Lie n-algebras, supersymmetry, and division algebras

John Huerta

Department of Mathematics
UC Riverside

Higher Structures IV
This research began as a puzzle. Explain this pattern:

- The only normed division algebras are \mathbb{R}, \mathbb{C}, \mathbb{H} and \mathbb{O}. They have dimensions $k = 1, 2, 4$ and 8.
- The classical superstring makes sense only in dimensions $k + 2 = 3, 4, 6$ and 10.
- The classical super-2-brane makes sense only in dimensions $k + 3 = 4, 5, 7$ and 11.
This research began as a puzzle. Explain this pattern:

- The only normed division algebras are \mathbb{R}, \mathbb{C}, \mathbb{H} and \mathbb{O}. They have dimensions $k = 1, 2, 4$ and 8.
- The classical superstring makes sense only in dimensions $k + 2 = 3, 4, 6$ and 10.
- The classical super-2-brane makes sense only in dimensions $k + 3 = 4, 5, 7$ and 11.

Pulling on this thread will lead us into higher gauge theory.
<table>
<thead>
<tr>
<th>Object</th>
<th>Parallel transport</th>
<th>Holonomy</th>
<th>Infinitesimally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle</td>
<td></td>
<td>Lie group</td>
<td>Lie algebra</td>
</tr>
<tr>
<td>String</td>
<td></td>
<td>Lie 2-group</td>
<td>Lie 2-algebra</td>
</tr>
<tr>
<td>2-Brane</td>
<td></td>
<td>Lie 3-group</td>
<td>Lie 3-algebra</td>
</tr>
</tbody>
</table>

Higher Gauge Theory
Everything in this table can be made “super”.

A connection valued in Lie n-algebra is a connection on an n-bundle, which is like a bundle, but the fibers are “smooth n-categories.”

The theory of Lie n-algebra-valued connections was developed by Hisham Sati, Jim Stasheff and Urs Schreiber.

Let us denote the Lie 2-superalgebra for superstrings by superstring.

Let us denote the Lie 3-superalgebra for 2-branes by 2-brane.
Yet superstrings and super-2-branes are *exceptional objects*—they only make sense in certain dimensions.

The corresponding Lie 2- and Lie 3-superalgebras are similarly exceptional.

Like many exceptional objects in mathematics, they are tied to the division algebras, \mathbb{R}, \mathbb{C}, \mathbb{H} and \mathbb{O}.

In this talk, I will show you how superstring and 2-brane arise from division algebras.
But why should we care about superstring and 2-brane?

- In dimensions 3, 4, 6 and 10, we will define the superstring Lie 2-superalgebra to be the chain complex:

$$ \mathfrak{siso}(V) \leftarrow \mathbb{R} $$

This is Lie 2-superalgebra extending the Poincaré Lie superalgebra, $\mathfrak{siso}(V)$.

- In dimensions 4, 5, 7 and 11, we will define the 2-brane Lie 3-superalgebra to be a chain complex:

$$ \mathfrak{siso}(V) \leftarrow 0 \leftarrow \mathbb{R} $$

This is a Lie 3-superalgebra extending the Poincaré Lie superalgebra, $\mathfrak{siso}(V)$.
Connections valued in these Lie n-superalgebras describe the \textit{parallel transport} of superstrings and super-2-branes in the appropriate dimension:

\begin{center}
\begin{tabular}{c|c}
\text{superstring}(V) & \text{Connection component} \\
\hline
\mathbb{R} & \mathbb{R}-valued 2-form, the B field. \\
\downarrow & \\
$\text{siso}(V)$ & $\text{siso}(V)$-valued 1-form.
\end{tabular}
\end{center}
2-brane (\mathcal{V}) Connection component

\mathbb{R}	\mathbb{R}-valued 3-form, the C field.
\downarrow	\downarrow
0	\downarrow
$\text{siso}(\mathcal{V})$	$\text{siso}(\mathcal{V})$-valued 1-form.
The B and C fields are very important in physics.

- The B field, or Kalb-Ramond field, is to the string what the electromagnetic A field is to the particle.
- The C field is to the 2-brane what the electromagnetic A field is to the particle.
The B and C fields are very important in physics...

- The B field, or Kalb-Ramond field, is to the string what the electromagnetic A field is to the particle.
- The C field is to the 2-brane what the electromagnetic A field is to the particle.

...and geometry:

- The A field is really a connection on a $U(1)$-bundle.
- The B field is really a connection on a $U(1)$-gerbe, or 2-bundle.
- The C field is really a connection on a $U(1)$-2-gerbe, or 3-bundle.
Using superstring and 2-brane, we neatly package these fields with the Levi–Civita connection on spacetime.

Let us see where these Lie n-superalgebras come from, starting with the reason superstrings and 2-branes only make sense in certain dimensions.
In the physics literature, the classical superstring and super-2-brane require certain spinor identities to hold:

Superstring In dimensions 3, 4, 6 and 10, we have:

\[[\psi, \psi] \psi = 0 \]

for all spinors \(\psi \in S \).

Here, we have:
- the bracket is a symmetric map from spinors to vectors:
 \[[,] : \text{Sym}^2 S \to V \]
- vectors can “act” on spinors via the Clifford action, since \(V \subseteq \text{Cliff}(V) \).
Recall that:

- V is the vector representation of $\text{Spin}(V) = \widetilde{SO}_0(V)$.
- S is a spinor representation, i.e. a representation coming from a module of $\text{Cliff}(V)$.
- $\text{Cliff}(V) = \frac{TV}{v^2 = \|v\|^2}$.

Similarly, for the 2-brane:

Super-2-brane In dimensions 4, 5, 7 and 11, the 3-ψ’s rule need not hold:

\[[\psi, \psi]\psi \neq 0 \]

Instead, we have the 4-ψ’s rule:

\[[\psi, [\psi, \psi]\psi] = 0 \]

for all spinors \(\psi \in S \).

Again:

- \(\mathcal{V} \) and \(S \) are vectors and spinors for these dimensions.
- \([\cdot, \cdot] : \text{Sym}^2 S \to \mathcal{V} \).
Where do the division algebras come in?
Where do the division algebras come in?

- We can use \mathbb{K} to build V and S in dimensions 3, 4, 6 and 10, \mathcal{V} and \mathcal{S} in 4, 5, 7 and 11.
Where do the division algebras come in?

- We can use \mathbb{K} to build V and S in dimensions 3, 4, 6 and 10, \mathcal{V} and \mathcal{S} in 4, 5, 7 and 11.
- The 3-ψ’s and 4-Ψ’s rules are consequences of this construction.
In superstring dimensions 3, 4, 6 and 10:

- The vectors V are the 2×2 Hermitian matrices with entries in \mathbb{K}:

$$V = \left\{ \left(\begin{array}{cc} t + x & \bar{y} \\ y & t - x \end{array} \right) : t, x \in \mathbb{R}, \ y \in \mathbb{K} \right\}.$$

- The determinant is then the norm:

$$-\det \left(\begin{array}{cc} t + x & \bar{y} \\ y & t - x \end{array} \right) = -t^2 + x^2 + |y|^2.$$

- This uses the properties of \mathbb{K}:

$$|y|^2 = y\bar{y}.$$
In superstring dimensions 3, 4, 6 and 10:

- The spinors are $S = \mathbb{K}^2$.
In superstring dimensions 3, 4, 6 and 10:

- The spinors are $S = \mathbb{K}^2$.
- The Clifford action is just matrix multiplication.
In superstring dimensions 3, 4, 6 and 10:

- The spinors are $S = \mathbb{K}^2$.
- The Clifford action is just matrix multiplication.
- $[\cdot, \cdot]$ has a nice formula using matrix operations:

$$[\psi, \psi] = 2\psi\psi^T - 2\psi^T\psi 1 \in V$$
In superstring dimensions 3, 4, 6 and 10:

- The spinors are $S = \mathbb{K}^2$.
- The Clifford action is just matrix multiplication.
- $[-,-]$ has a nice formula using matrix operations:

$$[\psi, \psi] = 2\psi\overline{\psi}^T - 2\overline{\psi}^T\psi 1 \in V$$

- Showing $[\psi, \psi]\psi = 0$ is now an easy calculation!
These constructions are originally due to Tony Sudbery, with help from Corrinne Manogue, Tevian Dray and Jorg Schray.

We have shown to generalize them to the 2-brane dimensions 4, 5, 7 and 11, taking $\mathcal{V} \subseteq \mathbb{K}[4]$ and $\mathcal{S} = \mathbb{K}^4$.

The 4-Ψ’s rule

$$[\Psi, [\Psi, \Psi] \Psi] = 0$$

is then also an easy calculation.
What are the 3-ψ’s and 4-Ψ’s rules?
They are cocycle conditions.

- In 3, 4, 6 and 10, there is a 3-cochain α:

 $$\alpha(\psi, \phi, v) = \langle \psi, v\phi \rangle.$$

 Here, $\langle - , - \rangle$ is a Spin(V)-invariant pairing on spinors.

- $d\alpha = 0$ is the 3-ψ’s rule!
What are the 3-ψ’s and 4-Ψ’s rules?
They are *cocycle conditions*.

- In 3, 4, 6 and 10, there is a 3-cochain α:

 $$
 \alpha(\psi, \phi, v) = \langle \psi, v \phi \rangle.
 $$

 Here, $\langle - , - \rangle$ is a $\text{Spin}(V)$-invariant pairing on spinors.

- $d\alpha = 0$ is the 3-ψ’s rule!

- In 4, 5, 7 and 11, there is a 4-cochain β:

 $$
 \beta(\Psi, \Phi, V, W) = \langle \Psi, (VW - WV) \Phi \rangle.
 $$

 Here, $\langle - , - \rangle$ is a $\text{Spin}(V)$-invariant pairing on spinors.

- $d\beta = 0$ is the 4-Ψ’s rule!
Lie (super)algebra cohomology:

- Let $g = g_0 \oplus g_1$ be a Lie superalgebra,
- which has bracket $[,] : \Lambda^2 g \to g$,
- where $\Lambda^2 g = \Lambda^2 g_0 \oplus g_0 \otimes g_1 \oplus \text{Sym}^2 g_1$ is the graded exterior square.
- We get a cochain complex:

$$\Lambda^0 g^* \to \Lambda^1 g^* \to \Lambda^2 g^* \to \cdots$$
Lie (super)algebra cohomology:

- Let \(g = g_0 \oplus g_1 \) be a Lie superalgebra,
- which has bracket \([,\,] : \Lambda^2 g \to g\),
- where \(\Lambda^2 g = \Lambda^2 g_0 \oplus g_0 \otimes g_1 \oplus \text{Sym}^2 g_1 \) is the graded exterior square.
- We get a cochain complex:

\[
\Lambda^0 g^* \to \Lambda^1 g^* \to \Lambda^2 g^* \to \cdots
\]

- where \(d = [\,\,]^* : \Lambda^1 g^* \to \Lambda^2 g^* \), the dual of the bracket.
- \(d^2 = 0 \) is the Jacobi identity!
In 3, 4, 6 and 10:

\[T = V \oplus S \]

is a Lie superalgebra, with bracket

\[[,] : \text{Sym}^2 S \to V. \]

\(\alpha(\psi, \phi, \nu) = \langle \psi, \nu \phi \rangle \) is a 3-cocycle on \(T \).

In 4, 5, 7 and 11:

\[\mathcal{T} = \mathcal{V} \oplus S \]

is a Lie superalgebra, with bracket

\[[,] : \text{Sym}^2 S \to \mathcal{V}. \]

\(\beta(\psi, \Phi, V, W) = \langle \psi, (VW - WV)\Phi \rangle \) is a 4-cocycle on \(\mathcal{T} \).
In 3, 4, 6 and 10: we can extend α to a cocycle on

$$siso(V) = \text{spin}(V) \rtimes T$$

the Poincaré superalgebra.
In 3, 4, 6 and 10: we can extend α to a cocycle on

$$\text{siso}(V) = \text{spin}(V) \rtimes T$$

the Poincaré superalgebra.

In 4, 5, 7 and 11: we can extend β to a cocycle on

$$\text{siso}(V) = \text{spin}(V) \rtimes T$$

the Poincaré superalgebra.
The spinor identities were cocycle conditions for α and β. What are α and β good for?

Building Lie n-superalgebras!

Definition

A **Lie n-superalgebra** is an n term chain complex of \mathbb{Z}_2-graded vector spaces:

$$L_0 \leftarrow L_1 \leftarrow \cdots \leftarrow L_{n-1}$$

endowed with a bracket that satisfies Lie superalgebra axioms up to chain homotopy.

This is a special case of an L_∞-superalgebra.
Definition
An L_∞-algebra is a graded vector space L equipped with a system of grade-antisymmetric linear maps

$$[-, \cdots, -]: L^\otimes k \to L$$

satisfying a generalization of the Jacobi identity.

So L has:
- a boundary operator $\partial = [-]$ making it a chain complex,
- a bilinear bracket $[-, -]$, like a Lie algebra,
- but also a trilinear bracket $[-, -, -]$ and higher, all satisfying various identities.
The following theorem says we can package cocycles into Lie \(n \)-superalgebras:

Theorem (Baez–Crans)

If \(\omega \) is an \(n + 1 \) cocycle on the Lie superalgebra \(g \), then the \(n \) term chain complex

\[
g \leftarrow 0 \leftarrow \cdots \leftarrow 0 \leftarrow \mathbb{R}
\]

equipped with

\[
[-, -]: \Lambda^2 g \to g
\]

\[
\omega = [-, \cdots, -]: \Lambda^{n+1} g \to \mathbb{R}
\]

is a Lie \(n \)-superalgebra.
Theorem

In dimensions 3, 4, 6 and 10, there exists a Lie 2-superalgebra, which we call \textit{superstring}(V), formed by extending the Poincaré superalgebra \(\mathfrak{siso}(V) \) by the 3-cocycle \(\alpha \).

Theorem

In dimensions 4, 5, 7 and 11, there exists a Lie 3-superalgebra, which we call \textit{2-brane}(V), formed by extending the Poincaré superalgebra \(\mathfrak{siso}(V) \) by the 4-cocycle \(\beta \).