Next Generation Sequencing
Applications

Sylvain Forêt

March 2010

http://dayhoff.anu.edu.au/~sf/next_gen_seq
1. Genome sequencing
2. Transcriptome sequencing
3. Bisulfite sequencing
4. ChIP-seq
1. **Genome sequencing**
 - De novo genome sequencing
 - Genome resequencing

2. **Transcriptome sequencing**

3. **Bisulfite sequencing**

4. **ChIP-seq**
Definition

Sequencing a genome *from scratch*, without any pre-existing template.
Coverage depth

\[\text{coverage} = a = \frac{NL}{G} \]

where \(N \) is the number of reads, \(L \) the read size, and \(G \) the genome size.

Assuming that reads are uniformly distributed, and ignoring end effects, the probability of a read starting in an interval \([x, x + h]\) is \(h/G \).

The number of reads falling in this interval is this a binomial distribution of mean \(Nh/G \).

For large \(N \) (many reads) and small \(h \) (\(h = L \), reads are small), the number of reads covering a segment of size \(L \) can be approximated with a Poisson distribution of mean \(a \).
How many sequences?

<table>
<thead>
<tr>
<th>Coverage</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected proportion</td>
<td>0.864</td>
<td>0.981</td>
<td>0.997</td>
<td>0.999</td>
</tr>
<tr>
<td>Expected contig size</td>
<td>1,600</td>
<td>6,700</td>
<td>33,500</td>
<td>186,000</td>
</tr>
</tbody>
</table>

NB: the Poisson approximation usually overestimates the actual proportion covered.
Genome Assembly

Reads

Contigs

Scaffolds

Super-Scaffolds
Alignments: theory

- Aligning 2 sequences of size n has complexity $o(n^2)$
- Aligning m sequences has complexity $o(n^m)$
- \Rightarrow Need faster algorithms

Alignments: heuristics

- Find ‘similar’ reads by looking for common words ($o(n)$)
- Align clusters of similar reads
- Allow for more mismatches at the ends of the reads
Building Scaffolds

Physical map
- For instance: micro-satellites
- One marker on the contig: located
- Two markers on the contig: oriented

Mate pairs
- One mate pair: oriented with other contig
- Can provide accurate distance between contigs
- Long insert libraries (cosmids, fosmids) are usually part of genome sequencing projects
Super-Scaffolds

Any other type of information ...

- Weak matches (eg poor quality reads)
- ESTs
- Protein homology
- Long range PCR
- ...
- Often a manual (and tedious) process
Next Generation Sequencing

Which Technique?
- The curse of repeats and low complexity
- 454 is a reasonable choice
- Other technologies mainly applied to prokaryotes
- However: Panda genome sequencing with Illumina (!!!)
1. **Genome sequencing**
 - De novo genome sequencing
 - Genome resequencing

2. **Transcriptome sequencing**

3. **Bisulfite sequencing**

4. **ChIP-seq**
Genome Resequencing

Definition
Sequencing the genome of a species with a sequenced genome. Reads are *mapped* onto this template, no assembly is involved.
Genome Resequencing

Looking for differences

- Single nucleotide polymorphisms (SNPs)
- Insertions and deletions
- Other molecular markers: micro-satellites, mini-satellites, ...
- Segmental duplications and other genomic re-arrangements
- ...

...
SNPs

Homozygous SNP
Heterozygous SNP

Template
Reads

Source: http://solid.appliedbiosystems.com
Genomic Re-Arrangements

Source: http://solid.appliedbiosystems.com
Applications

Resequencing applications

- Comparing closely related species (e.g., *Homo sapiens* vs *H. neandertalis*)
- Genome wide association studies (GWAS)
- Tumor-associated mutations
- …
Targeted Resequencing

1. DNA extraction
2. DNA fragmentation
3. Hybridize to microarray
4. Elute microarray
5. Sequence
Which Technique?

- To resequence the same species, small reads are more cost-effective.
- For different species, 454 may be preferable.
Resequencing Example: Myeloid Leukaemia

3,813,205 tumour SNVs (Maq15)

2,647,695 well supported SNVs (decision tree)

2,584,418 present in skin (SNPs)

63,277 tumour-specific SNVs

20,440 in non-genic regions

31,632 new SNVs

10,735 intronic

11,192 SNVs in genic regions

241 SNVs in coding sequence

31,645 in dbSNP/Watson/Venter

216 in UTR

181 SNVs predicted to alter gene function (non-synonymous and splice junctions)

60 synonymous

7 unable to be validated (technical failures)

14 validated as germline SNVs (SNPs)

8 validated as somatic SNVs (acquired mutations)

152 validated as wild type (false positives)

From Ley et al, Nature 2008
Resequencing Example: Maternal Blood

From Chiu et al, PNAS 2008
1. Genome sequencing

2. Transcriptome sequencing
 - De novo transcriptome sequencing
 - Transcriptome profiling
 - Differential gene expression

3. Bisulfite sequencing

4. ChIP-seq
De Novo Transcriptome Sequencing

Pros

- ‘Genome of the poor’: Only a small proportion of eukaryotic genomes is protein coding. Therefore sequencing a transcriptome is cheaper than a genome.
- Can give more information than a genome: genes can be hard to predict in silico. Here, no need for prediction.
- Provides access to alternative splicing.

Cons

- No insight into the non-expressed functional elements
- Adequate coverage is difficult for genes expressed at low level
- Long transcripts can be difficult to sequence entirely
Transcriptome Assembly

Assembly

- Same basic procedure as for genomes (reads \rightarrow contigs)
- **BUT:**
 - Genomes are linear segments (or circular)
 - Transcripts are graphs of alternatively spliced exons
 - No assembler can currently handle this
Next Generation Sequencing

Which Technique?

- Longer reads make assembly easier
- Short reads, especially with mate pairs can be useful to complement an existing assembly
1 Genome sequencing

2 Transcriptome sequencing
 - De novo transcriptome sequencing
 - Transcriptome profiling
 - Differential gene expression

3 Bisulfite sequencing

4 ChIP-seq
Combining a high-quality genome assembly with high-throughput transcriptome sequencing has provided unprecedented insight into the complexity of eukaryotic transcriptomes.
Mapping Reads

From Cloonan et al, Nature Methods 2008
<table>
<thead>
<tr>
<th>Read size</th>
<th>M1</th>
<th>M5</th>
<th>M10</th>
<th>M100</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>62%</td>
<td>33%</td>
<td>5%</td>
<td>2%</td>
</tr>
<tr>
<td>30</td>
<td>73%</td>
<td>20%</td>
<td>5%</td>
<td>2%</td>
</tr>
<tr>
<td>35</td>
<td>79%</td>
<td>17%</td>
<td>4%</td>
<td>2%</td>
</tr>
</tbody>
</table>

From Cloonan et al, Nature Methods 2008
Saturating the Transcriptome

Discovery plot for ESEB SQRL libraries

From Cloonan et al, Nature Methods 2008
Recent Discoveries

Transcriptome profiling breakthroughs

- Alternative splicing: 92-94% of human genes undergo alternative splicing
- Patterns of alternative splicing are highly dynamic
- Discovery of many non-coding RNAs (ncRNA)
Next Generation Sequencing

Which Technique?

- Short reads are more cost-effective
- Mate pairs can improve mapping
- Mate pairs impose restrictions on sequence size
1. Genome sequencing

2. Transcriptome sequencing
 - De novo transcriptome sequencing
 - Transcriptome profiling
 - Differential gene expression

3. Bisulfite sequencing

4. ChIP-seq
Differential Gene Expression

Definition

Identifying genes expressed at different levels in different conditions.

Examples:

- Diseased vs healthy
- Treated vs non-treated
- Mutant vs wild-type
- Dose response
- More complex, factorial designs
Differential Gene Expression

Assumptions

- Number of reads from a given transcript is proportional to:
 - molar concentration
 - length of transcript

- A possible unit of measurement is: reads of per kilobase of exon model per million mapped reads (RPKM, Mortazavi et al, Nature Methods 2008)

From Mortazavi et al, Nature Methods 2008
Statistical modelling

The model

- Hypothesis: number of reads mapping to a given gene is a Poisson random variable
- Recall Poisson is the limit of binomial as the number of ‘trials’ gets big but the probability of ‘success’ gets small

\[\text{bin}(n, p) = \text{Pois}(\mu) \text{ as } n \to \infty, p \to 0, np = \mu \]

Here, \(n \sim 10^8 \),
and for a given gene ‘j’:

\[p_j = \frac{\text{number of transcripts from gene j in flow cell}}{\text{total number of transcripts in flow cell}} \sim 10^{-3} - 10^{-6} \]

Then number of reads of gene j is Poisson with mean

\[\mu_j = np_j \sim 10^2 - 10^5 \]
Poisson distribution and empirical distribution

From Marioni et al, Genome Research 2008
Hypothesis testing

- Null hypothesis: \(\mu_{j1} = \mu_{j2} \)
- Alternate hypothesis: \(\mu_{j1} \neq \mu_{j2} \)

Procedure

\[x_{jk} \sim \text{Pois}(\mu_{jk}) \text{ where } \hat{\mu}_{jk} = C_k p_j \]

Note: \(\hat{\mu} \) means estimate of \(\mu \).

If the reads are distributed randomly amongst the \(N \) samples:

\[X_j = \sum_{k=1}^{N} \frac{(x_{jk} - \hat{\mu}_{jk})^2}{\hat{\mu}_{jk}} \sim \chi^2_{N-1} \]
Which Technique?

- Multiplexing can be very useful:
 - Technical or biological replicates
 - Complex factorial designs
 - Cost savings
1. Genome sequencing

2. Transcriptome sequencing

3. Bisulfite sequencing
 - CpG methylation
 - Genome-wide CpG profiles

4. ChIP-seq
DNA Methylation

Biological significance
- DNA methylation involves the addition of a methyl group to some nucleotides
- Present in all realms of life
- Involved in various functions
- Can be inherited

DNA methylation in animals
- Mostly CpG dinucleotides
- Gene silencing (chromatin remodelling)
- Imprinting
- Widespread in mammals
- Involved in a number of diseases: cancer, obesity, ...
- Poorly understood
DNA Methylation: An Example

DNA methylation in the honeybee

- Some insects have a mammalian-like methylase gene set
- For instance, the honeybee
- Workers and queens, same genome
- Dnmt3 knockdown ⇒ queens
- This illustrates the importance of methylation in the integration of environmental clues
1. Genome sequencing

2. Transcriptome sequencing

3. Bisulfite sequencing
 - CpG methylation
 - Genome-wide CpG profiles

4. ChIP-seq
Bisulfite Sequencing

ATCACGATCAGCTCGATA

↓ Treat with bisulfite

ATCACGATTAGGTTTGATA

↓ Sequence

↓ Align to genome
Next Generation Sequencing

Which Technique?

- 454: longer is better (loss of complexity), but more homopolymers
- Short reads are more cost-effective
- Mate pairs can improve mapping
- SOLiD has the advantage of color-space
Bisulfite Sequencing Example: Leukaemia

From Taylor et al, Cancer Research 2008
1. Genome sequencing

2. Transcriptome sequencing

3. Bisulfite sequencing

4. ChIP-seq
 - Method
 - Example
 - Ribosome profiling
DNA-Protein Interactions
ChIP-seq

From Mardis, Nature Methods 2007
ChIP-seq

1. Cross-link bound proteins to DNA.
2. Isolate chromatin and shear DNA.
4. Reverse cross-link and digest protein.
5. Ligate P1 and P2 adaptors to construct fragment library.

Source: http://solid.appliedbiosystems.com
1. Genome sequencing

2. Transcriptome sequencing

3. Bisulfite sequencing

4. ChIP-seq
 - Method
 - Example
 - Ribosome profiling
Histone Profiles

From Barski et al, Cell 2007
1. Genome sequencing
2. Transcriptome sequencing
3. Bisulfite sequencing
4. ChIP-seq
 - Method
 - Example
 - Ribosome profiling
Problems with RNA-based methods

- RNA-based methods (RNA-seq, microarrays, quantitative PCR, ...) provide a proxy to protein concentration
- However, these methods ignore post-transcriptional events
- Ribosome profiling provides a better proxy to protein concentration

Ribosome profiling

- Technology similar to ChIP-seq
- Measures RNA sequences attached to ribosomes
- Very new, might or might not be practical
Ribosome Profiling

Stalled translation

Active translation

Number of Reads

Location on transcript

Location on transcript