Quantifying Uncertainty
Red-Horse, J.R. and Benjamin, A.S.. "A probabilistic approach to uncertainty quantification with limited information" Reliability Engineering & System Safety. 85
(1-3).
JUL-SEP 2004.
pp. 183--190.
Many safety assessments depend upon models that rely on probabilistic characterizations about which there is incomplete knowledge. For example, a system model may depend upon the time to failure of a piece of equipment for which no failures have actually been observed. The analysts in this case are faced with the task of developing a failure model for the equipment in question, having very limited knowledge about either the correct form of the failure distribution or the statistical parameters that characterize the distribution. They may assume that the process conforms to a Weibull or log-normal distribution or that it can be characterized by a particular mean or variance, but those assumptions impart more knowledge to the analysis than is actually available. To address this challenge, we propose a method where random variables comprising equivalence classes constrained by the available information are approximated using polynomial chaos expansions (PCEs). The PCE approximations are based on rigorous mathematical concepts developed from functional analysis and measure theory. The method has been codified in a computational tool, AVOCET, and has been applied successfully to example problems. Results indicate that it should be applicable to a broad range of engineering problems that are characterized by both irreducible and reducible uncertainty. (C) 2004 Published by Elsevier Ltd.
Sudret, B.. "Global sensitivity analysis using polynomial chaos expansions" Reliability Engineering & System Safety. 93
(7).
JUL 2008.
pp. 964--979.
Global sensitivity analysis (SA) aims at quantifying the respective effects of input random variables (or combinations thereof) onto the variance of the response of a physical or mathematical model. Among the abundant literature on sensitivity measures, the Sobol' indices have received much attention since they provide accurate information for most models. The paper introduces generalized polynomial chaos expansions (PCE) to build surrogate models that allow one to compute the Sobol' indices analytically as a post-processing of the PCE coefficients. Thus the computational cost of the sensitivity indices practically reduces to that of estimating the PCE coefficients. An original non intrusive regression- based approach is proposed, together with an experimental design of minimal size. Various application examples illustrate the approach, both from the field of global SA (i.e. well-known benchmark problems) and from the field of stochastic mechanics. The proposed method gives accurate results for various examples that involve up to eight input random variables, at a computational cost which is 2-3 orders of magnitude smaller than the traditional Monte Carlo-based evaluation of the Sobol' indices. (C) 2007 Elsevier Ltd. All rights reserved.