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Abstract. In this paper we consider thea posteriori parameter choice strategy proposed by
Scherzeret al in 1993 for the Tikhonov regularization of nonlinear ill-posed problems and obtain
some results on the convergence and convergence rate of Tikhonov regularized solutions under
suitable assumptions. Finally we present some illustrative examples.

1. Introduction

This paper concerns the approximate resolution of the nonlinear equation

F(x) = y0 (1.1)

by means of Tikhonov regularization, whereF is a nonlinear operator with domainD(F) in the
Hilbert spaceX and with its rangeR(F) in the Hilbert spaceY , and the datay0 are attainable,
i.e. y0 ∈ R(F). Throughout this paper it is assumed thatF is weakly closed, continuous and
Fréchet differentiable; the Fréchet derivative ofF atx ∈ D(F) and its adjoint are denoted by
F ′(x) andF ′(x)∗, respectively. The interest of this paper is confined to the case that problem
(1.1) is ill-posed, i.e. the solution of (1.1) lacks continuous dependence on the right-hand side;
the readers can consult [3, 5] for a number of important inverse problems in natural science
leading to such a case.

By assumingyδ to be the only available approximation ofy0 satisfying

‖yδ − y0‖ 6 δ (1.2)

with a given noise levelδ > 0, now the reconstruction of the solution of (1.1) comes into
being. Tikhonov regularization can be applied to pursue this task and the solutionxδα of the
minimization problem

min
x∈D(F)

{‖F(x)− yδ‖2 + α‖x − x∗‖2} (1.3)

can be used as an approximate solution of (1.1), whereα > 0 is the regularization parameter
andx∗ ∈ X is ana priori guess of the exact solution. Under a suitablea priori choice ofα,
xδα can be guaranteed to converge to anx∗-minimum-norm solution (x∗-MNS) x0 of (1.1), i.e.
converge to an elementx0 ∈ X with the property

F(x0) = y0 and ‖x0 − x∗‖ = min
x∈D(F)

{‖x − x∗‖ : F(x) = y0}
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and furthermore, the estimate of‖xδα − x0‖ can be derived ifx0 has some kind of source-wise
representation, see [2, 10].

Althought it gives some interesting insights into the Tikhonov regularized solutionxδα, the
a priori choice strategy is useless in practice since it depends on the smoothness onx0 − x∗
which is difficult to check in general. Thus a wrong guess of the smoothness will lead to a
bad choice of the regularization parameter and consequently to a bad approximation ofx0.
Because of this thea posteriorichoice of the regularization parameter becomes of interest,
and a series of strategies have been suggested to resolve this question. Among these rules, the
most attractive is the one proposed by Scherzeret al in 1993 (see [12]), and the regularization
parameterα is chosen as the root of the nonlinear equation

α(F (xδα)− yδ, (αI + F ′(xδα)F
′(xδα)

∗)−1(F (xδα)− yδ)) = cδ2. (1.4)

Some analyses have been given on this rule in [12]. Unfortunately the results therein are not
really applicable in practice since very restrictive conditions, most of which cannot be checked
for concrete problems at all, have been exerted onF . Some attempts have been made in [9]
to retrieve this strategy from such embarrassment, and the validity of all the results in [12] has
been proved under suitable assumptions, and hence a theoretical justification of this rule has
been established. In this paper we continue such research and try to obtain some useful results
under some conditions which can be viewed as a replenishment of those in [9].

The organization of this paper is as follows. In section 2 we recall the existing results and
give some comments on the limitation of the conditions needed in the literature. Then we prove
a convergence result in section 3 and derive a result on convergence rate in section 4 under
certain conditions. Finally we present some examples in section 5 to illustrate the conditions
required in the foregoing sections.

2. Some existing results

Before continuing our effort to study rule (1.4), let us recall the existing results on this strategy
and give some comments on the conditions. We state rule (1.4) in the following general form.

Rule 2.1.Let c > 1 be a given constant andx∗ ∈ D(F).
(i) If ‖F(x∗)− yδ‖2 6 cδ2, then chooseα = ∞, i.e. takex∗ as approximation;

(ii) If ‖F(x∗)− yδ‖2 > cδ2, then chooseα := α(δ) as the root of equation (1.4).

The justification of rule 2.1 can be confirmed under certain conditions. If we assume that
(1.1) has anx∗-MNS x0 such that

Bp(x0) ⊂ D(F) (2.1)

with some numberp > 3‖x0−x∗‖, and there exists a constantK0 such that for allx, z ∈ Bp(x0)

andv ∈ X, there isk(x, z, v) ∈ X such that

(F ′(x)− F ′(z))v = F ′(z)k(x, z, v) (2.2)

with

‖k(x, z, v)‖ 6 K0‖x − z‖‖v‖ (2.3)

then rule 2.1 is well defined providedc > 2 and 2K0‖x0− x∗‖ < 1 (please refer to lemma 2.1
in [9] or theorem 3.9 in [12] under more complicated requirements).

With theα := α(δ) chosen by rule 2.1 we hope to obtain the approximation property of
xδα(δ). This question was first considered in [12] under so strong conditions that we are not
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sure whether the results therein can be applied when we handle concrete problems, although
the numerical results in [12] give a convincing illustration. Now it is natural for us to ask
whether the results in [12] are still valid under assumptions which can be really checked. A
first positive answer was given in [9] by theorem 1.3 and theorem 1.4 merely under conditions
(2.1), (2.2) and (2.3), and is condensed in the following result.

Theorem 2.1.Let (2.1)–(2.3) hold,c > 9 and letα(δ) be determined by rule 2.1.

(i) If x0 is the uniquex∗-MNS of (1.1) and2K0‖x0 − x∗‖ < 1, then

lim
δ→0
‖xδα(δ) − x0‖ = 0.

(ii) If 6K0‖x0 − x∗‖ 6 1 and if there is a0 < ν 6 2 and an elementω ∈ N (F ′(x0))
⊥ ⊂ X

such thatx0−x∗ = (F ′(x0)
∗F ′(x0))

ν/2ω, then there is a constantCν depending onν only
such that

‖xδα(δ) − x0‖ 6 Cν‖ω‖1/(1+ν)δν/(1+ν).

This result shows that Tikhonov regularization combining with rule 2.1 defines a
regularization method of optimal order for each 0< ν 6 2, and it explains the reason why
rule 2.1 has elegant performance for the numerical examples in [12] which does not satisfy the
assumptions therein. In [8] we give a further study on rule 2.1 under (2.2) and (2.3) and obtain
the optimality in the sense of [12, definition 1.1] by restricting the spectra ofF ′(x0)

∗F ′(x0).
We assume there exists a decreasing sequence{λk} ⊂ σ(F ′(x0)

∗F ′(x0)) = σ(F ′(x0)F
′(x0)

∗)
satisfying

lim
k→∞

λk = 0 and
λk

λk+1
6 C for all k (2.4)

with a constantC > 1, then we obtain (see [8, theorem 4]).

Theorem 2.2.Let (2.1)–(2.3) and (2.4) hold,6K0‖x0−x∗‖ 6 1and letα(δ) be determined by
rule 2.1. Then there exists a constantC0 and a positive numberδ0 such that for all0< δ 6 δ0

there holds

sup{‖xδα(δ) − x0‖ : ‖yδ − y0‖ 6 δ} 6 C0ψ̃y0(δ)

whereψ̃y0(δ) is the optimal convergence rate fory0 defined by

ψ̃y0(δ) := sup{inf {‖xδα − x0‖ : α > 0} : ‖yδ − y0‖ 6 δ}.
Let us give some comments on (2.2) and (2.3). Although they are not too restrictive and

can be verified for many concrete problems, there are some critical cases in which (2.2) and
(2.3) are violated. We give an illustration by the following example.

Example 2.1.Consider the problem of estimating the diffusion coefficienta in the two-point
boundary value problem{

−(aut )t = f in (0,1)

u(0) = g0 u(1) = g1
(2.5)

from noisy datauδ of the stateu0 := u(a0), wheref ∈ L2, g0, g1 are real numbers anda0 is
the sought solution. We can define the nonlinear operatorF by

F : D(F) := {a ∈ H 1 : a(t) > µ > 0 a.e.} ⊂ H 1[0, 1] 7→ L2[0, 1]

a 7→ F(a) := u(a)
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whereu(a) is the unique solution of (2.5). It is well known that (see [12]) ifa0 admits the
property

|ut (a0)(t)| > κ for all t ∈ [0, 1] (2.6)

with some positive constantκ, then the Fŕechet derivative ofF satisfies (2.2) and (2.3)
in a neighbourhood ofa0. However, if (2.6) is violated, which covers the problems with
homogeneous boundary conditions,F does not satisfy (2.2) and (2.3) again. Under such
circumstances, we now wonder whether the assertions in theorem 2.1 are still valid.

The above example shows that it is necessary to derive some useful conclusions under
some conditions different from (2.2) and (2.3). We will do this in the next two sections.

3. Convergence criterion

We begin this section by first discussing the justification of rule 2.1 without (2.2) and (2.3).
Obviously, we only need to consider the case‖F(x∗)− yδ‖2 > cδ2. We assume

x 7→ F(x) andx 7→ F ′(x) are continuous onD(F). (3.1)

Supposec > 1 and set

α0 := (c − 1)δ2

‖x0 − x∗‖2
ρ(α) := α(F (xδα)− yδ, (αI + F ′(xδα)F

′(xδα)
∗)−1(F (xδα)− yδ))

then the definition ofxδα0
givesρ(α0) 6 ‖F(xδα0

)−yδ‖2 6 δ2 +α0‖x0−x∗‖2 = cδ2. From the
definition ofxδα it follows xδα → x∗ asα → ∞. By lettingBδα := F ′(xδα)F ′(xδα)∗, then (3.1)
implies‖Bδα‖ is bounded and‖(αI + Bδα)−1Bδα‖ → 0 asα→∞. Therefore from

|ρ(α)− ‖F(xδα)− yδ‖2| = (F (xδα)− yδ, (αI + Bδα)−1Bδα(F (xδα)− yδ))
6 ‖(αI + Bδα)−1Bδα‖‖F(xδα)− yδ‖2

it gives limα→∞ ρ(α) = limα→∞ ‖F(xδα) − yδ‖2 = ‖F(x∗) − yδ‖2 > cδ2. Hence we can
conclude the existence of anα(δ) > α0 satisfying (1.4) ifρ(α) is continuous with respect to
α on [α0,∞). Thanks to (3.1), we need only to show the continuity of the mappingα 7→ xδα
for α ∈ [α0,∞). This can be guaranteed if

the minimization problem(1.3) has a unique solutionxδα for eachα > α0. (3.2)

For details, please refer to [7] for an analogous discussion by borrowing the idea in the proof
of [2, theorem 2.1].

Now we can give the convergence ofxδα(δ).

Theorem 3.1.Let (3.1) and (3.2) hold,c > 1 and letF be weakly closed. If (1.1) has a unique
x∗-MNSx0, then

lim
δ→0

xδα(δ) = x0

for theα(δ) determined by rule 2.1.

Proof. The proof can be carried out by considering the following three different cases.
Suppose that there is a sequenceδk such thatδk → 0 andα(δk)→∞ ask→∞. Since

x
δk
α(δk)
→ x∗ ask→∞, it follows from the definition ofα(δk) and (3.1) that

0= lim
k→∞

α(δk)(F (x
δk
α(δk)

)− yδk , (α(δk)I + F ′(xδkα(δk))F
′(xδkα(δk))

∗)−1(F (x
δk
α(δk)

)− yδk ))
= lim

k→∞
‖F(xδkα(δk))− yδk‖2 = ‖F(x∗)− y0‖2
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which impliesx∗ is a solution of (1.1), hencex0 = x∗ andxδkα(δk)→ x0.
Assume next that there is a sequenceδk such thatδk → 0 andα(δk)→ β with a positive

numberβ < ∞ ask → ∞. By letting xβ be a solution of the minimization problem (1.3)
with yδ andα replaced byy0 andβ respectively, then the definition ofxδkα(δk) gives

‖F(xδkα(δk))− yδk‖2 + α(δk)‖xδkα(δk) − x∗‖2 6 ‖F(xβ)− yδk‖2 + α(δk)‖xβ − x∗‖2. (3.3)

This implies the boundedness ofxδkα(δk) andF(xδkα(δk)). Therefore there exist̄x ∈ X andȳ ∈ Y
and a subsequence ofxδkα(δk), for simplicity we still denote it byxδkα(δk), such thatxδkα(δk) ⇀ x̄ and

F(x
δk
α(δk)

) ⇀ ȳ ask → ∞, where ‘⇀’ denotes the weak convergence. Hence by the weakly
closedness ofF we havex̄ ∈ D(F) andF(x̄) = ȳ. From the weak lower semicontinuity of
the Hilbert space norm it follows that

‖F(x̄)− y0‖ 6 lim inf
k→∞

‖F(xδkα(δk))− y0‖ ‖x̄ − x∗‖ 6 lim inf
k→∞

‖xδkα(δk) − x∗‖. (3.4)

This together with (3.3) gives

‖F(x̄)− y0‖2 + β‖x̄ − x∗‖2 6 lim inf
k→∞

{‖F(xδkα(δk))− yδk‖2 + α(δk)‖xδkα(δk) − x∗‖2}
6 lim sup

k→∞
{‖F(xδkα(δk))− yδk‖2 + α(δk)‖xδkα(δk) − x∗‖2}

6 ‖F(xβ)− y0‖2 + β‖xβ − x∗‖2
which implies thatx̄ is also a solution of the minimization problems (1.3) withyδ andα
replaced byy0 andβ, respectively, and

lim
k→∞
{‖F(xδkα(δk))− y0‖2 + β‖xδkα(δk) − x∗‖2} = ‖F(x̄)− y0‖2 + β‖x̄ − x∗‖2.

Combining this with (3.4) it is easy to show

‖F(x̄)− y0‖ = lim
k→∞
‖F(xδkα(δk))− y0‖ and ‖x̄ − x∗‖ = lim

k→∞
‖xδkα(δk) − x∗‖.

Sincexδkα(δk) ⇀ x̄ andF(xδkα(δk)) ⇀ ȳ, we havexδkα(δk) → x̄ andF(xδkα(δk))→ ȳ. Now using the
definition ofα(δk) and (3.1) we can prove

β(F (x̄)− y0, (βI + F ′(x̄)F ′(x̄)∗)−1(F (x̄)− y0)) = 0

which givesF(x̄) = y0, i.e. x̄ is a solution of (1.1). Since the definition ofx̄ implies
‖x̄ − x∗‖ 6 ‖x0 − x∗‖, from the uniqueness ofx∗-MNS it follows x̄ = x0, and hence
x
δk
α(δk)
→ x0.

Finally we suppose there is a sequenceδk satisfyingδk → 0 such thatα(δk) → 0 as
k → ∞. Now we haveF(x∗) 6= y0 and ‖F(x∗) − yδk‖ > cδk for sufficiently largek.
Therefore the definition ofα(δk) gives‖F(xδkα(δk))− yδk‖2 > cδ2

k . According to the definition

of xδkα(δk) it follows that

cδ2
k + α(δk)‖xδkα(δk) − x∗‖2 6 ‖F(x

δk
α(δk)

)− yδk‖2 + α(δk)‖xδkα(δk) − x∗‖2
6 δ2

k + α(δk)‖x0 − x∗‖2.
Sincec > 1 we have‖xδkα(δk)− x∗‖ 6 ‖x0− x∗‖ and limk→∞ F(x

δk
α(δk)

) = y0. Now we can use

the standard technique (cf [13]) to showxδkα(δk)→ x0 again. �
As a byproduct of the argument in the proof of theorem 3.1 we have the following

Lemma 3.1. Under the assumptions in theorem 3.1, ifF(x∗) 6= y0 andx0 satisfies (2.1) then
limδ→0 α(δ) = 0.
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Proof. In fact from the proof of theorem 3.1 we seeα(δ) cannot have the cluster∞ asδ→ 0.
If α(δ) has a cluster 0< β <∞, thenF(xβ) = y0, wherexβ is a solution of the minimization
problem (1.3) withyδ andα replaced byy0 andβ. Since‖xβ−x∗‖ 6 ‖x0−x∗‖, it follows from
(2.1) thatxβ is an interior point ofD(F) and there holds the first-order necessary optimality
condition forxβ

F ′(xβ)∗(F (xβ)− y0) + β(xβ − x∗) = 0.

This impliesxβ = x∗ and thusF(x∗) = y0 which is a contradiction. �
Now we return to (3.2). It seems reasonable to make such an assumption if the problem

has practical interest andx∗ is sufficiently close tox0. However it is helpful to give some
sufficient conditions. Below we will show the validity of (3.2) under the condition that

‖F(x)− F(z)− F ′(z)(x − z)‖ 6 η‖x − z‖‖F(x)− F(z)‖, x, z ∈ Bp(x0) (3.5)

with a constantη > 0.

Lemma 3.2. Let (2.1) and (3.5) hold,c > 2 and2η‖x0 − x∗‖ < 1, then (3.2) is valid andx0

is the uniquex∗-MNS of (1.1).

Proof. Supposeα > α0 and assume the minimization problem (1.3) has two solutionsxδα and
x̃δα. Then

‖F(xδα)− F(x̃δα)‖2 + α‖xδα − x̃δα‖2
= 2(F (x̃δα)− F(xδα), yδ − F(xδα)) + 2α(x̃δα − xδα, x∗ − xδα). (3.6)

Since c > 2, the definitions ofxδα and α0 give ‖xδα − x∗‖ 6 (δ/
√
α) + ‖x0 − x∗‖ 6

(δ/
√
α0)+‖x0−x∗‖ 6 2‖x0−x∗‖. Therefore from (2.1) it follows thatxδα is an interior point

of D(F) and there holds the first-order necessary optimality condition

F ′(xδα)
∗(F (xδα)− yδ) + α(xδα − x∗) = 0. (3.7)

Substituting (3.7) into (3.6) and using (3.5) yields

‖F(xδα)− F(x̃δα)‖2 + α‖xδα − x̃δα‖2 = 2(F (x̃δα)− F(xδα)− F ′(xδα)(x̃δα − xδα), yδ − F(xδα))
6 2η‖x̃δα − xδα‖‖F(x̃δα)− F(xδα)‖‖yδ − F(xδα)‖
6 ‖F(xδα)− F(x̃δα)‖2 + 2η2‖yδ − F(xδα)‖2‖xδα − x̃δα‖2. (3.8)

This impliesx̃δα = xδα if we can proveη‖F(xδα)− yδ‖/
√
α < 1. By using 2η‖x0 − x∗‖ < 1,

from the definition ofxδα it follows

η‖F(xδα)− yδ‖√
α

6 η
(
δ√
α

+ ‖x0 − x∗‖
)
6 2η‖x0 − x∗‖ < 1

which completes the proof of (3.2).
The uniqueness ofx∗-MNS of (1.1) follows from [7, lemma 3.6]. �

4. Rate of convergence

In this section we always assume that rule 2.1 is well defined and do not state the conditions
explicitly. We also usexα to denote a solution of the minimization problem (1.3) withyδ
replaced byy0. In the following we will concentrate on the derivation of a suitable rate of
convergence under certain conditions. A frequently used assumption is the Lipschitz continuity
of the Fŕechet derivative ofF , i.e.

‖F ′(x)− F ′(z)‖ 6 L‖x − z‖ ∀x, z ∈ Bp(x0) (4.1)
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with some constantL > 0. As a consequence of (4.1) we have

‖F(x)− F(z)− F ′(z)(x − z)‖ 6 1
2L‖x − z‖2 ∀x, z ∈ Bp(x0). (4.2)

Since (4.1) is rather weak and provides insufficient information onF , we cannot establish the
rates as in theorem 2.1 for each 0< ν 6 2. However whenx0− x∗ is sufficiently smooth, we
can give a sound result.

Theorem 4.1.Let (2.1) and (4.1) hold,c > 9, ‖F(x∗)− yδ‖2 > cδ2, and assume that there is
anω ∈ N (F ′(x0))

⊥ ⊂ X such thatx0 − x∗ = F ′(x0)
∗F ′(x0)ω. If L‖u‖ is sufficiently small,

then there is a constantC0 independent ofδ such that

‖xδα(δ) − x0‖ 6 C0δ
2/3 (4.3)

for theα(δ) determined by rule 2.1, whereu ∈ N (F ′(x0)
∗)⊥ ⊂ Y is such thatx0 − x∗ =

F ′(x0)
∗u.

To prove this assertion, we note that when 2L‖u‖ < 1 there holds the stability estimate (cf
[11])

‖xδα − xα‖ 6
2√

1− 2L‖u‖
δ√
α

(4.4)

for all α > α0. Therefore from the triangle inequality it follows forL‖u‖ sufficiently small
there holds

‖xδα − x0‖ 6 C1
δ√
α

+ ‖xα − x0‖ (4.5)

with a constantC1 independent ofδ. If we can give the estimate of‖xα−x0‖ and the upper and
lower bounds forα(δ), then (4.3) can be proved easily. We do this according to the following
lines.

Lemma 4.1. Let (2.1) and (4.1) hold,c > 9 and ‖F(x∗) − yδ‖2 > cδ2. If there is a
u ∈ N (F ′(x0)

∗)⊥ ⊂ Y such thatx0 − x∗ = F ′(x0)
∗u and 2L‖u‖ < 1, then for theα(δ)

determined by rule 2.1 there holds

α(δ) >
√
c − 3

2

δ

‖u‖ . (4.6)

Proof. Since‖F(x∗) − yδ‖ > cδ2, the definition ofα(δ) implies‖F(xδα(δ)) − yδ‖ >
√
cδ.

Since the proof of [11, theorem 1] implies

‖F(xδα)− F(xα)‖ 6 2δ (4.7)

for all α > α0, we have from (1.2) that‖F(xα(δ))− y0‖ > (√c− 3)δ. Following the proof of
theorem 2.4 in [2] it gives for allα > 0

‖F(xα)− y0‖ 6 2‖u‖α. (4.8)

Therefore 2‖u‖α(δ) > (√c − 3)δ and the proof follows. �
Lemma 4.2. Under the assumptions in lemma 4.1, ifL‖u‖ is sufficiently small such that

q0 :=
(

8√
1− 2L‖u‖(√c − 3)

+
4√

1− L‖u‖
)
L‖u‖ 6 1 (4.9)

then for theα := α(δ) defined by rule 2.1 there holds

(
√
c − 3)2

3
δ2 6 α(F (xα)− y0, (αI + B0)

−1(F (xα)− y0)) 6 3(
√
c + 3)2δ2 (4.10)

whereB0 := F ′(x0)F
′(x0)

∗.
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Proof. AssumeBδα := F ′(xδα)F ′(xδα)∗, then from (1.2) and (4.7) it immediately gives

(
√
c − 3)2δ2 6 α(F (xα)− y0, (αI + Bδα)−1(F (xα)− y0)) 6 (

√
c + 3)2δ2.

Let

a := α(F (xα)− y0, (αI + Bδα)−1(F (xα)− y0))

b := α(F (xα)− y0, (αI + B0)
−1(F (xα)− y0))

F := (αI + Bδα)−1/2(B0 − Bδα)(αI + B0)
−1/2

then we have

|a − b| = |α(F (xα)− y0, (αI + Bδα)−1(B0 − Bδα)(αI + B0)
−1(F (xα)− y0))|

= |α((αI + Bδα)−1/2(F (xα)− y0),F(αI + B0)
−1/2(F (xα)− y0))|

6 α‖F‖‖(αI + Bδα)−1/2(F (xα)− y0)‖‖(αI + B0)
−1/2(F (xα)− y0)‖

6 1
2‖F‖(a + b).

By using (4.1) it follows

‖F‖ = ‖(αI + Bδα)−1/2((F ′(x0)
∗ − F ′(xδα)∗)F ′(x0) + F ′(xδα)

∗(F ′(x0)− F ′(xδα)))
×(αI + B0)

−1/2‖
6 2√

α
‖F ′(xδα)− F ′(x0)‖ 6 2L√

α
‖xδα − x0‖.

Following the proof of [2, theorem 2.4] we also have

‖xα − x0‖ 6 2
√
α‖u‖√

1− L‖u‖ . (4.11)

Therefore from (4.4) and (4.6) we obtain

‖F‖ 6 2L

(
2√

1− 2L‖u‖
δ

α
+

2‖u‖√
1− L‖u‖

)
6 q0 6 1.

Thus|a − b| 6 1
2(a + b) which impliesa/36 b 6 3a and the assertion follows. �

Now we give the estimate of‖xα − x0‖ and the upper and lower bounds forα(δ).

Lemma 4.3. Let (2.1) and (4.1) hold and assumex0 − x∗ = (F ′(x0)
∗F ′(x0))

ν/2ω with some
1 6 ν 6 2 andω ∈ N (F ′(x0))

⊥ ⊂ X. If u ∈ N (F ′(x0)
∗)⊥ ⊂ Y denotes the element such

thatx0 − x∗ = F ′(x0)
∗u and ifL‖u‖ is sufficiently small such that

q1 :=
(

4 +
1√

1− L‖u‖
)
L‖u‖ 6 1 (4.12)

then for eachα > 0 there holds

‖xα − x0‖ 6 2αν/2‖ω‖. (4.13)

Proof. Sincexα is an interior point ofD(F), we have

F ′(xα)∗(F (xα)− y0) + α(xα − x∗) = 0. (4.14)

By lettingA0 := F ′(x0)
∗F ′(x0) and

x̂α := x0 + α(αI +A0)
−1(x∗ − x0)

rα := (F ′(xα)∗ − F ′(x0)
∗)(F (xα)− y0)

sα := F ′(x0)
∗(F (xα)− F(x0)− F ′(x0)(xα − x0))
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it follows from (4.14) that

xα = x̂α − (αI +A0)
−1(rα + sα). (4.15)

Therefore from (4.1) and (4.2) it follows

‖xα − x̂α‖ = ‖(αI +A0)
−1(rα + sα)‖

6 ‖rα‖
α

+
1

2
√
α
‖F(xα)− y0 − F ′(x0)(xα − x0)‖

6 1

α
‖F ′(xα)− F ′(x0)‖‖F(xα)− y0‖ +

L‖xα − x0‖2
4
√
α

6
(
L‖F(xα)− y0‖

α
+
L‖xα − x0‖

4
√
α

)
‖xα − x0‖.

Using (4.8) and (4.11) we obtain‖xα − x̂α‖ 6 1
2q1‖xα − x0‖ 6 1

2‖xα − x0‖, which gives

‖xα − x0‖ 6 2‖x̂α − x0‖ = 2‖α(αI +A0)
−1Aν/20 ω‖ 6 2αν/2‖ω‖. �

Lemma 4.4. Under the assumptions in lemma 4.3, ifL‖u‖ is sufficiently small such that (4.9)
and (4.12) hold, then

α(δ) >
(

(
√
c − 3)

√
1− L‖u‖

2
√

3(
√

1− L‖u‖ +L‖u‖)
δ

‖ω‖
)2/(1+ν)

(4.16)

for theα := α(δ) determined by rule 2.1.

Proof. From (4.2), (4.11) and (4.13) we have
√
α‖(αI + B0)

−1/2(F (xα)− y0)‖ 6
√
α‖xα − x0‖ + 1

2L‖xα − x0‖2

6
√
α

(
1 +

L‖u‖√
1− L‖u‖

)
‖xα − x0‖

6 2

(
1 +

L‖u‖√
1− L‖u‖

)
‖ω‖α(1+ν)/2.

Therefore it follows from (4.10) that
√
c − 3√

3
δ 6 2

(
1 +

L‖u‖√
1− L‖u‖

)
‖ω‖α(1+ν)/2

which gives (4.16). �

Lemma 4.5. Under the assumptions in lemma 4.4, there holds

lim inf
δ→0

δ2/3

α(δ)
> 0. (4.17)

Proof. Let

I (δ) := ‖(α(δ)I + B0)
−1/2F ′(x0)(xα(δ) − x0)‖
α(δ)

then

I (δ) > ‖(α(δ)I + B0)
−1/2F ′(x0)(x̂α(δ) − x0)‖
α(δ)

− ‖xα(δ) − x̂α(δ)‖
α(δ)

= I1(δ)− I2(δ).
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If we use{Eλ} to denote the spectral family generated byA0, then from the smoothness
assumption onx0 − x∗ we have

I1(δ)
2 = 1

α(δ)2
((α(δ)I +A0)

−1A0(x̂α(δ) − x0), x̂α(δ) − x0)

= ((α(δ)I +A0)
−3A3

0ω,ω)

=
∫ ∞

0

λ3

(α(δ) + λ)3
d(Eλω, ω).

Sinceω ∈ N (F ′(x0))
⊥ andα(δ) → 0 implied by lemma 3.1, by takingδ → 0 we have

I1(δ)→ ‖ω‖. ForI2(δ) we can use (4.15), (4.1), (4.2), (4.13) and (4.8) to obtain

I2(δ) 6
‖rα(δ)‖
α(δ)2

+
‖(α(δ)I + B0)

−1sα(δ)‖
α(δ)

6 L‖xα(δ) − x0‖‖F(xα(δ))− y0‖
α(δ)2

+
L‖xα(δ) − x0‖2

α(δ)3/2

6 4L‖u‖‖ω‖ + 4L‖ω‖2α(δ)1/2.
Since (4.12) implies 4L‖u‖ < 1 we have lim infδ→0 I (δ) > (1− 4L‖u‖)‖ω‖ > 0. From
(4.2) and (4.12) it follows that

‖(α(δ)I + B0)
−1/2(F (xα(δ))− y0 − F ′(x0)(xα(δ) − x0))‖

α(δ)
6 L‖xα(δ) − x0‖2

α(δ)3/2

6 4L‖ω‖2α(δ)1/2→ 0 asδ→ 0.

Therefore

lim inf
δ→0

‖(α(δ)I + B0)
−1/2(F (xα(δ))− y0)‖
α(δ)

> (1− 4L‖u‖)‖ω‖ > 0.

By using (4.10) we obtain (4.17) immediately. �

Let us return to the proof of theorem 4.1. Clearly, lemma 4.5 impliesα(δ) 6 C2δ
2/3 with

a constantC2 independent ofδ. Combining this with (4.16), (4.13) and (4.5), assertion (4.3)
follows immediately and the proof of theorem 4.1 is complete. �

Now we consider the question whether we can obtain the rate of convergence under the
assumptionx0 − x∗ ∈ R((F ′(x0)

∗F ′(x0))
ν/2) with ν < 2. By checking the proof of theorem

4.1, it is easy to see that the big burden is to get the estimate likeα(δ) 6 Cδ2/(1+ν) with some
constantC independent ofδ. Such an estimate forν = 2 is given in lemma 4.5 which takes
account of the saturation of Tikhonov regularization to obtainI1(δ) → ‖ω‖ asδ → 0. It
seems there is no hope to obtain such an estimate forν < 2; this fact can be clarified from
the discussion in [9]. Thus, in order to derive the expected rates other techniques should be
explored.

We conclude this section by a remark that rule 2.1 is well defined under the conditions in
lemma 4.1. In fact, we need only to verify (3.2). Letα > α0 and letxδα and x̃δα be the two
solutions of (1.3), it follows from (3.8) and (4.2) thatα‖xδα−x̃δα‖2 6 L‖F(xδα)−yδ‖‖xδα−x̃δα‖2.
Since (4.7), (4.8) and (4.6) imply

L‖F(xδα)− yδ‖
α

6 L
(

3
δ

α
+ 2‖u‖

)
6 3L‖x0 − x∗‖√

c − 1
+ 2L‖u‖

we havex̃δα = xδα provided thatL‖u‖ is sufficiently small. Of course, this remark has more
interest in theoretical analysis rather than in practical applications.
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5. Applications

The results presented in sections 3 and 4 can be applied to many concrete problems. Below we
give only a few such examples to illustrate the conditions required in the foregoing sections.

Example 5.1.We continue the discussion of example 2.1 withg0 = g1 = 0. Now the Fŕechet
derivative is given by

F ′(a)h = A(a)−1(hut (a))t

whereA(a) : H 2 ∩ H 1
0 7→ L2 is given byA(a)u = −(aut )t which is an isomorphism

uniformly in a neighbourhood ofa0. Obviously (3.1) and (4.1) are trivial. From [6] we know
(3.2) is also true. We note that the verification of (3.5) is given in [1]. Hence theorems 3.1 and
4.1 are applicable.

Example 5.2.Considering the problem of estimatingc in{
−4u + cu = f in �

u = 0 on∂�
(5.1)

where� is a bounded domain inR2 orR3 with smooth boundary or with� being a parallepiped
andf ∈ L2(�).

The nonlinear operatorF : D(F) ⊂ L2(�) 7→ L2(�) is defined as the parameter-to-
solution mapping

F(c) = u(c)
with u(c) the unique solution of (5.1).F is well defined on

D(F) := {c ∈ L2 : ‖c − ĉ‖L2 6 γ for someĉ > 0 a.e.}
with someγ > 0, cf [12]. It is easy to show thatF is Fŕechet differentiable and the Fréchet
derivative is given by

F ′(c)h = −A(c)−1(hu(c))

whereA(c) : H 2 ∩H 1
0 7→ L2 defined byA(c)u = −4u + cu is an isomorphism uniformly in

a neighbourhoodU(c0) of the sought solutionc0. From the discussion in [12] we know (2.2)
and (2.3) are not true for this example. Let us check the assumptions of this paper. Obviously,
(3.1) is trivial and (4.1) is an easy exercise. In order to guarantee (3.2), let us verify (3.5).
Supposec, d ∈ U(c0), then it is easy to show

A(c)(F (d)− F(c)) = (c − d)F (d).
Therefore

‖F(d)− F(c)− F ′(c)(d − c)‖L2 = ‖A(c)−1((c − d)(F (c)− F(d)))‖L2

6 η‖(c − d)(F (c)− F(d))‖L2

6 η‖c − d‖L2‖F(c)− F(d)‖L2

with some constantη, and (3.5) holds locally.

Example 5.3.We treat the ill-posed nonlinear integral equation of autoconvolution type defined
on the interval [0, 1]

F(x)(s) :=
∫ s

0
x(s − t)x(t) dt = y(s)
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cf [4]. The nonlinear operatorF : L2[0, 1] 7→ L2[0, 1] is Fŕechet differentiable with derivative

(F ′(x)h)(s) = 2
∫ s

0
x(s − t)h(t) dt.

Obviously, (3.1) is valid. Although (3.5) is unsatisfactory everywhere, we can verify (4.1) as
follows:

‖(F ′(x)− F ′(z))h‖L2 = 2

{∫ 1

0

[ ∫ s

0
(x(s − t)− z(s − t))h(t) dt

]2

ds

}1/2

6 2

{∫ 1

0

∫ s

0
|x(s − t)− z(s − t)|2 dt

∫ s

0
h(t)2 dt ds

}1/2

6 2

{∫ 1

0

∫ s

0
|x(s − t)− z(s − t)|2 dt ds

}1/2

‖h‖L2

6 2‖x − z‖L2‖h‖L2 ∀h ∈ L2[0, 1].

Therefore (3.2) can be guaranteed if the sought solutionx0 is sufficiently smooth. However,
this statement has little use in practice since it is not easy to obtain the information onL‖u‖.
We conjecture that it is possible to prove (3.2) directly for this example ifx∗ is sufficiently
close to the true solutionx0.
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