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The Quaternions

The Complex Numbers

I The complex numbers C form a plane.
I Their operations are very related to two dimensional

geometry.
I In particular, multiplication by a unit complex number:

|z|2 = 1

gives a rotation:
Rz(w) = zw .
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The Complex Numbers

Remember:
I C =

{
a + bi : a,b ∈ R, i2 = −1

}
I We can add and multiply in C.
I We can also conjugate:

a + bi = a− bi .

I And take norms:
|z|2 = zz

where
|a + bi |2 = a2 + b2.

I This norm is crucial! It satisfies:

|zw | = |z||w |.



The Quaternions

The Complex Numbers

The unit complex numbers

U(1) =
{

z ∈ C : |z|2 = 1
}

form a circle. They also form a group:

I U(1) is closed under multiplication:

|zw | = |z||w | = 1

I The conjugates are inverses:

|z| = |z| = 1

and
zz = |z|2 = 1

.
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The Complex Numbers

The key group in plane geometry is SO(2), the group of
rotations of the plane.

I We have a map

ϕ : U(1) → SO(2)
z 7→ Rz

I This map is an isomorphism!

U(1) ∼= SO(2).

So these groups are the same.
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Hamilton’s Discovery

The 19th century Irish mathematician and physicist William
Rowan Hamilton was fascinated by the role of C in
two-dimensional geometry.

For years, he tried to invent an algebra of “triplets” to play the
same role in three dimenions:

a + bi + cj ∈ R3.
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Hamilton’s Discovery

Alas, we now know this quest was in vain.

Theorem
The only normed division algebras, which have a norm
satisfying

|zw | = |z||w |

have dimension 1, 2, 4, or 8.
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Hamilton’s Discovery

Hamilton’s search continued into October, 1843:

Every morning in the early part of the above-cited month, on
my coming down to breakfast, your (then) little brother William
Edwin, and yourself, used to ask me: “Well, Papa, can you
multiply triplets?” Whereto I was always obliged to reply, with a
sad shake of the head: “No, I can only add and subtract them.”
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Hamilton’s Discovery

On October 16th, 1843, while walking with his wife in to a
meeting of the Royal Society of Dublin, Hamilton discovered a
4-dimensional algebra called the quaternions:

That is to say, I then and there felt the galvanic circuit of thought
close; and the sparks which fell from it were the fundamental
equations between i, j, k; exactly such as I have used them ever
since:

i2 = j2 = k2 = ijk = −1.
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The Quaternions

The quaternions are

H = {a + bi + cj + dk : a,b, c,d ∈ R} .

I ij = k = −ji .
I We can conjugate them:

a + bi + cj + dk = a− bi − cj − dk .

I There’s a norm:
|q|2 = qq.

I Satisfying:
|qu| = |q||u|
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The Quaternions

Just like the unit complex numbers, the unit quaternions form a
group:

Spin(3) =
{

q ∈ H : |q|2 = 1
}

We can use these to give rotations in three dimensions!
I Think of R3 as the imaginary quaternions:

Im H = {ai + bj + ck : a,b, c ∈ R}

I A unit quaternion gives a rotation:

Rq(v) = qvq, v ∈ Im H.
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The Quaternions

I We can represent any rotation this way.
I This is often used in programming applications.
I We get a map:

ϕ : Spin(3) → SO(3)
q 7→ Rq

where SO(3) is the group of rotations in three-dimensions.

Is this map an isomorphism?
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No!

It’s onto, but not 1-to-1:

Rq = R−q, since qvq = (−q)v(−q)

In fact, it’s 2-to-1.

So, ϕ is not an isomorphism. Is there an isomorphism?

Spin(3) ∼= SO(3)?
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The Quaternions

We can answer this using topology.

I As a space:

Spin(3) =
{

a + bi + cj + dk ∈ H : a2 + b2 + c2 + d2 = 1
}

= S3.

the 3-sphere, a sphere of higher dimension.
I SO(3) = ball of radius π with antipodal points identified.

These spaces sound different. Are they?
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Yes!

I Spin(3) = S3 is simply connected: any loop in it can be
continuously deformed to a point.

I SO(3) is not simply connected: there is a loop that can’t be
deformed to a point.

Therefore:
Spin(3) 6∼= SO(3).
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The Quaternions

Amazingly, this fact is important in quantum physics!
I A path from 0 to 360 in Spin(3) starts at 1, but ends at −1.
I Since R1 = R−1, this is OK.
I You must rotate from 0 to 720 to get back to 1.
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The Quaternions

Quantum mechanics says that particles are represented by
waves:

I The simplest kind of wave a is a function:

ψ : R → R

I But since we live in three dimensions:

ψ : R3 → R

I And because it’s quantum:

ψ : R3 → C

I Yet, in 1924, Wolfgang Pauli (secretly) discovered that for
electrons:

ψ : R3 → H
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The Quaternions

If we rotate most particles, we rotate its wave:

Rqψ(v) := ψ(Rq(v)).

But to rotate an electron, Pauli found:

Rqψ(v) := qψ(Rq(v)).

In particular, for a 360 rotation:

R−1ψ(v) = −ψ(v).

Electrons can tell if they have been rotated 360!


