Theorems Beginning with P

•

Michael Eastwood

Australian National University

Results from Plane Geometry

- Pappus' Theorem: Pappus of Alexandria (~290–~350)
- Pascal's Theorem: Blaise Pascal (1623–1662)
- Poncelet's Theorem: Jean-Victor Poncelet (1788–1867)
- Penrose's Theorem: Roger Penrose (1931–)
- **Desargues' Theorem:** Girard Desargues (1591–1661)
- Steiner's Porism: Jakob Steiner (1796–1863)
- Butterfly Theorem

Pappus' Theorem

Pascal's Theorem

Poncelet's Theorem

Desargues' Theorem

Steiner's Porism

•

Butterfly Theorem

 \bullet

Proof of Desargues

View in three dimensions!

Proof of Steiner

Proof of Pappus

Brute force proof: normalise!

Elegant proof: deduce from Pascal!

From Pascal to Pappus

Some algebra!

Picture

- ullet ellipse $x^2+b^2y^2=r^2$
- ullet hyperbola $x^2-b^2y^2=r^2$
- two lines (x by)(x + by) = 0

Proof of Pascal

- Ellipse \cup Line $\xrightarrow{\mathrm{perturb}}$ Cubic! \cap Lines
- Use <u>complex</u> numbers!
- Add points at infinity!
- Doughnut ¥ Sphere: topology!

Proof of Poncelet

•

Proof of Butterfly

Prove a more general theorem!

 \equiv Zero Sum!

Further Reading

- http://www.cut-the-knot.org/geometry.shtml
- Leopold Flatto, Poncelet's Theorem, American Mathematical Society 2009
- http://www.ima.umn.edu/%7Earnold/moebius/

THANK YOU

•

THE END