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Abstract. In this paper we consider the posteriori parameter choice strategy proposed by
Scherzeet al in 1993 for the Tikhonov regularization of nonlinear ill-posed problems and obtain
some results on the convergence and convergence rate of Tikhonov regularized solutions under
suitable assumptions. Finally we present some illustrative examples.

1. Introduction

This paper concerns the approximate resolution of the nonlinear equation

by means of Tikhonov regularization, wherés a nonlinear operator with domaly( F) in the
Hilbert spaceX and with its rangeR (F) in the Hilbert spacé’, and the datag are attainable,
i.e.yp € R(F). Throughout this paper it is assumed tlais weakly closed, continuous and
Fréchet differentiable; the Echet derivative of” atx € D(F) and its adjoint are denoted by
F’(x) andF’'(x)*, respectively. The interest of this paper is confined to the case that problem
(1.1) isill-posed, i.e. the solution of (1.1) lacks continuous dependence on the right-hand side;
the readers can consult [3, 5] for a number of important inverse problems in natural science
leading to such a case.

By assumingy; to be the only available approximation af satisfying

llys — yoll <8 (1.2)

with a given noise leved > 0, now the reconstruction of the solution of (1.1) comes into
being. Tikhonov regularization can be applied to pursue this task and the solfitafrthe
minimization problem

min {|F(x) — ysll? + allx — x*|?) (1.3)
xeD(F)
can be used as an approximate solution of (1.1), whese0 is the regularization parameter
andx* € X is ana priori guess of the exact solution. Under a suitableriori choice ofq,

x% can be guaranteed to converge tordrminimum-norm solutionx*-MNS) xo of (1.1), i.e.
converge to an elemeng € X with the property

F(x0) = yo and llxo — x*[l = min {flx —x*| : F(x) = yo}
xeD(F)
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and furthermore, the estimate [pf> — xo|| can be derived ik has some kind of source-wise
representation, see [2, 10].

Althought it gives some interesting insights into the Tikhonov regularized soluficthe
a priori choice strategy is useless in practice since it depends on the smoothngss ek
which is difficult to check in general. Thus a wrong guess of the smoothness will lead to a
bad choice of the regularization parameter and consequently to a bad approximation of
Because of this tha posteriorichoice of the regularization parameter becomes of interest,
and a series of strategies have been suggested to resolve this question. Among these rules, the
most attractive is the one proposed by Scheetatin 1993 (see [12]), and the regularization
parametet is chosen as the root of the nonlinear equation

a(F(x3) — ys, (@l + F'(3) F' ()" HF (D) — ys)) = 8% (1.4)

Some analyses have been given on this rule in [12]. Unfortunately the results therein are not
really applicable in practice since very restrictive conditions, most of which cannot be checked
for concrete problems at all, have been exerted“orome attempts have been made in [9]

to retrieve this strategy from such embarrassment, and the validity of all the results in [12] has
been proved under suitable assumptions, and hence a theoretical justification of this rule has
been established. In this paper we continue such research and try to obtain some useful results
under some conditions which can be viewed as a replenishment of those in [9].

The organization of this paper is as follows. In section 2 we recall the existing results and
give some comments on the limitation of the conditions needed in the literature. Then we prove
a convergence result in section 3 and derive a result on convergence rate in section 4 under
certain conditions. Finally we present some examples in section 5 to illustrate the conditions
required in the foregoing sections.

2. Some existing results

Before continuing our effort to study rule (1.4), let us recall the existing results on this strategy
and give some comments on the conditions. We state rule (1.4) in the following general form.

Rule 2.1.Letc > 1 be a given constant and € D(F).

(i) If |F(x*) — ys||? < ¢8?, then choose = oo, i.e. takex* as approximation;
(ii) If |F(x*) — y;5]|?> > 82, then choose := «(8) as the root of equation (1.4).

The justification of rule 2.1 can be confirmed under certain conditions. If we assume that
(1.1) has anc*-MNS xg such that

B,(x0) C D(F) (2.1)

with some numbep > 3|xo—x*||, and there exists a constatg such thatforalk, z € B, (xo)
andv € X, there isk(x, z, v) € X such that

(F'(x) — F'(2))v = F'(2)k(x, z, v) (2.2)
with
lk(x, z, V)| < Kollx — z|[l|v]| (2.3)

then rule 2.1 is well defined provided> 2 and Xj||xo — x*|| < 1 (please refer to lemma 2.1
in [9] or theorem 3.9 in [12] under more complicated requirements).

With thea := «(8) chosen by rule 2.1 we hope to obtain the approximation property of
xg(s). This question was first considered in [12] under so strong conditions that we are not
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sure whether the results therein can be applied when we handle concrete problems, although
the numerical results in [12] give a convincing illustration. Now it is natural for us to ask
whether the results in [12] are still valid under assumptions which can be really checked. A
first positive answer was given in [9] by theorem 1.3 and theorem 1.4 merely under conditions
(2.1), (2.2) and (2.3), and is condensed in the following result.

Theorem 2.1.Let (2.1)—(2.3) hold¢ > 9 and leta(8) be determined by rule 2.1.
(i) If xois the uniquec*-MNS of (1.1) an@Kyllxo — x*|| < 1, then

lim [|x2 ., — xo|l = O.
8—>0” () 0”

(i) If 6Ko|lxo — x*|| < 1andifthereis & < v < 2and an elemenb € NV (F'(xp))* C X
such thatrg — x* = (F'(x0)* F'(x0))"/?w, then there is a constaut, depending om only
such that

135 = xoll < Cllaof| V8V,

This result shows that Tikhonov regularization combining with rule 2.1 defines a
regularization method of optimal order for each<Ov < 2, and it explains the reason why
rule 2.1 has elegant performance for the numerical examples in [12] which does not satisfy the
assumptions therein. In [8] we give a further study on rule 2.1 under (2.2) and (2.3) and obtain
the optimality in the sense of [12, definition 1.1] by restricting the spectid ofy)* F’ (xg).

We assume there exists a decreasing sequente o (F'(xo)* F'(x0)) = o (F'(x0) F'(x0)*)
satisfying
Ak
A+l
with a constanC > 1, then we obtain (see [8, theorem 4]).
Theorem 2.2. Let (2.1)—(2.3) and (2.4) hol&K | xo—x*|| < 1and letx(§) be determined by

rule 2.1. Then there exists a const#htand a positive numbey such that for alld < § < &g
there holds

klim A=0 and <C for all k (2.4)

supl]|xd s, — Xoll : lvs — yoll < 8} < Cotpry, (8)
wherelﬁyo (8) is the optimal convergence rate fgg defined by

Vo (8) 1= suptinf {[lx) — xoll : @ > 0} : [lys — yoll < 8}

Let us give some comments on (2.2) and (2.3). Although they are not too restrictive and
can be verified for many concrete problems, there are some critical cases in which (2.2) and
(2.3) are violated. We give an illustration by the following example.

Example 2.1.Consider the problem of estimating the diffusion coefficiein the two-point
boundary value problem

—(au), = f in (0,1) (2.5)
u(0) = go ul) =g '

from noisy dataus of the states := u(ag), wheref € L?, go, g1 are real numbers ang is
the sought solution. We can define the nonlinear oper@atoy
F:D(F):={ae H':a(t) > n > 0ae} c HY0,1] — L?[0,1]

ar F(a) :=u(a)
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whereu(a) is the unique solution of (2.5). It is well known that (see [12])dfadmits the
property

lu;(ag) ()| > forall 7 € [0, 1] (2.6)
with some positive constan, then the Fechet derivative ofF satisfies (2.2) and (2.3)
in a neighbourhood ofip. However, if (2.6) is violated, which covers the problems with
homogeneous boundary conditiorfs,does not satisfy (2.2) and (2.3) again. Under such
circumstances, we now wonder whether the assertions in theorem 2.1 are still valid.

The above example shows that it is necessary to derive some useful conclusions under

some conditions different from (2.2) and (2.3). We will do this in the next two sections.

3. Convergence criterion

We begin this section by first discussing the justification of rule 2.1 without (2.2) and (2.3).
Obviously, we only need to consider the cg&x*) — ys||*> > c82. We assume

x — F(x)andx — F’(x) are continuous o (F). (3.1)

Suppose > 1 and set
_ (c— 1)

0T o — a2

p(@) = a(F(x)) = ys, (@l + F'(x)F'(x))) M (F (x)) — y5))
then the definition of}_givesp(ao) < || F(x3) — ysl1? < 8% +apllxo — x*[| = c82. From the
definition ofx? it follows x¢ — x* asa — oo. By letting B} = F'(x$)F'(x3)*, then (3.1)
implies || B! || is bounded angj(«/ + B%)~B%|| — 0 asa — oo. Therefore from
lp(@) = IF(x3) — yslI?l = (F(x) — s, (@l +B) ' BL(F(x)) — y5))

< el +B) T Bl F(x3) — ys?

it gives lim, oo p(a) = liMy o0 [F(x2) — ys5]2 = |[F(x*) — ys[?> > ¢82. Hence we can
conclude the existence of ar{§) > «q satisfying (1.4) ifo(«) is continuous with respect to

a on [ag, o0). Thanks to (3.1), we need only to show the continuity of the mappirg x?
for a € [ag, 00). This can be guaranteed if

the minimization problendl.3) has a unique solutioxﬁ for eacha > . (3.2)
For details, please refer to [7] for an analogous discussion by borrowing the idea in the proof

of [2, theorem 2.1].
Now we can give the convergencexzf(a).

Theorem 3.1.Let (3.1) and (3.2) hold; > 1and letF be weakly closed. If (1.1) has a unique
x*-MNSxg, then

im e = 3
for thea(8) determined by rule 2.1.

Proof. The proof can be carried out by considering the following three different cases.
Suppose that there is a sequefgcsuch that, — 0 andw(8;) — oo ask — oo. Since

b x*ask — oo, it follows from the definition ofx(s;) and (3.1) that

(k)
0= lim a()(F(x,) = ¥ae. @I+ F (s ) F (s ) ) THE (gly,) = 38.)

X

: 8
= lim |[F (i) = ya, 1 = IF (%) = yoll?
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which impliesx* is a solution of (1.1), hence) = x* andxiksk — X0.

Assume next that there is a sequefceuch that;, — 0 anda(8;) — B with a positive
numberp < oo ask — oco. By lettingxg be a solution of the minimization problem (1.3)
with ys anda replaced byyg andg respectively, then the definition mﬁk@“ gives

IF G ) = ya 2+ a@ollxd, ) — 12 < I1F(xp) — ys 12 + (0 x5 — 5712 (3.3)

This implies the boundedness.df;  and F (x)'; ). Therefore there exist € X andj € ¥

and a subsequencexf;; ,, for simplicity we still denote it by’ |, such tha, | — ¥ and

F(xjk(ak)) — y ask — oo, where —' denotes the weak convergence. Hence by the weakly

closedness of we havex € D(F) andF(x) = y. From the weak lower semicontinuity of
the Hilbert space norm it follows that

Sk

IFG) = yoll < Hminf IF () = ol IF =2 <liminf xy,) —x*1. (3.4)

This together with (3.3) gives

- - P ) )
I = Yol + BIF = x*12 < liminf (I1F (s, = v, 12 + @@ lx2s,, = x*12)

H ) 2 Sk 2
< limsup(| (2 ) — vs, 12 + 0125, — x*112)

k—00
2 2
< |IF (xg) — yoll® + Bllxg — x*||

which implies thatx is also a solution of the minimization problems (1.3) withand «
replaced byyy andg, respectively, and

lim (|| F(x%s ) = Yoll® + Bllxys, — x*I1%} = | F &) — yol® + Bllx — x*||2.
k—00
Combining this with (3.4) it is easy to show
1F(x) — yoll = lemoo IIF(Xff((;k)) — yoll and ¥ —x*| = lemoo IIXfi‘((;k) — x|
Sincex(t; , — ¥ andF(x), ) — 7, we havex);  — ¥ andF(x)}; ) — 3. Now using the
definition of«(;) and (3.1) we can prove
B(F(X) — yo, (BI + F'(X)F'(X)*) " (F(¥) — y0)) =0

which gives F(x) = yp, i.e. X is a solution of (1.1). Since the definition af implies
lx — x*|| < |lxo — x*|, from the uniqueness of*-MNS it follows ¥ = xg, and hence
xuf(sk) — XQ.

Finally we suppose there is a sequeligesatisfyings, — O such thaw(s;) — 0 as
k — oco. Now we haveF (x*) # yo and ||F(x*) — ys || > cdx for sufficiently largek.
Therefore the definition af (6;) gives||F(xi"(5k)) — y5,. /1% = ¢82. According to the definition

of xs., it follows that

2 Sk 2 $ 2 Sk 2
82+ a@llxs ) — 12 S NF O ) — v 12+ a@lxly,, — 7

82+ a(8p)llxo — x*||%.

NN

Sincec > 1 we have|x); ) — x*[| < [lxo — x*| and lim_.o F(x35 ) = yo. Now we can use

the standard technique (cf [13]) to shmﬁ({ak) — Xxp again. g
As a byproduct of the argument in the proof of theorem 3.1 we have the following

Lemma 3.1. Under the assumptions in theorem 3.1Fifx*) # yo andxg satisfies (2.1) then
lims_oa(s) =0.
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Proof. In fact from the proof of theorem 3.1 we s@&) cannot have the clustev ass — 0.

If «(8) has a cluster & 8 < oo, thenF (xg) = yo, Wherexg is a solution of the minimization
problem (1.3) withy; anda replaced byg andg. Sincellxg—x*|| < [lxo—x*||, it follows from
(2.1) thatxg is an interior point ofD(F) and there holds the first-order necessary optimality
condition forxg

F'(xg)*(F(xg) — yo) + B(xg —x*) = 0.
This impliesxg = x* and thusF (x*) = yg which is a contradiction. O

Now we return to (3.2). It seems reasonable to make such an assumption if the problem
has practical interest and is sufficiently close toxg. However it is helpful to give some
sufficient conditions. Below we will show the validity of (3.2) under the condition that

[F(x) = F(z) = F'()(x =2l < nllx =zl F(x) = F2)Il, x,z € Bp(xo) (3.5)
with a constant) > 0.

Lemma 3.2. Let (2.1) and (3.5) hold; > 2 and2y|jxg — x*| < 1, then (3.2) is valid andg
is the uniquec*-MNS of (1.1).

Proof. Supposer > ag and assume the minimization problem (1.3) has two solutigrand
x3. Then
IF () = FEDI? + el — FolI?

= 2(F (&) — F(x}). ys — F(x})) + 20(&) — x}. x* — x). (3.6)
Sincec > 2, the definitions ofx} andag give |x3 — x*|| < (§/4/@) + [lxo — x*|| <
(8//a0) +llxo — x*|| < 2|lxo — x*||. Therefore from (2.1) it follows that’ is an interior point
of D(F) and there holds the first-order necessary optimality condition

F’(xg)*(F(xi) 7)) +ot(x2 —x*=0. (3.7)
Substituting (3.7) into (3.6) and using (3.5) yields
IF () — FGEDIZ+allx) — 2517 = 2(F(8)) — F(x)) — F'(x2)(X) — x0), ys — F(x}))
< 2% — XJNFED) = Falllys — F )l
SNF &) — FEDIP+ 202 ys — F(x3)112l1x — Z211°. (3.8)

This impliesx} = x? if we can provey|| F(x%) — ys|l/+/a < 1. By using 3|lxo — x*| < 1,
from the definition ofx? it follows

F(x8) —
AMEED =50 <y (e # 0= 1) < 20k00 -1 < 1
which completes the proof of (3.2).

The uniqueness of*-MNS of (1.1) follows from [7, lemma 3.6]. O

4. Rate of convergence

In this section we always assume that rule 2.1 is well defined and do not state the conditions
explicitly. We also usex, to denote a solution of the minimization problem (1.3) with
replaced byyy. In the following we will concentrate on the derivation of a suitable rate of
convergence under certain conditions. Afrequently used assumption is the Lipschitz continuity
of the Fiechet derivative of, i.e.

IF'(x) = F'@Il < Lllx — zll Vx, z € By(xo) (4.1)
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with some constant > 0. As a consequence of (4.1) we have
[F(x) = F(z) = F'(2)(x = 2)|| < %Lllx —z|? Vx,z € B,(x0). (4.2)

Since (4.1) is rather weak and provides insufficient informatio#pwe cannot establish the
rates as in theorem 2.1 for eachOv < 2. However when — x* is sufficiently smooth, we
can give a sound result.

Theorem 4.1.Let (2.1) and (4.1) hold; > 9, | F(x*) — ys||?> > ¢82, and assume that there is
anw € N(F'(xg))* C X such thatyg — x* = F'(xo)* F'(xo)w. If L|u| is sufficiently small,
then there is a constaitl, independent of such that

IIX§<5> — x|l < Co8%?3 (4.3)
for the «(8) determined by rule 2.1, whete € N (F'(xo)*)* C Y is such thatyg — x* =
F'(x0)*u.

To prove this assertion, we note that wheh||2|| < 1 there holds the stability estimate (cf
(11])
llxg — xell < 2 °
X, =Xl € —/—m———
VI=2L]ul Ve
for all « > 9. Therefore from the triangle inequality it follows far|«| sufficiently small
there holds

(4.4)

1)
I3 — xoll < Cr g * e = ol (4.5)
with a constanC; independent of. If we can give the estimate ¢k, — xo|| and the upper and
lower bounds for (8), then (4.3) can be proved easily. We do this according to the following
lines.

Lemma4.1.Let (2.1) and (4.1) hold¢ > 9 and ||F(x*) — ys||> > ¢ |If there is a
u € N(F'(xo)*)* C Y such thatxg — x* = F'(x0)*u and2L|ju| < 1, then for thex(s)
determined by rule 2.1 there holds

Je—3 8

Tl (4.6)

a(d) =

Proof. Since|F (x*) — ys|l > c82, the definition ofx(8) implies ||F(x§(5)) — ysll = /c8.
Since the proof of [11, theorem 1] implies

IF(x3) — F(xa)|l <25 (4.7)

for all @ > ao, we have from (1.2) thatF (xq)) — yoll = (/¢ — 3)8. Following the proof of
theorem 2.4 in [2] it gives for atk > O

| F(xa) — yoll < 2lullex. (4.8)
Therefore Ju|la(8) > (/¢ — 3)8 and the proof follows. O
Lemma 4.2. Under the assumptions in lemma 4.1Lifu|| is sufficiently small such that
o= 8 * e ) Ll < 1 4.9)
VI=2LTul(Vc—3) 1— Liul|
then for thex := «/(8) defined by rule 2.1 there holds
@52 < a(F(x4) = yo, (@l +Bo) H(F (xa) — y0)) < 3(v/c + 3% (4.10)

whereBy := F’(xg) F'(x0)*.
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Proof. AssumeB? := F'(x2)F'(x})*, then from (1.2) and (4.7) it immediately gives
(Ve = 3)%8% < a(F (x4) — yo. (e +B)) 1 (F(x4) — ¥0)) < (Ve +3)%%
Let
a = a(F(xq) — yo, (@I + B)) " (F(xa) — y0))
b = a(F (xo) — Yo, (@I + Bo) *(F (xa) — y0))
F = (al +B) " Y2(Bo — BY)(al + Bo)~Y/?
then we have
la — b = |a(F (xo) — yo, (] +B2) 1 (Bo — B) (el + Bo) *(F (xa) — y0))|
= la((a +BY)"Y2(F (x4) — yo). F(al + Bo) "(F (xa) — y0))|
< allFlllied + B Y2(F (x) — yo) (] + Bo) ™ *(F (xa) — Yol
< 3IIF @ +b).
By using (4.1) it follows
71 = NIl + B Y2((F'(x0)* — F'(x))*)F'(x0) + F'(x3)* (F'(x0) — F'(x})))
x(aI +Bo) V2|

< 2P = Flaoll < 221w — xol
< — x%) — F'(xo) || < —=1|x° — xgl|.
Ja o 0 « — %o

Jao
Following the proof of [2, theorem 2.4] we also have
jﬁmi< (4.11)
V31— Liull
Therefore from (4.4) and (4.6) we obtain
171 < 2L< 22, 2 ) <p<l
VI=2Llulle 1—Llul

Thusla — b| < %(a + b) which impliesa/3 < b < 3a and the assertion follows. O

lxe — xoll <

Now we give the estimate dfx, — xo|| and the upper and lower bounds o).

Lemma 4.3. Let (2.1) and (4.1) hold and assumg— x* = (F’(xo)* F’'(x0))"/?w with some
1<v<2andw e N(F'(xg))* € X. Ifu e N(F'(x0)*)* C Y denotes the element such
thatxg — x* = F'(xo)*u and if L||u|| is sufficiently small such that

1
=4+ ——|L <1 4.12
wi= (44 S ) Ll (4.12)

then for eachw > 0O there holds
llxe — xoll < 202 ||| (4.13)

Proof. Sincex, is an interior point ofD(F), we have

F'(x)"(F (xa) — yo) + &t(xg — x™) = 0. (4.14)
By letting Ag := F’(x0)* F’(xo) and

Ry 1= x0 +a(al + Ag) " H(x* — xq)

To = (F'(xa)" = F'(x0)")(F (xo) — Yo)

So 1= F'(x0)"(F(xa) — F(x0) — F'(x0)(xs — X0))
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it follows from (4.14) that

Xo =Ko = (@] + A0) H(ra + 50). (4.15)
Therefore from (4.1) and (4.2) it follows
IXe = Zoll = Il + A0) ™ (ra + 50|
lI7el 1 )
< + m”F(Xa) — Yo — F'(x0) (xo — x0)l
1 L”xot - XOHZ
< Z|F (xg) — F' F(xq) — yol + ————
” | F(xq) (xo) 1 F (xa) — yoll NG
L||F(xy) — Ll|xq —
< | F(xq) — yoll + llxe — xoll Ixe — xoll.
o 4./a
Using (4.8) and (4.11) we obtaifx, — £,Il < 3g1lxe — xoll < 3lxe — xoll, Which gives
Xe — xoll < 2|[Xa — xoll = 2|l (al +Ao)_1AS/2wII < 20" o] U

Lemma 4.4. Under the assumptions in lemma 4.3% ifu | is sufficiently small such that (4.9)
and (4.12) hold, then

(Ve —3)VI—Lul i)wuﬂ) (4.16)
2v3(/I—=Lul + Ljull) Il '

for thea := «(8) determined by rule 2.1.

a(d) = (

Proof. From (4.2), (4.11) and (4.13) we have
Vel +Bo) 2(F (xo) = yo)ll < vallxe — xoll + 3LI1xe — xol®

Ljull
< 1+t ———— ) llxa —
ﬁ( 1_L”u”>||x xoll

2 <1 + M) ||a)||ot(1+”)/2,
1—Lilul

N

Therefore it follows from (4.10) that
AJc— 38 <2 <1 N Liju| ”> ol tr2

V3 1-Liu
which gives (4.16). O
Lemma 4.5. Under the assumptions in lemma 4.4, there holds
82/3
liminf — > 0. (4.17)
5—0 a(d)
Proof. Let
1) = N1 + Bo) /2F (x0) (xa(s) — %0) |
a(8)
then
165) > [(@(8)1 + Bo)™ Y2 F'(x0) Gap) = )|l 1%a() — Fais)ll
a(8) a(8)

= 1(8) — L»(5).
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If we use{E;} to denote the spectral family generated My, then from the smoothness
assumption ong — x* we have

1
L) =~ @@+ Ao) M Ao(Ra) — X0). Rags) — X0)

= (&)1 + Ag)*Afw, w)
o0 )\3
= ————d(E )
./0 (@) + 13 (e @)

Sincew € N(F'(xp))* anda(8) — 0 implied by lemma 3.1, by taking — 0 we have
1 (8) — |lw]|. ForI>(8) we can use (4.15), (4.1), (4.2), (4.13) and (4.8) to obtain
I7aqs N [ ((8)1 + Bo) Lsas)l
a(8)? a(d)
< L|xa@ — Xollll F (Xa@) — Yoll | LllXa@) — xoll?

= o(8)2 «(8)3/2

< AL|ull o]l +AL|w e (8)Y2.
Since (4.12) implies B|lu|]| < 1 we have Iiminf_o7(8) > (1 — 4L |lu|)|w| > 0. From
(4.2) and (4.12) it follows that

(@)1 + Bo) ™ 2(F (xa) = Yo = F'(x0) ey = X0))l| _ Lil¥awry — Xoll®

(%) <

a(8) T a(®)¥?
< AL|w|a8)Y? - 0 ass — 0.
Therefore
fimin 1@O1* B0 AEGaw) =30l - (3 _ g7 1ol > o
50 a(3)
By using (4.10) we obtain (4.17) immediately. O

Let us return to the proof of theorem 4.1. Clearly, lemma 4.5 implig3$ < C»5%/3 with
a constant, independent 08. Combining this with (4.16), (4.13) and (4.5), assertion (4.3)
follows immediately and the proof of theorem 4.1 is complete. a

Now we consider the question whether we can obtain the rate of convergence under the
assumptiong — x* € R((F'(x0)*F'(x0))"/?) with v < 2. By checking the proof of theorem
4.1, itis easy to see that the big burden is to get the estimate (Re< C5%*) with some
constantC independent 0. Such an estimate far = 2 is given in lemma 4.5 which takes
account of the saturation of Tikhonov regularization to obtai@d) — |lw| asé — 0. It
seems there is no hope to obtain such an estimate for2; this fact can be clarified from
the discussion in [9]. Thus, in order to derive the expected rates other techniques should be
explored.

We conclude this section by a remark that rule 2.1 is well defined under the conditions in
lemma 4.1. In fact, we need only to verify (3.2). Let> «ap and letx} andx? be the two
solutions of (1.3), it follows from (3.8) and (4.2) thaltx? — %312 < L||F (x%) —ys|l[|xS — %8 ||.

Since (4.7), (4.8) and (4.6) imply

LIFGy) =yl <3_ +2||u||> < S0 op
o o \/C—l

we havex? = x? provided thatL ||«|| is sufficiently small. Of course, this remark has more
interest in theoretical analysis rather than in practical applications.
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5. Applications

The results presented in sections 3 and 4 can be applied to many concrete problems. Below we
give only a few such examples to illustrate the conditions required in the foregoing sections.

Example 5.1.We continue the discussion of example 2.1 with= g; = 0. Now the Féchet
derivative is given by

F'(@)h = A(a) *(hu,(a)),

where A(a) : H2N Hy — L2 is given by A(a)u = —(au,), which is an isomorphism
uniformly in a neighbourhood afy. Obviously (3.1) and (4.1) are trivial. From [6] we know
(3.2) is also true. We note that the verification of (3.5) is given in [1]. Hence theorems 3.1 and
4.1 are applicable.

Example 5.2.Considering the problem of estimatiagn

(5.1)

—Au+cu=f in Q
u=0 onos2

where2 is a bounded domain iR? or R® with smooth boundary or witf2 being a parallepiped
andf € L3(Q).
The nonlinear operataF : D(F) C L?(Q) — L?(Q) is defined as the parameter-to-

solution mapping

F(c) =u(c)
with u(c) the unique solution of (5.1)F is well defined on

D(F) :={ce L?: |lc —¢&|.2 <y for some¢ > 0 a.e}
with somey > 0, cf [12]. It is easy to show thdft is Frechet differentiable and the &chet
derivative is given by

F'(c)h = —A(c) " (hu(e))

whereA(c) : H>N H} + L2 defined byA(c)u = —Au + cu is an isomorphism uniformly in

a neighbourhood’ (co) of the sought solutionyg. From the discussion in [12] we know (2.2)

and (2.3) are not true for this example. Let us check the assumptions of this paper. Obviously,
(3.1) is trivial and (4.1) is an easy exercise. In order to guarantee (3.2), let us verify (3.5).
Suppose, d € U(cp), then it is easy to show

A(c)(F(d) — F(c)) = (c —d)F(d).
Therefore
| F(d)— F(c) — F'()(d — &)z = |A(e) " ((c — d)(F(c) = F(d))ll.2

nli(c = d)(F(c) — F(d))| 2

<
<lle = dl2llFe) — F(d)ll.2

with some constang, and (3.5) holds locally.

Example 5.3.We treat the ill-posed nonlinear integral equation of autoconvolution type defined
on the interval [01]

s

F(x)(s) = f x(s —t)x(@)dr = y(s)
0



1098 Jin Qi-nian
cf[4]. The nonlinear operatar : L?[0, 1] — L?[0, 1]is Fréchet differentiable with derivative

(F'(0)h)(s) = 2 / " (s — DR dr.
0

Obviously, (3.1) is valid. Although (3.5) is unsatisfactory everywhere, we can verify (4.1) as
follows:

1 s 2 1/2
I(F'(x) = F'(2)hll2 = 2{/0 [/o (x(s —1) —z(s —1)h(@) dl] ds}

1 ps s 1/2
< 2{/ f lx (s —t)—z(s—t)|2dt/ h(t)zdtds}
0 0 0

1 ps 1/2
< 2{ / / Ix(s — 1) —z(s — 1)|?dr ds} A2
0 0

< 2)lx — zll 2Rl 2 Vh e L0, 1].

Therefore (3.2) can be guaranteed if the sought solutjas sufficiently smooth. However,
this statement has little use in practice since it is not easy to obtain the informatiojugin
We conjecture that it is possible to prove (3.2) directly for this exampié i sufficiently
close to the true solutioxy.

Acknowledgments

I would like to thank ProfessdC W Groetsch of the University of Cincinnati for sending me
the monograph [5] which provided me with more background about ill-posed problems. |1 am
also indebted to Dr O Scherzer of the Univeisiof Linz, Austria for his kindly providing

me with the offprint of [11]. Thanks also go to the referees for their careful reading of the
manuscript. This work is supported by the National Natural Science Foundation of China.

References

[1] Binder A, Hanke M and Scherzer O 1996 On the Landweber iteration for nonlinear ill-posed prablems
lll-Posed Problemg} 381-9
[2] EnglHW, Kunisch K and Neubauer A 1989 Convergence rates for Tikhonov regularization of nonlinear ill-posed
problemsinverse Problem$§ 523-40
[3] EnglH W, Hanke M and Neubauer A 19%&gularization of Inverse Problen@®ordrecht: Kluwer)
[4] Gorenflo R and Hofmann B 1994 On autoconvolution and regularizétiverse Problem4&0 353-73
[5] Groetsh C W 1993Inverse Problems in the Mathematical Scien@&fesbaden: Vieweg)
[6] Ito Kand Kunisch K 1994 On the injectivity and linearization of the coefficient-to-solution mapping for elliptic
boundary value problemk Math. Anal. Appl1881040-66
[7] Jin Qi-nian 1999 Applications of the modified discrepancy principle to Tikhonov regularization of nonlinear
ill-posed problems$SIAM J. Numer. Ana36 (2)
[8] JinQi-nian 1999 Converse and saturation results for Tikhonov regularization togethampegkerioriparameter
choice strategci. Chinaat press
[9] Jin Qi-nian and Hou Zong-yi 1999 On aposterioriparameter choice strategy for Tikhonov regularization of
nonlinear ill-posed problenfdumer. Mathat press
[10] Neubauer A 1989 Tikhonov regularization for nonlinear ill-posed problems: optimal convergence rates and
finite-dimensional approximatiomverse Problems 541-57
[11] Scherzer O 1993 A parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems
leading to optimal convergence rategpl. Math.38479-87
[12] Scherzer O, EAdd W and Kunisch K 1993 Optima posterioriparameter choice for Tikhonov regularization
for solving nonlinear ill-posed problen®AM J. Numer. AnaB0 1796-838
[13] Seidma T I and Vogel C R 1989 Well posedness and convergence of some regularization methods for nonlinear
ill-posed problemsnverse Problems 227-38



