# The Algebra of Grand Unified Theories

# John Huerta

University of California, Riverside Joint work with John Baez Email: huerta@math.ucr.edu

# Introduction

There's a loose correspondence between particle physics and representation theory:

- $\circ$  Particles  $\rightarrow$  basis vectors in a representation V of a Lie group G.
- $\circ$  Classification of particles  $\rightarrow$  decomposition into irreps.
- $\circ$  Unification  $\rightarrow G \hookrightarrow H$ ; particles are "unified" into fewer irreps.
- $\circ$  Grand Unification  $\rightarrow$  as above, but *H* is simple.
- $\circ$  The Standard Model  $\rightarrow$  a particular representation  $V_{\rm SM}$  of a particular Lie group  $G_{\rm SM}.$

## The Standard Model

# Three Grand Unified Theories (GUTs)

## The SU(5) Theory

(H. Georgi and S. Glashow, 1974)

- $\circ$  The group is SU(5).
- $\circ$  The **representation** is  $\Lambda \mathbb{C}^5$ .

Web: http://math.ucr.edu/~huerta

- $\circ$  The map takes  $G_{\mathbf{SM}}$  onto the subgroup of SU(5) preserving a splitting:  $\mathbb{C}^2 \oplus \mathbb{C}^3 \cong \mathbb{C}^5$ .
- $\circ \Lambda \mathbb{C}^5 \cong V_{\mathbf{SM}}$  as a representation of  $G_{\mathbf{SM}}$ . More precisely:
- **Theorem.** There's a homomorphism  $\phi: G_{SM} \to SU(5)$  and a linear isomorphism  $h: V_{SM} \to \Lambda \mathbb{C}^5$  making

$$G_{\mathbf{SM}} \xrightarrow{\phi} \mathrm{SU}(5)$$

• The Standard Model group is  $G_{SM} = U(1) \times SU(2) \times SU(3)$ .

• The Standard Model representation is made from:

| Standard Model Representation |                                                                            |                                                           |
|-------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------|
| Particles                     | Symbol                                                                     | $G_{\text{SM}}$ -representation                           |
| Left-handed leptons           | $\begin{pmatrix} \nu_L \\ e_L^- \end{pmatrix}$                             | $\mathbb{C}_{-3} \otimes \mathbb{C}^2 \otimes \mathbb{C}$ |
| Left-handed quarks            | $\begin{pmatrix} u_L^r, u_L^g, u_L^b \\ d_L^r, d_L^g, d_L^b \end{pmatrix}$ | $\mathbb{C}_1 \otimes \mathbb{C}^2 \otimes \mathbb{C}^3$  |
| Right-handed neutrino         | $ u_R$                                                                     | $\mathbb{C}_0 \otimes \mathbb{C} \otimes \mathbb{C}$      |
| Right-handed electron         | $e_R^-$                                                                    | $\mathbb{C}_{-6} \otimes \mathbb{C} \otimes \mathbb{C}$   |
| Right-handed up quarks        | $u_R^r, u_R^g, u_R^b$                                                      | $\mathbb{C}_4 \otimes \mathbb{C} \otimes \mathbb{C}^3$    |
| Right-handed down quarks      | $d_R^r, d_R^g, d_R^b$                                                      | $\mathbb{C}_{-2} \otimes \mathbb{C} \otimes \mathbb{C}^3$ |

Here, we've written a bunch of  $G_{SM} = U(1) \times SU(2) \times SU(3)$  irreps as  $U \otimes V \otimes W$ , where

 $\circ U$  is a U(1) irrep  $\mathbb{C}_Y$ , where  $Y \in \mathbb{Z}$ . The underlying vector space is just  $\mathbb{C}$ , and the action is given by

$$\alpha \cdot z = \alpha^Y z, \quad \alpha \in \mathrm{U}(1), z \in \mathbb{C}$$

 $\circ V$  is an SU(2) irrep, either  $\mathbb{C}$  or  $\mathbb{C}^2$ .  $\circ W$  is an SU(3) irrep, either  $\mathbb{C}$  or  $\mathbb{C}^3$ .

#### commute.

#### The Pati–Salam Model

- The group is  $Spin(4) \times Spin(6)$ .
- **Reminder:** Spin(2n) is the double cover of SO(2n).
- The **representation** is  $\Lambda \mathbb{C}^2 \otimes \Lambda \mathbb{C}^3$ .
- **Reminder:** Spin(2n) has a faithful representation on  $\Lambda \mathbb{C}^n$ .
- The map takes  $G_{SM}$  to the subgroup of  $\text{Spin}(4) \times \text{Spin}(6)$  preserving the gradings on  $\Lambda \mathbb{C}^2$  and  $\Lambda \mathbb{C}^3$ . •  $\Lambda \mathbb{C}^2 \otimes \Lambda \mathbb{C}^3 \cong V_{SM}$  as a representation of  $G_{SM}$ . More precisely:
- $\circ$  Theorem. There's a homomorphism  $\theta: G_{\mathbf{SM}} \to \operatorname{Spin}(4) \times \operatorname{Spin}(6)$  and linear isomorphism  $f: V_{\mathbf{SM}} \to \Lambda \mathbb{C}^2 \otimes \Lambda \mathbb{C}^3$  making

$$\begin{array}{c} G_{\mathbf{SM}} \xrightarrow{\theta} \operatorname{Spin}(4) \times \operatorname{Spin}(6) \\ & \downarrow \\ U(V_{\mathbf{SM}}) \xrightarrow{\mathrm{U}(f)} U(\Lambda \mathbb{C}^2 \otimes \Lambda \mathbb{C}^3) \end{array}$$

commute.

The Spin(10) Theory

- $\circ$  The group is Spin(10).
- The **representation** is  $\Lambda \mathbb{C}^5$ .

#### For the **map**, we have two choices.

(J. Pati and A. Salam, 1974)

(H. Georgi, 1974)

 $\mathrm{U}(V_{\mathbf{SM}}) \xrightarrow{\mathrm{U}(h)} \mathrm{U}(\Lambda \mathbb{C}^5)$ 

The Standard Model representation is

 $V_{\mathbf{S}\mathbf{M}} = \mathbb{C}_{-3} \otimes \mathbb{C}^2 \otimes \mathbb{C} \quad \oplus \quad \cdots \quad \oplus \quad \mathbb{C}_{-2} \otimes \mathbb{C} \otimes \mathbb{C}^3 \quad \oplus \quad \text{dual}$ 

### The GUTs Goal

 $\circ G_{\mathbf{SM}} = \mathbb{U}(1) \times \mathbb{SU}(2) \times \mathbb{SU}(3) \text{ is a mess}!$   $\circ V_{\mathbf{SM}} = \mathbb{C}_{-3} \otimes \mathbb{C}^2 \otimes \mathbb{C} \quad \oplus \quad \cdots \quad \oplus \quad \mathbb{C}_{-2} \otimes \mathbb{C} \otimes \mathbb{C}^3 \quad \oplus \quad \text{dual is a mess}!$   $\circ \text{Explain the } Y \text{'s in the } \mathbb{C}_Y \text{'s.}$   $\circ \text{Explain other patterns, like } \dim V_{\mathbf{SM}} = 32 = 2^5.$ 

#### Or, *much* more broadly:

 $\circ$  Unify  $V_{\text{SM}}$  into fewer irreps.

#### The GUTs Trick

Let V be a representation of some group G, and suppose  $G_{SM} \subseteq G$ . Then

 $\circ V$  is also representation of  $G_{SM}$ ;

 $\circ$  V may break apart into more  $G_{\ensuremath{\textbf{SM}}\xspace}$  -irreps than G -irreps.

#### ... and Its Technicalities

More precisely, we want:

A group G,
a representation V,

 $\circ$  Either extend the SU(5) map:



• Or extend the Pati–Salam map:

$$\begin{array}{c} \operatorname{Spin}(4) \times \operatorname{Spin}(6) & \xrightarrow{\eta} & \operatorname{Spin}(10) \\ & & & \downarrow \\ & & & \downarrow \\ & & U(\Lambda \mathbb{C}^2 \otimes \Lambda \mathbb{C}^3) \xrightarrow{\mathrm{U}(g)} & \mathrm{U}(\Lambda \mathbb{C}^5) \end{array}$$

Either way, we get the Spin(10) theory! The Spin(10) theory is well-defined, because of our final result.

# Conclusion

## The GUTs Cube

 $\circ$  If we put the two routes to the Spin(10) theory together, we get the GUTs cube:

 $\longrightarrow \mathrm{SU}(5)$  $G_{SM}$  –  $\operatorname{Spin}(4) \times \operatorname{Spin}(6)$  —  $\rightarrow$  Spin(10)

 $\circ$  a map  $G_{\mathbf{SM}} \to G$ 

◦ such that V becomes isomorphic to  $V_{\text{SM}}$  when we restrict back to  $G_{\text{SM}}$ . ◦ That is, **prove** there exists a homorphism  $G_{\text{SM}} \to G$  and a linear isomorphism  $V_{\text{SM}} \to V$  making

$$\begin{array}{c} G_{\mathbf{SM}} \longrightarrow G \\ | \\ U(V_{\mathbf{SM}}) \longrightarrow U(V) \end{array}$$



 $\circ$  Theorem. We can choose  $\phi$  and  $\theta$  such that the GUTs cube commutes.

#### Morals

The Spin(10) theory *unites* the SU(5) theory and the Pati–Salam model.
The Standard Model is the *compromise* between the SU(5) theory and the Pati–Salam model.

#### commute.

## Reference

John Baez and John Huerta, The algebra of grand unified theories, *Bull. Amer. Math. Soc.* **47** (2010), 483–552. Also available as arXiv:0904.1556.