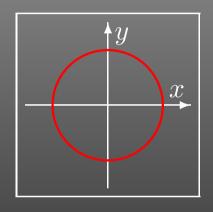
Re-inventing the Wheel: Differential Operators on the Sphere

Michael Eastwood

Australian National University

The round wheel

The round circle: $\{x^2 + y^2 = 1\} = \{(\cos \theta, \sin \theta)\}$



with symmetry group SO(2)

$$\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}.$$

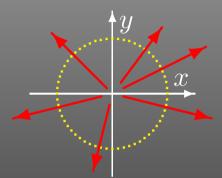
Invariant differential operators:-

$$f \mapsto 2\frac{d^3f}{d\theta^3} + 7\frac{d^2f}{d\theta^2} - \pi^{42}\frac{df}{d\theta} - f.$$

Any polynomial in $d/d\theta$ will do.

The projective wheel

The projective circle: $\{(x,y) \sim \lambda(x,y) \text{ for } \lambda > 0\}$



with symmetry group $SL(2, \mathbb{R})$.

Homogeneous space: $\mathrm{SL}(2,\mathbb{R})/\left\{\left(\begin{array}{cc}\lambda & * \\ 0 & \lambda^{-1}\end{array}\right)\right\}$.

Function on circle $\Leftrightarrow f(\lambda x, \lambda y) = f(x, y)$

$$\Leftrightarrow x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = 0 \Leftrightarrow (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}) = (yg, -xg)$$

where $g(\lambda x, \lambda y) = \lambda^{-2} g(x, y)$.

An invariant operator

Claim:
$$f\mapsto g\equiv \frac{1}{y}\frac{\partial f}{\partial x}=-\frac{1}{x}\frac{\partial f}{\partial y}$$
 is $\mathrm{SL}(2,\mathbb{R})$ -invariant.

Proof: Fix skew tensor ϵ_{ij} (volume form). Then

$$\nabla_i f = \epsilon_{ij} x^j g$$
 defines g .

Write $g = \nabla f$ for

$$\nabla: \mathcal{E} \longrightarrow \mathcal{E}(-2) = \Lambda^1.$$
 exterior derivative

Homogeneous line bundles on $SL(2,\mathbb{R})/P$

More invariant operators

Claim: there are $\mathrm{SL}(2,\mathbb{R})$ -invariant operators

$$\nabla^{(\ell+1)}: \mathcal{E}(\ell) \longrightarrow \mathcal{E}(-\ell-2) \quad \forall \ \ell \geq 0.$$

Proof: $f_{ij\cdots k} \equiv \nabla_i \nabla_j \cdots \nabla_k f$ ($\ell + 1$ derivatives)

- $f_{ij\cdots k}=f_{(ij\cdots k)}$ and $x^if_{ij\cdots k}=0$
- exact sequence

$$0 \to \mathcal{E}(-\ell - 2) \to \mathcal{E}_{(ij\cdots k)}(-1) \xrightarrow{x^i} \mathcal{E}_{(j\cdots k)} \to 0$$
$$g \mapsto \epsilon_{ip}\epsilon_{jq}\cdots\epsilon_{kr}x^px^q\cdots x^rg. \quad \Box$$

Classification!

Theorem We've found all $\mathrm{SL}(2,\mathbb{R})$ -invariant linear differential operators on the circle: if $D:\mathcal{E}(\ell)\to\mathcal{E}(m)$ is a non-constant invariant linear differential operator, then

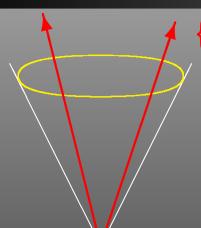
- $\ell \geq 0$ and $m = -\ell 2$
- $D = \text{constant} \times \nabla^{(\ell+1)}$.

Best proof \leftrightarrow representation theory of $\mathfrak{sl}(2,\mathbb{R})$.

$$h = \left[egin{array}{ccc} 1 & 0 \ 0 & -1 \end{array}
ight] \quad x = \left[egin{array}{ccc} 0 & 1 \ 0 & 0 \end{array}
ight] \quad y = \left[egin{array}{ccc} 0 & 0 \ 1 & 0 \end{array}
ight] \quad \cdots$$

$$[x,y] = h$$
 $[h,x] = 2x$ $[h,y] = -2y$ &c.

Another wheel



{generators}

with symmetry group SO(2,1).

But,
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a^2 & 2ab & b^2 \\ ac & ad + bc & bd \\ c^2 & 2cd & d^2 \end{pmatrix}$$
 induces

$$\operatorname{SL}(2,\mathbb{R}) \xrightarrow{\simeq 2:1} \operatorname{SO}(2,1)$$

 $\rightsquigarrow (\mathrm{SL}(2,\mathbb{R})/P)/\pm \mathrm{Id}$ (not much different).

The 2-sphere

Various symmetry groups:—

- The round sphere = SO(3)/SO(2)
- The projective sphere $=\operatorname{SL}(3,\mathbb{R})/P$

- The conformal sphere = SO(3,1)/P
- The Riemann sphere $= SL(2,\mathbb{C})/P$

Projective ≠ conformal

$$\begin{cases} \dim_{\mathbb{R}} \mathrm{SL}(3,\mathbb{R}) = 8\\ \dim_{\mathbb{R}} \mathrm{SO}(3,1) = 6 \end{cases}$$

Conformal = Riemann

$$SL(2,\mathbb{C}) \xrightarrow{\simeq 2:1} SO(3,1).$$

The 3-sphere

Many symmetry groups, including

- The projective 3-sphere $= SL(4,\mathbb{R})/P$
- The conformal 3-sphere = SO(4,1)/P
- The contact projective 3-sphere $=\operatorname{Sp}(4,\mathbb{R})/P$
- The CR 3-sphere $= \overline{\mathrm{SU}(2,1)/P}$

They are all different:—

Also as complex homogeneous spaces.

 $S^3 = SU(2) \Rightarrow$ many more possibilities...

$SL(4, \mathbb{R})$ -invariant operators

•
$$f \in \Gamma(S^3, \mathcal{E}(0)) \Rightarrow x^i \nabla_i f = 0$$
. But...

$$0 \to \Lambda^1 \to \mathcal{E}_i(-1) \stackrel{x^i}{\to} \mathcal{E} \to 0$$
 Euler sequence

bundle of 1-forms on S^3

and $\nabla : \Lambda^0 \to \Lambda^1$ is invariant (exterior derivative).

$$f \in \Gamma(S^3, \mathcal{E}(1)) \Rightarrow x^i \nabla_i \nabla_j f = 0.$$
 But...

$$0 \to \mathbb{O}^2 \Lambda^1(1) \to \mathcal{E}_{(ij)}(-1) \stackrel{x^i}{\to} \mathcal{E}_j \to 0$$
 exact

and so
$$\nabla^{(2)}: \Lambda^0(1) \to \bigcirc^2 \Lambda^1(1)$$
 is invariant.

More...

• $f \in \Gamma(S^3, \Lambda^1(2))$ and twisted Euler

$$0 \to \Lambda^1(2) \to \mathcal{E}_i(1) \xrightarrow{x^i} \mathcal{E}(2) \to 0$$

 $\Rightarrow x^i \nabla_i f_j = f_j$ and $x^i f_i = 0$. Therefore,

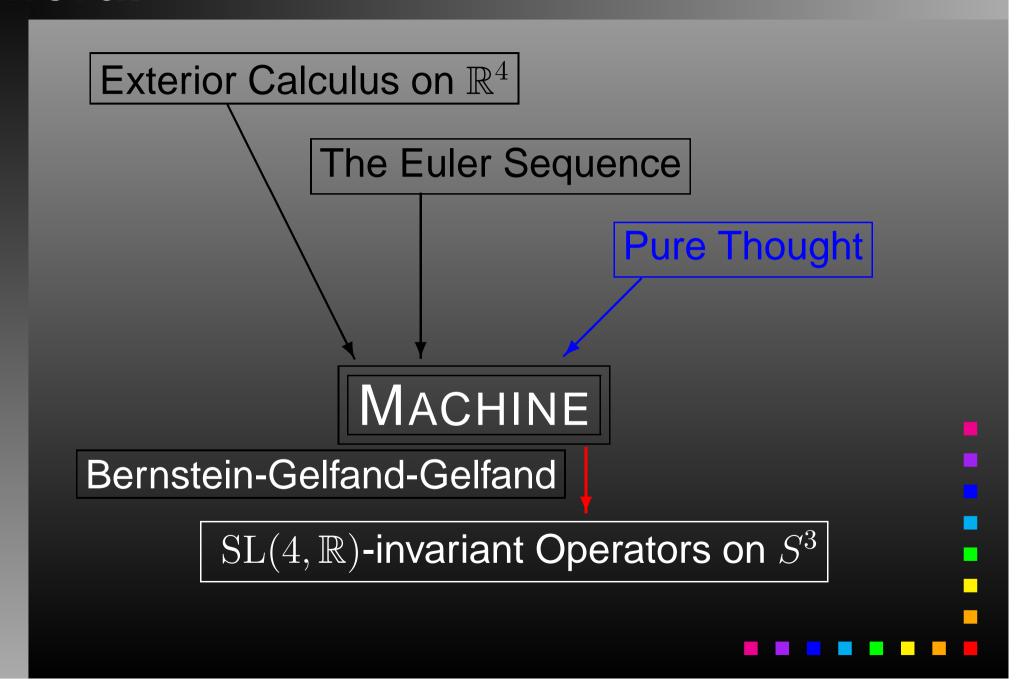
$$x^{i}\nabla_{(i}f_{j)} = \frac{1}{2}(x^{i}\nabla_{i}f_{j} + \nabla_{j}(x^{i}f_{i}) - (\nabla_{j}x^{i})f_{i})$$

= $\frac{1}{2}(f_{j} + 0 - f_{j}) = 0.$

But
$$0 \to \bigcirc^2 \Lambda^1(2) \to \mathcal{E}_{(ij)} \stackrel{x^i}{\to} \mathcal{E}_j(1) \to 0$$
 is exact

and so $\nabla : \Lambda^1(2) \to \bigcirc^2 \Lambda^1(2)$ is invariant.

Moral



Classification!

Theorem We've found all $SL(4,\mathbb{R})$ -invariant linear differential operators on projective S^3 : if $D:E\to F$ is a non-constant invariant linear differential operator between irreducible homogeneous bundles, then

- D may be constructed by our machine
- there is an explicit list of such D.

Best proof \leftrightarrow representation theory of $\mathfrak{sl}(4,\mathbb{R})$.

The list

For non-negative integers a, b, c, there are invariant operators

- All invariant operators are captured (uniquely)
- the kernel of the first one is $\overset{a}{\bullet} \overset{b}{\bullet} \overset{c}{\bullet}$
- it's locally exact! (BGG resolution)

Examples

$$a=0,\ b=0,\ c=0 \leadsto \operatorname{de}\operatorname{Rham}$$

$$0 \xrightarrow{0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0} \xrightarrow{-2 \quad 1 \quad 0 \quad -3 \quad 0 \quad 1} \xrightarrow{-4 \quad 0 \quad 0} \xrightarrow{-4 \quad 0} \xrightarrow{$$

$$a=0,\ b=1,\ c=0 \leadsto \text{linear elasticity!}$$

$$0 \to \Lambda^2 \mathbb{R}^4 \to \Lambda^1(2) \xrightarrow{\nabla} \mathbb{O}^2 \Lambda^1(2) \xrightarrow{\nabla^{(2)}} \cdots$$

What's happening on $\mathbb{R}^3 \hookrightarrow S^3$?

de Rham

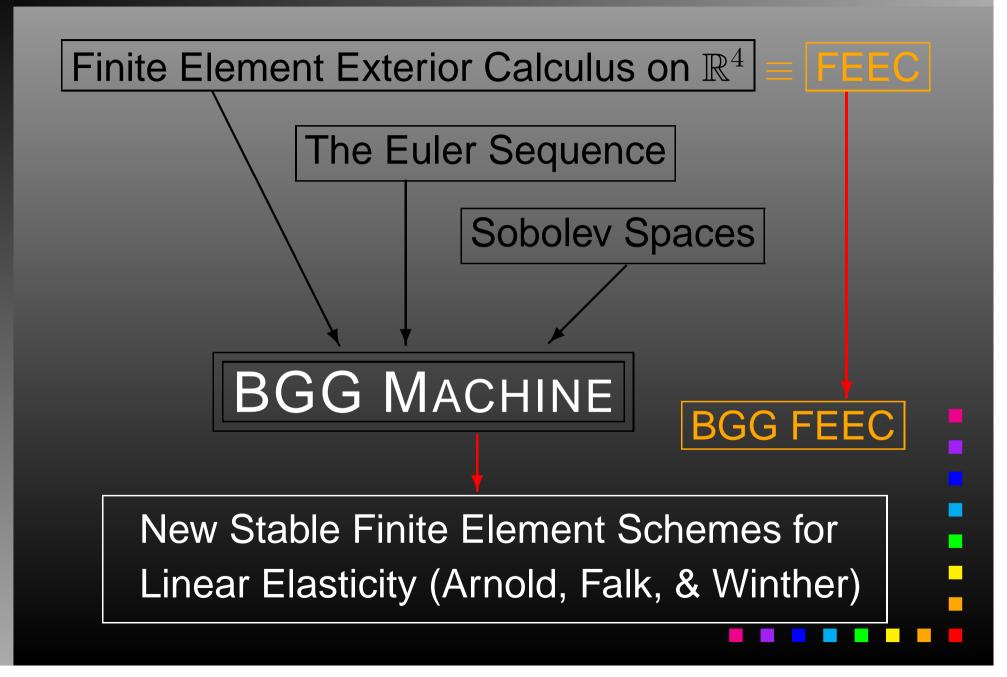
$$f \mapsto \nabla_a f$$
 $f_a \mapsto \nabla_{[a} f_{b]}$ $f_{ab} \mapsto \nabla_{[a} f_{bc]}$ $f \stackrel{\text{grad}}{\longmapsto} \nabla_a f$ $f_a \stackrel{\text{curl}}{\longmapsto} \epsilon^{abc} \nabla_b f_c$ $f^a \stackrel{\text{div}}{\longmapsto} \nabla_a f^a$

linear elasticity = Riemannian deformation

$$\phi_a \mapsto \nabla_{(a}\phi_{b)} \quad \phi_{ab} \mapsto \epsilon^{ace} \epsilon^{bdf} \nabla_c \nabla_d \phi_{ef} \quad \phi^{ab} \mapsto \nabla_b \phi^{ab}$$

displacement → strain → stress → load

Application to numerical analysis



More BGG complexes on 3-sphere

Conformal

Contact projective

$$\begin{array}{c} a \quad b \quad -a-2 \quad a+b+1 \quad -a-2b-4 \quad a+b+1 \quad -a-2b-4 \quad b \\ \times \begin{array}{c} \\ \\ \end{array} \\ \end{array} \begin{array}{c} \\ \\$$

CR

What's going on here?

- Representation theory of simple Lie groups.
- ullet G is simple. P is parabolic.
- The (affine) action of the Weyl group of G.
- Hasse diagrams.
- Central character.
- The Jantzen-Zuckerman translation principle.
- Verma modules.
- Geometric interpretation.
- Parabolic geometry: Čap, Slovák, Souček,...

