] and [4] by
proving the equivalence between the gradient estimate (Gp) and the boundedness
of the Riesz transform (Rp), under the Poincaré inequality (Pp). In Appendix A,
we study more closely the p-independence of property (Hη

p,p). Appendix C spells
out a self-improving property of reverse Hölder estimates which is used in the proof
of Theorem 7.1.

Moreover, we refer the reader to a forthcoming work of the authors [10], where
these new notions (Lp Hölder regularity properties for the heat semigroup and Lp

De Giorgi type estimates) will be used to establish the fact that, under certain
assumptions on the heat kernel, the spaces {f ∈ L∞(M,µ), Lα/2f ∈ Lp(M,µ)} are
algebras for the pointwise product for α ∈ (0, 1) and p ∈ (1,+∞).

Since our results avoid parabolic Moser iteration, which is very hard to run
directly in a discrete time setting (see [28]), they are well suited to an extension to
random walks on discrete graphs. As a matter of fact, our Appendix B is inspired
by [3], but on the other hand our approach below gives a simpler proof of the main
result in [3] by avoiding the iteration step in [3, Proposition 4.5]. For the discrete
version of our results on Riesz transform one can rely on [7]. We leave this for
future work.

2. From Poincaré and gradient estimates to heat kernel upper
bounds

In this section we shall need a version of the Davies-Gaffney estimate (1.5) which
also includes the gradient, namely

(2.1)

(∫
F

|e−tLf |2dµ
)1/2

+
√
t

(∫
F

|∇e−tLf |2 dµ
)1/2

. e−c
d(E,F )2

t

(∫
E

|f |2dµ
)1/2

,

for some c > 0, all open subsets E,F ⊂ M , f ∈ L2(M,µ) supported in E, and
t > 0, d(E,F ) being the distance between E and F . The proof of this fact in
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[4, Section 3.1] works in our setting of a Dirichlet space with a “carré du champ”.
Indeed, the proof relies on the following inequality: for ϕ a non-negative cut-off
function with support S,∫

ϕ|∇e−tLf |2dµ ≤
(∫
|e−tLf |2|∇ϕ|2dµ

)1/2(∫
S

|∇e−tLf |2dµ
)1/2

(2.2)

+

∫
ϕ|e−tLf ||Le−tLf |dµ,

which follows from (1.1), (1.2), and (1.6).

Proposition 2.1. Let (M,d, µ, E) be a metric measure Dirichlet space with a “carré
du champ” satisfying (VD). Then the combination of (Gp) with (Pp) for some
p ∈ [2,+∞) implies (UE).

Proof. Assume first 2 < p < +∞. From the self-improving property of (Pp) (see
[53]), there exists p̃ ∈ (2, p) such that (Pp̃) holds. Then, by interpolating between
the L2 Davies-Gaffney estimate for ∇e−tL contained in (2.1) and (Gp), one obtains

that for t > 0 the operator
√
t∇e−tL satisfies Lp̃-Lp̃ off-diagonal estimates at the

scale
√
t. Similarly, by interpolating the uniform L∞ boundedness with (2.1), one

sees that the semigroup e−tL also satisfies such estimates. Namely, for some c > 0,

(2.3) ‖
√
t|∇e−tL|‖Lp̃(B)→Lp̃(B̃) + ‖e−tL‖Lp̃(B)→Lp̃(B̃) . exp

(
−cd

2(B, B̃)

t

)
,

for every t > 0 and all balls B, B̃ of radius
√
t. On the other hand, the (Pp̃)

Poincaré inequality self-improves into a (Pp̃,q) inequality for some q > p̃ (given by
q−1 = p̃−1 − ν−1 if p̃ < ν, q = +∞ if p̃ < ν and any q > ν if p̃ = ν, see [36]). That
is, for every ball B̃ of radius

√
t, one has(

−
∫
B̃

∣∣∣∣f −−∫
B̃

fdµ

∣∣∣∣q dµ)1/q

.
√
t

(
−
∫
B̃

|∇f |p̃ dµ
)1/p̃

.

Hence (
−
∫
B̃

∣∣∣∣e−tLf −−∫
B̃

e−tLfdµ

∣∣∣∣q dµ)1/q

.

(
−
∫
B̃

∣∣∣√t∇e−tLf ∣∣∣p̃ dµ)1/p̃

,

for all t > 0 and f ∈ Lp̃(M,µ). It follows by Jensen’s inequality that(
−
∫
B̃

∣∣e−tLf ∣∣q dµ)1/q

.

(
−
∫
B̃

∣∣e−tLf ∣∣p̃ dµ)1/p̃

+

(
−
∫
B̃

∣∣∣√t∇e−tLf ∣∣∣p̃ dµ)1/p̃

.

Then from (2.3), we deduce that for every pair of balls B, B̃ of radius
√
t one has

(2.4) ‖e−tL‖Lp̃(B)→Lq(B̃) . exp

(
−cd

2(B, B̃)

t

)
|B̃|

1
q
− 1
p̃ .

We now use [13], and refer to it for more details. Set Vr(x) := V (x, r), and denote
abusively by w the operator of multiplication by a function w. Using doubling,
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(2.4) may be written as

‖V
1
p̃
− 1
q√

t
e−tL‖Lp̃(B)→Lq(B̃) . exp

(
−cd

2(B, B̃)

t

)
.

By the doubling property, we may sum this inequality over a covering of the whole
space at the scale

√
t and deduce (V Ep̃,q), which is

sup
t>0
‖V

1
p̃
− 1
q√

t
e−tL‖p̃→q < +∞.

By duality, one obtains (EVq′,p̃′), that is

sup
t>0
‖e−tLV

1
p̃
− 1
q√

t
‖q′→p̃′ < +∞.

Then by interpolation [13, Proposition 2.1.5] between (V Ep̃,q) and (EVq′,p̃′), one
obtains (V EVr,r′, 1

r
− 1

2
), that is

sup
t>0
‖V

1
r
− 1

2√
t
e−tLV

1
r
− 1

2√
t
‖r→r′ < +∞,

where 1 ≤ r < 2 is given by 1
r

= 1
2
(1
p̃

+ 1
q′

) = 1
2

+ (1
p̃
− 1

q
). Then (EVr,2) holds by

[13, Remark 2.1.3]. Thanks to the L1-uniform boundedness of the semigroup, the
extrapolation [13, Proposition 4.1.9] yields (EV1,2), hence (DUE) by [13, Proposi-
tion 2.1.2] and (UE) by [24, Section 4.2].

Finally, if p = 2, one can run the above proof by setting directly p̃ = 2. Alterna-
tively, one can see by [26, Section 5] that (P2) and (VD) imply the so-called Nash
inequality (N) and apply [13, Theorem 1.2.1]. �

Remark 2.2. The case 1 ≤ p < 2 of Proposition 2.1 follows trivially from the case
p = 2.

Remark 2.3. One may avoid the use of the highly non-trivial result from [53] by
assuming directly (Gp) and (Pq) for some q ∈ (2, p). Note that this version does
work for p = +∞.

3. Lp Hölder regularity of the heat semigroup and heat kernel
lower bounds

The following statement is valid in a more general setting than the one presented
in Section 1 and used in Section 2: it is enough to consider a metric measure space
(M,d, µ) satisfying (V D), endowed with a semigroup (e−tL)t>0 acting on Lp(M,µ),
1 ≤ p ≤ +∞. For 1 ≤ p ≤ +∞ let us write the Lp-oscillation for u ∈ Lploc(M,µ)
and B a ball:

p- OscB(f) :=

(
−
∫
B

|f −−
∫
B

f dµ|p dµ
)1/p

,

if p < +∞ and

∞- OscB(f) := ess sup
B
|f −−

∫
B

f dµ|.

Proposition 3.1. Let (M,d, µ, L) as above. Let p ∈ [1,+∞] and η ∈ (0, 1]. Then
the following two conditions are equivalent:
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(a) for all 0 < r ≤
√
t, every pair of concentric balls Br, B√t with respective

radii r and
√
t, and every function f ∈ Lp(M,µ),

(Hη
p,p) p- OscBr(e

−tLf) .

(
r√
t

)η ∣∣B√t∣∣−1/p ‖f‖p.

(b) for all 0 < r ≤
√
t, every pair of concentric balls Br, B√t with respective

radii r and
√
t, and every function f ∈ Lp(M,µ),

(Hη
p,∞) ess sup

x,y∈Br

∣∣e−tLf(x)− e−tLf(y)
∣∣ . ( r√

t

)η ∣∣B√t∣∣−1/p ‖f‖p.

Remark 3.2. It is easy to see that (Hη
p,∞) is equivalent to the following condition,

which justifies its name: for all 0 < r ≤
√
t, every pair of concentric balls Br, B√t

with respective radii r and
√
t, and every function f ∈ Lp(M,µ),

(3.1) ∞- OscBr(e
−tLf) .

(
r√
t

)η ∣∣B√t∣∣−1/p ‖f‖p.

Proposition 3.1 is an easy consequence of a well-known characterisation of Hölder
continuous functions in terms of the growth of their Lp oscillations on balls. This
result is due to Meyers [58] in the Euclidean space, and its proof was later simpli-
fied, see e.g. [39, III.1]. It can be formulated in terms of embeddings of Morrey-
Campanato spaces into Hölder spaces. The proof goes through in a doubling metric
measure space setting (see [2, Proposition 2.6] for an L2 version). A particular case
of the following lemma will be used in the proof of Proposition 6.7 below. We give
a proof for the sake of completeness.

Lemma 3.3. Let (M,d, µ) be a metric measure space satisfying (VD). Let 1 ≤
p < +∞ and η > 0. Then for every function f ∈ Lploc(M,µ) and every ball B in
(M,d, µ),

‖f‖Cη(B) := ess sup
x,y∈B
x 6=y

|f(x)− f(y)|
dη(x, y)

. ‖f‖Cη,p(B) := sup
B̃⊂6B

p- OscB̃(f)

rη(B̃)
.

Proof. Let x, y ∈ B be Lebesgue points for f . Let Bi(x) = B(x, 2−id(x, y)), for
i ∈ N. Note that for all i ∈ N, Bi(x) ⊂ B0(x) ⊂ 3B. Write∣∣∣∣f(x)−−

∫
B0(x)

fdµ

∣∣∣∣ ≤ ∑
i≥0

∣∣∣∣−∫
Bi(x)

fdµ−−
∫
Bi+1(x)

fdµ

∣∣∣∣
≤

∑
i≥0

−
∫
Bi+1(x)

∣∣∣∣f −−∫
Bi(x)

fdµ

∣∣∣∣ dµ
≤

∑
i≥0

(
−
∫
Bi+1(x)

∣∣∣∣f −−∫
Bi(x)

fdµ

∣∣∣∣p dµ)1/p

.
∑
i≥0

p- OscBi(x)(f),
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where the last inequality uses doubling. It follows that∣∣∣∣f(x)−−
∫
B0(x)

fdµ

∣∣∣∣ ≤
(∑

i≥0

[r (Bi(x))]η
)
‖f‖Cη,p(B)

=

(∑
i≥0

2−ηidη(x, y)

)
‖f‖Cη,p(B)

. dη(x, y)‖f‖Cη,p(B̃),

as well as the similar estimate with the roles of x, y exchanged. Finally, since
B0(y), B0(x) ⊂ 2B0(x) with comparable measures by doubling,∣∣∣∣−∫
B0(x)

fdµ−−
∫
B0(y)

fdµ

∣∣∣∣ ≤ ∣∣∣∣−∫
B0(x)

fdµ−−
∫

2B0(x)

fdµ

∣∣∣∣+

∣∣∣∣−∫
B0(y)

fdµ−−
∫

2B0(x)

fdµ

∣∣∣∣
. −
∫

2B0(x)

∣∣∣∣f −−∫
2B0(x)

fdµ

∣∣∣∣ dµ
≤

(
−
∫

2B0(x)

∣∣∣∣f −−∫
2B0(x)

fdµ

∣∣∣∣p dµ)1/p

= p- Osc2B0(x)(f),

hence ∣∣∣∣−∫
B0(x)

fdµ−−
∫
B0(y)

fdµ

∣∣∣∣ ≤ dη(x, y)‖f‖Cη,p(B̃).

The claim follows by writing

|f(x)−f(y)| ≤
∣∣∣∣f(x)−−

∫
B0(x)

fdµ

∣∣∣∣+ ∣∣∣∣−∫
B0(x)

fdµ−−
∫
B0(y)

fdµ

∣∣∣∣+ ∣∣∣∣f(y)−−
∫
B0(y)

fdµ

∣∣∣∣ .
�

Proof of Proposition 3.1. The implication from (Hη
p,∞) to (Hη

p,p) is obvious by inte-
gration. The case p = +∞ of the converse is similar to Remark 3.2.

Assume (Hη
p,p) for 1 ≤ p < +∞. Let t > 0, and Br a ball of radius 0 < r ≤

√
t.

From Lemma 3.3, we deduce that for f ∈ Lp(M,µ), a.e. x, y ∈ Br,

(3.2) |e−tLf(x)− e−tLf(y)| . rη sup
B̃⊂6Br

p- OscB̃(e−tLf)

rη(B̃)
.

Now (Hη
p,p) yields

p- OscB̃(e−tLf)

rη(B̃)
. t−η/2|B̃√t|−1/p‖f‖p,

where B̃√t is the ball concentric to B̃ with radius
√
t. The balls B̃√t and B√t have

the same radius and, if B̃ ⊂ 6Br, it follows by doubling that |B̃√t| and |B√t| are
comparable, hence

(3.3) sup
B̃⊂6Br

p- OscB̃(e−tLf)

rη(B̃)
. t−η/2|B√t|−1/p‖f‖p,

and (3.2) together with (3.3) yield (Hη
p,∞). �
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The previous proof relies on the fact that a pointwise Hölder regularity follows
from Hölder estimates in terms of oscillation. This key observation requires a suf-
ficiently rapid decay at 0 of the Hölder modulus of continuity under consideration.
Under the additional assumption of Gaussian upper estimates for the heat kernel,
we shall now give another proof that (Hη

p,p) implies (Hη
p,∞) that does not take into

account the decay of the modulus of continuity. In other words, the second proof
explains how the gain of integrability due to the Gaussian estimates of the heat
kernel allows to pass from a regularity in terms of Lp-oscillation to a pointwise
regularity. The second proof holds for any doubling modulus of regularity instead

of
(

r√
t

)η
, for instance a logarithmic modulus of continuity (1− log( r√

t
))−α with any

α > 0, whereas the above argument fails if α ∈ (0, 1).

Proposition 3.4. Let (M,d, µ) as above and assume that (e−tL)t>0 is a non-
negative self-adjoint semigroup on L2(M,µ) with a measurable kernel pt satisfying

(3.4) |pt(x, y)| . 1

V (x,
√
t)

exp

(
−d

2(x, y)

Ct

)
, ∀ t > 0, a.e. x, y ∈M,

which we will abusively still call (UE). Assume also conservativeness: e−tL1 = 1.
Let p ∈ [1,+∞] and ω be a doubling modulus of continuity, which is a nonde-

creasing function ω : [0,∞)→ [0,∞) with

lim
x→0

ω(x) = 0

satisfying for some D > 0: for every x ≥ 0 and t ≥ 1

(3.5) ω(tx) . tDω(x).

Then the following two conditions are equivalent:

(a) for all 0 < r ≤
√
t, every pair of concentric balls Br, B√t with respective

radii r and
√
t, and every function f ∈ Lp(M,µ),

(3.6) p- OscBr(e
−tLf) . ω

(
r√
t

) ∣∣B√t∣∣−1/p ‖f‖p.

(b) for all 0 < r ≤
√
t, every pair of concentric balls Br, B√t with respective

radii r and
√
t, and every function f ∈ Lp(M,µ),

(3.7) ess sup
x,y∈Br

∣∣e−tLf(x)− e−tLf(y)
∣∣ . ω

(
r√
t

) ∣∣B√t∣∣−1/p ‖f‖p.

Note that as a consequence of (3.4), (e−tL)t>0 acts and is uniformly bounded on
all Lp(M,µ), 1 ≤ p ≤ +∞. Recall that (DUE) implies (UE) also in this setting as
soon as (e−tL)t>0 satisfies a Davies-Gaffney estimate (see [24, Section 4.2]).

Proof. Again, the implication from (3.7) to (3.6) is obvious by integration. In order

to prove (3.7), fix a ball Br of radius r ≤
√
t

4
(again, the remaining case follows

obviously by doubling); then it is sufficient to show

(3.8) ess sup
x∈Br

∣∣∣∣e−tLf(x)−
(
−
∫
Br

e−(t−r2)Lfdµ

)∣∣∣∣ . ω

(
r√
t

) ∣∣B√t∣∣−1/p ‖f‖p,

which we are now going to prove.
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Step 1: We claim that for every ball B̃r of radius r, we have∣∣∣∣(−∫
Br

e−tLfdµ

)
−
(
−
∫
B̃r

e−tLfdµ

)∣∣∣∣(3.9)

.

(
1 +

d(Br, B̃r)

r

)D+ ν
p

ω

(
r√
t

) ∣∣B√t∣∣−1/p ‖f‖p.

Indeed, consider a ball Bρ containing both Br and B̃r with radius ρ ' r+d(Br, B̃r).
We have∣∣∣∣(−∫

Br

e−tLfdµ

)
−
(
−
∫
B̃r

e−tLfdµ

)∣∣∣∣
≤

∣∣∣∣∣
(
−
∫
Br

e−tLfdµ

)
−

(
−
∫
Bρ

e−tLfdµ

)∣∣∣∣∣+

∣∣∣∣∣
(
−
∫
Bρ

e−tLfdµ

)
−
(
−
∫
B̃r

e−tLfdµ

)∣∣∣∣∣ .
These two terms can be treated similarly, so let us focus on the first one.∣∣∣∣∣
(
−
∫
Br

e−tLfdµ

)
−

(
−
∫
Bρ

e−tLfdµ

)∣∣∣∣∣ ≤ −
∫
Br

∣∣∣∣∣e−tLf −
(
−
∫
Bρ

e−tLfdµ

)∣∣∣∣∣ dµ
≤

(
−
∫
Br

∣∣∣∣∣e−tLf −
(
−
∫
Bρ

e−tLfdµ

)∣∣∣∣∣
p

dµ

)1/p

≤

(
1

|Br|

∫
Bρ

∣∣∣∣∣e−tLf −
(
−
∫
Bρ

e−tLfdµ

)∣∣∣∣∣
p

dµ

)1/p

=

(
|Bρ|
|Br|

)1/p

p- OscBρ(e
−tLf).

By (VDν) it follows that

(3.10)

∣∣∣∣∣
(
−
∫
Br

e−tLfdµ

)
−

(
−
∫
Bρ

e−tLfdµ

)∣∣∣∣∣ . (ρr) νp p- OscBρ(e
−tLf).

Then if ρ ≤
√
t, applying (Hη

p,p) to Bρ and
√
t
ρ
Bρ gives

p- OscBρ(e
−tLf) . ω

(
ρ√
t

) ∣∣∣∣√tρ Bρ

∣∣∣∣−1/p

‖f‖p.

Now
√
t
ρ
Bρ and B√t have the same radius

√
t and a non-empty intersection since

they both contain Br, hence by doubling they have comparable measures. Hence

p- OscBρ(e
−tLf) . ω

(
ρ√
t

) ∣∣B√t∣∣−1/p ‖f‖p.
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If ρ ≥
√
t, then, using the Lp-boundedness of the semigroup and the fact that∣∣B√t∣∣ . |Bρ|, we can write

p- OscBρ(e
−tLf) .

(
−
∫
Bρ

∣∣e−tLf ∣∣p dµ)1/p

.
∣∣B√t∣∣−1/p ‖f‖p

. ω

(
ρ√
t

) ∣∣B√t∣∣−1/p ‖f‖p,

where the implicit constant depends on ω through ω(1) (since ω is nondecreasing).
In all cases, one has

p- OscBρ(e
−tLf) . ω

(
ρ√
t

) ∣∣B√t∣∣−1/p ‖f‖p,

which with (3.10) and (3.5) yields∣∣∣∣∣
(
−
∫
Br

e−tLfdµ

)
−

(
−
∫
Bρ

e−tLfdµ

)∣∣∣∣∣ . (ρr)D+ ν
p
ω

(
r√
t

) ∣∣B√t∣∣−1/p ‖f‖p.

The claim follows.

Step 2: Conclusion of the proof of (3.8).
For x ∈ Br and f ∈ Lp(M,µ), one can write, thanks to the conservation property,

e−tLf(x)−
(
−
∫
Br

e−(t−r2)Lfdµ

)
= e−r

2L

(
e−(t−r2)Lf −

(
−
∫
Br

e−(t−r2)Lf dµ

))
(x).

Now (UE) yields, for g ∈ Lploc(M,µ) and x ∈ Br,

e−r
2Lg(x) .

∑
i∈I

e−c
d2(Br,B̃

i
r)

r2

(
−
∫
B̃ir

|g|p dµ
)1/p

,

where (B̃i
r)i∈I is a boundedly overlapping covering of the whole space by balls of

radius r. Taking g = e−(t−r2)Lf −
(
−
∫
Br
e−(t−r2)Lf dµ

)
gives∣∣∣∣e−tLf(x)−

(
−
∫
Br

e−(t−r2)Lf dµ

)∣∣∣∣(3.11)

.
∑
i∈I

e−c
d2(Br,B̃

i
r)

r2

(
−
∫
B̃ir

∣∣∣∣e−(t−r2)Lf −
(
−
∫
Br

e−(t−r2)Lf dµ

)∣∣∣∣p dµ)1/p

.

We then decompose(
−
∫
B̃ir

∣∣∣∣e−(t−r2)Lf −
(
−
∫
Br

e−(t−r2)Lfdµ

)∣∣∣∣p dµ)1/p

. p- OscB̃ir(e
−(t−r2)Lf) +

∣∣∣∣(−∫
B̃ir

e−(t−r2)Lfdµ

)
−
(
−
∫
Br

e−(t−r2)Lfdµ

)∣∣∣∣ .
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The first term is estimated by (Hη
p,p):

p- OscB̃ir(e
−(t−r2)Lf) . ω

(
r√
t

) ∣∣∣B̃i√
t

∣∣∣−1/p

‖f‖p,

where B̃i√
t

is dilated from B̃i
r at scale

√
t, and one uses the fact that t−r2 ' t, since

we have chosen r ≤
√
t

4
. Now by doubling

∣∣∣B̃i√
t

∣∣∣−1/p

.
∣∣B√t∣∣−1/p

(
1 +

d(B√t,B̃
i√
t
)

√
t

)ν/p
and since r ≤

√
t this is estimated by

∣∣B√t∣∣−1/p
(

1 + d(Br,B̃ir)
r

)ν/p
.

The second term is estimated by (3.9):∣∣∣∣(−∫
B̃ir

e−(t−r2)Lfdµ

)
−
(
−
∫
Br

e−(t−r2)Lfdµ

)∣∣∣∣
.

(
1 +

d(Br, B̃
i
r)

r

)D+ ν
p

ω

(
r√
t

) ∣∣B√t∣∣−1/p ‖f‖p

(again one uses the fact that t− r2 ' t). Coming back to (3.11), we obtain∣∣∣∣e−tLf(x)−
(
−
∫
Br

e−(t−r2)Lfdµ

)∣∣∣∣
.

∑
i∈I

e−c
d2(Br,B̃

i
r)

r2

(
1 +

d(Br, B̃
i
r)

r

)D+ ν
p

ω

(
r√
t

) ∣∣B√t∣∣−1/p ‖f‖p.

Since by doubling
∑

i∈I e
−c d

2(Br,B̃
i
r)

r2

(
1 + d(Br,B̃ir)

r

)D+ ν
p

is uniformly bounded, this

yields (3.8). �

Following some ideas in [20, Theorem 3.1], we can now identify (Hη
p,p) as the

property needed to pass from (UE) to (LE).

Theorem 3.5. Let (M,d, µ, E) be a metric measure Dirichlet space satisfying (VD)
and the upper Gaussian estimate (UE). If there exist p ∈ [1,+∞] and η ∈ (0, 1]
such that (Hη

p,p) is satisfied, then the lower Gaussian bound (LE) holds. Conversely
(LE) implies (Hη

p,p) for all p ∈ [1,+∞) and some η ∈ (0, 1].

Remark 3.6. Let us emphasise two by-products of Theorem 3.5:

• (LE) is equivalent to the existence of some p ∈ [1,+∞) and some η ∈ (0, 1]
such that (Hη

p,p) holds;
• The property “there exists η > 0 such that (Hη

p,p) holds” is independent
of p ∈ [1,+∞). We refer the reader to Appendix A, where one proves
the independence of this property on p ∈ [1,+∞] (including the infinite
exponent) by a direct argument. In fact, we shall prove that the property
(Hη

p,p) itself is p-independent of p ∈ [1,+∞], up to an arbitrarily small loss
on η.

Proof of Theorem 3.5. First assume (Hη
p,p) for some p ∈ [1,+∞] and some η > 0.

By Proposition 3.1, we know that this estimate self-improves into (Hη
p,∞). Fix a
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point z ∈M and consider the function f = pt(·, z). Then (Hη
p,∞) yields

|p2t(x, z)− p2t(y, z)| .
(
d(x, y)√

t

)η ∣∣B√t∣∣−1/p ‖pt(·, z)‖p,

uniformly for a.e. x, y with d(x, y) ≤
√
t and where B√t is any ball of radius√

t containing x, y (in particular, pt is continuous and pt(x, x) has a meaning). It
follows from (VD) and (UE) that

(3.12) ‖pt(·, z)‖p .
[
V (z,

√
t)
] 1
p
−1

and that

V −1(z,
√
t) . p2t(z, z).

For these two classical facts, see for instance [20, Theorem 3.1]. Hence

|p2t(x, z)− p2t(y, z)| .
(
d(x, y)√

t

)η(
V (z,

√
t)∣∣B√t∣∣
)1/p

V (z,
√
t)−1

.

(
d(x, y)√

t

)η(
V (z,

√
t)∣∣B√t∣∣
)1/p

p2t(z, z).

Note that this estimate is nothing but a slightly weaker form of the classical
Hölder estimate (Hη) from the introduction.

In particular, for x = z and every y ∈ B(x,
√
t) we deduce that

|p2t(x, x)− p2t(y, x)| .
(
d(x, y)√

t

)η
p2t(x, x).(3.13)

It is well-known that (LE) follows (see for instance [20, Theorem 3.1]).
Assume now (LE). Since we have assumed (UE), it follows, through the equiv-

alence of (UE) + (LE) with the parabolic Harnack inequality (see [64, Proposition
3.2] or [45, Theorems 2.31-2.32]), that there exist θ ∈ (0, 1) such that, for a.e.
x, y ∈ Br, 0 ≤ r <

√
t, and a.e. z ∈M

(3.14) |pt(x, z)− pt(y, z)| .
1√

V (z,
√
t)V (x,

√
t)

(
r√
t

)θ
(this is yet another version of (Hη)). On the other hand, (UE) and doubling imply
that

(3.15) |pt(x, z)− pt(y, z)| . pt(x, z) + pt(y, z) .
1

V (x,
√
t)

exp

(
−cd

2(x, z)√
t

)
.

If d(x, z) ≤
√
t, V (z,

√
t) ' V (x,

√
t) '

∣∣B√t∣∣ and (3.14) yields

|pt(x, z)− pt(y, z)| .
1∣∣B√t∣∣

(
r√
t

)θ
.
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If d(x, z) ≥
√
t, one multiplies the square roots of (3.14) and (3.15) to obtain

|pt(x, z)− pt(y, z)| .
1

V 1/4(z,
√
t)V 3/4(x,

√
t)

(
r√
t

)θ/2
exp

(
−cd

2(x, z)√
t

)
=

1

V (x,
√
t)

(
r√
t

)θ/2(
V (x,

√
t)

V (z,
√
t)

)1/4

exp

(
−cd

2(x, z)√
t

)
.

1∣∣B√t∣∣
(
r√
t

)θ/2
,

where the last inequality uses again doubling.
Now we proceed as in [20, Theorem 3.1]. We have just shown that

‖pt(x, .)− pt(y, .)‖∞ .
1∣∣B√t∣∣

(
r√
t

)θ/2
.

The heat semigroup being submarkovian,

‖pt(x, .)− pt(y, .)‖1 ≤ 2.

It follows by Hölder inequality that for 1 ≤ p < +∞

(3.16) ‖pt(x, .)− pt(y, .)‖p′ .
∣∣B√t∣∣−1/p

(
r√
t

)θ/2p
,

for a.e. x, y ∈ Br, 0 ≤ r <
√
t. Now

|e−tLf(x)− e−tLf(y)| ≤
∫
M

|pt(x, z)− pt(y, z)||f(z)| dµ(z)

≤ ‖pt(x, .)− pt(y, .)‖p′‖f‖p,

which together with (3.16) yields (Hη
p,∞) with η = θ/2p, hence (Hη

p,p) by Proposition
3.1.

�

Remark 3.7. In the case of a bounded space, that is diam(M) <∞ (which under
(VD) is equivalent to a finite measure |M | < ∞), to get (LE) it is sufficient to
have (Hη

p,p) for some p ∈ [1,+∞] and η ∈ (0, 1] where we consider only scales with√
t ≤ δ diam(M), for some δ ∈ (0, 1).
Indeed, let us assume this restricted (Hη

p,p) property. Following the above proof,

we deduce the Hölder regularity (3.13) hence (LE) for
√
t ≤ δ diam(M). Then

define tM = δ2 diam2(M)/2 and consider t ≥ 2tM . First, the self-improvement
given by Proposition 3.1 still holds in the same range where (Hη

p,p) is assumed, so

in particular at the scale δ
2

diam(M). This yields (Hη
p,∞), that is, for every function

f ∈ Lp(M,µ) and 0 < r < δ
2

diam(M),

ess sup
x,y∈Br

∣∣e−tMLf(x)− e−tMLf(y)
∣∣ . ( r√

tM

)η
|M |−1/p ‖f‖p,

where we have used the fact that by doubling |B(x,
√
tM)| ' |M | for every x ∈ M .

Since t ≥ 2tM , we may apply this inequality to e−(t−tM )Lf instead of f . By the
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Lp-boundedness of the semigroup with |M | ' |B(x,
√
t| ' |B√t|, we get

ess sup
x,y∈Br

∣∣e−tLf(x)− e−tLf(y)
∣∣ . ( r√

tM

)η ∣∣B√t∣∣−1/p ‖f‖p.

Following the above proof of (3.13), one deduces that for every x, y ∈ M with
d(x, y) ≤ δ′ diam(M) for some δ′ < δ:

|pt(x, x)− pt(y, x)| .
(
δ′

δ

)η
pt(x, x) ≤ 1

2
pt(x, x),

where we have chosen δ′ small enough such that the last inequality comes with an
exact constant smaller than 1/2.

This gives for d(x, y) ≤ δ′ diam(M)

pt(y, x) & |B(x,
√
t)|−1 ' |M |−1.

Then the standard iteration and the doubling property allow us to extend this in-
equality for every x, y ∈M , which gives (LE):

pt(y, x) & |B(x,
√
t)|−1e−c

d(x,y)2

t .

Remark 3.8. Proposition 3.1 and Theorem 3.5 still hold in the context of sub-
Gaussian estimates. Instead of (UE), let us assume that the heat kernel satisfies
for some m > 2
(UEm)

pt(x, y) .
1

V (x, t1/m)
exp

(
−
(
d(x, y)m

Ct

)1/(m−1)
)
, ∀ t > 0, a.e. x, y ∈M.

Then one can easily check that the above remains true by replacing everywhere the
scaling factor

√
t by t1/m. One could also consider the more general heat kernel

estimates from [47, Section 5], where the equivalence with matching Harnack in-
equalities is proved, see also [8].

An alternative proof of the second statement in Theorem 3.5 can be given using
[12, Theorem 6] instead of Proposition 3.1. We leave the details to the reader.
Conversely, a natural follow-up of the end of the proof of Theorem 3.5 is to get the
results from [12], that is the extension of [20, Theorem 4.1] to the doubling setting.
There is nothing essentially new here, but we shall give a proof of [12, Proposition
10] for the sake of completeness.

We first need to introduce the notion of reverse doubling. It is known (see
[44, Proposition 5.2]), that, if M is unbounded, connected, and satisfies (VDν), one
has a so-called reverse doubling volume property, namely there exist 0 < ν ′ ≤ ν
and c > 0 such that, for all r ≥ s > 0 and x ∈M

c
(r
s

)ν′
≤ V (x, r)

V (x, s)
.

Let us say that (M,d, µ) satisfies (VDν,ν′) if, for all r ≥ s > 0 and x ∈M ,

c
(r
s

)ν′
≤ V (x, r)

V (x, s)
≤ C

(r
s

)ν
.
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For the sake of simplicity we shall set ourselves in the Gaussian case (m = 2 in
the notation of Remark 3.8), but the general case is similar.

Theorem 3.9. Let (M,d, µ, E) be a metric measure Dirichlet space satisfying (VDν,ν′)
and the upper Gaussian estimate (UE). Then (LE) holds if and only if, for some
(all) p ∈ (1,+∞), some α > ν

p
and α′ > ν′

p
,

|f(x)− f(y)| . 1

V 1/p(x, d(x, y))

(
dα(x, y)‖Lα/2f‖p + dα

′
(x, y)‖Lα′/2f‖p

)
,

∀ f ∈ D, x, y ∈M .

Proof. Assume (LE). Let 1 < p < +∞, α, α′ > 0 to be chosen later, and k ∈ N
such that k > max

(
α
2
, α
′

2

)
. Let f ∈ D. Thanks to (UE) and to the fact that by

reverse doubling V (x, r) → +∞ as r → +∞, e−tLf → 0 in L2(M,µ), as t → +∞
(see [17, Section 3.1.2] for details). Since e−tLf is bounded in L1(M,µ), e−tLf → 0
in Lp(M,µ) by duality and interpolation. Thus one can write

f = c(k)

∫ +∞

0

tk−1Lke−tLf dt,

hence

|f(x)− f(y)| ≤ c(k)

∫ +∞

0

tk−1|Lke−tLf(x)− Lke−tLf(y)| dt

= c(k)

∫ +∞

0

tk−1|e−(t/2)LLke−(t/2)Lf(x)− e−(t/2)LLke−(t/2)Lf(y)| dt.

Now for r = d(x, y) and 0 <
√
t ≤ r, we get from (3.12) and (VDν)

|e−(t/2)LLke−(t/2)Lf(x)− e−(t/2)LLke−(t/2)Lf(y)|
≤ ‖pt(x, .)− pt(y, .)‖p′‖Lke−(t/2)Lf‖p
≤ (‖pt(x, .)‖p′ + ‖pt(y, .)‖p′) ‖Lke−(t/2)Lf‖p
. V (x,

√
t)−1/pt−(k−α

2
)‖Lα/2f‖p

. V (x, r)−1/p

(
r√
t

)ν/p
t−(k−α

2
)‖Lα/2f‖p,

where the last inequality uses the analyticity of (e−tL)t>0 on Lp(M,µ). For 0 ≤ r <√
t, we can write as in the end of the proof of Theorem 3.5,

|e−(t/2)LLke−(t/2)Lf(x)− e−(t/2)LLke−(t/2)Lf(y)|

≤ ‖pt(x, .)− pt(y, .)‖p′‖Lke−(t/2)Lf‖p .
∣∣B√t∣∣−1/p

(
r√
t

)θ/2p
t−(k−α

′
2

)‖Lα′/2f‖p.

Now reverse doubling yields

|e−(t/2)LLke−(t/2)Lf(x)− e−(t/2)LLke−(t/2)Lf(y)|

.V (x, r)−1/p

(
r√
t

) θ
2p

+ ν′
p

t−(k−α
′
2

)‖Lα′/2f‖p.



22 FRÉDÉRIC BERNICOT, THIERRY COULHON, DOROTHEE FREY

Finally

|f(x)− f(y)| . V (x, r)−1/p‖Lα/2f‖p rν/p
∫ r2

0

tk−1t−
ν
2p
−k+α

2 dt

+ V (x, r)−1/p‖Lα′/2f‖p r
θ
2p

+ ν′
p

∫ +∞

r2
tk−1t−

θ
4p
− ν
′

2p
−k+α′

2 dt.

The above integrals converge if α > ν
p

and α′ < θ
2p

+ ν′

p
, in which case one obtains

|f(x)− f(y)| . V (x, r)−1/p
(
rα‖Lα/2f‖p + rα

′‖Lα′/2f‖p
)
.

One can choose any α > ν
p

and some α′ > ν′

p
. The converse is easy, see [12, Theorem

6]. �

Remark 3.10. One can take α = α′ if ν = ν ′, recovering in particular the polyno-
mial volume growth case from [20, Theorem 4.1].

4. The case ν < p < +∞: from Poincaré and gradient estimates to
heat kernel lower bounds

In [20, Thm. 5.2], it is proved that if the volume growth is polynomial of exponent
ν ≥ 2, then (Rp) and (Pp) for ν < p < +∞ imply (LE). Using the equivalence
between (Gp) and (1.7), it is easy to see that the same proof works with (Gp) instead
of (Rp). Our next theorem extends this result to the doubling case, and in addition
its proof is more direct.

Theorem 4.1. Let (M,d, µ, E) be a metric measure Dirichlet space with a “carré
du champ” satisfying (VDν). Assume (Gp) and (Pp) for some p ∈ (ν,+∞). Then
(LE) holds.

Proof. Replacing f with e−tLf in (Pp), we have, for every t > 0 and every ball Br

of radius r > 0,

p- OscBr(e
−tLf) . r

(
−
∫
Br

|∇e−tLf |pdµ
)1/p

.

If B√t is concentric with Br and
√
t ≥ r,(

−
∫
Br

|∇e−tLf |pdµ
)1/p

.

(∣∣B√t∣∣
|Br|

)1/p(
−
∫
B√t

|∇e−tLf |pdµ

)1/p

,

hence by (VDν)(
−
∫
Br

|∇e−tLf |pdµ
)1/p

.

(√
t

r

) ν
p ∣∣B√t∣∣−1/p ‖|∇e−tLf |‖p

.

(√
t

r

) ν
p ∣∣B√t∣∣−1/p ‖f‖p√

t
,

where the last inequality follows from (Gp). Gathering the two above estimates
yields

p- OscBr(e
−tLf) .

(
r√
t

)1− ν
p ∣∣B√t∣∣−1/p ‖f‖p,
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that is (Hη
p,p) with η = 1 − ν

p
∈ (0, 1) since p > ν. By Proposition 2.1, (UE) also

holds. We conclude by applying Theorem 3.5. �

Remark 4.2. In the above statement, (Pp) is necessary, since (LE) implies (P2),
but (Gp) is not, as the example of conical manifolds shows (see [22]).

Remark 4.3. For p = +∞, the above proof with the obvious modifications shows
that (G∞) together with (UE) implies (LE). This also follows from [25, Corollary

2.2] and the fact that (G∞) and (UE) imply (G̃∞).

Let us give an alternative proof of Theorem 4.1, which is more direct, but does
not shed the same light on the range 2 ≤ p ≤ ν (see Section 5 below) as the above
one.

We shall start with a lemma which is close to [46, Theorem 5.1] and to several
statements in [19] (for the polynomial volume growth case), but we find it useful
to formulate and prove it in the following simple and natural way, which is in fact
inspired by [46, Theorem 3.2].

Lemma 4.4. Let (M,d, µ, E) be a metric measure Dirichlet space with a “carré du
champ” satisfying (VDν). Then (Pp) for some p > ν implies the following Morrey
inequality: for every function f ∈ D and almost every x, y ∈M ,

(4.1) |f(x)− f(y)| . d(x, y)

V 1/p(x, d(x, y))
‖|∇f |‖p.

Proof. Let x, y be Lebesgue points for f . Let Bi(x) = B(x, 2−id(x, y)), for i ∈ N0.
As in Lemma 3.3, one has∣∣∣∣f(x)−−

∫
B0(x)

fdµ

∣∣∣∣ ≤∑
i≥0

p- OscBi(x)(f),

Then using (Pp) and (VDν) which yields |B0(x)| . 2iν |Bi(x)|, we can write∣∣∣∣f(x)−−
∫
B0(x)

fdµ

∣∣∣∣ . ∑
i≥0

2−id(x, y)

(
−
∫
Bi(x)

|∇f |p dµ
)1/p

.
∑
i≥0

2−id(x, y)

(
2iν

|B0(x)|

)1/p(∫
Bi(x)

|∇f |p dµ
)1/p

.

(∑
i≥0

2−i(1−
ν
p

)

)
d(x, y)|B0(x)|−1/p ‖|∇f |‖p

. d(x, y)|B0(x)|−1/p ‖|∇f |‖p ,
where we used p > ν. Similarly we have∣∣∣∣f(y)−−

∫
B0(y)

fdµ

∣∣∣∣ . d(x, y)|B0(y)|−1/p ‖|∇f |‖p

. d(x, y)|B0(x)|−1/p ‖|∇f |‖p ,
where |B0(x)| ' |B0(y)| follows from doubling. Finally, as in Lemma 3.3,∣∣∣∣−∫

B0(x)

fdµ−−
∫
B0(y)

fdµ

∣∣∣∣ ≤ (−∫
2B0(x)

∣∣∣∣f −−∫
2B0(x)

fdµ

∣∣∣∣p dµ)1/p

,
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and by (Pp) ∣∣∣∣−∫
B0(x)

fdµ−−
∫
B0(y)

fdµ

∣∣∣∣ . d(x, y)|B0(x)|−1/p ‖|∇f |‖p .

The claim follows. �

We can now derive Theorem 4.1 easily. Replacing f with e−tLf in the conclusion
of Lemma 4.4 and applying (Gp) yields

|e−tLf(x)−e−tLf(y)| . d(x, y)

V 1/p(x, d(x, y))
‖|∇e−tLf |‖p .

d(x, y)√
t

[V (x, d(x, y))]−1/p ‖f‖p,

hence by (VDν)

(4.2) |e−tLf(x)− e−tLf(y)| .
(
d(x, y)√

t

)1− ν
p

|B√t|−1/p‖f‖p,

for every f ∈ D and every ball B√t with radius
√
t ≥ d(x, y) and containing x. Let

now Br be concentric to B√t with radius
√
t such that 0 < r ≤

√
t. Since p > ν, it

follows from (4.2) that

ess sup
x,y∈Br

|e−tLf(x)− e−tLf(y)| .
(
r√
t

)1− ν
p

|B√t|−1/p‖f‖p.

This is nothing but (Hη
p,∞) with η = 1− ν

p
∈ (0, 1), and we conclude by using (UE)

as in the beginning of the proof of Theorem 3.5.

An obvious by-product of Theorem 4.1 is the following monotonicity property
for (Gp) + (Pp).

Corollary 4.5. Let (M,d, µ, E) be a metric measure Dirichlet space with a “carré
du champ” satisfying (VDν). Then (Gp) + (Pp) for some p > ν implies (P2), hence
(Gq) + (Pq) for all q ∈ [2, p). Moreover, if (Gp) holds for some p ∈ (ν,+∞), then

(Pq)⇐⇒ (P2)

for every q ∈ [2, p].

Proof. We have just proven that (Gp) + (Pp) for p > ν implies (UE) and (LE). By
[62], [70], (P2) follows, hence (Pq) for all q > 2. On the other hand, (Gp) implies
(Gq) for all q ∈ [2, p) by interpolation. The last statement follows in the same
way. �

5. Poincaré inequalities and heat kernel bounds: the L2 theory

The so-called De Giorgi property or Dirichlet property on the growth of the
Dirichlet integral for harmonic functions was introduced by De Giorgi in [27], for
L a second order divergence form differential operator with real coefficients on Rn:
there exists ε ∈ (0, 1) such that for all r ≤ R, every pair of concentric balls Br, BR

with radii r, R and all functions u ∈ W 1,2(Rn) harmonic in 2BR, i.e. Lu = 0 in
2BR, one has

(5.1)

(
−
∫
Br

|∇u|2dµ
)1/2

.

(
R

r

)ε(
−
∫
BR

|∇u|2dµ
)1/2

.



DE GIORGI PROPERTY AND HEAT KERNEL BOUNDS 25

The De Giorgi property was subsequently used in many works and in various situ-
ations to prove Hölder regularity for solutions of inhomogeneous elliptic equations
and systems (see for instance [40]).

The idea to look at the heat equation as a Laplace equation where the RHS is
a time derivative, and to deduce parabolic regularity results from elliptic ones by
using a non-homogeneous equivalent version of De Giorgi property was introduced
in [1] for L a second order operator in divergence form on Rn. In [2], the same ideas
are applied in a discrete geometric setting, and the role of Poincaré inequalities
clearly appears to ensure the elliptic regularity and the equivalence between the
homogeneous and non-homogeneous versions of De Giorgi. This is the approach
we will follow here, while taking full advantage of Theorem 3.5. We shall consider
the following non-homogeneous version of De Giorgi property. With the help of
Lemma 5.7 below, one shows that this formulation is a priori weaker than the one
in [2, Proposition 4.4]. We shall see in the proof of Proposition 5.2 in Appendix B
that under (UE) it is equivalent to (5.1).

Definition 5.1 (De Giorgi property). Let (M,d, µ, E) be a metric measure Dirichlet
space with a “carré du champ” and L the associated operator. We say that (DG2,ε)
holds if the following is satisfied: for all r ≤ R, every pair of concentric balls Br, BR

with respective radii r and R, and for every function f ∈ D, one has

(DG2,ε)

(
−
∫
Br

|∇f |2dµ
)1/2

.

(
R

r

)ε [(
−
∫
BR

|∇f |2dµ
)1/2

+R‖Lf‖L∞(BR)

]
.

We sometimes omit the parameter ε, and write (DG2) if (DG2,ε) is satisfied for
some ε ∈ (0, 1).

Let us now state the counterpart of a result of [2] in the discrete setting. For the
convenience of the reader, we give a proof in Appendix B.

Proposition 5.2. Let (M,d, µ, E) be a doubling metric measure Dirichlet space
with a “carré du champ”. Then (P2) implies (DG2).

We are now in a position to give a simple proof of the main statement of [42],
[62], and [70]. For simplicity let us denote in what follows, for B a ball and f ∈
L2
loc(M,µ):

OscB(f) := 2- OscB(f) =

(
−
∫
B

|f −−
∫
B

f dµ|2 dµ
)1/2

.

Theorem 5.3. Let (M,d, µ, E) be a doubling metric measure Dirichlet space with
a “carré du champ”. Then (P2) implies (LE).

Proof. Applying (P2) to e−tLf for t > 0 and f ∈ L2(M,µ) on a ball Br for r > 0
yields

(5.2) OscBr(e
−tLf) . r

(
−
∫
Br

|∇e−tLf |2dµ
)1/2

.
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According to Proposition 5.2, (DG2,ε) holds for some ε > 0, hence(
−
∫
Br

|∇e−tLf |2dµ
)1/2

(5.3)

.

(√
t

r

)ε (−∫
B√t

|∇e−tLf |2dµ

)1/2

+
√
t ess sup
x∈B√t

|Le−tLf(x)|


≤

(√
t

r

)ε(
|B√t|−1/2‖|∇e−tLf |‖2 +

√
t ess sup
x∈B√t

|Le−tLf(x)|

)
for some ε ∈ (0, 1), 0 < r ≤

√
t and B√t with radius

√
t concentric to Br. By (G2),

(5.4) ‖|∇e−tLf |‖2 .
‖f‖2√
t
.

Now recall that under our assumptions, (UE) holds thanks to Proposition 2.1. By
[43, Corollary 3.3] (one can also use the complex time bounds of [15, Proposition
4.1] and a Cauchy formula) the kernel of the operator tLe−tL also satisfies pointwise
Gaussian estimates. It follow that

(5.5) ess sup
x∈2B√t

|tLe−tLf(x)| . |B√t|−1/2‖f‖2.

Putting together (5.2), (5.3), (5.4) and (5.5) yields

OscBr(e
−tLf) .

(
r√
t

)1−ε

|B√t|−1/2‖f‖2,

that is, (Hη
2,2) with η = 1−ε > 0. This implies (LE) according to Theorem 3.5. �

The original proofs of Theorem 5.3 went through the parabolic Harnack inequal-
ity; some [62–65,70] used a parabolic Moser iteration, another one [42] tricky geo-
metric arguments. In [47, Section 4.2], a shorter proof was given, which went in
three steps (with a fourth one, borrowed from [35], to deduce parabolic Harnack
from (LE)). The first one is to derive an elliptic regularity estimate from (VD)
and (P2). We do not change this step, which relies on the elliptic Moser iteration;
we give a proof for the sake of completeness in Proposition B.4 below. The sec-
ond step is to obtain (UE). Our approach in Proposition 2.1 is particularly simple
since p = 2. The third step is a lower bound on the Dirichlet heat kernel inside a
ball whose radius is the square root of the time under consideration. This is not
trivial (see [47, pp. 1457-1462]) and here lies our main simplification. We first
push step one a little further by deducing (DG2) from the elliptic regularity. We
could then deduce the parabolic regularity as in [2, Section 4]). Instead, we use the
self-improvement of Hölder regularity estimates on the semigroup from Proposition
3.1 and Theorem 3.5.

Introduce the scale-invariant local Sobolev inequality

(LSq) ‖f‖2
q .

1

V 1− 2
q (x, r)

(
‖f‖2

2 + r2E(f)
)
,
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for every ball B = B(x, r), every f ∈ F supported in B(x, r), and for some q > 2.
This inequality was introduced in [62] and was shown, under (VD), to be equivalent
to (DUE) in the Riemannian setting. The equivalence was stated in our more
general setting in [69]. See also [13] for many reformulations of (LSq), an alternative
proof of the equivalence with (DUE), and more references.

The main aim of [47] is to prove that the elliptic Harnack inequality, or an
equivalent elliptic regularity estimate, together with (LSq), or equivalently (UE),
implies the parabolic Harnack inequality. It is enough in this respect to prove (LE),
since as we already said the parabolic Harnack inequality follows from (UE) +
(LE). This phenomenon falls in the circle of the ideas we are developing in the
present work, and, using a transition trick from estimates for harmonic functions
to estimates for all functions together with Theorem 3.5, we will now offer a simple
proof of [47, Theorem 3.1]. Let us say that u ∈ F is harmonic on a ball B if Lu = 0
in the weak sense on B. Note that the following statement involves diam(M) as we
want to treat by the same token the cases M bounded and unbounded. In a first
reading one can certainly assume diam(M) = +∞.

Theorem 5.4. Let (M,d, µ, E) be a doubling metric measure Dirichlet space with
a “carré du champ” satisfying (LSq) for some q > 2. Assume that the following
elliptic regularity estimate holds: there exists α > 0 and δ ∈ (0, 1) such that for
every x0 ∈ M , R > 0 with R < δ diam(M), u ∈ F harmonic in B(x0, R) and
x, y ∈ B(x0, R/2), one has

(ER) |u(x)− u(y)| .
(
d(x, y)

R

)α
OscB(x0,R)(u).

Then (LE) follows.

Remark 5.5. It is known that (P2) implies (LSq) for some q > 2, see for instance
[62, Theorem 2.1], [26, Section 5]. We shall also see in Proposition B.4 below that
(P2) implies (ER). Thus Theorem 5.4 gives back Theorem 5.3.

Before we start the proof of Theorem 5.4, recall that (LSq) for some q > 2 implies
the following relative Faber-Krahn inequality

(FK)

(∫
Ω

|f |2 dµ
)1/2

. r

(
|Ω|

V (x, r)

)β (∫
Ω

|∇f |2 dµ
)1/2

for some β > 0, all balls B(x, r), x ∈ M , r ∈ (0, δ diam(M)) with some δ < 1, and
all f ∈ F supported in Ω ⊂ B(x, r). See for instance [47, Theorem 2.5], as well as
[13, Section 3.3].

In particular, one has

(5.6)

(∫
B(x,r)

|f |2 dµ
)1/2

. r

(∫
B(x,r)

|∇f |2 dµ
)1/2

,

for all balls B(x, r), x ∈ M , r ∈ (0, δ diam(M)) with some δ < 1, and all f ∈ F
supported in B(x, r).

We will need the following result inspired by [2, Lemma 4.2]. Note that the role
classically played by ellipticity in such Lax-Milgram type arguments is played here
by (5.6).
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Lemma 5.6. Let (M,d, µ, E) be a doubling metric measure Dirichlet space with a
“carré du champ” satisfying (5.6). Let f ∈ D and consider an open ball B ⊂ M .
Then, there exists u ∈ F such that f − u ∈ F is supported in the ball B and u is
harmonic in B: for every φ ∈ F supported on B then∫

M

dΓ(u, φ) = 0,

where we recall that dΓ is the energy measure associated with the Dirichlet form E.

Proof. Consider the space of functions

H :=
{
φ ∈ F ⊂ L2, supp(φ) ⊂ B

}
.

Then, due to (5.6) the application

φ 7→ ‖φ‖H := ‖|∇φ|‖L2(B)

defines a norm on H. Consequently, H equipped with this norm is a Hilbert space,
with the scalar product

〈φ1, φ2〉H :=

∫
B

dΓ(φ1, φ2).

Since f ∈ D ⊂ F then the linear form

φ 7→
∫
B

dΓ(f, φ)

is continuous on H. By the representation theorem of Riesz, there exists v ∈ H
such that for every φ ∈ H ∫

B

dΓ(f, φ) =

∫
B

dΓ(v, φ).

We set u := f − v so that v = f − u being in H is supported in B. Moreover for
every φ ∈ H, φ is supported in B so the previous equality yields∫

M

dΓ(u, φ) =

∫
M

dΓ(f, φ)−
∫
M

dΓ(v, φ) = 0.

�

Proof of Theorem 5.4. Let u ∈ F be a function harmonic on a ball BR = B(x0, R)
and write Br = B(x0, r) for r ≤ R with R ≤ δ diam(M) (where we have chosen for
δ the minimum of the two parameters in (FK) and (ER)). From (ER), it follows
that

(5.7) OscBr(u) .
( r
R

)α
OscBR(u).

Indeed, let 0 < r ≤ R/4. According to (ER), for every x ∈ Br,∣∣∣∣u(x)−−
∫
Br

u(y) dµ(y)

∣∣∣∣ ≤ −∫
Br

|u(x)− u(y)| dµ(y)

.

(
−
∫
Br

(
d(x, y)

R

)α
dµ(y)

)
OscBR(u)

.
( r
R

)α
OscBR(u).
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Integrating over Br then gives

OscBr(u) .
( r
R

)α
OscBR(u).

The case R/4 ≤ r ≤ R is trivial.
We will now extend this estimate to non-harmonic functions, namely prove that

(5.8) OscBr(f) .
( r
R

)α
OscBR(f) +

(
R

r

)ν/2
R2

(
−
∫
BR

|Lf |2 dµ
)1/2

for all f ∈ D and concentric balls Br, BR with 0 < r ≤ R. Let f ∈ D. Since
(FK) holds, one can invoke Lemma 5.6 below: there exists u ∈ F harmonic on BR

such that f − u ∈ F is supported in the ball BR. One may write, using triangle
inequality and (5.7),

OscBr(f) ≤ OscBr(u) + OscBr(f − u) .
( r
R

)α
OscBR(u) + OscBr(f − u),

hence by triangle inequality again

(5.9) OscBr(f) ≤
( r
R

)α
(OscBR(f) + OscBR(f − u)) + OscBr(f − u).

Let us start with estimating OscBR(f − u):

OscBR(f − u) .

(
−
∫
BR

|f − u|2 dµ
)1/2

,

and since f − u is supported in BR, by (FK) we have(
−
∫
BR

|f − u|2 dµ
)1/2

. R

(
−
∫
BR

|∇(f − u)|2 dµ
)1/2

.

Now, since f − u is supported on BR and u is harmonic on BR

−
∫
BR

|∇(f − u)|2 dµ =
1

|BR|
E(f − u, f − u) =

1

|BR|

∫
M

dΓ(f − u, f − u)

=
1

|BR|

∫
M

dΓ(f, f − u) =
1

|BR|

∫
BR

(f − u)Lf dµ

≤ 1

|BR|

∫
BR

|f − u||Lf | dµ ≤
(
−
∫
BR

|f − u|2
)1/2(

−
∫
BR

|Lf |2 dµ
)1/2

.

From (FK), it follows that(
−
∫
BR

|∇(f − u)|2 dµ
)1/2

. R1/2

(
−
∫
BR

|∇(f − u)|2
)1/4(

−
∫
BR

|Lf |2 dµ
)1/4

,

hence

(5.10)

(
−
∫
BR

|∇(f − u)|2 dµ
)1/2

. R

(
−
∫
BR

|Lf |2 dµ
)1/2

.

Gathering the above inequalities yields

(5.11) OscBR(f − u) .

(
−
∫
BR

|f − u|2 dµ
)1/2

. R2

(
−
∫
BR

|Lf |2 dµ
)1/2

.
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Now for OscBr(f − u): by doubling

OscBr(f − u) .

(
−
∫
Br

|f − u|2 dµ
)1/2

.

(
R

r

)ν/2(
−
∫
BR

|f − u|2 dµ
)1/2

,

therefore by (5.11)

(5.12) OscBr(f − u) .

(
R

r

)ν/2
R2

(
−
∫
BR

|Lf |2 dµ
)1/2

.

Finally, putting together (5.9), (5.11), (5.12),

OscBr(f) .
( r
R

)α
OscBR(f) +

[( r
R

)α
+

(
R

r

)ν/2]
R2

(
−
∫
BR

|Lf |2 dµ
)1/2

,

which yields (5.8). A standard iteration argument, Lemma 5.7 below, with

A(s) := s−1 OscBs(f) and B(s) :=

(
−
∫
Bs

|Lf |2 dµ
)1/2

,

allows us to obtain for α′ ∈ (0, α)

OscBr(f) .
( r
R

)α′ (
OscBR(f) +R2‖Lf‖L∞(BR)

)
.

That holds for every r ≤ R with R ≤ δ diam(M).
Then if M is unbounded, we may choose R =

√
t and replace f with e−tLf , which

yields

OscBr(e
−tLf) .

(
r√
t

)α′ [
OscB√t(e

−tLf) + ‖tLe−tLf‖L∞(B√t)

]
.

(
r√
t

)α′
|B√t|−1/2‖f‖2,(5.13)

where we used the Gaussian estimates for tLe−tL (see the proof of Theorem 5.3).
Property (Hα′

2,2) follows and Theorem 3.5 yields (LE). If the ambient space M is
bounded, as explained in Remark 3.7 to get (LE), it is sufficient to check (5.13) for
the scales

√
t . diam(M), which is exactly what we just have proved. �

It remains to prove the next lemma which follows ideas of [1, Theorem 3.6] and
[39, Lemma 2.1, Chapter III].

Lemma 5.7. Let 0 < r < R and consider a function A : [r, R]→ R+ such that

(5.14) A(s) .

(
s′

s

)θ
A(s′)

for all s, s′ such that r ≤ s ≤ s′ ≤ R and for some θ > 0. Let B : [r, R]→ R+, and
assume that

A(s) .

(
s′

s

)ε
A(s′) +

(
s′

s

)γ
s′B(s′),(5.15)
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for every r ≤ s ≤ s′ ≤ R and for some ε ∈ (0, 1) and γ > 0. Then

A(r) .

(
R

r

)ε′ [
A(R) +R sup

r≤u≤R
B(u)

]
,

for every ε′ ∈ (ε, 1).

Proof. Applying (5.15) with s and s′ = Ks gives, for some numerical constant C,

A(s) ≤ CKεA(Ks) + CKγKsB(Ks).

We choose K > 1 large enough such that CKε ≤ Kε′ for some fixed ε′ ∈ (ε, 1). It
follows that, for r ≤ s < Ks ≤ R,

A(s) ≤ Kε′A(Ks) +Kγ+ε′−ε+1sB(Ks)

≤ Kε′A(Ks) +Kγ+2s

(
sup
r≤u≤R

B(u)

)
.

By iterating for s = r,Kr,K2r, ..., Kbλc−1r, where λ is such that Kλr = R, we
deduce that

A(r) ≤Kbλcε′A(Kbλcr) +

bλc−1∑
`=0

(K`r)K`ε′

Kγ+2

(
sup
r≤u≤R

B(u)

)

=Kbλcε
′
A(Kbλcr) +

bλc−1∑
`=0

K`(1+ε′)

 rKγ+2

(
sup
r≤u≤R

B(u)

)

.Kbλcε
′
A(Kbλcr) +Kbλc(1+ε′)r

(
sup
r≤u≤R

B(u)

)
≤Kbλcε′

[
A(Kbλcr) +Kbλcr

(
sup
r≤u≤R

B(u)

)]
≤Kbλcε′

[
A(Kbλcr) +R

(
sup
r≤u≤R

B(u)

)]
.

The claim follows by using (5.14). �

6. De Giorgi property and heat kernel bounds: the case 2 < p ≤ ν

We pursue the same ideas as in Section 5 but now for p > 2. To this end, we will
rely on (Gp) and we will introduce Lp versions, for p ∈ [1,+∞), of the De Giorgi
property.

Definition 6.1 (Lp De Giorgi property). Let (M,d, µ, E) be a metric measure
Dirichlet space with a “carré du champ” and L the associated operator. For p ∈
[1,+∞) and ε ∈ (0, 1), we say that (DGp,ε) holds if the following is satisfied: for
all r ≤ R, every pair of concentric balls Br, BR with respective radii r and R, and
for every function f ∈ D, one has

(DGp,ε)

(
−
∫
Br

|∇f |pdµ
)1/p

.

(
R

r

)ε [(
−
∫
BR

|∇f |pdµ
)1/p

+R‖Lf‖L∞(BR)

]
.
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We sometimes omit the parameter ε, and write (DGp) if (DGp,ε) is satisfied for
some ε ∈ (0, 1).

Remark 6.2. For f ∈ D and 0 < r < R,(
−
∫
Br

|∇f |pdµ
)1/p

.

(
|BR|
|Br|

)1/p(
−
∫
BR

|∇f |pdµ
)1/p

,

hence if (VDν) holds, then(
−
∫
Br

|∇f |pdµ
)1/p

.

(
R

r

)ν/p(
−
∫
BR

|∇f |pdµ
)1/p

.

Therefore if p > ν, one always has (DGp,ε) with ε = ν
p
< 1. This is why (DGp)

does not appear explicitly in Theorem 4.1. As a matter of fact, (DGp, ν
p
) is implicit

in its proof.

We have just seen that, for ν < p < +∞, (DGp) is a trivial consequence of (VDν),
and Proposition 5.2 states that (DG2) follows from (VD) and (P2). In the range
2 < p ≤ ν, property (DGp) is more mysterious. The main result of this section is
that, together with (Pp) and (Gp), a weak version of (DGp) implies (P2). But as
we already said, we do not know whether this is really an additional assumption,
or whether it follows from (Pp) + (Gp) in this range also.

Let us now introduce the weak version of (DGp) that we shall use. An exami-
nation of the proof of Theorem 5.3 shows that we do not use the full strength of
(DG2): the integrals of the gradient can be taken on the whole space and not only
on the larger ball (in the same flavour as in (Hη

p,p)).

Definition 6.3 (non-local Lp De Giorgi property). For p ∈ [1,+∞) and ε ∈ (0, 1),
we say that (DGp,ε) holds if the following is satisfied: for all r ≤ R, every pair of
concentric balls Br, BR with respective radii r and R, and for every function f ∈ D,
one has(

−
∫
Br

|∇f |pdµ
)1/p

.

(
R

r

)ε [
|BR|−1/p (‖|∇f |‖p +R‖Lf‖p) +R‖Lf‖L∞(BR)

]
.

We sometimes omit the parameter ε, and write (DGp) if (DGp,ε) is satisfied for
some ε ∈ (0, 1).

The fact that (DGp) implies (DGp) is obvious. We are now ready to give an
extension to all p ≥ 2 of Theorem 4.1. The case p = 2 already follows Theorem 5.3.
Remember also that assumption (DGp) is always fulfilled for p > ν in presence of
(VDν) (see Remark 6.2).

Theorem 6.4. Let (M,d, µ, E) be a doubling metric measure Dirichlet space with
a “carré du champ”. Assume (Gp), (Pp) and (DGp) for some p ∈ [2,+∞). Then
(LE) holds.

Using the well-known implication from (LE) to (P2) ([62], [70], see also [45,
Theorem 2.31]), we can complement the first statement of Corollary 4.5 by saying
that for 2 ≤ p ≤ ν, (Gp), (Pp) and (DGp) imply (P2).
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Proof. Applying (Pp) to e−tLf for t > 0 and f ∈ Lp(M,µ) on a ball Br for r > 0
yields

p- OscBr(e
−tLf) . r

(
−
∫
Br

|∇e−tLf |pdµ
)1/p

.

By (DGp), we can estimate (
−
∫
Br

|∇e−tLf |pdµ
)1/p

by (√
t

r

)ε [
|B√t|−1/p

(
‖|∇e−tLf |‖p + ‖

√
tLe−tLf‖p

)
+ ‖
√
tLe−tLf‖L∞(B√t)

]
for some ε ∈ (0, 1), if 0 < r ≤

√
t and B√t with radius

√
t is concentric to Br.

By (Gp) and the analyticity of (e−tL)t>0 on Lp(M,µ),

‖|∇e−tLf |‖p + ‖
√
tLe−tLf‖p .

‖f‖p√
t
.

Now under our assumptions, (UE) holds due to Proposition 2.1, hence tLe−tL sat-
isfies Gaussian pointwise estimates too (see the proof of Theorem 5.3). It follows
easily that

‖
√
tLe−tLf‖L∞(B√t)

. |B√t|−1/p‖f‖p√
t
.

Finally

p- OscBr(e
−tLf) .

(
r√
t

)1−ε

|B√t|−1/p‖f‖p,

that is, (Hη
p,p) with η = 1−ε > 0. This implies (LE) according to Theorem 3.5. �

Remark 6.5. The fact that the combination (Gp), (Pp) and (DGp,ε) implies (H1−ε
p,p )

will be applied in [10] to the Sobolev algebra property.

Let us now prove an extension of Corollary 4.5, whose proof will be more involved
because of the presence of (DGp).

Proposition 6.6. Let (M,d, µ, E) be a doubling metric measure Dirichlet space
with a “carré du champ”. For 2 ≤ q < p < +∞, we have

(Gp) + (Pp) + (DGp) =⇒ (Gq) + (Pq) + (DGq).

If in addition p > ν,

(Gp) + (Pp) =⇒ (Gq) + (Pq) + (DGq).

Moreover, if (Gp) holds for some p ∈ (2,+∞), then for every q ∈ (2, ν]

(Pq) + (DGq)⇐⇒ (P2),

and for every q ∈ (ν, p]

(Pq)⇐⇒ (P2).
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Proof. Assume (Gp)+ (Pp)+ (DGp). Then (LE) holds by Proposition 6.4, which in
turn implies (P2) according to [62], [70]. We thus get from Proposition 6.7 below
that (DGq) is true. Since (Gq) is a direct consequence of (Gp) and (Pq) of (P2), we
obtain the first and the third statements. The others follow from Remark 6.2. �

It remains to prove:

Proposition 6.7. Let (M,d, µ, E) be a doubling metric measure Dirichlet space
with a “carré du champ”. Assume (P2) and (Gp) for some p ∈ (2,+∞). Then
(DGq) holds for every q ∈ [2, p].

The proof of Proposition 6.7 will make use of an Lp version of the Caccioppoli
inequality. For p = 2, integration by parts yields easily a L2-Caccioppoli inequal-
ity (see for instance Lemma B.1) which enables one to deduce (DG2) from (P2)
(Proposition 5.2). But obtaining an Lp-Caccioppoli inequality for p > 2 seems
more difficult and cannot be handled using integration by parts directly. We use
(Gp) and the finite propagation speed property instead, and obtain:

Proposition 6.8 (Lp Caccioppoli inequality). Let (M,d, µ, E) be a doubling metric
measure Dirichlet space with a “carré du champ” satisfying (UE). Assume (Gp)
for some p ∈ [2,+∞]. Then for every q ∈ (1, p],

(6.1) r

(
−
∫
Br

|∇f |qdµ
)1/q

.

(
−
∫

2Br

|f |q dµ
)1/q

+ r2

(
−
∫

2Br

|Lf |q dµ
)1/q

for all f ∈ D and all balls Br of radius r.

Note that is would be easier, and sufficient for our purposes in this section, to
prove only a non-local version of the above inequality:

r

(
−
∫
B

|∇f |qdµ
)1/q

.
∑
`≥0

2−`N

[(
−
∫

2`B

|f |qdµ
)1/q

+ r2

(
−
∫

2`B

|Lf |qdµ
)1/q

]
.

The above local version is used in the proof of Theorem 7.7. We feel anyway that
(6.1) may be of independent interest, and that it is worth the extra effort, namely
the use of the finite propagation speed property.

Since the heat semigroup satisfies Davies-Gaffney estimates (2.1), it is known

(see e.g. [66,69] and [24, Section 3]) that
√
L satisfies the finite speed propagation

property (with a speed equal to 1 due to the normalization in (1.3)) for solutions of
the corresponding wave equation. Consequently for every even function ϕ ∈ S(R)
with supp ϕ̂ ⊆ [−1, 1], every pair of Borel sets E,F ⊂M and every r > 0, one has

1Eϕ(r
√
L)1F = 0 if dist(E,F ) > r. This follows from the Fourier inversion formula

and the bounded Borel functional calculus of
√
L, cf. [5, Lemma 4.4]. Moreover,

since the Dirichlet form is strongly local, one also has 1E|∇ϕ(r
√
L)1F |2 = 0 if

dist(E,F ) > r.
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Indeed, for every nonnegative, bounded and Lipschitz function χE supported in
E and g ∈ D supported in F , it follows from (1.1), (1.2), and (1.6) that∫

M

χE|∇ϕ(r
√
L)g|2 dµ ≤

∫
M

|ϕ(r
√
L)g|2|∇χE|2 dµ

+

∫
M

χE|ϕ(r
√
L)g||Lϕ(r

√
L)g| dµ.

If d(E,F ) >
√
r then ϕ(r

√
L)g = 0 in the support of χE, so∫

χE|∇ϕ(r
√
L)g|2 dµ = 0.

This holds for every nonnegative, bounded Lipschitz function χE supported in E,
hence ∫

E

|∇ϕ(r
√
L)g|2 dµ = 0.

Proof of Proposition 6.8. Consider an even function ϕ ∈ S(R) with supp ϕ̂ ⊆ [−1, 1]
and ϕ(0) = 1. Consequently, ϕ′(0) = 0, and x 7→ x−1ϕ′(x) ∈ S(R) is even with
Fourier support in [−1, 1], cf. [5, Lemma 6.1]. Fix a ball Br of radius r > 0, an
exponent q ∈ (1, p] and split

f = ϕ(r
√
L)f + (I − ϕ(r

√
L))f.

Since ϕ(0) = 1, one has

I − ϕ(r
√
L) =

∫ r

0

√
Lϕ′(s

√
L) ds.

Using the finite propagation speed property applied to the functions ϕ and x 7→
x−1ϕ′(x), we have that both ϕ(r

√
L) and (r2L)−1(1−ϕ(r

√
L)) satisfy the propaga-

tion property at speed 1 and so propagate at a distance at most r. As we have seen
above, the same stills holds by composing with the gradient. Hence, for f ∈ D,

‖|∇f |‖Lq(Br) . ‖|∇ϕ(r
√
L)|‖q→q‖f‖Lq(2Br)(6.2)

+ r2‖|∇(1− ϕ(r
√
L))(r2L)−1|‖q→q‖Lf‖Lq(2Br).

Let us now estimate ‖|∇ϕ(r
√
L)|‖q→q and ‖|∇(1−ϕ(r

√
L))(r2L)−1|‖q→q. For q > 2,

(Gq) holds by interpolation between (G2) and (Gp), and for q < 2, (Gq) always
holds as we already said. By writing the resolvent via the Laplace transform as
(1 + r2L)−1 =

∫ +∞
0

e−t(1+r2L)dt, we deduce gradient bounds for the resolvent in Lq,
that is

‖|∇(1 + r2L)−1|‖q→q .
∫ +∞

0

e−t‖|∇e−tr2L|‖q→q dt .
∫ +∞

0

e−t

r
√
t
dt . r−1.

Denote ψ := ϕ or ψ := x 7→ (1 − ϕ(x))/x2, and consider λ(x) = ψ(x)(1 + x2).
Hence

ψ(r
√
L) = (1 + r2L)−1λ(r

√
L)

and therefore

‖|∇ψ(r
√
L)|‖q→q ≤ ‖|∇(1 + r2L)−1|‖q→q‖λ(r

√
L)‖q→q . r−1‖λ(r

√
L)‖q→q.
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Observe that λ ∈ S(R) since ϕ(0) = 1 and ϕ′(0) = 0. By a functional calculus
result (see e.g. [30], Theorem 3.1) which relies on (UE), we then have

sup
r>0
‖λ(r
√
L)‖q→q . 1,

and consequently,

‖|∇ψ(r
√
L)|‖q→q . r−1.

Coming back to (6.2), we obtain

‖|∇f |‖Lq(Br) . r−1‖f‖Lq(2Br) + r‖Lf‖Lq(2Br),

which is the claim. �

We are now ready to prove Proposition 6.7. To pass from (DG2) to (DGq) for
2 < q ≤ p we shall use Hölder estimates as in [50, Lemma 2.3].

Proof of Proposition 6.7. Let BR denote a ball of radius R > 0, and let f ∈ F .
Using Lemma 3.3 for p = 2 and (P2), we can write

(6.3) ‖f‖Cη(BR) . ‖f‖Cη,2(BR) . sup
B̃⊂6BR

r(B̃)1−η
(
−
∫
B̃

|∇f |2 dµ
)1/2

.

for any η ∈ (0, 1). Now according to Proposition 5.2, (P2) yields (DG2,ε) for some
ε ∈ (0, 1). Choose η = 1− ε. Then it follows from (6.3) together with (DG2,ε) that

‖f‖C1−ε,2(BR) . sup
B̃⊂6BR

rε(B̃)

(
−
∫
B̃

|∇f |2 dµ
)1/2

. Rε

[(
−
∫

24BR

|∇f |2 dµ
)1/2

+R ess sup
x∈24BR

|Lf(x)|

]
.

We then apply Jensen’s inequality and obtain for q ≥ 2

(6.4) ‖f‖C1−ε(BR) . Rε

[(
−
∫

24BR

|∇f |q dµ
) 1

q

+R ess sup
x∈24BR

|Lf(x)|

]
.

We now deduce (DGq) for 2 < q ≤ p from (6.4) and (Gp).
By (Gp) and Proposition 6.8 one has (6.1) for 2 < q ≤ p. Replacing f with

f − −
∫
Br
fdµ in (6.1) yields

(6.5)

(
−
∫
Br

|∇f |qdµ
)1/q

. r−1

(
−
∫

2Br

|f −−
∫
Br

fdµ|qdµ
)1/q

+ r

(
−
∫

2Br

|Lf |qdµ
)1/q

.

for every ball Br with radius r > 0 and Br ⊂ BR.
Now we can write(

−
∫

2Br

|f −−
∫
Br

fdµ|qdµ
)1/q

≤ ess sup
x,y∈2Br

|f(x)− f(y)|

≤ r1−ε‖f‖C1−ε(B2r)

≤ r1−ε‖f‖C1−ε(B2R)
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and (6.4) yields(
−
∫

2Br

|f −−
∫
Br

fdµ|qdµ
)1/q

. r1−εRε

[(
−
∫

48BR

|∇f |qdµ
)1/q

+R ess sup
x∈48BR

|Lf(x)|

]
.

Consequently(
−
∫
Br

|∇f |qdµ
)1/q

.

(
R

r

)ε [(
−
∫

48BR

|∇f |qdµ
)1/q

+R ess sup
x∈48BR

|Lf(x)|

]

+r

(
−
∫

2Br

|Lf |qdµ
)1/q

.

(
R

r

)ε [(
−
∫

48BR

|∇f |qdµ
)1/q

+R ess sup
x∈48BR

|Lf(x)|

]
,

which gives easily (DGq,ε). �

Let us finish this section by noting a consequence of Theorem 7.7 below and
Proposition 6.7 on the De Giorgi property.

Corollary 6.9. Let (M,d, µ, E) be a doubling metric measure Dirichlet space with
a “carré du champ” satisfying (P2). Then there exists ε > 0 such that (DGp) holds
for every p ∈ [2, 2 + ε).

7. Gradient estimates, Poincaré inequality and Riesz transform

Our aim in this section is to improve the understanding of the links between
gradient estimates (Gp), boundedness of the Riesz transform (Rp) and Poincaré
inequality (Pp), as started in [4] and [3].

Let us first state an improvement of one the main results in [4]: the point is that
we are able to replace (P2) by the weaker assumption (Pp0) for p0 > 2.

Theorem 7.1. Let (M,d, µ, E) be a doubling metric measure Dirichlet space with a
“carré du champ”. If for some p0 ∈ (2,∞) the combination (Pp0) with (Gp0) holds,
then (Rp) is satisfied for every p ∈ (1, p0).

Remark 7.2. For p0 < ν, where ν is the exponent in (VDν), (Pp0) is not necessary
for (Rp) to hold for every p ∈ (1, p0), as the example of the connected sum of two
copies of Rn shows (see [14]).

We will use the following extrapolation result ([4], [6, Theorem 3.13]). Here, we
denote by M the Hardy-Littlewood maximal operator, defined for f ∈ L1

loc(M,µ)
and x ∈M by

(7.1) Mf(x) := sup
B3x
−
∫
B

|f | dµ,

where the supremum is taken over all balls B ⊂M with x ∈ B. For p ∈ [1,+∞), we
abbreviate by Mp the operator defined by Mp(f) := [M(|f |p)]1/p, f ∈ L1

loc(M,µ).
Note that M is bounded in Lq(M,µ) for all q ∈ (1,+∞], cf. [18, Chapitre III].
Consequently, Mp is bounded in Lq(M,µ) for all q ∈ (p,+∞].
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Proposition 7.3. Let (M,d, µ, E) be a doubling metric measure Dirichlet space.
Let (At)t>0 be a family of linear operators, uniformly bounded in L2(M,µ). Let
T be a sublinear operator which is bounded on L2(M,µ). Assume that for some
q ∈ (2,+∞), every ball B of radius r > 0 and every f ∈ L2(M,µ), we have

• L2-L2 estimates of T (I − Ar2):

(7.2)

(
−
∫
B

|T (I − Ar2)f |2dµ
)1/2

. inf
x∈B
M2(f)(x);

• L2-Lq estimates of T (Ar2):

(7.3)

(
−
∫
B

|TAr2f |qdµ
)1/q

. inf
x∈B

[M2(Tf)(x) +M2(f)(x)].

Then, for every p ∈ (2, q), T is bounded on Lp(M,µ).

In order to apply Proposition 7.3, we shall need the following ingredient, which
relies on the self-improving property of reverse Hölder inequalities from Theorem
C.1.

Proposition 7.4. Let (M,d, µ, E) be a doubling metric measure Dirichlet space
with a “carré du champ”. Assume that for some p0 ∈ (2,∞), (Pp0) and (Gp0) hold.
Then for every function f ∈ D and every ball B of radius r > 0, we have(

−
∫
Br

|f −−
∫
Br

f dµ|2 dµ
)1/2

. r

(
−
∫

2Br

|∇f |2 dµ
)1/2

+ r2‖Lf‖L∞(4Br).

Let us first recall the following folklore result (see for instance [46, Theorem 5.1,
1.], [36, Theorem 2.7] for similar statements).

Lemma 7.5. Let (M,d, µ, E) be a doubling metric measure Dirichlet space with
a “carré du champ”. Assume that (Pp) holds for some 1 ≤ p < +∞. Then if

q ∈ (p,+∞) is such that ν
(

1
p
− 1

q

)
≤ 1, the following Sobolev-Poincaré inequality

holds:

(Pp,q)

(
−
∫
Br

∣∣∣∣f −−∫
Br

f dµ

∣∣∣∣q dµ)1/q

. r

(
−
∫
Br

|∇f |pdµ
)1/p

,

for all f ∈ F , r > 0, and all balls Br with radius r.

Proof. This result is well-known if 1 < p < ν (see [46, Theorem 5.1, 1.]). Note that
the truncation property holds in our setting (see [59, Section 3,(o)]). If p > ν, a
stronger L∞ inequality is true ([46, Theorem 5.1, 2.]), and one gets the above by
integration. If p = ν, one deduces the claim from [46, Theorem 5.1, 3.] by bounding
from above the function t→ tq by an exponential. �

Proof of Proposition 7.4. Proposition 6.8 yields(
−
∫
Br

|∇f |p0 dµ
)1/p0

.
p0- Osc2Br(f)

r
+ r

(
−
∫

2Br

|Lf |p0 dµ
)1/p0

for every ball Br of radius r and every f ∈ D. From [53] we know that (Pp0) self-
improves into (Pp0−ε) for some ε > 0. Then , according to Lemma 7.5, if ε is small
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enough, (Pp0−ε) self-improves again into the Sobolev-Poincaré inequality (Pp0,p0−ε)
which yields

p0- Osc2Br(f) . r

(
−
∫

2Br

|∇f |p0−εdµ
)1/(p0−ε)

.

We therefore have

(7.4)

(
−
∫
Br

|∇f |p0 dµ
)1/p0

.

(
−
∫

2Br

|∇f |p0−ε dµ
)1/(p0−ε)

+ r

(
−
∫

2Br

|Lf |p0 dµ
)1/p0

.

Let us apply Theorem C.1 to the functional

a(B) := r

(
−
∫

2B

|Lf |p0 dµ
)1/p0

,

which is regular, uniformly with respect to f . This gives(
−
∫
Br

|∇f |p0dµ
)1/p0

.

(
−
∫

2Br

|∇f |2 dµ
)1/2

+ r

(
−
∫

4Br

|Lf |p0 dµ
)1/p0

.

Using Hölder’s inequality and (Pp0), we deduce that(
−
∫
Br

|f −−
∫
Br

f dµ|2 dµ
)1/2

≤
(
−
∫
Br

|f −−
∫
Br

f dµ|p0 dµ
)1/p0

. r

(
−
∫
Br

|∇f |p0dµ
)1/p0

. r

(
−
∫

2Br

|∇f |2 dµ
)1/2

+ r2

(
−
∫

4Br

|Lf |p0 dµ
)1/p0

.

Bounding the last term by r2‖Lf‖L∞(4Br) then gives the desired estimate. �

Proof of Theorem 7.1. First, according to Proposition 2.1, we know that (Pp0) with
(Gp0) implies (DUE) and consequently (UE). Thus, by [21], we know that the Riesz
transform is bounded on Lp(M,µ) for every p ∈ (1, 2]. It remains to establish the
Lp boundedness for p ∈ (2, p0). To do so, we apply Proposition 7.3 to the Riesz
transform R := |∇L−1/2|. Let q ∈ (2, p0), and let M ∈ N with M > ν

4
. Moreover,

let f ∈ L2(M,µ) and B be a ball of radius r > 0. For t > 0, denote

P
(M)
t := I − (I − e−tL)M and P̃

(2M)
t :=

[
P

(M)
t

]2

.

Then, following [4, Lemma 3.1], which only relies on the Davies-Gaffney estimates

(2.1), we already know that (7.2) is satisfied for T = R and Ar2 = P
(M)

r2 . More
precisely, it is proven that

(7.5)

(
−
∫
B

|∇L−1/2(I − P (M)

r2 )f |2dµ
)1/2

.
∞∑
j=0

2j(
ν
2
−2M)

(
−
∫

2jB

|f |2 dµ
)1/2

.

To obtain (7.2) for Ar2 = P̃
(2M)

r2 , we first write

I − P̃ (2M)

r2 = I −
[
P

(M)

r2

]2

= (I − P (M)

r2 )(I + P
(M)

r2 )

= (I − P (M)

r2 )(2I − (I − e−r2L)M).
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By expanding Qr2 := (2I − (I − e−r
2L)M) as a sum, one observes that (Qr2)r>0

satisfies Davies-Gaffney estimates as well. Using these, together with (7.5) and
(VD), we obtain(

−
∫
B

|∇L−1/2(I − P̃ (2M)

r2 )f |2dµ
)1/2

=

(
−
∫
B

|∇L−1/2(I − P (M)

r2 )Qr2f |2dµ
)1/2

.
∞∑
j=0

2j(
ν
2
−2M)

(
−
∫

2jB

|Qr2f |2 dµ
)1/2

.
∞∑
j=0

∞∑
k=0

2j(
ν
2
−2M)

(
−
∫

2jB

|Qr21Sk(2jB)f |2 dµ
)1/2

.
∞∑
j=0

∞∑
k=0

2j(
ν
2
−2M)e−(2j+k)2

(
|2kB|
|2jB|

)1/2(
−
∫

2kB

|f |2 dµ
)1/2

. inf
x∈B
M2(f)(x).

This establishes (7.2). Let us now check (7.3), again with T = R and Ar2 = P̃
(2M)

r2 .

By expanding the operator P
(M)

r2 as a sum, it suffices to check that

(7.6)

(
−
∫
B

|∇L−1/2e−kr
2LP

(M)

r2 f |qdµ
) 1

q

. inf
x∈B

[M2(|∇L−1/2f |)(x) +M2(f)(x)],

for every integer k ∈ {1, ..,M}. Using the conservation property, we can write

∇L−1/2e−kr
2LP

(M)

r2 f = ∇e−kr2Lg, with

g := L−1/2P
(M)

r2 f −
(
−
∫
B

L−1/2P
(M)

r2 f dµ

)
.

From [4, Lemma 3.2], which only relies on (Gq) and (UE), we know that

(7.7)

(
−
∫
B

|∇e−kr2Lg|q dµ
)1/q

.
1

r

∞∑
`=0

e−2`
(
−
∫

2`B

|g|2 dµ
)1/2

.

We now aim to apply Proposition 7.4 to the right-hand side of (7.7). Observe that,

denoting h := L−1/2P
(M)

r2 f and using Hölder’s inequality and (VD), one has

(
−
∫

2`B

|g|2 dµ
)1/2

=

(
−
∫

2`B

|h−−
∫
B

h dµ|2 dµ
)1/2

≤
(
−
∫

2`B

|h−−
∫

2`B

h dµ|2 dµ
)1/2

+
∑̀
j=1

(
−
∫

2jB

h dµ−−
∫

2j−1B

h dµ

)

.
∑̀
j=1

(
−
∫

2jB

|h−−
∫

2jB

h dµ|2 dµ
)1/2

.
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Proposition 7.4 then yields(
−
∫

2`B

|g|2 dµ
)1/2

.
∑̀
j=1

2jr

(
−
∫

2j+1B

|∇h|2 dµ
)1/2

+
∑̀
j=1

(2jr)2‖Lh‖L∞(2j+2B)(7.8)

. `2( ν
2

+1)`r

(
−
∫

2`+1B

|∇h|2 dµ
)1/2

+ `22`r2‖Lh‖L∞(2`+2B)

= `2( ν
2

+1)`r

(
−
∫

2`+1B

|∇L−1/2P
(M)

r2 f |2 dµ
)1/2

+ `22`r2‖L1/2P
(M)

r2 f‖L∞(2`+2B).

By covering 2`+1B with approximately 2ν` balls of radius r, we get from (7.5)(
−
∫

2`+1B

|∇L−1/2P
(M)

r2 f |2 dµ
)1/2

≤
(
−
∫

2`+1B

|∇L−1/2f |2 dµ
)1/2

+

(
−
∫

2`+1B

|∇L−1/2(I − P (M)

r2 )f |2 dµ
)1/2

.

(
−
∫

2`+1B

|∇L−1/2f |2 dµ
)1/2

+ 2ν`
∞∑
j=0

2j(
ν
2
−2M)

(
−
∫

2`+jB

|f |2 dµ
)1/2

. inf
x∈B

[M2(|∇L−1/2f |)(x) + 2ν`M2(f)(x)].

Moreover, by again covering 2`+2B with approximately 2ν` balls of radius r, we
obtain from Lemma 7.6

r‖L1/2P
(M)

r2 f‖L∞(2`+2B) . 2ν` inf
x∈B
M2(f)(x).

Consequently, coming back to (7.8), we obtain that(
−
∫

2`B

|g|2 dµ
)1/2

.`2( ν
2

+1)`r inf
x∈B

[M2(|∇L−1/2f |)(x) + 2ν`M2(f)(x)] + `2(ν+2)`r inf
x∈B
M2(f)(x)

.`2( 3
2
ν+2)`r inf

x∈B
[M2(|∇L−1/2f |)(x) +M2(f)(x)].

Plugging this estimate into (7.7) and using the definition of g, we deduce(
−
∫
B

|∇L−1/2e−kr
2LP

(M)

r2 f |qdµ
)1/q

. inf
x∈B

[M2(|∇L−1/2f |)(x) +M2(f)(x)],

which is (7.6). In this way, we obtain (7.3), and the proof is complete by Proposition
7.3. To be more precise, Proposition 7.3 implies that the Riesz transform is bounded
on Lp(M,µ), for every p ∈ (2, q) with arbitrary q ∈ (2, p0). �

Lemma 7.6. Let (M,d, µ, E) be a doubling metric measure Dirichlet space. Assume
(DUE). Then for every ball B of radius r > 0 and every function f ∈ L2(M,µ),
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we have

r‖L1/2e−r
2Lf‖L∞(B) . sup

Q⊃B

(
−
∫
Q

|f |2 dµ
)1/2

,

where the supremum is taken over all balls Q containing B.

Proof. LetB be a ball of radius r and f ∈ L2(M,µ). Abbreviate g := (r2L)1/2e−r
2Lf ,

and note that g is in the range of L, therefore e−tLg → 0 in L2(M,µ), as t→ +∞.
This allows us to write g =

∫∞
0

(sL)1/2e−sLg ds
s

, i.e.

(7.9) (r2L)1/2e−r
2Lf =

∫ ∞
0

(
r2

s

)1/2

sLe−(s+r2)Lf
ds

s
.

Now recall that (UE) follows from (DUE). As stated in the proof of Theorem 5.3,
this again implies by analyticity of the semigroup that for every t > 0, tLe−tL

has a kernel satisfying Gaussian pointwise estimates. This yields that s ≤ r2, the
operator r2Le−(s+r2)L has a kernel satisfying Gaussian pointwise estimates at scale
r, hence

‖r2Le−(s+r2)Lf‖L∞(B) . sup
Q⊃B

(
−
∫
Q

|f | dµ
)
. sup

Q⊃B

(
−
∫
Q

|f |2 dµ
)1/2

.

Consequently,∫ r2

0

(
r2

s

)1/2

‖sLe−(s+r2)Lf‖L∞(B)
ds

s
. sup

Q⊃B

(
−
∫
Q

|f |2 dµ
)1/2

.

For s ≥ r2 on the other hand, sLe−(s+r2)L has a kernel satisfying Gaussian pointwise

estimates at scale
√
s ≥ r. Denoting by B̃ =

√
s
r
B ⊃ B the dilated ball, we obtain

in this case

‖sLe−(s+r2)Lf‖L∞(B) ≤ ‖sLe−(s+r2)Lf‖L∞(B̃) . sup
Q⊃B̃

(
−
∫
Q

|f | dµ
)

. sup
Q⊃B

(
−
∫
Q

|f |2 dµ
)1/2

.

This gives ∫ ∞
r2

(
r2

s

)1/2

‖sLe−(s+r2)Lf‖L∞(B)
ds

s
. sup

Q⊃B

(
−
∫
Q

|f |2 dµ
)1/2

.

Putting the two parts together yields the conclusion. �

We are now going to give a more general version of the main result of [3]. More
precisely, [3, Theorem 0.4] states that if M is a complete non-compact Riemannian
manifold satisfying the doubling condition (VD) and L is its nonnegative Laplace-
Beltrami operator, then under the Poincaré inequality (P2) there exists ε > 0 such
that (Rp) holds for p ∈ [2, 2 + ε). This result relies on the self-improvement of
Poincaré inequalities from [53], but also on considerations on the Hodge projector
that are specific to the Riemannian setting. We give here a proof that is valid in our
more general Dirichlet space setting and also gives a Lp0-version. Contrary to [3]
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where p0 = 2 and part of the singular integral machinery of [4] had to be reworked,
here we can directly use [4] through Theorem 7.1.

Theorem 7.7. Let (M,d, µ, E) be a doubling metric measure Dirichlet space with a
“carré du champ”. If for some p0 ∈ [2,∞), the combination (Pp0) and (Gp0) holds,
then there exists ε > 0 such that (Rp) holds for p ∈ [p0, p0 + ε).

Proof. Since (Pp0) implies (Pp) for p > p0, by Theorem 7.1 it suffices to prove the
statement for (Gp) instead of (Rp). Let f ∈ Lp0(M,µ), t > 0 and set g := e−tLf .
Similarly as in Proposition 7.4, we have, for κ > 0 small enough,

(7.10)

(
−
∫
Br

|∇g|p0dµ
)1/p0

.

(
−
∫

2Br

|∇g|p0−κdµ
)1/(p0−κ)

+ r

(
−
∫

2Br

|Lg|p0dµ
)1/p0

.

Now, for B√t a ball of radius
√
t and N > ν a parameter to be chosen later, consider

the function

h := |∇g|+ c(f,B√t)

where

c(f,B√t) := t−1/2
∑
`≥0

2−`N

(
−
∫

2`B√t

|f |

)
is a constant. It follows from the pointwise Gaussian estimates for tLe−tL (see the
proof of Theorem 5.3) that for every ball Br ⊂ B√t with radius r,

r

(
−
∫

2Br

|Lg|p0dµ
)1/p0

≤
√
t ess sup

B√t

|Lg| . c(f,B√t).

Therefore (7.10) yields(
−
∫
Br

|∇g|p0dµ
)1/p0

.

(
−
∫

2Br

|∇g|p0−κdµ
)1/(p0−κ)

+ c(f,B√t).(7.11)

It follows that

(7.12)

(
−
∫
Br

hp0 dµ

)1/p0

.

(
−
∫

2Br

hp0−κ dµ

)1/(p0−κ)

.

To see this, write(
−
∫
Br

hp0dµ

)1/p0

≤
(
−
∫
Br

|∇g|p0dµ
)1/p0

+ c(f,B√t),

use (7.11), dominate the integrals in |∇g| as well as c(f,B√t) by integrals in h.
Now for x ∈ B√t consider the quantities

Fp0(x) := sup
x∈B⊂2B√t

(
−
∫
B

hp0dµ

)1/p0

and

Fp0−κ(x) := sup
x∈B⊂2B√t

(
−
∫
B

hp0−κdµ

)1/(p0−κ)

,
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where the supremum is taken over all the balls B containing x and included into
B√t. Let us first remark that, for Br ⊂ 2B√t a ball of radius r with

√
t ≤ 4r ≤ 8

√
t,

we have (
−
∫
Br

|∇g|p0−κdµ
)1/(p0−κ)

.

(
−
∫

2B√t

|∇e−tLf |p0dµ

)1/p0

(7.13)

. t−1/2
∑
`≥0

e−c4
`

(
−
∫

2`B√t

|f |dµ

)
. c(f,B√t).

Since the constant c(f,B√t) is bounded by every average of h, it follows that in the
definition of Fp0 and Fp0−κ, we can take only the supremum over balls Br ⊂ B√t
with r ≤

√
t/4.

Then, we have
Fp0(x) . Fp0−κ(x).

Indeed, for B ⊂ 2B√t a ball containing x, if 2B ⊂ 2B√t then we may apply (7.12)

and if 2B is not included in 2B√t (since x ∈ B ∩ B√t) then r(B) '
√
t and so we

directly apply the previous observation with (7.13).
We may apply Gehring’s Lemma ([38, Lemma 2], [39,52] and also [57]), and we

have for some ε > 0 that(
−
∫
B√t

|h|pdµ

)1/p

.

(
−
∫

2B√t

|h|p0dµ

)1/p0

for every p ∈ (p0, p0 + ε). Hence, with (7.12) applied for r =
√
t, it follows(

−
∫
B√t

|h|pdµ

)1/p

.

(
−
∫

4B√t

|h|p0−κdµ

)1/(p0−κ)

.

Hence, we deduce that(
−
∫
B√t

|∇e−tLf |pdµ

)1/p

.

(
−
∫

4B√t

|∇e−tLf |p0−κdµ

)1/(p0−κ)

+ c(f,B√t).

Interpolating the Davies-Gaffney estimates (2.1) with (Gp0) yields Lp0−κ − Lp0−κ

off-diagonal estimates for
√
t∇e−tL and so for a large enough integer N(

−
∫
B√t

|
√
t∇e−tLf |pdµ

)1/p

.
∑
`≥0

2−`N

(
−
∫

2`B√t

|f |pdµ

)1/p

.

By summing over a covering of M by balls with radius
√
t, using (VD) and taking

N large enough, we then deduce that
√
t|∇e−tL| is bounded on Lp, uniformly with

respect to t > 0, which is (Gp) as desired. �

By combining Theorems 7.1 and 7.7, the fact that (Rp) always implies (Gp) by
Lp analyticity of the semigroup and the fact that the Poincaré inequality is weaker
and weaker as p increases, we deduce the following statement, which encompasses
Theorems 7.1 and 7.7 and extends both [4, Theorem 1.3] and [3, Theorem 0.4].
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Theorem 7.8. Assume that (M,d, µ, E) is a doubling metric measure Dirichlet
space with a “carré du champ”. If for some p0 ∈ [2,∞], the combination (Pp0) with
(Gp0) holds, then there exists p1 ∈ (p0,+∞] such that

{p ∈ (1,∞), (Rp) holds} = {p ∈ (1,∞), (Gp) holds} = (1, p1).

Appendix A. About the p-independence of (Hη
p,p)

In this appendix, we study in more detail the p-independence of the property
(Hη

p,p) for p ∈ [1,+∞] and η ∈ (0, 1]. Recall that we denote by M the Hardy-
Littlewood maximal operator as defined in (7.1), and by Mp the operator defined
by Mp(f) := [M(|f |p)]1/p, f ∈ L1

loc(M,µ), p ∈ [1,+∞). We set M∞(f) := ‖f‖∞,
f ∈ L∞(M,µ).

In [32], gradient estimates for the heat semigroup are studied in the Riemannian
setting, but the proofs rely only on the finite propagation speed property, therefore
extend to the setting of a metric measure space with a “carré du champ”. More
precisely, it is proved that, under (VD) and (UE), the condition

(A.1) sup
t>0

sup
x∈M

|B(x,
√
t)|1−

1
q ‖
√
t|∇pt(x, ·)|‖q < +∞

is independent of q ∈ [1,+∞] and is in particular equivalent to Gaussian pointwise
estimates for the gradient of the heat kernel. Since for q = p′

sup
x∈M

‖
√
t|∇pt(x, ·)|‖q = ‖

√
t|∇e−tL|‖p→∞,

this property can be thought of, at least in the polynomial volume growth situation
V (x, r) ' rν , as follows: the quantity ‖

√
t|∇e−tL|‖p→∞ does not depend on the

exponent p ∈ [1,+∞].
Even if the full version of this result in [32] is really non-trivial, it appears that

a localised counterpart is indeed very easy: more precisely, the property

(A.2) sup
t>0

√
t|∇e−tLf(x)| .Mp(f)(x)

is p-independent. This fact directly follows by writing ∇e−tL =
(
∇e− t2L

)
e−

t
2
L with

a semigroup e−
t
2
L satisfying all Lp-Lq off-diagonal estimates (since the heat kernel

satisfies pointwise Gaussian estimates), so that for every p, q ∈ [1,+∞] with p < q,
we have

Mq(e
−tLf)(x) .Mp(f)(x).

The estimate for p ≥ q follows from Hölder’s inequality. In other words, the localised
property (A.2) is much easier to prove than the full “global” version (A.1).

The inequality (Hη
p,p) is the Hölder counterpart of the Lp - L∞ Lipschitz regular-

ity property of the semigroup (A.1). Following the previous observation (and the
results of [32], which can be extended to the situation of Hölder regularity instead
of gradient estimates), it is natural to study the p-independence of (Hη

p,p) and to
do so, we introduce localised versions of (Hη

p,p) as follows.
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Definition A.1. Let (M,d, µ, L) as at the beginning of Section 3 satisfy (VD) and
(UE). Let p, q ∈ [1,+∞] and η ∈ (0, 1]. We shall say that (H

η

p,q) is satisfied, if for

all 0 < r ≤
√
t, every ball Br of radius, and every function f ∈ Lploc(M,µ),

(H
η

p,q) q- OscBr(e
−tLf) .

(
r√
t

)η
inf

z∈B√t
Mp(f)(z).

Note that (H
η

∞,∞) = (Hη
∞,∞).

With the help of this definition, we can prove the following p-independence of
(Hη

p,p).

Theorem A.2. Let (M,d, µ, L) as above satisfy (VD) and (UE). Let η ∈ (0, 1].
The property (H

η

p,p) is independent of p ∈ [1,+∞]. The property “(Hλ
p,p) for every

λ < η” is independent of p ∈ [1,+∞].

The above theorem will be a direct consequence of self-improvement properties
of (Hη

p,p) and (H
η

p,p), which read as follows.

Proposition A.3. Let (M,d, µ, L) as above satisfy (VD) and (UE). Let p, q ∈
[1,+∞] and η ∈ (0, 1]. Then

(i) (H
η

p,p) =⇒ (H
η

1,∞) =⇒ (H
η

q,q);

(ii) (H
η

p,p) =⇒ (Hη
p,p);

(iii) For every λ ∈ [0, η), (Hη
p,p) =⇒ (H

λ

p,p).

Remark A.4. As a consequence of Proposition A.3, the property: “there exists
η > 0 such that (Hη

p,p) holds” is independent of p ∈ [1,+∞].

Remark A.5. All results of Appendix A remain true in the context of sub-Gaussian
estimates, where we assume (UEm) for some m > 2 instead of (UE). See Remark
3.8.

Proof of Proposition A.3. Let us start with (i). First, we follow Proposition 3.1,
and the same proof allows us to improve (H

η

p,p) into (H
η

p,∞). Then, if q ≥ p, we
obtain from Jensen’s inequality

inf
z∈B√t

Mp(f)(z) ≤ inf
z∈B√t

Mq(f)(z),

therefore
(H

η

p,∞) =⇒ (H
η

q,∞) =⇒ (H
η

q,q).

Now let us focus on the case q < p. Consider t > 0 and set s = t
2
. Let Br be a

ball of radius r <
√
t and B√t =

√
t
r
Br the dilated ball of radius

√
t. If r <

√
s, we

apply (H
η

p,∞) to e−sLf , which yields

(A.3) ess sup
x,y∈Br

∣∣e−2sLf(x)− e−2sLf(y)
∣∣ . ( r√

s

)η
inf

z∈B√s
Mp(e

−sLf)(z).

Using (UE) together with t = 2s, we then obtain

ess sup
x,y∈Br

∣∣e−tLf(x)− e−tLf(y)
∣∣ . ( r√

t

)η
inf

z∈B√t
M(f)(z),
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which is (H
η

1,∞). The case
√
s ≤ r ≤

√
t is a direct consequence of (UE), since we

have r '
√
t and so

ess sup
x,y∈Br

∣∣e−tLf(x)− e−tLf(y)
∣∣ ≤ 2‖e−tLf‖L∞(Br) . ‖e−tLf‖L∞(B√t)

. inf
z∈B√t

M(f)(z),

which yields (H
η

1,∞).

Now for (ii). Assume (H
η

p,p) for some p ∈ [1,+∞]. First, note that for t = 2s

inf
z∈B√s

Mp(e
−sLf)(z) ≤ |B√s|−1/p‖e−sLf‖p + sup

x∈B√s
|e−sLf(x)| . |B√t|−1/p‖f‖p,

where we used (UE). By applying the above estimate to (A.3), we can obtain
(Hη

p,∞) from (H
η

p,p) with the same reasoning as in the proof of part (i). (Hη
p,p) then

follows from Proposition 3.1.
Let us finally prove (iii). Assume (Hη

p,p) for some η ∈ (0, 1] and p ∈ [1,+∞]. Let Br,

B√t be a pair of concentric balls with respective radii r and
√
t, where 0 < r ≤

√
t.

Then we know that

p- OscBr(e
−tLf) .

(
r√
t

)η
|B√t|−1/p‖f‖p.

Let us split f =
∑
`≥0

f1S`(B√t), and define for ` ≥ 0

I(`) := p- OscBr

[
e−tL(f1S`(B√t))

]
.

We have (Hλ
p,p) for every λ ∈ [0, η], therefore, for ` ≤ 1,

I(`) .

(
r√
t

)λ(
−
∫

4B√t

|f |pdµ

)1/p

.

(
r√
t

)λ
inf

z∈B√t
Mp(f)(z).

For ` ≥ 2, we similarly have

(A.4) I(`) .

(
r√
t

)η
2`

ν
p

(
−
∫

2`B√t

|f |pdµ

)1/p

.

Moreover, using again (UE), we have

I(`) ≤ 2

(
−
∫
Br

∣∣∣e−tL(f1S`(B√t))dµ
∣∣∣p dµ)1/p

. e−c4
`

(
−
∫

2`B√t

|f |pdµ

)1/p

,(A.5)

which yields(
−
∫
Br

∣∣∣e−tL(f1S`(B√t))dµ
∣∣∣p dµ)1/p

≤ ‖e−tL(f1S`(B√t))‖L∞(Br)

≤ ‖e−tL(f1S`(B√t))‖L∞(B√t)
. e−c4

`

(
−
∫

2`B√t

|f |pdµ

)1/p

.
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By interpolating between (A.4) and (A.5), we get for every λ ∈ [0, η), with cλ a
constant depending on λ,

I(`) .

(
r√
t

)λ
e−cλ4`

(
−
∫

2`B√t

|f |pdµ

)1/p

.

By summing over ` ≥ 0, we obtain(
−
∫
Br

∣∣∣∣e−tLf −−∫
Br

e−tLf dµ

∣∣∣∣p dµ)1/p

≤
∑
`≥0

I(`) .

(
r√
t

)λ
inf

z∈B√t
Mp(f)(z),

which is (H
λ

p,p). �

In [10], we will introduce and use another notion of Lp Hölder regularity of the
heat semigroup, which is p-dependent and can be seen as the Hölder version of (Gp)
instead of (A.1).

Appendix B. From Poincaré to De Giorgi

In this appendix, we give a self-contained proof for the fact that, under (VD),
(P2) implies the De Giorgi property (DG2), as stated in Proposition 5.2. One
method is to use the elliptic Moser iteration process from [60], see for instance
[2, Sections 5 and 6]. The proof is given there in a discrete time and space setting,
but adapts to our current setting. Another proof in [2] by-passes the difficult part of
the Moser iteration process, namely the John-Nirenberg lemma, and uses instead
the self-improvement property of Poincaré inequalities. This is the one we will
present here.

In this appendix, we will assume for simplicity that diam(M) = +∞. If on the
contrary diam(M) < +∞, it is enough to assume that R ≤ δ diam(M), where δ is
the parameter that has to appear in (FK) in that case, and to use doubling at the
end of the argument.

We first need to state a version of the Caccioppoli inequality (6.1) in L2, but for
subharmonic functions.

Lemma B.1. Let (M,d, µ, E) be a doubling metric measure Dirichlet space with a
“carré du champ”. For every x ∈ M , 0 < r < R and every u ∈ D with uLu ≤ 0
on B(x,R), one has

(B.1)

∫
B(x,r)

|∇u|2 dµ . 1

(R− r)2

∫
B(x,R)

|u|2 dµ.

Proof. Consider a function χ belonging to F , supported on B(x,R), with values in
[0, 1], and such that χ ≡ 1 on B(x, r) and ‖|∇χ|‖∞ . (R − r)−1. Such a function
can easily be built in our setting from the metric d (see for instance [45, Section
2.2.6] for details).

Since uLu ≤ 0 on B(x,R) one may write

0 ≤ −
∫
M

χ2uLu dµ = −E(χ2u, u)

= −1

2
E(χ2, u2)−

∫
M

χ2|∇u|2dµ,
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where one uses (1.1). Consequently, by (1.2) and (1.6),

I :=

∫
M

χ2|∇u|2dµ ≤ 1

2

∣∣E(χ2, u2)
∣∣ ≤ 2

∫
M

χ|u||∇χ||∇u| dµ

and we deduce by Cauchy-Schwarz that

I .
1

R− r

∫
M

|u||∇u|χdµ . 1

R− r
√
I

[∫
B(x,R)

|u|2 dµ
]1/2

,

which yields (B.1). �

First, the relative Faber-Krahn inequality (FK) (see Section 5 for a definition)
implies an L2 mean value property for harmonic functions.

Proposition B.2. Let (M,d, µ, E) be a doubling metric measure Dirichlet space
with a “carré du champ” satisfying (UE). Assume (FK). Then one has, for all
R > 0, x0 ∈M , and u ∈ F harmonic in B(x0, R),

max
x∈B(x0,R/2)

u(x) .

(
−
∫
B(x0,R)

u2
+ dµ

)1/2

.

Proof. Let x0 ∈ M , R > 0 and u ∈ F such that Lu = 0 in B(x0, R). For h, r > 0
define

M(r) = max
x∈B(x0,r)

u(x), m(r) = min
x∈B(x0,r)

u(x),

A(h, r) = {x ∈ B(x0, r); u(x) ≥ h}, a(h, r) = µ(A(h, r)).

Consider ρ < r ≤ 2ρ with r ≤ R. Let χ be a Lipschitz function supported on
B(x0, r), that equals 1 on B(x0, ρ) and such that ‖∇χ‖∞ . (r − ρ)−1. Applying
(FK) to χ(u− h)+ (which is supported on B(x0, r)) for h ∈ R gives∫

B(x0,ρ)

(u− h)2
+ dµ ≤

∫
χ2(u− h)2

+ dµ

. r2

(
a(h, r)

V (x0, r)

)2β [∫
B(x0,r)

|∇(u− h)+|2 dµ+
1

(r − ρ)2

∫
B(x0,r)

(u− h)2
+ dµ

]
,

where we use the Leibniz rule for the gradient. Then, since u−h is harmonic, that is
L(u−h) = 0 in B(x0, R), by [68, Lemma 2] we deduce that (u−h)+ is nonnegative
and subharmonic, that is L(u−h)+ ≤ 0, in B(x0, R). So (u−h)+L(u−h)+ ≤ 0 in
B(x0, R). We then deduce from (B.1) that∫

B(x0,ρ)

(u− h)2
+ dµ .

r2

(r − ρ)2
V (x0, r)

−2βa(h, r)2β

∫
B(x0,r)

(u− h)2
+ dµ

.
ρ2

(r − ρ)2
V (x0, ρ)−2βa(h, r)2β

∫
B(x0,r)

(u− h)2
+ dµ,

where we used the doubling property and ρ ' r. Set

u(h, ρ) =

∫
B(x0,ρ)

(u− h)2
+ dµ =

∫
A(h,ρ)

(u− h)2 dµ.
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One has

u(h, ρ) .
ρ2

(r − ρ)2
V (x0, ρ)−2βa(h, r)2βu(h, r).(B.2)

Moreover, for h > k,

(h− k)2a(h, r) ≤
∫
A(h,r)

(u− k)2 dµ ≤
∫
A(k,r)

(u− k)2 dµ,

that is

a(h, r) ≤ 1

(h− k)2
u(k, r).(B.3)

Then (B.2) and (B.3) yield for ρ < r ≤ 2ρ

u(h, ρ) ≤ C
ρ2

(r − ρ)2
V (x0, ρ)−2β 1

(h− k)4β
u(k, r)1+2β.(B.4)

Set kn = (1− 1
2n

)d and ρn = R
2

(1 + 1
2n

), n ∈ N, where

d = C
1
4β 2

|νβ−1|
2β 2

1
4β2

+ 2
β

+1
V (x0, R)−1/2u(0, R)

1
2 .

Inequality (B.4) (which can be applied since ρn+1 < ρn ≤ 2ρn+1) yields

u(kn+1, ρn+1) ≤ C
22(n+2)+4β(n+1)ρ2

n+1

R2d4β
V (x0, ρn+1)−2βu(kn, ρn)1+2β,

therefore by (VDν),

u(kn+1, ρn+1) ≤ C22|νβ−1|2
2(n+2)+4β(n+1)

d4β
V (x0, R)−2βu(kn, ρn)1+2β.

Due to the definition of d, this yields

u(kn+1, ρn+1) ≤ 22(n−2)+4βn− 1
β u(0, R)−2βu(kn, ρn)1+2β.(B.5)

From (B.5) one proves by induction that

u(kn, ρn) ≤ u(0, R)

2(2+β−1)n
, ∀n ∈ N.

By letting n go to infinity, one concludes that u(d,R/2) = 0. This means that for
all x ∈ B(x0, R/2),

u(x) ≤ d = C

(
1

V (x0, R)

∫
A(0,R)

u2dµ

)1/2

.

�

To go further, we will need to use scaled Poincaré inequalities and their conse-
quences. Assuming (P2), we know that there exists ε > 0 such that (P2−ε) holds
[53]. We will be working with the modified version(

−
∫
B

|f |2−ε dµ
) 1

2−ε

. r
|B|

|{y ∈ B; f(y) = 0}|

(
−
∫
B

|∇f |2−εdµ
) 1

2−ε

,(P̃2−ε)
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where f ranges in D and B in balls in M of radius r.

The inequality (P̃2−ε) is a consequence of (P2−ε), as can be seen by checking the
inequality(∫

B

|f |2−ε dµ
) 1

2−ε

≤ Cε
|B|

|{y ∈ B; f(y) = 0}|

(∫
B

|f −−
∫
B

f dµ|2−ε dµ
) 1

2−ε

.

To prove the latter, abbreviate BN(f) := {y ∈ B; f(y) = 0} and write(∫
B

|f |2−ε dµ
) 1

2−ε

=

(∫
B\BN(f)

|f |2−ε dµ

) 1
2−ε

≤

(∫
B\BN(f)

|f −−
∫
B

f dµ|2−ε dµ

) 1
2−ε

+

(∫
B\BN(f)

∣∣∣∣−∫
B

f dµ

∣∣∣∣2−ε dµ
) 1

2−ε

=

(∫
B\BN(f)

|f −−
∫
B

f dµ|2−ε dµ

) 1
2−ε

+ |B \BN(f)|
1

2−ε

∣∣∣∣−∫
B

f dµ

∣∣∣∣
≤
(∫

B

|f −−
∫
B

f dµ|2−ε dµ
) 1

2−ε

+

(
|B \BN(f)|
|B|

) 1
2−ε
(∫

B

|f |2−ε dµ
) 1

2−ε

.

From this, we deduce(∫
B

|f |2−ε dµ
) 1

2−ε

≤

(
1−

(
|B \BN(f)|
|B|

) 1
2−ε
)−1(∫

B

|f −−
∫
B

f dµ|2−ε dµ
) 1

2−ε

.
|B|
|BN(f)|

(∫
B

|f −−
∫
B

f dµ|2−ε dµ
) 1

2−ε

,

where in the last step we have used the elementary inequality 1 − (1 − x)1/p ≥ x
p

for x ∈ [0, 1] and p ∈ [1,+∞).

Lemma B.3. Let (M,d, µ, E) be a doubling metric measure Dirichlet space with a

“carré du champ” satisfying (UE) and (FK). Let ε ∈ (0, 1] and assume (P̃2−ε).
Let x0 ∈M , R > 0 and u ∈ F harmonic in B(x0, R). Set

ki = M(R)−
(
M(R)−m(R)

2i+1

)
, i ∈ N.

Assume that a(k0, R/2) ≤ 1
2
V (x0, R/2). Then for all integer i ∈ N∗

a(ki, R/2)

V (x0, R/2)
≤ Ci−ε/2,

where C does not depend on x0, R, or u.

Proof. For h > k > k0, set v = (u− k)+ ∧ (h− k). By assumption,

|{x ∈ B(x0, R/2); v(x) = 0}| = |B(x0, R/2) \ A(k,R/2)|
≥ |B(x0, R/2) \ A(k0, R/2)| ≥ 1/2V (x0, R/2).
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The Poincaré inequality (P̃2−ε) therefore yields∫
B(x0,R/2)

|v|2−ε dµ . R2−ε
∫
B(x0,R/2)

|∇v|2−ε dµ.

Hence

(h− k)2−εa(h,R/2) . R2−ε
∫
B(x0,R/2)

|∇v|2−ε dµ.

Now

(h− k)2−εa(h,R/2) . R2−ε
∫
A(k,R/2)\A(h,R/2)

|∇u|2−ε dµ.

By Hölder,

(h− k)2−εa(h,R/2) . R2−ε(a(k,R/2)− a(h,R/2))ε/2
(∫

A(k,R/2)\A(h,R/2)

|∇u|2 dµ
) 2−ε

2

.

Now∫
A(k,R/2)\A(h,R/2)

|∇u|2 dµ ≤
∫
A(k,R/2)

|∇u|2 dµ =

∫
B(x0,R/2)

|∇(u− k)+|2 dµ.

As we already observed at the beginning of the proof of Proposition B.2 in a similar
situation, (u− k)+ is subharmonic, therefore (B.1) yields∫
B(x0,R/2)

|∇(u− k)+|2 dµ . R−2

∫
B(x0,R)

(u− k)2
+ dµ . R−2V (x0, R)(M(R)− k)2.

Thus

(h− k)2−εa(h,R/2) . V (x0, R)
2−ε
2 (M(R)− k)2−ε(a(k,R/2)− a(h,R/2))

ε
2 .

Since ki − ki−1 = M(R)−k0
2i

and M(R)− ki−1 = M(R)−k0
2i−1 , the above inequality yields

a(ki, R/2)
2
ε . V (x0, R)

2−ε
ε (a(ki−1, R/2)− a(ki, R/2)).

Using the fact that a(ki, R/2) is non-increasing in i, one obtains

ia(ki, R/2)
2
ε ≤

i∑
j=1

a(kj, R/2)
2
ε . V (x0, R)

2−ε
ε (a(k0, R/2)− a(ki, R/2))

≤ V (x0, R)
2−ε
ε a(k0, R/2).

Hence

a(ki, R/2)

V (x0, R)
.

(
i−1a(k0, R/2)

V (x0, R)

) ε
2

≤
(
i−1

2

) ε
2

.

�

We are now in a position to deduce the elliptic regularity estimate (ER) intro-
duced in Theorem 5.4 from (P2).

Proposition B.4. Let (M,d, µ, E) be a doubling metric measure Dirichlet space
with a “carré du champ” satisfying (P2). Then (ER) holds.
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Proof. Recall first that (FK) holds according to Remark 5.5. Fix x0 ∈ M , R > 0,
and let u ∈ F be harmonic in B(x0, R). Let r ∈ (0, R/2]. By applying Proposition
B.2 to u−K for any K ≤M(2R), one obtains

(B.6) M(R/2)−K . (M(2R)−K)

(
a(K,R)

V (x0, R)

)1/2

.

According to (B.6) applied in B(x0, r) with K = ki := ki(2r) = M(2r)−M(2r)−m(2r)
2i+1 ,

there exists a constant C, independent of the main parameters, such that

M(r/2) ≤ ki(2r) + C(M(2r)− ki(2r))
(
a(ki, r)

V (x0, r)

)1/2

.

Assume that a(k0, r) ≤ 1
2
V (x0, r), otherwise work with −u. Since (P2) implies

(P̃2−ε) as we already pointed out, we can apply Lemma B.3. This yields

a(ki, r)

V (x0, r)
≤ Ci−ε/2,

therefore one can choose i large enough so that

C

(
a(ki, r)

V (x0, r)

)1/2

≤ 1

2
.

One obtains

M(r/2) ≤M(2r)− 1

2i+2
(M(2r)−m(2r)),

hence

M(r/2)−m(r/2) ≤ (M(2r)−m(2r))

(
1− 1

2i+2

)
.

Set ω(r) = M(r)−m(r). One has

ω(r/2) ≤ ηω(2r), ∀r ∈ (0, R/2],

where η = 1− 1
2i+2 ∈ (0, 1). It follows that there exist C, α > 0 such that

ω(ρ) ≤ C
( ρ
R

)α
ω(R/2), ∀ρ ∈ (0, R/2].

In particular,

|u(x)− u(y)| ≤ C ′
(
d(x, y)

R

)α
max

B(x0,R/2)
|u| , ∀x, y ∈ B(x0, R/2).

Now, it follows easily from Proposition B.2 that

max
B(x0,R/2)

|u| . 2- OscB(x0,R)(u),

hence the claim. �

We can now prove Proposition 5.2. This will be done in two steps: first (ER)
yields a De Giorgi property for harmonic functions similar to (5.1). Second one
derives the full (DG2) by classical L2 techniques.



54 FRÉDÉRIC BERNICOT, THIERRY COULHON, DOROTHEE FREY

Proof of Proposition 5.2. Consider a function u ∈ F harmonic in BR = B(x0, R).
By Proposition B.4, we have (ER), and we have seen at the beginning of the proof
of Theorem 5.4 that this implies

OscBr(u) .
( r
R

)α
OscBR(u),

for Br = B(x0, r) and 0 < r ≤ R. Using the Caccioppoli inequality (B.1) and (P2),
we obtain (

−
∫
B(x0,r)

|∇u|2 dµ
)1/2

.

(
R

r

)1−α(
−
∫
B(x0,R)

|∇u|2 dµ
)1/2

(B.7)

for 0 < r ≤ R/2. If R/2 ≤ r ≤ R then the inequality still holds by (VD).
We can now deduce (DG2) as follows (cf. [39, Theorem 1.1] or [1, Theorem 3.6]).

Let f ∈ D, x0 ∈ M , and R > 0. As in the proof of Theorem 5.4, from Lemma 5.6
(since (FK) follows from (P2) let consider u ∈ F be harmonic on B(x0, R) such
that f − u ∈ F is supported in the ball B(x0, R). From (1.1), (1.2), and (1.6), we
deduce

(B.8) ‖|∇u|‖L2(B(x0,R)) . ‖|∇f |‖L2(B(x0,R)) +R‖Lf‖L2(B(x0,R)).

Using triangle inequality, then (VD) and (B.7), write, for 0 < r ≤ R,(
−
∫
B(x0,r)

|∇f |2dµ
)1/2

≤
(
−
∫
B(x0,r)

|∇u|2dµ
)1/2

+

(
−
∫
B(x0,r)

|∇(f − u)|2dµ
)1/2

≤
(
−
∫
B(x0,r)

|∇u|2dµ
)1/2

+

(
R

r

) ν
2
(
−
∫
B(x0,R)

|∇(f − u)|2dµ
)1/2

≤
(
R

r

)1−α(
−
∫
B(x0,R)

|∇u|2 dµ
)1/2

+

(
R

r

) ν
2
(
−
∫
B(x0,R)

|∇(f − u)|2dµ
)1/2

.

Since (FK) follows from our assumptions, we can use (5.10) and together with
(B.8) it follows that(
−
∫
B(x0,r)

|∇f |2dµ
)1/2

.

(
R

r

)1−α
[(
−
∫
B(x0,R)

|∇f |2dµ
)1/2

+R

(
−
∫
B(x0,R)

|Lf |2dµ
)1/2

]

+

(
R

r

)ν/2
R

(
−
∫
B(x0,R)

|Lf |2dµ
)1/2

,

hence(
−
∫
B(x0,r)

|∇f |2dµ
)1/2

.

(
R

r

)1−α(
−
∫
B(x0,R)

|∇f |2dµ
)1/2

+

(
R

r

)γ
R

(
−
∫
B(x0,R)

|Lf |2dµ
)1/2

,

where γ = max{1− α, ν
2
}. Applying Lemma 5.7 and since

sup
r≤R

(
−
∫
B(x0,r)

|Lf |2dµ
)1/2

. ‖Lf‖L∞(BR),

one obtains (DG2,ε) for every ε ∈ (1− α, 1). �
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Appendix C. A self-improving property for reverse Hölder
inequalities

In this appendix, we shall describe a general self-improving property of reverse
Hölder inequalities which is used in Proposition 7.4. These results are not new and
already appeared in the literature (see e.g. [51, Theorem 2] and [49, Subsection
3.38]). We give a proof for the sake of completeness.

Consider (M,d, µ) a doubling metric measure space. Let Q be the collection of
all balls of the ambient space M , and consider a functional a : Q → [0,∞). We say
that a is regular if there exists a constant c > 0 such that for every pair of balls
B, B̃ with B̃ ⊂ B ⊂ 2B̃

ca(B̃) ≤ a(B) ≤ c−1a(2B̃).

Theorem C.1. Let 1 < p < q ≤ +∞. Consider a regular functional a. Let
ω ∈ L1

loc(M,µ) be a non-negative function such that for every ball B ⊂M

(C.1)

(
−
∫
B

ωq dµ

)1/q

.

(
−
∫

2B

ωp dµ

)1/p

+ a(B).

Then, for every η ∈ (0, 1) and every ball B ⊂M ,(
−
∫
B

ωq dµ

)1/q

.

(
−
∫

2B

ωηp dµ

)1/(ηp)

+ a(2B).

In other words, the right-hand side exponent of a reverse Hölder inequality always
self-improves.

Proof. Fix η ∈ (0, 1). For every ε ∈ (0, 1), consider

K(ε, η) := sup
B∈Q

(
−
∫
B
ωp dµ

)1/p(
−
∫

2B
ωηp dµ

)1/(ηp)
+ a(2B) + ε

(
−
∫

2B
ωp dµ

)1/p
.

It is easy to observe that K(ε, η) is finite and bounded by ε−1. We claim that
K(ε, η) is uniformly bounded, with respect to ε.

Indeed, assume that K(ε, η) ≥ 1 (else there is nothing to prove) and take a ball
B ∈ Q. Consider (Bi)i a finite collection of balls which covers B with `(Bi) ' `(B)
and 4Bi ⊂ 2B. Then(

−
∫
B

ωp dµ

)1/p

.
∑
i

(
−
∫
Bi

ωp dµ

)1/p

=
∑
i

(
−
∫
Bi

(ωδω1−δ)p dµ

)1/p

,

for any δ ∈ [0, 1]. Using Hölder’s inequality with the particular choice δ = η(q−p)
q−ηp

gives us (
−
∫
Bi

(ωδω1−δ)p dµ

)1/p

≤
(
−
∫
Bi

ωηp dµ

) δ
ηp
(
−
∫
Bi

ωq dµ

)(1−δ)/q

,

since then
1

p
=

δ

ηp
+

1− δ
q

.
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Using (C.1), the assumption K(ε, η) ≥ 1 and the fact that 4Bi ⊂ 2B, one obtains(
−
∫
Bi

(ωδω1−δ)p dµ

)1/p

.

(
−
∫
Bi

ωηp dµ

) δ
ηp

[(
−
∫

2Bi

ωp dµ

)1/p

+ a(Bi)

]1−δ

.

(
−
∫
Bi

ωηp dµ

) δ
ηp

K(ε, η)1−δ

[(
−
∫

4Bi

ωηp dµ

)1/(ηp)

+ ε

(
−
∫

4Bi

ωp dµ

)1/p

+ a(2B)

]1−δ

.

By summing over the finite collection of balls (Bi), we deduce that(
−
∫
B

ωp dµ

)1/p

.

(
−
∫
B

ωηp dµ

) δ
ηp

K(ε, η)1−δ

[(
−
∫

2B

ωηp dµ

)1/(ηp)

+ ε

(
−
∫

2B

ωp dµ

)1/p

+ a(2B)

]1−δ

. K(ε, η)1−δ

[(
−
∫

2B

ωηp dµ

)1/(ηp)

+ ε

(
−
∫

2B

ωp dµ

)1/p

+ a(2B)

]
.

Taking the supremum over all balls B then yields

K(ε, η) . K(ε, η)1−δ,

which in turn yields, since K(ε, η) is finite and δ > 0 due to p < q,

K(ε, η) . 1.

This last estimate is uniform with respect to ε. Hence, by letting ε→ 0, we obtain
the desired conclusion. �
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