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Abstract. In this paper we consider some Newton-type methods in Hilbert scales to solve
nonlinear inverse problems. Under certain conditions we obtain the error estimates when the
iteration is terminated in ana posteriorimanner. Finally we present the numerical examples to
verify the theoretical results.

1. Introduction

In this paper we consider the nonlinear equation

F(x) = y0 (1.1)

arising from the study of nonlinear inverse problems, whereF is a nonlinear operator with
domainD(F) in the real Hilbert spaceX and with its rangeR(F) in the real Hilbert space
Y , and the datay0 is attainable, i.e.y0 ∈ R(F). Throughout this paper we assume thatF is
continuous and Fréchet differentiable; the Fréchet derivative ofF at pointx ∈ D(F) and its
adjoint are denoted byF ′(x) andF ′(x)∗ respectively. The interest of this paper is confined
to the case that the problem (1.1) is ill-posed in the sense that the solution does not depend
continuously on the right-hand side; the reader can refer to [3, 4] for a number of important
inverse problems in natural science leading to such case.

By assumingyδ to be the only available approximation ofy0 satisfying

‖yδ − y0‖ 6 δ (1.2)

with a given noise levelδ > 0, now the reconstruction of the solution of (1.1) comes into
being and several stable methods have been applied to touch on this topic in the literature.
Among the methods developed to solve nonlinear inverse problems, Tikhonov regularization
is the most well known and has received much attention in recent years. Its convergence
analysis has been carried out under quite general conditions witha priori or a posteriori
choice of the regularization parameter (see [3, 9] and references therein). As alternatives to
Tikhonov regularization, iterative methods have been also used to overcome the difficulty
arising from the ill-posedness of nonlinear inverse problems. Due to their straightforward
implementation for the numerical solutions, such methods have attracted more and more
attention in recent researches. Landweber iteration was extended to study nonlinear problems
in [6] with an elegant convergence analysis; the idea therein was extensively utilized to analyse
other iterative methods such as the method of steepest descent [15], the regularizing Levenberg–
Marquardt scheme [5] and so on. Newton-type methods were also considered because of their
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faster convergence and a general framework was given in [10]. In particular, the iteratively
regularized Gauss–Newton method proposed in [1] was reconsidered in [2, 8]; it seems that
this method is becoming more and more popular in solving nonlinear inverse problems [7].

In this paper we will consider some Newton-type methods for nonlinear inverse problems
in Hilbert scales. We formulate our methods in section 2.2 and derive the error estimates
in section 2.3 under certain conditions. In section 3, we perform the numerical experiments
to verify the theoretical results. Such research has several advantages, which are listed in
section 2.2. We note that it was Natterer [12] who first considered the linear Tikhonov
regularization in Hilbert scales to prevent the saturation phenomenon; this method was further
considered in [13] under the choice of the regularization parameter by Morozov’s discrepancy
principle; an extension of Tikhonov regularization for linear ill-posed problems in Hilbert
scales to a general class of regularization methods was then given in [17]. The extension
of Natterer’s technique to the study of the nonlinear case has also attracted some attention
in recent years; Tikhonov regularization in Hilbert scales for nonlinear inverse problems was
analysed in [11,14,16], and then a general regularization scheme in Hilbert scales for nonlinear
equations was given in [18].

2. Newton-type methods in Hilbert scales

2.1. Hilbert scales

In this section we give a brief description of Hilbert scales and list some properties used in the
subsequent discussion. For more information see [3].

A family of Hilbert spaces(Xs)s∈R is called a Hilbert scale induced byL if, for eachs ∈ R,
Xs is the completion of∩∞k=0D(L

k) with respect to the Hilbert space norm‖x‖s := ‖Ls/2x‖,
whereL is a densely defined selfadjoint strictly positive operator inX. It is well known that
Xs is densely and continuously embedded inXr for any−∞ < r < s <∞ and(Xs)′ = X−s
for any s > 0. Moreover there holds the important interpolation inequality, i.e. for any
−∞ < q < r < s <∞ there holds for anyx ∈ Xs that

‖x‖r 6 ‖x‖
s−r
s−q
q ‖x‖

r−q
s−q
s . (2.1)

Let T : X 7→ Y be a bounded linear operator. SinceL−s/2 is an isomorphism fromX onto
Xs , the operatorB := T L−s/2 : X 7→ Y is also bounded fors > 0 and the adjoint ofB is
given byB∗ = L−s/2T ∗, whereT ∗ : Y 7→ X is the adjoint ofT . Let g : [0, ‖B‖2] 7→ R be a
continuous function, then

g(B∗B)Ls/2 = Ls/2g(L−sT ∗T ). (2.2)

If we suppose further that there exist constantsM > m > 0 anda > 0 such that for allh ∈ X
there holds

m‖h‖−a 6 ‖T h‖ 6 M‖h‖−a,
then for all|ν| 6 1 the inequality (see [12])

c(ν)‖h‖−ν(a+s) 6 ‖(B∗B)ν/2h‖ 6 C(ν)‖h‖−ν(a+s) (2.3)

holds onD((B∗B)ν/2) with

c(ν) := min{mν,Mν}, C(ν) := max{mν,Mν}. (2.4)

Moreover,

R((B∗B)ν/2) = Xν(a+s). (2.5)
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If h ∈ Xν with some 06 ν 6 a + 2s thenLs/2h ∈ Xν−s . Since| ν−s
a+s | 6 1 it follows from (2.5)

that there is av ∈ X such that

Ls/2h = (B∗B) µ−s
2(a+s) v, (2.6)

and from (2.3) we have

‖v‖ = ‖(B∗B)− µ−s
2(a+s) Ls/2h‖

6 C
(
s − µ
a + s

)
‖Ls/2h‖µ−s

= C
(
s − µ
a + s

)
‖h‖µ. (2.7)

2.2. The methods

Let us formulate some conditions first. We assume thatx† is a solution of (1.1) andx0 is an
available initial guess such that

x0 ∈ Bρ(x†) := {x ∈ X : ‖x − x†‖ 6 ρ} ⊂ D(F) (2.8)

for a suitable smallρ > 0; moreover, we assume that

F ′(x) = RxF ′(x†), ∀x ∈ Bρ(x†), (2.9)

where{Rx : x ∈ Bρ(x†)} is a family of bounded linear operatorsRx : Y 7→ X such that

‖I − Rx‖ 6 η (2.10)

with a sufficiently small constantη < 1. Such an assumption has been verified for several
nonlinear inverse problems in [6], and as a consequence of it we have the following estimate:

‖F(x)− y0 − F ′(x†)(x − x†)‖ 6 η‖F ′(x†)(x − x†)‖, x ∈ Bρ(x†). (2.11)

In order to formulate our methods in general form, we assume thats > 0 is a given number
and the nonlinear operatorF is properly scaled in the way that

‖F ′(x)L−s/2‖ 6 1, x ∈ Bρ(x†). (2.12)

We note that (2.9) and (2.10) imply‖F ′(x)L−s/2‖ 6 (1 +η)‖F ′(x†)L−s/2‖ which shows the
uniform boundedness of‖F ′(x)L−s/2‖ in Bρ(x†). Therefore the scaling condition (2.12) can
always be fulfilled by multiplying both sides of (1.1) by a sufficiently small constant, which
then appears as a relaxation parameter in the methods presented below.

Now we suppose thatxn is the current iterate and consider the linearization

An(x − x0) = −(F (xn)− yδ − An(xn − x0)) (2.13)

of equation (1.1), whereAn := F ′(xn). Since (2.13) is in general ill-posed, the linear
regularization methods should be used to generate an approximation ofx which will be used
as the new iteratexn+1. To this end, let us choose a parameter-dependent family of real-valued
continuous functions{gα : [0, 1] 7→ R}α∈(0,∞) with the properties that there exist constants
τ1, τ2 andβ0 > 1 such that

sup
λ∈[0,1]

|λγ gα(λ)| 6 τ1α
γ−1, for 06 γ 6 1, (2.14)

sup
λ∈[0,1]

|λβrα(λ)| 6 τ2α
β, for 06 β 6 β0, (2.15)

whererα(λ) := 1− λgα(λ). Similar assumptions to (2.14) and (2.15) forgα have also been
used in [10, 17]. Clearly, ifxn ∈ Bρ(x†) then forBn := F ′(xn)L−s/2 we have‖Bn‖ 6 1,
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thereforegα can be used as the filter function and we thus obtain the Newton-type methods in
Hilbert scales

xn+1 = x0 − L−s/2gαn(B∗nBn)B∗n(F (xn)− yδ − An(xn − x0)) (2.16)

where{αn} is a given sequence satisfying

αn > 0, 16 αn

αn+1
6 p and lim

n→∞αn = 0 (2.17)

for some constantp > 1. Using the property (2.2) we can rewrite (2.16) as

xn+1 = x0 − gαn(L−sA∗nAn)L−sA∗n(F (xn)− yδ − An(xn − x0)). (2.18)

It is well known in the regularization theory that ifxn is used to approximatex†, the
iteration should be terminated properly. Due to the practical applications, the stopping index
of iteration should be designated in ana posteriorimanner. In this paper we will consider the
iterative discrepancy principle and choosenδ as the integer such that

‖F(xnδ )− yδ‖ 6 τδ < ‖F(xn)− yδ‖, 06 n < nδ, (2.19)

whereτ > 1 is a suitable large number. We will usexnδ as an approximation ofx†.
To proceed with our convergence analysis we need the following condition:

∃ constantsM > m > 0 anda > 0 such that∀h ∈ X there holds
m‖h‖−a 6 ‖F ′(x)h‖ 6 M‖h‖−a, ∀x ∈ Bρ(x†).

(2.20)

Let us give some remarks on this condition. From [14] we know that the following condition
has been used to analyse the nonlinear Tikhonov regularization in Hilbert scales:

∃ constantsM > m > 0 anda > 0 such that∀h ∈ X there holds
m‖h‖−a 6 ‖F ′(x†)h‖ 6 M‖h‖−a. (2.21)

Clearly, (2.21) is just a special case of (2.20). However, (2.20) and (2.21) are equivalent under
the conditions (2.9) and (2.10) since now we have the inequality

(1− η)‖F ′(x†)h‖ 6 ‖F ′(x)h‖ 6 (1 +η)‖F ′(x†)h‖. (2.22)

In many applicationsL is chosen to be a differential operator inL2-space, in which case the
numbera in (2.21) can be interpreted as the smoothing index ofF ′(x†). Therefore (2.20)
requires that the smoothing index ofF ′(x) is invariant aroundx†.

Now we can state the main result of this paper.

Theorem 2.1.Let (2.8)–(2.10), (2.12), (2.17) and (2.20) be fulfilled and letgα satisfy (2.14)
and (2.15). Assumenδ be the integer determined by the discrepancy principle (2.19) with
τ > 1 + τ1

√
p and supposex0− x† ∈ Xµ with some06 µ 6 a + 2s. If ‖x0− x†‖ andη are

suitable small, then for allr ∈ [−a, µ] there holds

‖xnδ − x†‖r 6 C‖x0 − x†‖
a+r
a+µ
µ δ

µ−r
a+µ (2.23)

with a constantC independent ofδ and‖x0 − x†‖µ.

We mention that the result of theorem 2.1 reduces to the well known result in the literature
(see [17]) whenF is linear. The proof of theorem 2.1 will be given in section 2.3. In the
following we discuss the special choice ofgα to generate some regularization methods that fit
into our framework.

As the first example, we apply the linear Tikhonov regularization in Hilbert scales to
equation (2.13) and obtain the choicegα(λ) := 1

α+λ . A simple exercise shows thatgα
satisfies (2.14) and (2.15) withτ1 = τ2 = β0 = 1. Now the method (2.18) has the form

xn+1 = x0 − (αnLs +A∗nAn)
−1A∗n(F (xn)− yδ − An(xn − x0))
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which can be rewritten as

xn+1 = xn − (αnLs +A∗nAn)
−1(A∗n(F (xn)− yδ) + αnL

s(xn − x0)). (2.24)

This method is called the iteratively regularized Gauss–Newton method in Hilbert scales which
is well known fors = 0 (see [1,2,8]).

In contrast to the above example, we may apply the Landweber iteration in Hilbert scales
for linear ill-posed problems to the equation (2.13) to obtain the so-called Newton–Landweber

method in Hilbert scales. By choosinggα(λ) :=∑[ 1
α

]
k=0(1−λ)k which satisfies (2.14) and (2.15)

with τ1 = τ2 = 1 andβ0 = ∞, (2.18) then becomes

xn+1 = x0 −
[ 1
αn

]∑
k=0

(I − L−sA∗nAn)kL−sA∗n(F (xn)− yδ − An(xn − x0))

which is equivalent to the form

xn,0 = x0,

xn,k+1 = xn,k − L−sA∗n(F (xn) +An(xn,k − xn)− yδ), 16 k < [1/αn],

xn+1 = xn,[1/αn] .
(2.25)

Such a method withs = 0 has been studied in [10] recently.
Let us conclude this section with several remarks.

Remark 2.1. Theorem 2.1 requiresx0 − x† ∈ Xµ with some 06 µ 6 2s + a which can be
viewed as a smoothness condition onx0−x†. A similar assumption was used in [11,14] where
Tikhonov regularization was considered in Hilbert scales to solve nonlinear inverse problems,
but there it neededµ > a which seems to be a restrictive requirement.

Remark 2.2. It should be mentioned that the restrictionµ 6 a+2s which leads to a saturation
in the convergence rates is not required ifL andF ′(x)∗F ′(x) commute for eachx ∈ Bρ(x†)

which includes the caseL := I . In this case, the inequality (2.3) holds withB := F ′(x)L−s/2
for all realν, and the result of theorem 2.1 then holds for allµ 6 2β0(a + s)− a. Hence for
the regularization methods with qualificationβ0 = ∞ the error bound (2.23) holds then for
all µ < ∞. This fact was first observed in [17] for linear regularization methods in Hilbert
scales.

Remark 2.3. The ordinary iteratively regularized Gauss–Newton method (i.e. the
method (2.24) withs = 0) has been considered in [2, 8]. It has been pointed out in [2]
that the best possible convergence rate ofxnδ to x† is at most O(δ1/2) if nδ is chosen by the
discrepancy principle (2.19). Moreover, even using thenδ chosen by the strategy in [8] we
have, at most, the error bound O(δ2/3). However, if we consider this method in Hilbert scales,
such a saturation phenomenon can be prevented if we chooses in a suitable way.

Remark 2.4. It has been noted in [10] that it seems quite difficult to work out the convergence
if we use (2.19) to choose the stopping index of iteration for some Newton-type methods
including Newton–Landweber iteration withs = 0. However, it is interesting to find that the
case is quite different if we consider these methods in Hilbert scales.

Remark 2.5. The requirementτ > 1 +τ1
√
p given in theorem 2.1 mainly arises for technical

reasons (see section 2.3). Additional effort makes it possible to drop this restriction. If one
can show that the discrepancy principle (2.19) is well-defined for smallerτ , one should use
this smallerτ in the numerical computation since the absolute error increases withτ .
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Remark 2.6. Tautenhahn [18] suggested a general regularization scheme in Hilbert scales
for (1.1) which is closely related to our methods and established the order optimal convergence
rates under certain conditions. His method, however, is indeed very different from ours since
the regularizer in [18] is given implicitly by a nonlinear well-posed equation which in practice
has to be solved approximately by an iteration and this additional approximation was not
incorporated into the convergence analysis.

2.3. Error estimates

In this section we give the proof of theorem 2.1. We first show thatxn is well-defined for all
06 n 6 nδ with nδ determined by (2.19).

Supposexn ∈ Bρ(x†) for somen and seten = xn − x†, then the definition (2.16) ofxn+1

gives

en+1 = x0 − x†− L−s/2gαn(B∗nBn)B∗n(F (xn)− yδ − An(xn − x0))

= L−s/2rαn(B∗nBn)Ls/2(x0 − x†)

−L−s/2gαn(B∗nBn)B∗n(y0 − yδ)
−L−s/2gαn(B∗nBn)B∗n(F (xn)− y0 − An(xn − x†))

:= I1 + I2 + I3. (2.26)

Multiplying both sides of (2.26) byA := F ′(x†) and noting thatA = R−1
xn
An we obtain

Aen+1 = R−1
xn
Bnrαn(B

∗
nBn)L

s/2(x0 − x†)

−R−1
xn
Bngαn(B

∗
nBn)B

∗
n(y0 − yδ)

−R−1
xn
Bngαn(B

∗
nBn)B

∗
n(F (xn)− y0 − An(xn − x†)). (2.27)

Based on (2.26) and (2.27) we can obtain

Lemma 2.1. Let all the assumptions in theorem 2.1 be fulfilled. Ifxn ∈ Bρ(x†) for somen,
then for allr ∈ [−a, µ] there hold

‖en+1‖r 6 b0(r)α
µ−r

2(a+s)
n ‖x0 − x†‖µ + b1(r)α

− a+r
2(a+s)

n (δ + 2η‖Aen‖), (2.28)

‖Aen+1‖ 6 b2α
a+µ

2(a+s)
n ‖x0 − x†‖µ +

τ1

1− ηδ +
2ητ1

1− η‖Aen‖, (2.29)

whereb0(r) := c( s−r
a+s )

−1C(
s−µ
a+s )τ2, b1(r) := c( s−r

a+s )
−1τ1 andb2 := τ2

1−ηC(
s−µ
a+s ).

Proof. Sincex0 − x† ∈ Xµ with 0 6 µ 6 a + 2s, from (2.6) and (2.7) it follows that there

exists avn ∈ X such thatLs/2(x0 − x†) = (B∗nBn)
µ−s

2(a+s) vn and

‖vn‖ 6 C
(
s − µ
a + s

)
‖x0 − x†‖µ. (2.30)

Thus, by noting that| s−r
a+s | 6 1 and 06 µ−r

2(a+s) 6 1 we can use (2.3), (2.15) and (2.30) to obtain

‖I1‖r = ‖L(r−s)/2rαn(B∗nBn)Ls/2(x0 − x†)‖
= ‖rαn(B∗nBn)(B∗nBn)

µ−s
2(a+s) vn‖r−s

6 c
(
s − r
a + s

)−1

‖(B∗nBn)
µ−r

2(a+s) rαn(B
∗
nBn)vn‖

6 b0(r)α
µ−r

2(a+s)
n ‖x0 − x†‖µ.
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Applying (2.3) again toI2 we have from (2.14) that

‖I2‖r = ‖gαn(B∗nBn)B∗n(y0 − yδ)‖r−s
6 c

(
s − r
a + s

)−1

‖(B∗nBn)
s−r

2(a+s) gαn(B
∗
nBn)Bn(y0 − yδ)‖

= c
(
s − r
a + s

)−1

‖(BnB∗n)
a+2s−r
2(a+s) gαn(BnB

∗
n)(y0 − yδ)‖

6 b1(r)α
− a+r

2(a+s)
n δ.

Similar to the estimate ofI2 it follows that

‖I3‖r 6 b1(r)α
− a+r

2(a+s)
n ‖F(xn)− y0 − An(xn − x†)‖.

By exploiting (2.10) and (2.11) we have

‖F(xn)− y0 − An(xn − x†)‖ 6 2η‖Aen‖. (2.31)

Therefore‖I3‖r 6 2ηb1(r)α
− a+r

2(a+s)
n ‖Aen‖. Combining the above we obtain (2.28).

Let us prove (2.29) now. By noting that‖R−1
xn
‖ 6 1

1−η , it is easy to obtain

‖Aen+1‖ 6 1

1− η { sup
λ∈[0,1]

λ
a+µ

2(a+s) |rαn(λ)|‖vn‖

+ sup
λ∈[0,1]

|λgαn(λ)|(δ + ‖F(xn)− y0 − An(xn − x†)‖}.
Using (2.14), (2.15), (2.30) and (2.31) we get (2.29). �

With lemma 2.1 at hand, let us show thatxn ∈ Bρ(x†) for all 06 n 6 nδ if η and‖x0−x†‖
are suitably small. Indeed, ifxn ∈ Bρ(x†) for somen < nδ, then the definition ofnδ suggests
that‖F(xn)− yδ‖ > τδ. Since (1.2) and (2.11) imply‖F(xn)− yδ‖ 6 δ + (1 +η)‖Aen‖, we
therefore obtain

δ <
1 +η

τ − 1
‖Aen‖. (2.32)

Substituting (2.32) into (2.30) and (2.31) (withµ = r = 0) we have

‖en+1‖ 6 d1‖x0 − x†‖ +
(1− η + 2ητ)d2

τ − 1
α
− a

2(a+s)
n ‖Aen‖, (2.33)

‖Aen+1‖ 6 d3α
a

2(a+s)
n ‖x0 − x†‖ +

(
τ1

τ − 1
+

2ητ1τ

(1− η)(τ − 1)

)
‖Aen‖, (2.34)

whered1 := τ2C(
s
a+s )c(

s
a+s )

−1, d2 := τ1c(
s
a+s )

−1 andd3 := τ2
1−ηC(

s
a+s ). Based on these

observations, by induction we can obtain the following lemma.

Lemma 2.2. Let all the assumptions in theorem 2.1 hold andτ > 1 + τ1
√
p. If

η < 1− 1

1 + τ−1−τ1
√
p

2τ(τ−1)

and D1‖x0 − x†‖ 6 ρ (2.35)

with

D1 := max

{
1, d1 +

(1− η + 2ητ1)d2

τ − 1
D2

}
D2 :=

√
p

1− ( τ1
τ−1 + 2ητ1τ

(τ−1)(1−η) )
√
p

max{d3, ‖A‖α−
a

2(a+s)

0 }

thenxn ∈ Bρ(x†) for all 06 n 6 nδ and

‖en‖ 6 D1‖x0 − x†‖ and ‖Aen‖ 6 D2α
a

2(a+s)
n ‖x0 − x†‖. (2.36)
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Proof. Clearly the assertions are trivial forn = 0. Suppose that the assertions are valid for
somen < nδ, thenxn ∈ Bρ(x†) and from (2.33), (2.34), the inductive hypothesis and (2.17)
we have

‖en+1‖ 6
(
d1 +

(1− η + 2ητ)d2

τ − 1
D2

)
‖x0 − x†‖ 6 D1‖x0 − x†‖ 6 ρ

and by noting that(αn/αn+1)
a

2(a+s) 6 p
a

2(a+s) 6 √p,

‖Aen+1‖ 6
(
d3 +

(
τ1

τ − 1
+

2ητ1τ

(τ − 1)(1− η)
)
D2

)
α

a
2(a+s)
n ‖x0 − x†‖

6 D2α
a

2(a+s)

n+1 ‖x0 − x†‖.
Thus the proof is complete. �

Now we can show the justification of rule (2.19) ifτ > 1 + τ1
√
p. Suppose the contrary:

we then havenδ = ∞ which together with lemma 2.2 suggests thatxn ∈ Bρ(x†) and (2.32) is
valid for all 06 n <∞. The combination of (2.32) and (2.36) immediately gives

α
a

2(a+s)
n >

(τ − 1)δ

(1 +η)D2‖x0 − x†‖
for all 0 6 n < ∞ which is a contradiction to (2.11) since limn→∞ αn = 0. Therefore the
integernδ defined by the discrepancy principle (2.19) always exists and is finite.

Finally, we are in a position to give the proof of the main result.

Proof of theorem 2.1.Let q > 0 be the constant such that‖x‖ 6 q‖x‖µ for all x ∈ Xµ and
set

d := max

{
‖A‖α−

a+µ
2(a+s)

0 q, 2

(
b2 +

b2τ1(1 +η)

(τ − 1)(1− η)− τ1(1 +η)

)
p

a+µ
2(a+s)

}
.

Then, under the conditions in theorem 2.1 we first show by induction that

‖Aen‖ 6 dα
a+µ

2(a+s)
n ‖x0 − x†‖µ (2.37)

for all 06 n < nδ if η and‖x0− x†‖ are suitable small such that (2.35) holds. In fact, (2.37)
is obvious forn = 0. Assume it is true for somen− 1< nδ − 1. Then by noting thatn < nδ
it follows from (2.29) and (2.32) that

τ − 1

1 +η
δ 6 b2α

a+µ
2(a+s)

n−1 ‖x0 − x†‖µ +
τ1

1− ηδ +
2ητ1

1− η‖Aen−1‖.
Therefore we have

δ 6 1− η2

(τ − 1)(1− η)− τ1(1 +η)

(
b2α

a+µ
2(a+s)

n−1 ‖x0 − x†‖µ +
2ητ1

1− η‖Aen−1‖
)
.

Substituting this into (2.29) then yields

‖Aen‖ 6
(
b2 +

b2τ1(1 +η)

(τ − 1)(1− η)− τ1(1 +η)

)
α

a+µ
2(a+s)

n−1 ‖x0 − x†‖µ

+
2ητ1(τ − 1)

(τ − 1)(1− η)− τ1(1 +η)
‖Aen−1‖.

Thus by utilizing the inductive hypothesis and (2.17) it follows that

‖Aen‖ 6
{(
b2 +

b2τ1(1 +η)

(τ − 1)(1− η)− τ1(1 +η)

)
+

2ητ1(τ − 1)d

(τ − 1)(1− η)− τ1(1 +η)

}
×p a+µ

2(a+s) α
a+µ

2(a+s)
n ‖x0 − x†‖µ

6 dα
a+µ

2(a+s)
n ‖x0 − x†‖µ
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which completes the proof of (2.37).
Now we turn to the proof of (2.23). From (2.20), (2.11), the definition ofnδ, (2.28)

and (2.37) we immediately get

‖enδ‖−a 6
1

m
‖Aenδ‖

6 1

m(1− η)(‖F(xnδ )− yδ‖ + δ)

6 1 + τ

m(1− η)δ
and

‖enδ‖µ 6 b0(µ)‖x0 − x†‖µ + b1(µ)α
− a+µ

2(a+s)

nδ−1 (δ + 2η‖Aenδ−1‖)
6 (b0(µ) + 2ηb1(µ)d)‖x0 − x†‖µ + b1(µ)δα

− a+µ
2(a+s)

nδ−1 .

Noting that (2.37) and (2.32) implyδα
− a+µ

2(a+s)

nδ−1 6 (1+η)d
τ−1 ‖x0 − x†‖µ we thus have

‖enδ‖µ 6
(
b0(µ) + 2ηb1(µ)d +

(1 +η)d

τ − 1

)
‖x0 − x†‖µ.

Therefore (2.23) follows by a simple application of the interpolation inequality (2.1).�

3. Numerical tests

We consider the identification of the coefficientc in the two-point boundary value problem

−u′′ + cu = f, t ∈ (0, 1)
u(0) = h0, u(1) = h1

(3.1)

from the measurement datauδ of the state variableu, whereh0, h1 andf ∈ L2[0, 1] are given.
Now the nonlinear operatorF : D(F) ⊂ L2[0, 1] 7→ L2[0, 1] is defined as the parameter-to-
solution mappingF(c) = u(c) with u(c) being the unique solution of (3.1).F is well-defined
on

D(F) := {c ∈ L2[0, 1] : ‖c − ĉ‖L2 6 γ for someĉ > 0 a.e.}
with someγ > 0. Moreover,F is Fŕechet differentiable: the Fréchet derivative and its adjoint
are given by

F ′(c)h = −A(c)−1(hu(c)),

F ′(c)∗w = −u(c)A(c)−1w,

whereA(c) : H 2 ∩H 1
0 7→ L2 is defined byA(c)u = −u′′ + cu.

Let us defineL to be the linear operator inL2[0, 1] as follows:

L : H 2 ∩H 1
0 [0, 1] ⊂ L2[0, 1] 7→ L2[0, 1], Lc = −c′′.

It is easy to verify thatL is densely defined, self-adjoint and positive definite, and the Hilbert
scale{Xs} induced byL is

Xs =
{
c ∈ Hs [0, 1] : c(2l)(0) = c(2l)(1) = 0, l = 0, 1, . . . ,

[
s

2
− 1

4

]}
(3.2)

for anys ∈ R, whereHs [0, 1] is the usual Sobolev space. Moreover,‖c‖s =
∫ 1

0 |c(s)(t)|2dt
for all s = 0, 1, 2, . . . .
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Table 1. Numerical results for example 3.1, where Error := ‖cnδ − c†‖L2.

s = 1 s = 0

δ nδ Error Error/δ5/9 nδ Error Error/δ1/2

0.10e− 1 8 0.21e + 0 0.27e + 1 5 0.28e + 0 0.28e + 1
0.10e− 2 12 0.25e− 1 0.12e + 1 9 0.45e− 1 0.14e + 1
0.10e− 3 16 0.21e− 2 0.35e + 0 12 0.13e− 1 0.13e + 1
0.10e− 4 19 0.47e− 3 0.28e + 0 15 0.37e− 2 0.12e + 1
0.10e− 5 22 0.93e− 4 0.20e + 0 17 0.68e− 3 0.68e + 0
0.10e− 6 26 0.14e− 4 0.11e + 0 20 0.17e− 3 0.54e + 0
0.10e− 7 29 0.21e− 5 0.59e− 1 24 0.39e− 4 0.39e + 0

Table 2. Numerical results for example 3.2, wheree1 := ‖cnδ − c†‖L2 ande2 := ‖cnδ − c†‖H1.

δ nδ e1 e1/δ
5/9 e2 e2/δ

1/3

0.10e− 1 5 0.39e− 1 0.50e + 0 0.14e + 0 0.66e + 0
0.10e− 2 7 0.71e− 2 0.33e + 0 0.66e− 1 0.66e + 0
0.10e− 3 9 0.33e− 2 0.56e + 0 0.39e− 1 0.84e + 0
0.10e− 4 11 0.10e− 2 0.60e + 0 0.20e− 1 0.89e + 0
0.10e− 5 13 0.32e− 3 0.70e + 0 0.97e− 2 0.97e + 1
0.10e− 6 16 0.63e− 4 0.48e + 0 0.36e− 2 0.78e + 0
0.10e− 7 18 0.17e− 4 0.48e + 0 0.16e− 2 0.73e + 0

By assuming that the exact solutionc† has the property thatu0 := u(c†) > 0 on [0, 1],
we can verify (2.9) and (2.10) in a neighbourhoodBρ(c†) aroundc†, and following the lines
in [11] we have (2.20) inBρ(c†).

In the following we just do the numerical experiments for the iteratively regularized Gauss–
Newton method in Hilbert scales. We remark that the differential equation problems we meet
during computation are always solved by finite element method on the subspace of piecewise
linear splines on a uniform grid with subinterval length1128; the iterative solutioncnδ is also
approximated by the function from the finite-dimensional subspace of piecewise linear splines
on a uniform grid with subinterval length1

128. All computations are performed by Matlab
software package.

Example 3.1.Here we estimatec in (3.1) by assumingf = 1 + t2 andh0 = h1 = 1. If
u(c†) = 1 then the true solution isc† = 1 + t2. In our computation, we use the first guess
asc0 = 1 + t2 − 2t (1− t)(1 + t − t2), and instead ofu(c†) we use the special perturbation
uδ = 1 +δ

√
2 sin(10πt/δ2). Clearly‖uδ−u(c†)‖L2 6 δ. It is easy to know thatc0− c† ∈ Xµ

for all µ < 2.5.
When we use the iteratively regularized Gauss–Newton method in Hilbert scales, the

choice ofs plays certain roles. From theorem 2.1 it is easy to see that the best possible error
bound to be expected is‖cnδ − c†‖L2 6 O(δκ) with κ < 5

9 if we chooses = 1, while for
s = 0 we have at most‖cnδ − c†‖L2 6 O(δ1/2) due to the saturation property. Table 1 reports
the related numerical results by choosingαn := 0.1× 0.5n−1 andτ = 2.5 which satisfies the
requirement in theorem 2.1.

Example 3.2.Here we again estimate the parameterc in (3.1) but withf = 2 + (1 + t (1−
t))t (1− t) andh0 = 1= h1. If u(c†) = 1 + t (1− t), then the true solution isc† = t (1− t).
In our calculation we used the special perturbationuδ = 1 + t (1− t) + δ

√
2 sin(10πt/δ2). As
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the first guess we choosec0 = 0. It is easy to see thatc0 − c† ∈ Xµ for all µ < 2.5. Table 2
reports the numerical results by using the iteratively regularized Gauss–Newton method in
Hilbert scales withs = 1, αn = 0.1× 0.25n−1 andτ = 1. According to theorem 2.1 we
can obtain the error estimate in the norm‖ · ‖r for all r ∈ [−2, 2.5). Table 2 summarizes
the related results inL2-norm andH 1-norm. This example also shows that the discrepancy
principle (2.19) works well forτ = 1 even if it does not satisfy the requirement in theorem 2.1.

Acknowledgments

The author is grateful to the referees for their constructive suggestions which led to this
substantially improved version. This work is supported by National Natural Science
Foundation of China under grant 19801018.

References

[1] Bakushinskii A B 1992 The problem of the convergence of the iteratively regularized Gauss–Newton method
Comput. Math. Math. Phys.321353–9

[2] Blaschke B, Neubauer A and Scherzer O 1997 On convergence rates for the iteratively regularized Gauss–Newton
methodIMA J. Numer. Anal.17421–36

[3] Engl H W, Hanke M and Neubauer A 1996Regularization of Inverse Problems(Dordrecht: Kluwer)
[4] Groetsch C W 1993Inverse Problems in Mathematical Sciences(Wiesbaden: Viewig)
[5] Hanke M 1997 A regularizing Levenberg–Marquardt scheme, with applications to inverse groundwater filtration

problemsInverse Problems1379–95
[6] Hanke M, Neubauer A and Scherzer O 1995 A convergence analysis of Landweber iteration of nonlinear ill-posed

problemsNumer. Math.7221–37
[7] Hohage T 1999 Convergence rates of a regularized Newton method in sound-hard inverse scatteringSIAM J.

Numer. Anal.36125–42
[8] Jin Q N 1999 On the iteratively regularized Gauss–Newton method for solving nonlinear ill-posed problems

Math. Comput.at press
[9] Jin Q N and Hou Z Y 1999 On ana posterioriparameter choice strategy for Tikhonov regularization of nonlinear

ill-posed problemsNumer. Math.83139–59
[10] Kaltenbacher B 1998 A posteriori parameter choice strategies for some Newton type methods for the

regularization of nonlinear ill-posed problemsNumer. Math.79501–28
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