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Abstract. In this paper we consider some Newton-type methods in Hilbert scales to solve
nonlinear inverse problems. Under certain conditions we obtain the error estimates when the
iteration is terminated in aa posteriorimanner. Finally we present the numerical examples to
verify the theoretical results.

1. Introduction

In this paper we consider the nonlinear equation

F(x) = yo (1.1)
arising from the study of nonlinear inverse problems, whérs a nonlinear operator with
domainD(F) in the real Hilbert spac& and with its rangeR(F) in the real Hilbert space
Y, and the datay is attainable, i.eyg € R(F). Throughout this paper we assume tlais
continuous and Fchet differentiable; the Echet derivative of at pointx € D(F) and its
adjoint are denoted by'(x) and F’'(x)* respectively. The interest of this paper is confined
to the case that the problem (1.1) is ill-posed in the sense that the solution does not depend
continuously on the right-hand side; the reader can refer to [3, 4] for a number of important
inverse problems in natural science leading to such case.

By assumingys to be the only available approximation af satisfying

lys — yoll <8 (1.2)

with a given noise leves > 0, now the reconstruction of the solution of (1.1) comes into
being and several stable methods have been applied to touch on this topic in the literature.
Among the methods developed to solve nonlinear inverse problems, Tikhonov regularization
is the most well known and has received much attention in recent years. Its convergence
analysis has been carried out under quite general conditionsawttiori or a posteriori

choice of the regularization parameter (see [3, 9] and references therein). As alternatives to
Tikhonov regularization, iterative methods have been also used to overcome the difficulty
arising from the ill-posedness of nonlinear inverse problems. Due to their straightforward
implementation for the numerical solutions, such methods have attracted more and more
attention in recent researches. Landweber iteration was extended to study nonlinear problems
in [6] with an elegant convergence analysis; the idea therein was extensively utilized to analyse
other iterative methods such as the method of steepest descent [15], the regularizing Levenberg—
Marquardt scheme [5] and so on. Newton-type methods were also considered because of their
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faster convergence and a general framework was given in [10]. In particular, the iteratively
regularized Gauss—Newton method proposed in [1] was reconsidered in [2, 8]; it seems that
this method is becoming more and more popular in solving nonlinear inverse problems [7].

In this paper we will consider some Newton-type methods for nonlinear inverse problems
in Hilbert scales. We formulate our methods in section 2.2 and derive the error estimates
in section 2.3 under certain conditions. In section 3, we perform the numerical experiments
to verify the theoretical results. Such research has several advantages, which are listed in
section 2.2. We note that it was Natterer [12] who first considered the linear Tikhonov
regularization in Hilbert scales to prevent the saturation phenomenon; this method was further
considered in [13] under the choice of the regularization parameter by Morozov’s discrepancy
principle; an extension of Tikhonov regularization for linear ill-posed problems in Hilbert
scales to a general class of regularization methods was then given in [17]. The extension
of Natterer's technigue to the study of the nonlinear case has also attracted some attention
in recent years; Tikhonov regularization in Hilbert scales for nonlinear inverse problems was
analysedin[11,14,16], and then a general regularization scheme in Hilbert scales for nonlinear
equations was given in [18].

2. Newton-type methods in Hilbert scales

2.1. Hilbert scales

In this section we give a brief description of Hilbert scales and list some properties used in the
subsequent discussion. For more information see [3].

Afamily of Hilbert spaces$X,),c is called a Hilbert scale induced lyif, for eachs € R,
X, is the completion oﬁ,fioD(Lk) with respect to the Hilbert space notjal|, := ||L*/%x]||,
whereL is a densely defined selfadjoint strictly positive operatoXinit is well known that
X, is densely and continuously embeddedinfor any—oco < r <s < ocoand(X;) = X_;
for anys > 0. Moreover there holds the important interpolation inequality, i.e. for any
—00 < g <r <s < oothere holds for any € X that

s=r r—q

el < flxellg™ llells™ (2.1)

LetT : X — Y be a bounded linear operator. Sinte’/? is an isomorphism fronX onto
X,, the operatoB := TL™*/? : X > Y is also bounded fos > 0 and the adjoint oB is
given by B* = L=*/2T*, whereT* : Y > X is the adjoint ofT. Letg : [0, || B||?] = R be a
continuous function, then

g(B*B)L*/2 = L*/2g(L™°T*T). (2.2)

If we suppose further that there exist constanits> m > 0 anda > 0 such that for alh € X
there holds

mlhl—a < ITh|l < M||h|-q.
then for alljv| < 1 the inequality (see [12])

cIAll—v@ss) < 1(B*B)2h| < CO) 17l -vass) (2.3)
holds onD((B* B)"/?) with
c(v) :=min{m", M"}, C(v) :=maxim", M"}. (2.4)

Moreover,
R((B*B)"?) = X\ (ats)- (2.5)
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If h e X, withsome 0O< v < a+2sthenL*?h € X, _;. Since| 25| < Litfollows from (2.5)
that there is @ € X such that

L*/?h = (B*B) 7 v, (2.6)
and from (2.3) we have

n—=s

”U” = ||(B*B)_2(a+.y) LV/zh”

S s/2
< _— .
\C<a+S>IIL Rl s
s — U
=C( )uhnu. (2.7)

ats

2.2. The methods

Let us formulate some conditions first. We assume tfias a solution of (1.1) andyg is an
available initial guess such that

xo€ B,xN :={x e X : lx —x"|| < p} € D(F) (2.8)
for a suitable smalp > 0; moreover, we assume that

F'(x) = R, F'(x"), Vx € B,(x"), (2.9)
where{R, : x € Bp(xT)} is a family of bounded linear operatoRs : Y — X such that

1 — Rl <7 (2.10)

with a sufficiently small constant < 1. Such an assumption has been verified for several
nonlinear inverse problems in [6], and as a consequence of it we have the following estimate:

IF(x) —yo— F'(xNx —xN <l F'ehe — xD, x € B,(x"). (2.11)

In order to formulate our methods in general form, we assume thdl is a given number
and the nonlinear operatét is properly scaled in the way that

| F'(x)L™*/?| < 1, x € B,(x". (2.12)

We note that (2.9) and (2.10) imply’(x)L=*/?|| < (1 +n)||F'(xT)L=/2| which shows the
uniform boundedness ¢fF’ (x)L~/?|| in B,,(x*). Therefore the scaling condition (2.12) can
always be fulfilled by multiplying both sides of (1.1) by a sufficiently small constant, which
then appears as a relaxation parameter in the methods presented below.

Now we suppose that, is the current iterate and consider the linearization

An(x —xg) = —(F(x,) — ys — Au(xy — Xx0)) (2.13)

of equation (1.1), wheret,, := F’(x,). Since (2.13) is in general ill-posed, the linear
regularization methods should be used to generate an approximationto€h will be used

as the new iterate,.;. To this end, let us choose a parameter-dependent family of real-valued
continuous functiongg, : [0, 1] = R}uec0,00) With the properties that there exist constants
71, T2 and By > 1 such that

sup |2 go(W)| < T’ for 0<y <1 (2.14)
21€[0,1]
sup [Vr, (W) < 120, for 0< B < o, (2.15)
21€[0,1]

wherer, (1) := 1 — Agy(A). Similar assumptions to (2.14) and (2.15) fgrhave also been
used in [10,17]. Clearly, ik, € B,(x") then forB, := F'(x,)L~*/?> we have|B,| < 1,
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thereforeg, can be used as the filter function and we thus obtain the Newton-type methods in
Hilbert scales

Xps1 = X0 — L7284, (BYBy) By (F (x,) — ys — Au(x, — X0)) (2.16)
where{w, } is a given sequence satisfying
0 >01<2 <p  and lim &, =0 (2.17)
On+1 n—00
for some constant > 1. Using the property (2.2) we can rewrite (2.16) as
Xp+1 = X0 — &a, (LT AL AR LTV AL (F (x0) — Y5 — An(Xy — X0))- (2.18)

It is well known in the regularization theory thatif, is used to approximate®, the
iteration should be terminated properly. Due to the practical applications, the stopping index
of iteration should be designated in aposteriorimanner. In this paper we will consider the
iterative discrepancy principle and choaseas the integer such that

I1F Cxny) — ysll < 78 < [1F(xn) — ysll, 0<n <ny, (2.19)

wherer > 1is a suitable large number. We will usg as an approximation of.
To proceed with our convergence analysis we need the following condition:
J constantsy > m > 0 anda > 0 such thavh € X there holds
mlhl—a < |F'()R] < Ml|h|l—q, ¥x € B,(x").
Let us give some remarks on this condition. From [14] we know that the following condition
has been used to analyse the nonlinear Tikhonov regularization in Hilbert scales:
3 constantsf > m > 0 anda > 0 such thavh € X there holds
m|hl—a < |F' (DR < Ml|R] .
Clearly, (2.21) is just a special case of (2.20). However, (2.20) and (2.21) are equivalent under
the conditions (2.9) and (2.10) since now we have the inequality
A= IF' ORI < IF' @R < @+ F'(xh]. (2.22)

In many applicationd. is chosen to be a differential operatorfid-space, in which case the
numbera in (2.21) can be interpreted as the smoothing inde¥'@k ™). Therefore (2.20)
requires that the smoothing index Bf(x) is invariant around'.

Now we can state the main result of this paper.

Theorem 2.1.Let (2.8)—(2.10), (2.12), (2.17) and (2.20) be fulfilled andglesatisfy (2.14)
and (2.15). Assume; be the integer determined by the discrepancy principle (2.19) with
T > 1+1,,/p and supposeo — x' € X, with somed < u < a + 2s. If lxo — xT|| andn are
suitable small, then for alt € [—a, u] there holds

(2.20)

(2.21)

o per
1%, — 2l < Cllxo — xT[1 8 = (2.23)
with a constantC independent of and ||xo — xT||,L.

We mention that the result of theorem 2.1 reduces to the well known result in the literature
(see [17]) whenF is linear. The proof of theorem 2.1 will be given in section 2.3. In the
following we discuss the special choicegfto generate some regularization methods that fit
into our framework.

As the first example, we apply the linear Tikhonov regularization in Hilbert scales to
equation (2.13) and obtain the choige(r) := -X-. A simple exercise shows that,

otA "

satisfies (2.14) and (2.15) with = 12 = 8o = 1. Now the method (2.18) has the form
Xpa1 = X0 — (@, L* + AT A) AR (F () = ys — An (%, — X0))
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which can be rewritten as
Xpe1 = Xy — (@uL* + AZA) THAL(F (x,) — y5) + L (x, — x0)).  (2.24)

This method is called the iteratively regularized Gauss—Newton method in Hilbert scales which
is well known fors = 0 (see [1, 2, 8]).

In contrast to the above example, we may apply the Landweber iteration in Hilbert scales
for linear ill-posed problems to the equation (2.13) to obtain the so-called Newton—Landweber

method in Hilbert scales. By choosigg(}) := Z,[i]o(l—k)k which satisfies (2.14) and (2.15)
with 7, = 1, = 1 andBy = o0, (2.18) then becomes

(1]
X1 = X0 — 3 (I = LT AL A) L™ AL(F (x,) = Y5 — An(xy — X0))
k=0
which is equivalent to the form

Xn,0 = X0,
Xn,k+1 = Xnk — L_SAZ(F(X,,) + An(xn,k - xn) - y8)’ 1 < k < [l/an]9 (225)
Xn+l = Xn[1/a,]-

Such a method witlh = 0 has been studied in [10] recently.
Let us conclude this section with several remarks.

Remark 2.1. Theorem 2.1 requiresy — x' X, with some 0< p < 2s +a which can be
viewed as a smoothness condition@n- xT. A similar assumption was used in [11,14] where
Tikhonov regularization was considered in Hilbert scales to solve nonlinear inverse problems,
but there it needed > a which seems to be a restrictive requirement.

Remark 2.2. It should be mentioned that the restriction< a + 2s which leads to a saturation

in the convergence rates is not required ind F’(x)* F'(x) commute for each € Bp(xT)
which includes the cask := 1. In this case, the inequality (2.3) holds wih:= F’(x)L~/2

for all realv, and the result of theorem 2.1 then holds foriakk 28p(a +s) — a. Hence for

the regularization methods with qualificatig = oo the error bound (2.23) holds then for
all u < oo. This fact was first observed in [17] for linear regularization methods in Hilbert
scales.

Remark 2.3. The ordinary iteratively regularized Gauss—Newton method (i.e. the
method (2.24) withs = 0) has been considered in [2, 8]. It has been pointed out in [2]
that the best possible convergence rate,ofto x1is at most @8/?) if n; is chosen by the
discrepancy principle (2.19). Moreover, even usingihehosen by the strategy in [8] we
have, at most, the error bound&®?). However, if we consider this method in Hilbert scales,
such a saturation phenomenon can be prevented if we chdonsesuitable way.

Remark 2.4. It has been noted in [10] that it seems quite difficult to work out the convergence
if we use (2.19) to choose the stopping index of iteration for some Newton-type methods
including Newton—Landweber iteration with= 0. However, it is interesting to find that the
case is quite different if we consider these methods in Hilbert scales.

Remark 2.5. The requirement > 1 +11,/p given in theorem 2.1 mainly arises for technical
reasons (see section 2.3). Additional effort makes it possible to drop this restriction. If one
can show that the discrepancy principle (2.19) is well-defined for smallene should use

this smallerr in the numerical computation since the absolute error increases with
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Remark 2.6. Tautenhahn [18] suggested a general regularization scheme in Hilbert scales
for (1.1) which is closely related to our methods and established the order optimal convergence
rates under certain conditions. His method, however, is indeed very different from ours since
the regularizer in [18] is given implicitly by a nonlinear well-posed equation which in practice
has to be solved approximately by an iteration and this additional approximation was not
incorporated into the convergence analysis.

2.3. Error estimates

In this section we give the proof of theorem 2.1. We first show thas well-defined for all
0 < n < ns with ns determined by (2.19).
Suppose, € Bp(xT) for somen and sek, = x,, — x', then the definition (2.16) of;,+1
gives
ens1 = X0 — x' — L™g,, (BYB,) By (F (x,) — ys — Ay(xy — X0)
= L™*/?r, (B*B,)L*?(xg — x")
—L ™%, (B} B.) B} (Yo — ys)
—L "%, (B B,) B (F(x,) — yo — An(x, — x")
=L+ 1L+ 15 (226)
Multiplying both sides of (2.26) by := F’(x") and noting thad = Rx‘nlA,l we obtain
Aeyi1 = R Byry, (B;B,)L*?(xo — x)
—R. B84, (B} B)) B} (Yo — ¥s)
—R "B, g, (B} By) B (F (x) — yo — A (x, — x). (2.27)
Based on (2.26) and (2.27) we can obtain

Lemma 2.1. Let all the assumptions in theorem 2.1 be fulfilledx,lfe Bp(xT) for somen,
then for allr € [—a, u] there hold

lewsallr < bo(r)a™ |1xo — Tl +br(r)an 2 (8 + 20 Aey ). (2.28)
_atp 2
lAensall < b2 |lxg — x|, + 26 + — || Aey |, (2.29)
1-19p 1—1n
wherebo(r) = c(5) T C(FE) T2, ba(r) i= e Tt andb, == 72, C(5E).

Proof. Sincexo — x' € X, with 0 < u < a + 25, from (2.6) and (2.7) it follows that there
exists av, € X such that.*/2(xg — x1) = (B;,*Bn)zﬁlz%)vn and

s — 1
ot < € (452 ) o =i (230

Thus, by noting that'*| < 1and 0< 5 < 1we canuse (2.3), (2.15) and (2.30) to obtain

N 2(a+s)
Il = 1LY %r,, (B} B,)L*?(xo — x|
=S
= ”roz,, (B:Bn)(B::Bn) 2Aa*) vy, ”rfs

§=r - * L *
< c ”(Bn Bn)2(0+.\-) ra,l(Bn Bn)Un”
ats

_p=r
< bo(r)a ™ ||xo — x|,
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Applying (2.3) again td, we have from (2.14) that
1221l = 118, (B, Ba) By (Yo — ¥5)llr—s

-1
s —r s—r .
<c ( > (B, By) 2 g4, (B, By) By (yo — y5)||
a+ts

s —r -1 oy L= "
=c |(BnB,) 2% 8o, (By B,) (Yo — ys)
ats

atr

< ba(rya, 6.
Similar to the estimate af it follows that

atr

1731l < ba(r)ot ™ | F(x,) — yo — Au(xy — x]I.
By exploiting (2.10) and (2.11) we have
IF () = yo — An(xn — x| < 20l Aeyl. (2.31)

atr

Therefore| I3, < 2nb1(r)a, 2 || Ae,||. Combining the above we obtain (2.28).
Let us prove (2.29) now. By noting thaR || < rln it is easy to obtain

1
[Aens]l < _n{ S[UIO D755 [, ()]
+ SUP [Aga, W|(8 + | F (xa) — yo — Au(xa — x]I}.
Ar€[0,1]
Using (2.14), (2.15), (2.30) and (2.31) we get (2.29). O

With lemma 2.1 athand, let us show thate B, (x™) forall 0 < n < ns if n and||xo—xT||
are suitably small. Indeed, i, € B, (xT) for somen < n;, then the definition ofs suggests
that|| F(x,) — ysll > 6. Since (1.2) and (2.11) implyF (x,) — ysll < 8+ (1 +n)|Ae,|, we
therefore obtain

1+
5 < — 1 Aeyll. (2.32)

T—1

Substituting (2.32) into (2.30) and (2.31) (with= r = 0) we have
A—n+2nt)dy 5%
lersall < dalfro — x| + =20, *7 [ Ae, . (2.33)
1 2nmt

Aeyoall < dsat™ [lxo — + Ae,ll, 2.34
I Aensall < dsory ™ [lxo — x| + (r—l A—n= )>|I enll (2.34)
whered, = 1C(=)e()"Y do := nie(=-)"t andd; = 1% C(;5;). Based on these

ats ats ats ats

observations, by induction we can obtain the following Iemma
Lemma 2.2. Let all the assumptions in theorem 2.1 hold ang 1 +7y,/p. If

1
t
n< 1- m and D]_“.XO — X ” (235)
27(t—1)
with
1—-n+2 d:
D; = max{l, dy + MDZ}
T—1
Dy = v  max(ds, | Alle ™)
_( Tl + 4T )
(-D(A-n)
thenx, € B,(x") forall 0 < n < ns and

||en||<Dl||xo—xT|| and lAenll < Daorf |lxo— x| (2.36)
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Proof. Clearly the assertions are trivial far= 0. Suppose that the assertions are valid for

somen < ng, thenx, € B,(x") and from (2.33), (2.34), the inductive hypothesis and (2.17)

we have

A —n+2n7)d,
t—1

and by noting tha(cx,l/oznﬂ)ﬁ < pﬁ < /P

T1 277‘[1‘[ 2(:+.;) T
Ae, <|ds+ + Dy ) o, Xg— X
lAen+all ( 3 (‘L’—l (7:—1)(1—17)) 2) [l xo I

llensall < (a'l + Dz) llxo — xT|I < Dallxo — xT|| < o

< Doa 8y [lxo — xTII.
Thus the proof is complete. a

Now we can show the justification of rule (2.19)if> 1 +11,/p. Suppose the contrary:
we then haver; = oo which together with lemma 2.2 suggests that B,(x") and (2.32) is
valid for all 0 < n < oco. The combination of (2.32) and (2.36) immediately gives

s (-1

! (1 +n)Dallxo — x|
for all 0 < n < oo which is a contradiction to (2.11) since lim., «, = 0. Therefore the
integerns defined by the discrepancy principle (2.19) always exists and is finite.

Finally, we are in a position to give the proof of the main result.

Proof of theorem 2.1.Let ¢ > O be the constant such thiat|| < ¢||x]||, forall x € X, and

set
LTS bot (1 + n) atu
d = max] ||Alley X ,2(1) + aw | |
{ o T e na-n—aan)”
Then, under the conditions in theorem 2.1 we first show by induction that

A, |l < daf [lxg — x|, (2.37)

forall 0 < n < ny if n and||xg — xT|| are suitable small such that (2.35) holds. In fact, (2.37)
is obvious fom = 0. Assume it is true for some— 1 < ns — 1. Then by noting that < ns
it follows from (2.29) and (2.32) that

T—1 i 71 2nt
< 2ats) S T + )
1+y 8 < b2an,1 llxo — x|l 1 )75 1—g lAe,—all
Therefore we have
1 _ 2 atp 2
5 < 1 (bza,?“*f’ lhxo — 2T, + 1 ||Aen_1||) .
T-DA-n—-—ul+n 1-7

Substituting this into (2.29) then yields

lAenl) < (b2 + bora(1 +1) @ 10— x|
T-DA-n—u@+y) " a
2nty(t — 1)
| Ae,—1ll.

(t-DA-n—-ul+n
Thus by utilizing the inductive hypothesis and (2.17) it follows that

e, || < {(b . boti(1+1) ) N 2nt1(t — 1)d }
nll X 2 (T—l)(l—n)—fl(l'l'n) (1;_1)(1_77)_1,1(1 +77)

atp T T
X p 2ak) a2 lxg — x| M

a+

L
< dat |xo — x|,
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which completes the proof of (2.37).
Now we turn to the proof of (2.23). From (2.20), (2.11), the definitiomgf (2.28)
and (2.37) we immediately get

1
llenll—a < — Il Aen, |l
m

< m(l——n)(”F(x“) — ysll +9)
1+7
g -
m(1—mn)

and

atp

lew e < bo()llxo — x 1l + br()a, 257 (8 + 29| Aey, 1)

atp

< (bo(w) + 2nb1()d) | xo — x "I, + ba(w)der, 7.

a+p

Noting that (2.37) and (2.32) impBe, ™77 < £2%|xo — x|, we thus have

nafl T

(L+n)d
llea I, < <bo(ll«) +2nby1(n)d + 771 > llx0 — x Tl

T —

Therefore (2.23) follows by a simple application of the interpolation inequality (2.1). O

3. Numerical tests

We consider the identification of the coefficienin the two-point boundary value problem
—u"+cu=f, te 0,1
u(0) = ho, u(l) =hq
from the measurement datgof the state variable, whereho, h; andf e L?[0, 1] are given.
Now the nonlinear operatdf : D(F) c L?[0, 1] — L?[0, 1] is defined as the parameter-to-

solution mapping (c¢) = u(c) with u(c) being the unique solution of (3.1} is well-defined
on

(3.1)

D(F) :={c € L?[0,1] : |lc — &||.2 < y for someé > 0 a.e}
with somey > 0. Moreover,F is Frechet differentiable: the Echet derivative and its adjoint
are given by
F'(0h = —A(e) " (hu(c)),
F'(e)*w = —u(c)A(c) w,
whereA(c) : H2N HO1 — L?is defined byA(c)u = —u” + cu.
Let us definel to be the linear operator ih?[0, 1] as follows:
L: H?N H[0,1] ¢ L0, 1] — L?[0, 1], Lc=—c".
It is easy to verify thatf. is densely defined, self-adjoint and positive definite, and the Hilbert
scale{X,} induced byL is
s 1

X, = {c € H'[0,1] : c®0) =c® 1) =0,1=0,1,..., [5 — Z“ (3.2)

for anys € R, whereH*[0, 1] is the usual Sobolev space. Moreovat}, = fol [ (2)|2dr
foralls =0,1,2,....
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Table 1. Numerical results for example 3.1, where Errer|ic,; — CTHLz.

s=1 s=0

h) ns  Error Erroys®°  ns  Error Erroy/s1/2

0.10e—-1 8 02le+0 027e+1 5 (28e+0 028e+1
0.10e—2 12 025e—-1 012e+1 9 ™be—-1 014e+1
0.10e—3 16 Q2le—2 035e+0 12 (3e—1 013e+1
0.10e—4 19 Q47e—3 028e+0 15 B7e—2 012e+1
0.10e—5 22 Q93e—4 020e+0 17 ®8e—3 0.68e+0
0.10e—6 26 Ql4e—4 011e+0 20 QL7e—3 054e+0
0.10e—7 29 (02le—5 059%-1 24 Q03%—-4 039 +0

Table 2. Numerical results for example 3.2, whefe:= ||c,, — c'||,2 andey := ||c,, — Tl 1.

) ng e1 61/85/9 e 62/51/3

0.10e— 1 5 039%-1 0.50e +0 014e +0 066e +0
0.10e— 2 7 071le—2 033e+0 066e— 1 0.66e +0
0.10e— 3 9 033e-2 0.56e +0 039%e—-1 0.84e+0
0.10e— 4 11 Q10e—2 0.60e +0 020e—1 0.89%e +0
0.10e—5 13 Q32e—-3 0.70e +0 097e— 2 097e+1
0.10e— 6 16 Q63e—4 048e+0 036e— 2 0.78e +0
0.10e—7 18 Ql7e—4 048e +0 016e— 2 0.73e+0

By assuming that the exact solutioh has the property thaiy := u(c") > 0 on [0 1],
we can verify (2.9) and (2.10) in a neighbourhaBglc™) aroundc™, and following the lines
in [11] we have (2.20) iB,(c").

In the following we just do the numerical experiments for the iteratively regularized Gauss—
Newton method in Hilbert scales. We remark that the differential equation problems we meet
during computation are always solved by finite element method on the subspace of piecewise
linear splines on a uniform grid with subinterval Iengﬁ%; the iterative solutiore,, is also
approximated by the function from the finite-dimensional subspace of piecewise linear splines
on a uniform grid with subinterval Iengtll%. All computations are performed by Matlab
software package.

Example 3.1.Here we estimate in (3.1) by assumingf = 1 +¢2 andhg = hy = 1. If
u(c™) = 1 then the true solution is" = 1 +2. In our computation, we use the first guess
asco = 1+12 —2t(1 —1)(1 +1 — 1?), and instead ofi(c") we use the special perturbation
us = 1+8+/2sin(1071/82). Clearly|lus —u(c")|| 2 < 8. Itis easy to know thaty — ¢t € X,
forall u < 2.5.

When we use the iteratively regularized Gauss—Newton method in Hilbert scales, the
choice ofs plays certain roles. From theorem 2.1 it is easy to see that the best possible error
bound to be expected &, — c'[l.2 < O(8*) with x < 2 if we chooses = 1, while for
s = 0 we have at mogfc,, — cTll .2 < O(8Y?) due to the saturation property. Table 1 reports
the related numerical results by choosing:= 0.1 x 0.5"~! andt = 2.5 which satisfies the
requirement in theorem 2.1.

Example 3.2. Here we again estimate the parametan (3.1) but with f = 2+ (1 +¢#(1 —
Nt (1 —1)andhg = 1= hy. If u(ch) = 1 +¢(1 — 1), then the true solution is' = (1 — r).
In our calculation we used the special perturbatign= 1 +¢(1—1¢) + 8/2 sin(10mt/8%). As
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the first guess we choosg = 0. It is easy to see thap — ¢’ € X, forall u < 2.5. Table 2
reports the numerical results by using the iteratively regularized Gauss—Newton method in
Hilbert scales withs = 1, @, = 0.1 x 0.25""* andr = 1. According to theorem 2.1 we

can obtain the error estimate in the nojim ||, for all » € [—2,2.5). Table 2 summarizes

the related results ih.2-norm andH*-norm. This example also shows that the discrepancy
principle (2.19) works well fot = 1 even if it does not satisfy the requirement in theorem 2.1.
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