Local geometry of integral curves in parabolic geometries

Boris Doubrov
(joint work with Igor Zelenko)

Belarussian State University

Canberra, 19/09/2011
Outline

1. The problem, examples and motivations
 - Definitions
 - Basic example
 - Motivations

2. Construction of the canonical moving frame
 - Distinguished curves in parabolic homogeneous spaces
 - Normalization conditions
 - Existence of the normal moving frame

3. Examples and discussion
 - Classical examples
 - Ruled surfaces
 - G_2 examples
 - Generalizations
Let $M = G/P$ be an arbitrary parabolic homogeneous space:

$\mathfrak{g} = \sum_{i \in \mathbb{Z}} \mathfrak{g}_i$ is a graded semisimple Lie algebra of the Lie group G and $p = \sum_{i \geq 0} \mathfrak{g}$ is a parabolic subalgebra of \mathfrak{g}.
Integral curves in parabolic homogeneous spaces

- Let $M = G/P$ be an arbitrary parabolic homogeneous space: $\mathfrak{g} = \sum_{i \in \mathbb{Z}} \mathfrak{g}_i$ is a graded semisimple Lie algebra of the Lie group G and $\mathfrak{p} = \sum_{i \geq 0} \mathfrak{g}$ is a parabolic subalgebra of \mathfrak{g}.

- M is naturally equipped with an invariant bracket-generating vector distribution D: $D \subset TM$ is defined as a G-invariant distribution equal to $\mathfrak{g}_{-1} \mod \mathfrak{p}$ at $o = eP$.
Integral curves in parabolic homogeneous spaces

- Let $M = G/P$ be an arbitrary parabolic homogeneous space: $g = \sum_{i \in \mathbb{Z}} g_i$ is a graded semisimple Lie algebra of the Lie group G and $\mathfrak{p} = \sum_{i \geq 0} g_i$ is a parabolic subalgebra of g.

- M is naturally equipped with an invariant bracket-generating vector distribution D: $D \subset TM$ is defined as a G-invariant distribution equal to $g_{-1} \mod \mathfrak{p}$ at $o = eP$.

- We consider unparametrized curves in M, integral to the distribution D.

Main questions: the natural moving frame, the number of fundamental differential invariants, the existence of the natural projective parameter on such curves.
Integral curves in parabolic homogeneous spaces

- Let $M = G/P$ be an arbitrary parabolic homogeneous space: $\mathfrak{g} = \sum_{i \in \mathbb{Z}} \mathfrak{g}_i$ is a graded semisimple Lie algebra of the Lie group G and $\mathfrak{p} = \sum_{i \geq 0} \mathfrak{g}$ is a parabolic subalgebra of \mathfrak{g}.
- M is naturally equipped with an invariant bracket-generating vector distribution D: $D \subset TM$ is defined as a G-invariant distribution equal to $\mathfrak{g}_{-1} \mod \mathfrak{p}$ at $o = eP$.
- We consider unparametrized curves in M, integral to the distribution D.
- Main questions: the natural moving frame, the number of fundamental differential invariants, the existence of the natural projective parameter on such curves.
Basic example

Curves in Grassmann varieties $\gamma \subset \text{Gr}(r, V)$.

Define osculating flag:

$0 \subset \gamma \subset \gamma' \subset \ldots \subset \gamma^{(k)} \subset V$,

where $\gamma^{(t)} = \langle v_1^{(t)}, \ldots, v_r^{(t)} \rangle$,

$\gamma'^{(t)} = \langle v_1^{(t)}, \ldots, v_r^{(t)}, v_1'^{(t)}, \ldots, v_r'^{(t)} \rangle$.

This definition does not depend on the basis $\{v_i^{(t)}\}$ and the choice of the parameter t on γ.

We get the natural embedding of γ into the flag variety $F_{r_0, \ldots, r_k}(V)$, $r_i = \text{dim} \gamma^{(i)}$, and γ becomes an integral curve in the flag variety.

More generally, the curve $0 \subset W_0^{(t)} \subset W_1^{(t)} \subset \ldots \subset W_k^{(t)} \subset V$ in $F_{r_0, \ldots, r_k}(V)$ is integral if and only if $W'_i^{(t)} \subset W_{i+1}^{(t)}$.

Boris Doubrov (joint work with Igor Zelenko) (Belarussian State University)

Local geometry of integral curves in parabolic geometries

Canberra, 19/09/2011
Basic example

- Curves in Grassmann varieties $\gamma \subset \text{Gr}(r, V)$.
- Define osculating flag:

 \[0 \subset \gamma \subset \gamma' \subset \cdots \subset \gamma^{(k)} \subset V, \]

 where

 \[\gamma(t) = \langle v_1(t), \ldots, v_r(t) \rangle, \]
 \[\gamma'(t) = \langle v_1(t), \ldots, v_r(t), v'_1(t), \ldots, v'_r(t) \rangle. \]

 This definition does not depend on the basis $\{v_i(t)\}$ and the choice of the parameter t on γ.
Basic example

- Curves in Grassmann varieties $\gamma \subset \text{Gr}(r, V)$.
- Define osculating flag:

$$0 \subset \gamma \subset \gamma' \subset \cdots \subset \gamma^{(k)} \subset V,$$

where

$$\gamma(t) = \langle v_1(t), \ldots, v_r(t) \rangle,$$
$$\gamma'(t) = \langle v_1(t), \ldots, v_r(t), v'_1(t), \ldots, v'_r(t) \rangle.$$

This definition does not depend on the basis $\{v_i(t)\}$ and the choice of the parameter t on γ.
- We get the natural embedding of γ into the flag variety $F_{r_0, \ldots, r_k}(V)$, $r_i = \dim \gamma^{(i)}$, and γ becomes an integral curve in the flag variety.
Basic example

- Curves in Grassmann varieties \(\gamma \subset \text{Gr}(r, V) \).
- Define osculating flag:

\[
0 \subset \gamma \subset \gamma' \subset \cdots \subset \gamma^{(k)} \subset V,
\]

where

\[
\gamma(t) = \langle v_1(t), \ldots, v_r(t) \rangle, \\
\gamma'(t) = \langle v_1(t), \ldots, v_r(t), v'_1(t), \ldots, v'_r(t) \rangle.
\]

This definition does not depend on the basis \(\{v_i(t)\} \) and the choice of the parameter \(t \) on \(\gamma \).

- We get the natural embedding of \(\gamma \) into the flag variety \(F_{r_0, \ldots, r_k}(V) \), \(r_i = \text{dim} \gamma^{(i)} \), and \(\gamma \) becomes an integral curve in the flag variety.

- More generally, the curve

\[
0 \subset W_0(t) \subset W_1(t) \subset \cdots \subset W_k(t) \subset V
\]

in \(F_{r_0, \ldots, r_k}(V) \) is integral if and only if \(W'_i(t) \subset W_{i+1}(t) \).
Prototype

There is a canonical moving frame $E \subset \text{SL}(3, \mathbb{R})$ such that for each section $\sigma: \gamma \to E$ the pull-back $\sigma^* \omega$ of the Maurer-Cartan form ω on $\text{SL}(3, \mathbb{R})$ is:

$$
\begin{pmatrix}
\omega_{00} & \omega_{01} & \omega_{02} \\
\omega_{10} & 0 & \omega_{01} \\
-\omega_{00} & \omega_{01} & 0
\end{pmatrix}
=
\begin{pmatrix}
\omega_{00} & \omega_{01} & 0 \\
\omega_{10} & 0 & 0 \\
-\omega_{00} & \omega_{01} & 0
\end{pmatrix}
+
\begin{pmatrix}
0 & 0 & \omega_{02} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
$$

The first summand is a natural projective connection on the curve. It is necessarily flat and defines the natural projective parameter on the curve. The second summand defines the relative projective invariant $k = \omega_{02}/\omega_{01}$. The plane curve is locally a conic if and only if $k = 0$.

Similar results for non-degenerate curves in \mathbb{P}^n are known (Wilczynski, Griffits, Green, Se-ashi).

Boris Doubrov (joint work with Igor Zelenko) (Belarussian State University)

Local geometry of integral curves in parabolic geometries

Canberra, 19/09/2011 5 / 16
Prototype

- There is a canonical moving frame $E \subset SL(3, \mathbb{R})$ such that the for each section $\sigma : \gamma \to E$ the pull-back $\sigma^* \omega$ of the Maurer-Cartan form ω on $SL(3, \mathbb{R})$ is:

\[
\begin{pmatrix}
\omega_{00} & \omega_{01} & \omega_{02} \\
\omega_{10} & 0 & \omega_{01} \\
0 & \omega_{10} & -\omega_{00}
\end{pmatrix}
= \begin{pmatrix}
\omega_{00} & \omega_{01} & 0 \\
\omega_{10} & 0 & \omega_{01} \\
0 & \omega_{10} & -\omega_{00}
\end{pmatrix}
+ \begin{pmatrix}
0 & 0 & \omega_{02} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

The first summand is a natural projective connection on the curve. It is necessarily flat and defines the natural projective parameter on the curve.

The second summand defines the relative projective invariant $k = \omega_{02}/\omega_{01}$. The plane curve is locally a conic if and only if $k = 0$.

Similar results for non-degenerate curves in \mathbb{P}^n are known (Wilczynski, Griffits, Green, Se-ashi).

Boris Doubrov (joint work with Igor Zelenko) (Belarussian State University)

There is a canonical moving frame $E \subset SL(3, \mathbb{R})$ such that for each section $\sigma: \gamma \rightarrow E$ the pull-back $\sigma^* \omega$ of the Maurer-Cartan form ω on $SL(3, \mathbb{R})$ is:

$$
\begin{pmatrix}
\omega_{00} & \omega_{01} & \omega_{02} \\
\omega_{10} & 0 & \omega_{01} \\
0 & \omega_{10} & -\omega_{00}
\end{pmatrix}
=
\begin{pmatrix}
\omega_{00} & \omega_{01} & 0 \\
\omega_{10} & 0 & \omega_{01} \\
0 & \omega_{10} & -\omega_{00}
\end{pmatrix}
+
\begin{pmatrix}
0 & 0 & \omega_{02} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
$$

The first summand is a natural projective connection on the curve. It is necessarily flat and defines the natural projective parameter on the curve.
Prototype

- There is a canonical moving frame $E \subset SL(3, \mathbb{R})$ such that the for each section $\sigma : \gamma \to E$ the pull-back $\sigma^* \omega$ of the Maurer-Cartan form ω on $SL(3, \mathbb{R})$ is:

$$
\begin{pmatrix}
\omega_{00} & \omega_{01} & \omega_{02} \\
\omega_{10} & 0 & \omega_{01} \\
0 & \omega_{10} & -\omega_{00}
\end{pmatrix}
=
\begin{pmatrix}
\omega_{00} & \omega_{01} & 0 \\
\omega_{10} & 0 & \omega_{01} \\
0 & \omega_{10} & -\omega_{00}
\end{pmatrix}
+
\begin{pmatrix}
0 & 0 & \omega_{02} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
$$

- The first summand is a natural projective connection on the curve. It is necessarily flat and defines the natural projective parameter on the curve.
- The second summand defines the relative projective invariant $k = \omega_{02}/\omega_{01}$. The plane curve is locally a conic if and only if $k = 0$.

Prototype

- There is a canonical moving frame $E \subset SL(3,\mathbb{R})$ such that the for each section $\sigma : \gamma \rightarrow E$ the pull-back $\sigma^* \omega$ of the Maurer-Cartan form ω on $SL(3,\mathbb{R})$ is:

\[
\begin{pmatrix}
\omega_{00} & \omega_{01} & \omega_{02} \\
\omega_{10} & 0 & \omega_{01} \\
0 & \omega_{10} & -\omega_{00}
\end{pmatrix}
=
\begin{pmatrix}
\omega_{00} & \omega_{01} & 0 \\
\omega_{10} & 0 & \omega_{01} \\
0 & \omega_{10} & -\omega_{00}
\end{pmatrix} +
\begin{pmatrix}
0 & 0 & \omega_{02} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

- The first summand is a natural projective connection on the curve. It is necessarily flat and defines the natural projective parameter on the curve.

- The second summand defines the relative projective invariant $k = \omega_{02}/\omega_{01}$. The plane curve is locally a conic if and only if $k = 0$.

- Similar results for non-degenerate curves in P^n are known (Wilczynski, Griffits, Green, Se-ashi).
Motivations

- The linearization of any non-linear ODE is:

\[y^{(n+1)}(t) + p_1(t)y^{(n)}(t) + \cdots + p_{n+1}(t)y(t) = 0. \]

Geometry of such ODEs is equivalent to the geometry of projective curves in \(P^n \) (Wilczynski).
Motivations

- The linearization of any non-linear ODE is:
 \[y^{(n+1)}(t) + p_1(t)y^{(n)}(t) + \cdots + p_{n+1}(t)y(t) = 0. \]

 Geometry of such ODEs is equivalent to the geometry of projective curves in \(P^n \) (Wilczynski).

- A \textit{pseudo-product structure on a smooth manifold} is a pair of complementary completely integrable distributions \(E, F \) such that their sum \(E \oplus F \) is bracket generating. If \(\dim E = 1, \dim F = r \) (often the case), then the linearization of \(F \) along fibers of \(\pi: M \to M/E \) is a family of (unparametrized) curves in Grassmann varieties:
 \[\gamma \to \text{Gr}_r(T_\gamma(M/E)), \quad t \mapsto d_t\pi(F_t). \]
Motivations

- The linearization of any non-linear ODE is:

\[y^{(n+1)}(t) + p_1(t)y^{(n)}(t) + \cdots + p_{n+1}(t)y(t) = 0. \]

Geometry of such ODEs is equivalent to the geometry of projective curves in \(P^n \) (Wilczynski).

- A *pseudo-product structure on a smooth manifold* is a pair of complementary completely integrable distributions \(E, F \) such that their sum \(E \oplus F \) is bracket generating. If \(\dim E = 1, \dim F = r \) (often the case), then the linearization of \(F \) along fibers of \(\pi: M \to M/E \) is a family of (unparametrized) curves in Grassmann varieties:

\[\gamma \to \text{Gr}_r(T \gamma(M/E)), \quad t \mapsto d_t \pi(F_t). \]

- Let \(N \subset T^*M \) be an odd-dimensional submanifold, \(\pi: T^*M \to M \), and let \(\Omega \) be the symplectic structure on \(T^*M \). Define a pair \(E \oplus F \) as \(E = \ker \Omega|_N, \ F = \ker d\pi \). Suppose \(\dim E = 1 \). Then the linearization of \(F \) along \(E \) is a curve in the isotropic Grassmannian of the symplectic group.
Type of integral curves

- The first natural invariant of such curve γ is a type of its tangent line ($=1$-st jet) viewed as an element of PD, projectivization of the vector bundle $D \subset TM$.

Types of integral curves are in one-to-one correspondence with orbits of G on $P(g-1)$. Due to E.Vinberg, there is only a finite number of such orbits ("The Weyl group of a graded Lie algebra", English transl. Math. USSR, Izvestija 10 (1976)).

Type of the curve is constant in generic point, but may degenerate at singular points. We consider only integral curves of constant type.
Type of integral curves

- The first natural invariant of such curve γ is a type of its tangent line (1-st jet) viewed as an element of PD, projectivization of the vector bundle $D \subset TM$.

- Fix an element $x \in \mathfrak{g}$ of degree -1. We say that an integral curve γ is of type x, if the lift of γ to PD lies in the orbit of the line $\mathbb{R}x$ under the action of G on PD. Curve γ is of type x if for each point $p \in \gamma$ there exists an element $g \in G$ such that $g.o = p$ and $g_*(x) \subset T_p\gamma$.

Types of integral curves are in one-to-one correspondence with orbits of G_0 on $P(\mathfrak{g} - 1)$. Due to E. Vinberg, there is only a finite number of such orbits (The Weyl group of a graded Lie algebra, English transl. Math. USSR, Izvestija 10 (1976)).
The first natural invariant of such curve γ is a type of its tangent line (=1-st jet) viewed as an element of PD, projectivization of the vector bundle $D \subset TM$.

Fix an element $x \in \mathfrak{g}$ of degree -1. We say that an integral curve γ is of type x, if the lift of γ to PD lies in the orbit of the line $\mathbb{R}x$ under the action of G on PD. Curve γ is of type x if for each point $p \in \gamma$ there exists an element $g \in G$ such that $g \cdot o = p$ and $g_*(x) \subset T_p \gamma$.

Types of integral curves are in one-to-one correspondence with orbits of G_0 on $P(\mathfrak{g}_{-1})$. Due to E.Vinberg, there is only a finite number of such orbits (The Weyl group of a graded Lie algebra, English transl. Math. USSR, Izvestija 10(1976)).
Type of integral curves

- The first natural invariant of such curve γ is a type of its tangent line (=1-st jet) viewed as an element of PD, projectivization of the vector bundle $D \subset TM$.

- Fix an element $x \in g$ of degree -1. We say that an integral curve γ is of type x, if the lift of γ to PD lies in the orbit of the line $\mathbb{R}x$ under the action of G on PD. Curve γ is of type x if for each point $p \in \gamma$ there exists an element $g \in G$ such that $g.o = p$ and $g_*(x) \subset T_p\gamma$.

- Types of integral curves are in one-to-one correspondence with orbits of G_0 on $P(g_{-1})$. Due to E. Vinberg, there is only a finite number of such orbits (The Weyl group of a graded Lie algebra, English transl. Math. USSR, Izvestija 10(1976)).

- Type of the curve is constant in generic point, but may degenerate at singular points. We consider only integral curves of constant type.
Distinguished curves

- Fix an element $x \in g_{-1}$ and consider only integral curves of constant type x.
Distinguished curves

- Fix an element \(x \in g_{-1} \) and consider only integral curves of constant type \(x \).
- *Distinguished or flat curves* of type \(x \) are closures of the orbit of \(\exp(tx) \) through \(o = eP \).
Distinguished curves

- Fix an element $x \in g_{-1}$ and consider only integral curves of constant type x.
- *Distinguished or flat curves* of type x are closures of the orbit of $\exp(tx)$ through $o = eP$.
- Element x can always be completed by elements $h \in g_0$, $y \in g_1$ to the basis of \mathfrak{sl}_2 subalgebra (Morozov, Vinberg).
Distinguished curves

- Fix an element $x \in \mathfrak{g}_{-1}$ and consider only integral curves of constant type x.

- *Distinguished or flat curves* of type x are closures of the orbit of $\exp(tx)$ through $o = eP$.

- Element x can always be completed by elements $h \in \mathfrak{g}_0$, $y \in \mathfrak{g}_1$ to the basis of \mathfrak{sl}_2 subalgebra (Morozov, Vinberg).

- The corresponding subgroup acts transitively on the distinguished curve. Thus, any distinguished curve is always rational curve or its cover. The projective parameter on it does not depend on the choice of h and y.
Let S be the symmetry group of γ_0. The corresponding subalgebra $\mathfrak{s} \subset \mathfrak{g}$ is a graded subalgebra in \mathfrak{g} of the form:

- $s_i = 0$ for $i \leq -2$;
- $s_{-1} = \langle x \rangle$;
- $s_i = (\text{ad } x)^{-1}(s_{i-1}) = \{ u \in \mathfrak{g}_i \mid [x, u] \in s_{i-1} \}$ for all $i \geq 0$.

It is characterized as a largest graded subalgebra in \mathfrak{g} such that its negative part is R_x. $\mathfrak{s} = \langle x, h, y \rangle \oplus n$, where n is the largest ideal of \mathfrak{s} concentrated in the non-negative degree. \mathfrak{s} is often reductive: rational normal curves in projective spaces, conformal circles, etc. In this case $n = Z_{\mathfrak{g}}(x) \subset \mathfrak{g}_0$.

Boris Doubrov (joint work with Igor Zelenko) (Belarussian State University)
Symmetry algebras of distinguished curves

Let S be the symmetry group of γ_0. The corresponding subalgebra $s \subset g$ is a graded subalgebra in g of the form:

$s_i = 0$ for $i \leq -2$;
$s_{-1} = \langle x \rangle$;
$s_i = (\text{ad } x)^{-1}(s_{i-1}) = \{ u \in g_i | [x, u] \in s_{i-1} \}$ for all $i \geq 0$.

It is characterized as a largest graded subalgebra in g such that its negative part is $\mathbb{R}x$.
Symmetry algebras of distinguished curves

- Let S be the symmetry group of γ_0. The corresponding subalgebra $s \subset g$ is a graded subalgebra in g of the form:

 $s_i = 0$ for $i \leq -2$;

 $s_{-1} = \langle x \rangle$;

 $s_i = (\text{ad} \ x)^{-1}(s_{i-1}) = \{u \in g_i \mid [x, u] \in s_{i-1}\}$ for all $i \geq 0$.

- It is characterized as a largest graded subalgebra in g such that its negative part is $\mathbb{R}x$.

- $s = \langle x, h, y \rangle \oplus n$, where n is the largest ideal of s concentrated in the non-negative degree.
Symmetry algebras of distinguished curves

- Let S be the symmetry group of γ_0. The corresponding subalgebra $\mathfrak{s} \subset \mathfrak{g}$ is a graded subalgebra in \mathfrak{g} of the form:

 \[\mathfrak{s}_i = 0 \text{ for } i \leq -2; \]
 \[\mathfrak{s}_{-1} = \langle x \rangle; \]
 \[\mathfrak{s}_i = (\text{ad } x)^{-1}(\mathfrak{s}_{i-1}) = \{ u \in \mathfrak{g}_i \mid [x, u] \in \mathfrak{s}_{i-1} \} \text{ for all } i \geq 0. \]

- It is characterized as a largest graded subalgebra in \mathfrak{g} such that its negative part is $\mathbb{R}x$.

- $\mathfrak{s} = \langle x, h, y \rangle \oplus \mathfrak{n}$, where \mathfrak{n} is the largest ideal of \mathfrak{s} concentrated in the non-negative degree.

- \mathfrak{s} is often reductive: rational normal curves in projective spaces, conformal circles, etc. In this case $\mathfrak{n} = Z_\mathfrak{g}(x) \subset \mathfrak{g}_0$.

Boris Doubrov (joint work with Igor Zelenko) (Belarussian State University)
Notion of a normal moving frame

- $\gamma \subset G/P$ is any curve of type χ
Notion of a normal moving frame

- $\gamma \subset G/P$ is any curve of type \times
- $\pi: G \to G/P$ is the standard principle P-bundle

Moving frame is (any) subbundle of this bundle:

We construct a normal moving frame by imposing conditions on $\omega(T_pE) \subset g$ for $p \in E$.

Example (Cartan) of such conditions for projective curves in P^2:

$$\omega|_E = \begin{bmatrix}
\omega_{00} & \omega_{01} & \omega_{02} \\
\omega_{10} & 0 & \omega_{01} - \omega_{00} \\
0 & \omega_{10} & -\omega_{00}
\end{bmatrix}$$
Notion of a normal moving frame

- $\gamma \subset G/P$ is any curve of type \times
- $\pi: G \to G/P$ is the standard principle P-bundle
- $\omega: TG \to g$ is the left-invariant Maurer-Cartan form on G
Notion of a normal moving frame

- $\gamma \subset G/P$ is any curve of type \times
- $\pi: G \to G/P$ is the standard principle P-bundle
- $\omega: TG \to \mathfrak{g}$ is the left-invariant Maurer-Cartan form on G
- $\pi|_\gamma: \pi^{-1}(\gamma) \to \gamma$ is the restriction of the principle P-bundle to γ
Notion of a normal moving frame

- $\gamma \subset G/P$ is any curve of type x
- $\pi : G \to G/P$ is the standard principle P-bundle
- $\omega : TG \to g$ is the left-invariant Maurer-Cartan form on G
- $\pi|_{\gamma} : \pi^{-1}(\gamma) \to \gamma$ is the restriction of the principle P-bundle to γ
- Moving frame is (any) subbundle of this bundle: $E \subset \pi^{-1}(\gamma)$
Notion of a normal moving frame

- $\gamma \subset G/P$ is any curve of type \times
- $\pi : G \to G/P$ is the standard principle P-bundle
- $\omega : TG \to \mathfrak{g}$ is the left-invariant Maurer-Cartan form on G
- $\pi|_{\gamma} : \pi^{-1}(\gamma) \to \gamma$ is the restriction of the principle P-bundle to γ
- Moving frame is (any) subbundle of this bundle: $E \subset \pi^{-1}(\gamma)$
- We construct a normal moving frame by imposing conditions on $\omega(T_pE) \subset \mathfrak{g}$ for $p \in E$
Notion of a normal moving frame

- $\gamma \subset G/P$ is any curve of type x
- $\pi: G \to G/P$ is the standard principle P-bundle
- $\omega: TG \to g$ is the left-invariant Maurer-Cartan form on G
- $\pi|_\gamma: \pi^{-1}(\gamma) \to \gamma$ is the restriction of the principle P-bundle to γ
- Moving frame is (any) subbundle of this bundle: $E \subset \pi^{-1}(\gamma)$
- We construct a normal moving frame by imposing conditions on $\omega(T_pE) \subset g$ for $p \in E$
- Example (Cartan) of such conditions for projective curves in P^2:

$$
\omega|_E = \begin{pmatrix}
\omega_{00} & \omega_{01} & \omega_{02} \\
\omega_{10} & 0 & \omega_{01} \\
0 & \omega_{10} & -\omega_{00}
\end{pmatrix}
$$
Normalization conditions

- Define normalization conditions for any curve of type x as a graded subspace $W \subset g$ such that:

 (1) $W_i = 0$ for $i < 0$;

 (2) W_i is complementary to $s_i + [x, g_{i+1}]$;

 (3) W is invariant with respect to $s^{(0)} = \sum_{i \geq 0} s_i$.

Normalization conditions

- Define normalization conditions for any curve of type \times as a graded subspace $W \subset \mathfrak{g}$ such that:

 1. $W_i = 0$ for $i < 0$;
 2. W_i is complementary to $s_i + [\times, \mathfrak{g}_{i+1}]$;
 3. W is invariant with respect to $s^{(0)} = \sum_{i \geq 0} s_i$.

- Such W may or may not exist. It always exists if s is reductive:

 $$W = \{ u \in s_{\geq 0}^\perp \mid [u, y] = 0 \},$$

 where s^\perp is the orthogonal complement to s w.r.t. to Killing form of \mathfrak{g}, and $s_{\geq 0}^\perp$ is its part of non-negative degree.
Main result

Theorem

Fix normalization conditions for a given integral curve type \(x \in g_{-1} \). Then there exists a unique moving frame \(E \rightarrow \gamma \) for any curve \(\gamma \) of type \(x \) such that:

\[
\omega(T_pE) \subset s \oplus W \quad \text{for all } p \in E.
\]

Decompose \(\omega|_E \) as \(\omega_s + \omega_W \) correspondingly.
Main result

Theorem

Fix normalization conditions for a given integral curve type $x \in \mathfrak{g}_{-1}$. Then there exists a unique moving frame $E \to \gamma$ for any curve γ of type x such that:

$$\omega(T_pE) \subset \mathfrak{s} \oplus W \quad \text{for all } p \in E.$$

Decompose $\omega|_E$ as $\omega_\mathfrak{s} + \omega_W$ correspondingly.

- The form $\omega_\mathfrak{s}$ is a flat projective connection on γ. It defines the canonical projective parameter on γ.

Main result

Theorem

Fix normalization conditions for a given integral curve type $x \in g_{-1}$. Then there exists a unique moving frame $E \to \gamma$ for any curve γ of type x such that:

$$\omega(T_pE) \subset s \oplus W \quad \text{for all } p \in E.$$

Decompose $\omega|_E$ as $\omega_s + \omega_W$ correspondingly.

- The form ω_s is a flat projective connection on γ. It defines the canonical projective parameter on γ.

- The form ω_W is a vertical equivariant form defining the complete system of fundamental invariants of γ. In particular, γ is locally equivalent to the distinguished curve of type x if and only if $\omega_W = 0$.

Boris Doubrov (joint work with Igor Zelenko) (Belarussian State University)
Classical examples

- Non-degenerate curves in P^n can be naturally lifted to integral curves in the flag variety $F_{1,2,...,n}(\mathbb{R}^{n+1})$. The corresponding curve type is given by:

$$x = \begin{pmatrix}
0 & 0 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 1 & 0
\end{pmatrix}$$

Distinguished curves are osculating flags of rational normal curves. Symmetry algebra is $s = \langle x, h, y \rangle = sl_2$. Normalization condition $W = \langle y^2, \ldots, y^n \rangle$.
Classical examples

- Non-degenerate curves in P^n can be naturally lifted to integral curves in the flag variety $F_{1,2,...,n}(\mathbb{R}^{n+1})$. The corresponding curve type is given by:

$$x = \begin{pmatrix}
0 & 0 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 1
\end{pmatrix}$$

Distinguished curves are osculating flags of rational normal curves. Symmetry algebra is $s = \langle x, h, y \rangle = sl_2$. Normalization condition $W = \langle y^2, \ldots, y^n \rangle$.

- Any curves in conformal spaces $S^n = SO(n + 1, 1)/P$ approximated by conformal circles.
Classical examples

- Non-degenerate curves in P^n can be naturally lifted to integral curves in the flag variety $F_{1,2,...,n}(\mathbb{R}^{n+1})$. The corresponding curve type is given by:

$$x = \begin{pmatrix}
0 & 0 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 1 & 0
\end{pmatrix}$$

Distinguished curves are osculating flags of rational normal curves. Symmetry algebra is $s = \langle x, h, y \rangle = sl_2$. Normalization condition $W = \langle y^2, \ldots, y^n \rangle$.

- Any curves in conformal spaces $S^n = SO(n+1,1)/P$ approximated by conformal circles.

- Curves of generic type in $Gr_n(\mathbb{R}^{2n})$, $IGr_n(\mathbb{R}^{2n})$ both for $Sp(2n, \mathbb{R})$ and $SO(n, n)$.
Classical examples

- Non-degenerate curves in P^n can be naturally lifted to integral curves in the flag variety $F_{1,2,...,n}(\mathbb{R}^{n+1})$. The corresponding curve type is given by:

$$
\begin{pmatrix}
0 & 0 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 1 & 0 \\
0 & 0 & \cdots & 1 & 0
\end{pmatrix}
$$

- Distinguished curves are osculating flags of rational normal curves. Symmetry algebra is $s = \langle x, h, y \rangle = s_{12}$. Normalization condition $W = \langle y^2, \ldots, y^n \rangle$.

- Any curves in conformal spaces $S^n = SO(n+1,1)/P$ approximated by conformal circles.

- Curves of generic type in $\text{Gr}_n(\mathbb{R}^{2n})$, $\text{IGr}_n(\mathbb{R}^{2n})$ both for $\text{Sp}(2n, \mathbb{R})$ and $\text{SO}(n, n)$.

- Curves of generic type in $\text{Gr}_n(\mathbb{R}^{rn})$ for any $r \geq 2$. They correspond to linear systems of r ODEs of order n. (Se-ashi)
No invariant normalization conditions

- What if invariant normalization conditions do not exist?

Take any graded subspace W complementary to $s + [x, g]$. We can still define the normal moving frame bundle, but it is no longer a principal fiber bundle. Thus, Cartan connection does not survive, and projective parametrization is not defined uniformly for all curves of type x.

Smallest example without invariant space W is curves in $\text{Gr}_2(\mathbb{R}^5) = \text{ruled surfaces in } \mathbb{P}^4$. More generally, the normalization condition does exist for ruled surfaces in \mathbb{P}^{2k+1} and fails to exist for ruled surfaces in \mathbb{P}^{2k} for generic curve type.
No invariant normalization conditions

- What if invariant normalization conditions do not exist?
- Take any graded subspace W complementary to $s + [x, g]$. We can still define the normal moving frame bundle, but it is no longer a principal fiber bundle. Thus, Cartan connection does not survive, and projective parametrization is not defined uniformly for all curves of type x.

Smallest example without invariant space W is curves in $\text{Gr}^2(\mathbb{R}^5) = \text{ruled surfaces in } \mathbb{P}^4$. More generally, the normalization condition does exist for ruled surfaces in \mathbb{P}^{2k+1} and fails to exist for ruled surfaces in \mathbb{P}^{2k} for generic curve type.
No invariant normalization conditions

- What if invariant normalization conditions do not exist?
- Take any graded subspace \(W \) complementary to \(s + [x, g] \). We can still define *the normal moving frame bundle*, but it is no longer a principal fiber bundle. Thus, Cartan connection does not survive, and projective parametrization is not defined uniformly for all curves of type \(x \).
- Smallest example without invariant space \(W \) is curves in \(\text{Gr}_2(\mathbb{R}^5) = \text{ruled surfaces in } P^4 \).
No invariant normalization conditions

- What if invariant normalization conditions do not exist?
- Take any graded subspace W complementary to $s + [x, g]$. We can still define the normal moving frame bundle, but it is no longer a principal fiber bundle. Thus, Cartan connection does not survive, and projective parametrization is not defined uniformly for all curves of type x.
- Smallest example without invariant space W is curves in $\text{Gr}_2(\mathbb{R}^5) = \text{ruled surfaces in } P^4$.
- More generally, the normalization condition does exist for ruled surfaces in P^{2k+1} and fails to exist for ruled surfaces in P^{2k} for generic curve type.
G_2 examples

- Take contact parabolic geometry of $G = G_2$.

Boris Doubrov (joint work with Igor Zelenko) (Belarussian State University)
Local geometry of integral curves in parabolic geometries
Canberra, 19/09/2011 15 / 16
G_2 examples

- Take contact parabolic geometry of $G = G_2$.
- $g_{-1} \equiv S^3(\mathbb{R}^2)$ under the irreducible action of $G_0 \equiv GL(2, \mathbb{R})$;

Three curve types depending on the multiplicity of roots of cubic polynomial. Normalization conditions always exist:

- Triple root: curve is naturally lifted to G/B; after the lift (in the non-degenerate case) we get the symmetry algebra $s = sl_2$ and 1 fundamental invariant.
- Double root: symmetry algebra s is 5-dimensional and is non-reductive. Yet, normalization conditions do exist, and there are 2 fundamental invariants.
- No multiple roots: symmetry algebra $s = sl_2$, there are 3 fundamental invariants.
G_2 examples

- Take contact parabolic geometry of $G = G_2$.
- $g_{-1} \cong S^3(\mathbb{R}^2)$ under the irreducible action of $G_0 \equiv GL(2, \mathbb{R})$;
- Three curve types depending on the multiplicity of roots of cubic polynomial. Normalization conditions always exist:
 - Triple root: curve is naturally lifted to G/B; after the lift (in the non-degenerate case) we get the symmetry algebra $\mathfrak{s} = \mathfrak{sl}_2$ and 1 fundamental invariant.
 - Double root: symmetry algebra \mathfrak{s} is 5-dimensional and is non-reductive. Yet, normalization conditions do exist, and there are 2 fundamental invariants.
 - No multiple roots: symmetry algebra $\mathfrak{s} = \mathfrak{sl}_2$, there are 3 fundamental invariants.
G_2 examples

- Take contact parabolic geometry of $G = G_2$.
- $g_{-1} ≡ S^3(\mathbb{R}^2)$ under the irreducible action of $G_0 ≡ GL(2, \mathbb{R})$;
- Three curve types depending on the multiplicity of roots of cubic polynomial. Normalization conditions always exist:
 - **Triple root**: curve is naturally lifted to G/B; after the lift (in the non-degenerate case) we get the symmetry algebra $\mathfrak{s} = \mathfrak{sl}_2$ and 1 fundamental invariant.
G_2 examples

- Take contact parabolic geometry of $G = G_2$.
- $\mathfrak{g}_{-1} \equiv S^3(\mathbb{R}^2)$ under the irreducible action of $G_0 \equiv GL(2, \mathbb{R})$;
- Three curve types depending on the multiplicity of roots of cubic polynomial. Normalization conditions always exist:
 - **Triple root:** curve is naturally lifted to G/B; after the lift (in the non-degenerate case) we get the symmetry algebra $\mathfrak{s} = sl_2$ and 1 fundamental invariant.
 - **Double root:** symmetry algebra \mathfrak{s} is 5-dimensional and is non-reductive. Yet, normalization conditions do exist, and there are 2 fundamental invariants.
 - **No multiple roots:** symmetry algebra $\mathfrak{s} = sl_2$, there are 3 fundamental invariants.
G_2 examples

- Take contact parabolic geometry of $G = G_2$.
- $g_{-1} \equiv S^3(\mathbb{R}^2)$ under the irreducible action of $G_0 \equiv GL(2, \mathbb{R})$.
- Three curve types depending on the multiplicity of roots of cubic polynomial. Normalization conditions always exist:
 - **Triple root:** curve is naturally lifted to G/B; after the lift (in the non-degenerate case) we get the symmetry algebra $\mathfrak{s} = \mathfrak{sl}_2$ and 1 fundamental invariant.
 - **Double root:** symmetry algebra \mathfrak{s} is 5-dimensional and is non-reductive. Yet, normalization conditions do exist, and there are 2 fundamental invariants.
 - **No multiple roots:** symmetry algebra $\mathfrak{s} = \mathfrak{sl}_2$, there are 3 fundamental invariants.
Generalizations

- **Parametrized curves.** Needs modification of the symmetry algebra:

\[s_0 = \{ u \in g_0 \mid [x, u] = 0 \} . \]

The rest stays the same.
Generalizations

- **Parametrized curves.** Needs modification of the symmetry algebra:
 \[s_0 = \{ u \in g_0 \mid [x, u] = 0 \} . \]

 The rest stays the same.

- **Integral curves in (curved) parabolic geometries.** Main result stays the same, as moving frames for curves in Cartan geometries work as in homogeneous case. Yet, lifts of curves to correspondence spaces might be no longer integral.
Generalizations

- **Parametrized curves.** Needs modification of the symmetry algebra:

\[s_0 = \{ u \in g_0 \mid [x, u] = 0 \}. \]

The rest stays the same.

- **Integral curves in (curved) parabolic geometries.** Main result stays the same, as moving frames for curves in Cartan geometries work as in homogeneous case. Yet, lifts of curves to correspondence spaces might be no longer integral.

- **Integral submanifolds of higher dimension in parabolic homogeneous spaces.** Needs modification of normalization conditions: \(W \) is an \(s^{(0)} \)-invariant splitting of the exact sequence:

\[
0 \to B_+^1(s_{-1}, g/s) \to Z_+^1(s_{-1}, g/s) \to H_+^1(s_{-1}, g/s) \to 0.
\]

The rest works similarly. In particular, if \(H_+^1(s_{-1}, g/s) = 0 \), all submanifolds of type \(s_{-1} \subset g_{-1} \) are flat (= locally equivalent to the orbit of \(\exp(s_{-1}) \)).