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Abstract. Mathematics is a subject rife with connections. Here we give a few examples
of the ways in which we can use techniques from the realm of measuring to solve number
theoretic problems but the ideas within are not limited to analytic number theory.

What do we mean when we say that we can count something? Mathematically speaking,
a set is countable if you can go through all its elements, one by one, and name every
single one, everything. This is intuitive if we’re dealing with finitely many things but
it generalises nicely to infinite sets as well. Number theorists mostly deal with things
that we can count, whether thet’s prime numbers; integer solutions to equations; or a
multitude of other similar problems.

On the other hand, we have problems that are very much in the realm of things we
have to measure: problems of length which require a much more fine-grained set than we
get with countable sets. However there is a strange “duality” between these concepts.

The field of analytic number theory is one of these bridges between these distinct fields
and it uses techniques from analysis — a branch of maths largely dedicated to objects
of a measurable1 nature — to solve problems in number theory which, as we’ve already
briefly discussed, is a much more countable discipline.

One of the biggest areas of analytic number theory was pioneered by the great British
mathematicians G.H. Hardy and J.E. Littlewood and is known as the circle method. The
rough idea, trivial as it may sound, is that if we go full circle then we haven’t moved. To
put it a little bit more concretely: suppose you’re drawing circles and you have a fixed
length you can draw in total. However you can vary the curvature of the circles you draw:
they can either be small and so you’ll draw lots of circles on top of each other or they
can be large. However, no matter which you choose you will always end up where you
started.

The only difference is the so-called degenerate case where the circle you draw is infinitely
big. This translates into you drawing a straight line of length 1 and, in thise case, you
don’t end up where you started2.

This all-or-nothing behaviour allows you to assign certain countable behaviour to the
degenerate case that you’d really like to test for and generalise it to the non-degenerate
cases. The treatment of circles is very much in the realm of measuring so we now have
access to all the standard tools of analysis to deal with this problem originally rooted in
counting.

There are other ways we can translate problems in the discrete realm to that of the
continuum: the most well-known of which is probably the Riemann zeta function. This
has a variety of interesting properties (and lies firmly within the realm of measuring) but
these properties are controlled in their entirety by the properties of the whole numbers
and, in particular, the properties of the prime numbers.

Prime numbers, along with being one of the most well-known objects in all of mathe-
matics, are also not very well understood but we can see the effects of, for instance, how

1There is a technical definition of measurability in analysis but we use the term more loosely.
2The circles in question are the integrals of e2xkπi from x = 0 to x = 1. If k = 0 then the integrand is 1

and so the integral is 1, otherwise the integral goes around the full circle and you get lots of cancellation.
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the primes are distributed in the Riemann zeta function. So, by studying the analytic
properties of this function we can work backwards and discern what the primes must look
like in order for these analytic properties to arise.

There’s a theorem due to Dirichlet which states that every sensible3 arithmetic progres-
sion has infinitely many primes. This is a very hard theorem to prove by conventional
means but by encoding the information about the distribution of primes on arithmetic
progressions in a close cousin of the Riemann zeta function — a Dirichlet L-function —
and looking at how it behavious on a specific region4

There are countless similar objects and methods and I won’t name them all but the
take-home message is that things in mathematics are rarely self-contained, despite what
librarians will tell you to the contrary. There will be numerous unforeseen and unforesee-
able connections that enrich the subject matter greatly which, if we adopt the ideological
entrenchments of discrete vs continuous (or any other such blanket categorisation), we
will be blind to.
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3The arithmetic progressions we’re talking about are those of the form a + nd whenever a and d do
not share any common prime divisors.

4Without going into masses of technical details, if L(s, χ) is a Dirichlet L-function (where s is a complex
variable) then all we need is that L(1, χ) 6= 0 for any non-principal Dirichlet character χ
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