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Pure mathematics have one peculiar advantage, that they occasion no disputes
among wrangling disputants, as in other branches of knowledge; and the reason
is, because the definitions of the terms are premised, and everybody that reads a
proposition has the same idea of every part of it. Hence it is easy to put an end to
all mathematical controversies by shewing, either that our adversary has not stuck
to his definitions, or has not laid down true premises, or else that he has drawn
false conclusions from true principles; and in case we are able to do neither of these,
we must acknowledge the truth of what he has proved . . .

The mathematics, he [Isaac Barrow] observes, effectually exercise, not vainly
delude, nor vexatiously torment, studious minds with obscure subtlities; but plainly
demonstrate everything within their reach, draw certain conclusions, instruct by
profitable rules, and unfold pleasant questions. These disciplines likewise enure
and corroborate the mind to a constant diligence in study; they wholly deliver
us from credulous simplicity; most strongly fortify us against the vanity of scepti-
cism, effectually refrain us from a rash presumption, most easily incline us to a due
assent, perfectly subject us to the government of right reason. While the mind is
abstracted and elevated from sensible matter, distinctly views pure forms, conceives
the beauty of ideas and investigates the harmony of proportion; the manners them-
selves are sensibly corrected and improved, the affections composed and rectified,
the fancy calmed and settled, and the understanding raised and excited to more
divine contemplations.

Encyclopædia Britannica [1771]

Philosophy is written in this grand book—I mean the universe—which stands con-
tinually open to our gaze, but it cannot be understood unless one first learns to
comprehend the language and interpret the characters in which it is written. It is
written in the language of mathematics, and its characters are triangles, circles, and
other mathematical figures, without which it is humanly impossible to understand
a single word of it; without these one is wandering about in a dark labyrinth.

Galileo Galilei Il Saggiatore [1623]

Mathematics is the queen of the sciences.
Carl Friedrich Gauss [1856]

Thus mathematics may be defined as the subject in which we never know what we
are talking about, nor whether what we are saying is true.

Bertrand Russell Recent Work on the Principles of Mathematics,
International Monthly, vol. 4 [1901]

Mathematics takes us still further from what is human, into the region of absolute
necessity, to which not only the actual world, but every possible world, must con-
form.

Bertrand Russell The Study of Mathematics [1902]

Mathematics, rightly viewed, possesses not only truth, but supreme beauty—a
beauty cold and austere, like that of a sculpture, without appeal to any part of our
weaker nature, without the gorgeous trappings of painting or music, yet sublimely
pure, and capable of perfection such as only the greatest art can show.

Bertrand Russell The Study of Mathematics [1902]

The study of mathematics is apt to commence in disappointment. . . . We are told
that by its aid the stars are weighed and the billions of molecules in a drop of water
are counted. Yet, like the ghost of Hamlet’s father, this great science eludes the
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efforts of our mental weapons to grasp it.
Alfred North Whitehead An Introduction to Mathematics [1911]

The science of pure mathematics, in its modern developments, may claim to be the
most original creation of the human spirit.

Alfred North Whitehead Science and the Modern World [1925]

All the pictures which science now draws of nature and which alone seem capable of
according with observational facts are mathematical pictures . . . . From the intrinsic
evidence of his creation, the Great Architect of the Universe now begins to appear
as a pure mathematician.

Sir James Hopwood Jeans The Mysterious Universe [1930]

A mathematician, like a painter or a poet, is a maker of patterns. If his patterns
are more permanent than theirs, it is because they are made of ideas.

G.H. Hardy A Mathematician’s Apology [1940]

The language of mathematics reveals itself unreasonably effective in the natural
sciences. . . , a wonderful gift which we neither understand nor deserve. We should
be grateful for it and hope that it will remain valid in future research and that it
will extend, for better or for worse, to our pleasure even though perhaps to our
bafflement, to wide branches of learning.

Eugene Wigner [1960]

To instruct someone . . . is not a matter of getting him (sic) to commit results to
mind. Rather, it is to teach him to participate in the process that makes possible
the establishment of knowledge. We teach a subject not to produce little living
libraries on that subject, but rather to get a student to think mathematically for
himself . . . to take part in the knowledge getting. Knowing is a process, not a
product.

J. Bruner Towards a theory of instruction [1966]

The same pathological structures that the mathematicians invented to break loose
from 19-th naturalism turn out to be inherent in familiar objects all around us in
nature.

Freeman Dyson Characterising Irregularity, Science 200 [1978]

Anyone who has been in the least interested in mathematics, or has even observed
other people who are interested in it, is aware that mathematical work is work with
ideas. Symbols are used as aids to thinking just as musical scores are used in aids to
music. The music comes first, the score comes later. Moreover, the score can never
be a full embodiment of the musical thoughts of the composer. Just so, we know
that a set of axioms and definitions is an attempt to describe the main properties
of a mathematical idea. But there may always remain as aspect of the idea which
we use implicitly, which we have not formalized because we have not yet seen the
counterexample that would make us aware of the possibility of doubting it . . .

Mathematics deals with ideas. Not pencil marks or chalk marks, not physical
triangles or physical sets, but ideas (which may be represented or suggested by
physical objects). What are the main properties of mathematical activity or math-
ematical knowledge, as known to all of us from daily experience? (1) Mathematical
objects are invented or created by humans. (2) They are created, not arbitrarily,
but arise from activity with already existing mathematical objects, and from the
needs of science and daily life. (3) Once created, mathematical objects have prop-
erties which are well-determined, which we may have great difficulty discovering,
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but which are possessed independently of our knowledge of them.
Reuben Hersh Advances in Mathematics 31 [1979]

Don’t just read it; fight it! Ask your own questions, look for your own examples,
discover your own proofs. Is the hypothesis necessary? Is the converse true? What
happens in the classical special case? What about the degenerate cases? Where
does the proof use the hypothesis?

Paul Halmos I Want to be a Mathematician [1985]

Mathematics is like a flight of fancy, but one in which the fanciful turns out to be
real and to have been present all along. Doing mathematics has the feel of fanciful
invention, but it is really a process for sharpening our perception so that we discover
patterns that are everywhere around.. . . To share in the delight and the intellectual
experience of mathematics – to fly where before we walked – that is the goal of
mathematical education.

One feature of mathematics which requires special care . . . is its “height”,
that is, the extent to which concepts build on previous concepts. Reasoning in
mathematics can be very clear and certain, and, once a principle is established, it
can be relied upon. This means that it is possible to build conceptual structures
at once very tall, very reliable, and extremely powerful. The structure is not like
a tree, but more like a scaffolding, with many interconnecting supports. Once the
scaffolding is solidly in place, it is not hard to build up higher, but it is impossible
to build a layer before the previous layers are in place.

William Thurston, Notices Amer. Math. Soc. [1990]
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CHAPTER 1

Introduction

1.1. Preliminary Remarks

These Notes provide an introduction to the methods of contemporary mathe-
matics, and in particular to Mathematical Analysis, which roughly speaking is the
“in depth” study of Calculus.

The notes arise from various versions of MATH2320 and previous related courses.
They include most of the material from the current MATH2320, and some more.
However, the treatment may not always be the same. The notes are not a polished
text, and there are undoubtedly a few typos!

The mathematics here is basic to most of your subsequent mathematics courses
(e.g. differential equations, differential geometry, measure theory, numerical analy-
sis, to name a few), as well as to much of theoretical physics, engineering, probability
theory and statistics. Various interesting applications are included; in particular to
fractals and to differential and integral equations.

There are also a few remarks of a general nature concerning logic and the nature
of mathematical proof, and some discussion of set theory.

There are a number of Exercises scattered throughout the text. The Exercises
are usually simple results, and you should do them all as an aid to your under-
standing of the material.

Sections, Remarks, etc. marked with a * are “extension” material, but you
should read them anyway. They often help to set the other material in context as
well as indicating further interesting directions.

The dependencies of the various chapters are noted in Figure 1.

Figure 1. Chapter Dependencies.

There is a list of related books in the Bibliography.

The way to learn mathematics is by doing problems and by thinking very
carefully about the material as you read it. Always ask yourself why the various
assumptions in a theorem are made. It is almost always the case that if any par-
ticular assumption is dropped, then the conclusion of the theorem will no longer
be true. Try to think of examples where the conclusion of the theorem is no longer
valid if the various assumptions are changed. Try to see where each assumption
is used in the proof of the theorem. Think of various interesting examples of the
theorem.

7



8 1. INTRODUCTION

1.2. History of Calculus

Calculus developed in the seventeenth and eighteenth centuries as a tool to
describe various physical phenomena such as occur in astronomy, mechanics, and
electrodynamics. But it was not until the nineteenth century that a proper under-
standing was obtained of the fundamental notions of limit, continuity, derivative,
and integral. This understanding is important in both its own right and as a foun-
dation for further deep applications to all of the topics mentioned in Section 1.1.

1.3. Why “Prove” Theorems?

A full understanding of a theorem, and in most cases the ability to apply it and
to modify it in other directions as needed, comes only from knowing what really
“makes it work”, i.e. from an understanding of its proof.

1.4. “Summary and Problems” Book

There is an accompanying set of notes which contains a summary of all defini-
tions, theorems, corollaries, etc. You should look through this at various stages to
gain an overview of the material.

There is also a separate selection of problems and solutions available. The
problems are at the level of the assignments which you will be required to do. They
are not necessarily in order of difficulty. You should attempt, or at the very least
think about, the problems before you look at the solutions. You will learn much
more this way, and will in fact find the solutions easier to follow if you have already
thought enough about the problems in order to realise where the main difficulties
lie. You should also think of the solutions as examples of how to set out your own
answers to other problems.

1.5. The approach to be used

Mathematics can be presented in a precise, logically ordered manner closely
following a text. This may be an efficient way to cover the content, but bears
little resemblance to how mathematics is actually done. In the words of Saun-
ders Maclane (one of the developers of category theory) “intuition–trial–error–
speculation–conjecture–proof is a sequence for understanding of mathematics.” It
is this approach which will be taken here, at least in part.

1.6. Acknowledgments

Thanks are due to many past students for suggestions and corrections, includ-
ing Paulius Stepanas and Simon Stephenson, and to Maciej Kocan for supplying
problems for some of the later chapters.



CHAPTER 2

Some Elementary Logic

In this Chapter we will discuss in an informal way some notions of logic and
their importance in mathematical proofs. A very good reference is [Mo, Chapter
I].

2.1. Mathematical Statements

In a mathematical proof or discussion one makes various assertions, often called
statements or sentences.1

For example:

(1) (x+ y)2 = x2 + 2xy + y2.
(2) 3x2 + 2x− 1 = 0.
(3) if n (≥ 3) is an integer then an+bn = cn has no positive integer solutions.
(4) the derivative of the function x2 is 2x.

Although a mathematical statement always has a very precise meaning, certain
things are often assumed from the context in which the statement is made. For
example, depending on the context in which statement (1) is made, it is probably
an abbreviation for the statement

for all real numbers x and y, (x+ y)2 = x2 + 2xy + y2.

However, it may also be an abbreviation for the statement

for all complex numbers x and y, (x+ y)2 = x2 + 2xy + y2.

The precise meaning should always be clear from context; if it is not then more
information should be provided.

Statement (2) probably refers to a particular real number x; although it is
possibly an abbreviation for the (false) statement

for all real numbers x, 3x2 + 2x− 1 = 0.

Again, the precise meaning should be clear from the context in which the statment
occurs.

Statement (3) is known as Fermat’s Last “Theorem”.2 An equivalent statement
is

if n (≥ 3) is an integer and a, b, c are positive integers, then an + bn 6= cn.

Statement (4) is expressed informally. More precisely we interpret it as saying
that the derivative of the function3 x 7→ x2 is the function x 7→ 2x.

Instead of the statement (1), let us again consider the more complete statement

1Sometimes one makes a distinction between sentences and statements (which are then certain
types of sentences), but we do not do so.

2This was for a long time the best known open problem in mathematics; primarily because
it is very simply stated and yet was incredibly difficult to solve. It was proved by Andrew Wiles

in 1994, for which he received a knighthood and various other awards — but not a Fields Medal

as he just exceeded the age requirement of ≤ 40. Wiles did his PhD under John Coates — Coates
did his honours degree at ANU.

3By x 7→ x2 we mean the function f given by f(x) = x2 for all real numbers x. We read
“x 7→ x2” as “x maps to x2”.

9
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for all real numbers x and y, (x+ y)2 = x2 + 2xy + y2.

It is important to note that this has exactly the same meaning as

for all real numbers u and v, (u+ v)2 = u2 + 2uv + v2,

or as

for all real numbers x and v, (x+ v)2 = x2 + 2xv + v2.

In the previous line, the symbols u and v are sometimes called dummy variables.
Note, however, that the statement

for all real numbers x , (x+ x)2 = x2 + 2xx+ x2

has a different meaning (while it is also true, it gives us “less” information).
In statements (3) and (4) the variables n, a, b, c, x are also dummy variables;

changing them to other variables does not change the meaning of the statement.
However, in statement (2) we are probably (depending on the context) referring to
a particular number which we have denoted by x; and if we replace x by another
variable which represents another number, then we do change the meaning of the
statement.

2.2. Quantifiers

The expression for all (or for every, or for each, or (sometimes) for any), is
called the universal quantifier and is often written ∀.

The following all have the same meaning (and are true)

(1) for all x and for all y, (x+ y)2 = x2 + 2xy + y2

(2) for any x and y, (x+ y)2 = x2 + 2xy + y2

(3) for each x and each y, (x+ y)2 = x2 + 2xy + y2

(4) ∀x∀y
(

(x+ y)2 = x2 + 2xy + y2
)

It is implicit in the above that when we say “for all x” or ∀x, we really mean
for all real numbers x, etc. In other words, the quantifier ∀ “ranges over” the real
numbers. More generally, we always quantify over some set of objects, and often
make the abuse of language of suppressing this set when it is clear from context
what is intended. If it is not clear from context, we can include the set over which
the quantifier ranges. Thus we could write

for all x ∈ R and for all y∈ R, (x+ y)2 = x2 + 2xy + y2,

which we abbreviate to

∀x∈R∀y∈R
(

(x+ y)2 = x2 + 2xy + y2
)
.

Sometimes statement (1) is written as

(x+ y)2 = x2 + 2xy + y2 for all x and y.

Putting the quantifiers at the end of the statement can be very risky, however.
This is particularly true when there are both existential and universal quantifiers
involved. It is much safer to put quantifiers in front of the part of the statement to
which they refer. See also the next section.

The expression there exists (or there is, or there is at least one, or there are
some), is called the existential quantifier and is often written ∃.

The following statements all have the same meaning (and are true)

(1) there exists an irrational number
(2) there is at least one irrational number
(3) some real number is irrational
(4) irrational numbers exist
(5) ∃x (x is irrational)
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The last statement is read as “there exists x such that x is irrational”. It is
implicit here that when we write ∃x, we mean that there exists a real number x.
In other words, the quantifier ∃ “ranges over” the real numbers.

2.3. Order of Quantifiers

The order in which quantifiers occur is often critical. For example, consider
the statements

(1) ∀x∃y(x < y)

and

(2) ∃y∀x(x < y).

We read these statements as

for all x there exists y such that x < y

and
there exists y such that for all x, x < y,

respectively. Here (as usual for us) the quantifiers are intended to range over the
real numbers. Note once again that the meaning of these statments is unchanged
if we replace x and y by, say, u and v.4

Statement (1) is true. We can justify this as follows5 (in somewhat more detail
than usual!):
Let x be an arbitrary real number.

Then x < x+ 1, and so x < y is true if y equals (for example) x+ 1.
Hence the statement ∃y(x < y)6 is true.

But x was an arbitrary real number, and so the statement

for all x there exists y such that x < y

is true. That is, (1) is true.

On the other hand, statement (2) is false.
It asserts that there exists some number y such that ∀x(x < y).

But “∀x(x < y)” means y is an upper bound for the set R.
Thus (2) means “there exists y such that y is an upper bound for R.”

We know this last assertion is false.7

Alternatively, we could justify that (2) is false as follows:
Let y be an arbitrary real number.

Then y + 1 < y is false.
Hence the statement ∀x(x < y) is false.

Since y is an arbitrary real number, it follows that the statement

there exists y such that for all x, x < y,

is false.

There is much more discussion about various methods of proof in Section 2.6.3.

4In this case we could even be perverse and replace x by y and y by x respectively, without

changing the meaning!
5For more discussion on this type of proof, see the discusion about the arbitrary object method

in Subsection 2.6.3.
6Which, as usual, we read as “there exists y such that x < y.
7It is false because no matter which y we choose, the number y + 1 (for example) would be

greater than y, contradicting the fact y is an upper bound for R.
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We have seen that reversing the order of consecutive existential and universal
quantifiers can change the meaning of a statement. However, changing the order
of consecutive existential quantifiers, or of consecutive universal quantifiers, does
not change the meaning. In particular, if P (x, y) is a statement whose meaning
possibly depends on x and y, then

∀x∀yP (x, y) and ∀y∀xP (x, y)

have the same meaning. For example,

∀x∀y∃z(x2 + y3 = z),

and

∀y∀x∃z(x2 + y3 = z),

both have the same meaning. Similarly,

∃x∃yP (x, y) and ∃y∃xP (x, y)

have the same meaning.

2.4. Connectives

The logical connectives and the logical quantifiers (already discussed) are used
to build new statements from old. The rigorous study of these concepts falls within
the study of Mathematical Logic or the Foundations of Mathematics.

We now discuss the logical connectives.

2.4.1. Not. If p is a statement, then the negation of p is denoted by

(3) ¬p

and is read as “not p”.
If p is true then ¬p is false, and if p is false then ¬p is true.
The statement “not (not p)”, i.e. ¬¬p, means the same as “p”.

Negation of Quantifiers

(1) The negation of ∀xP (x), i.e. the statement ¬
(
∀xP (x)

)
, is equivalent to

∃x
(
¬P (x)

)
. Likewise, the negation of ∀x ∈ RP (x), i.e. the statement

¬
(
∀x∈RP (x)

)
, is equivalent to ∃x∈R

(
¬P (x)

)
; etc.

(2) The negation of ∃xP (x), i.e. the statement ¬
(
∃xP (x)

)
, is equivalent to

∀x
(
¬P (x)

)
. Likewise, the negation of ∃x ∈ RP (x), i.e. the statement

¬
(
∃x∈RP (x)

)
, is equivalent to ∀x∈R

(
¬P (x)

)
.

(3) If we apply the above rules twice, we see that the negation of

∀x∃yP (x, y)

is equivalent to

∃x∀y¬P (x, y).

Also, the negation of

∃x∀yP (x, y)

is equivalent to

∀x∃y¬P (x, y).

Similar rules apply if the quantifiers range over specified sets; see the
following Examples.
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Examples
1 Suppose a is a fixed real number. The negation of

∃x∈R (x > a)

is equivalent to
∀x∈R¬(x > a).

From the properties of inequalities, this is equivalent to

∀x∈bR (x ≤ a).

2 Theorem 3.2.10 says that

the set N of natural numbers is not bounded above.

The negation of this is the (false) statement

The set N of natural numbers is bounded above.

Putting this in the language of quantifiers, the Theorem says

¬
(
∃y∀x(x ≤ y)

)
.

The negation is equivalent to
∃y∀x(x ≤ y).

3 Corollary 3.2.11 says that

if ε > 0 then there is a natural number n such that 0 < 1/n < ε.

In the language of quantifiers:

∀ε>0 ∃n∈N (0 < 1/n < ε).

The statement 0 < 1/n was only added for emphasis, and follows from the fact any
natural number is positive and so its reciprocal is positive. Thus the Corollary is
equivalent to

(4) ∀ε>0 ∃n∈N (1/n < ε).

The Corollary is proved by assuming it is false, i.e. by assuming the negation
of (4), and obtaining a contradiction. Let us go through essentially the same ar-
gument again, but this time using quantifiers. This will take a little longer, but it
enables us to see the logical structure of the proof more clearly.

Proof. The negation of (4) is equivalent to

(5) ∃ε>0∀n∈N¬(1/n < ε).

From the properties of inequalities, and the fact ε and n range over certain sets of
positive numbers, we have

¬(1/n < ε) iff 1/n ≥ ε iff n ≤ 1/ε.

Thus (5) is equivalent to
∃ε>0 ∀n∈N (n ≤ 1/ε).

But this implies that the set of natural numbers is bounded above by 1/ε, and so
is false by Theorem 3.2.10.

Thus we have obtained a contradiction from assuming the negation of (4), and
hence (4) is true. �

4 The negation of

Every differentiable function is continuous (think of ∀f ∈DC(f))

is

Not (every differentiable function is continuous), i.e. ¬
(
∀f ∈DC(f)

)
,



14 2. SOME ELEMENTARY LOGIC

and is equivalent to

Some differentiable function is not continuous, i.e. ∃f ∈ D¬C(f).

or

There exists a non-continuous differentiable function, which is
also written ∃f ∈ D¬C(f).

5 The negation of “all elephants are pink”, i.e. of ∀x∈E P (x), is “not all elephants
are pink”, i.e. ¬(∀x ∈ E P (x)), and an equivalent statement is “there exists an
elephant which is not pink”, i.e. ∃x∈E ¬P (x).

The negation of “there exists a pink elephant”, i.e. of ∃x∈E P (x), is equivalent
to “all elephants are not pink”, i.e. ∀x∈E ¬P (x).

This last statement is often confused in every-day discourse with the statement

“not all elephants are pink”, i.e. ¬
(
∀x∈E P (x)

)
, although it has quite a different

meaning, and is equivalent to “there is a non-pink elephant”, i.e. ∃x ∈ E ¬P (x).
For example, if there were 50 pink elephants in the world and 50 white elephants,
then the statement “all elephants are not pink” would be false, but the statement
“not all elephants are pink” would be true.

2.4.2. And. If p and q are statements, then the conjunction of p and q is
denoted by

(6) p ∧ q

and is read as “p and q”.
If both p and q are true then p ∧ q is true, and otherwise it is false.

2.4.3. Or. If p and q are statements, then the disjunction of p and q is denoted
by

(7) p ∨ q

and is read as “p or q”.
If at least one of p and q is true, then p ∨ q is true. If both p and q are false

then p ∨ q is false.
Thus the statement

1 = 1 or 1 = 2

is true. This may seem different from common usage, but consider the following
true statement

1 = 1 or I am a pink elephant.

2.4.4. Implies. This often causes some confusion in mathematics. If p and q
are statements, then the statement

(8) p⇒ q

is read as “p implies q” or “if p then q”.
Alternatively, one sometimes says “q if p”, “p only if q”, “p” is a sufficient

condition for “q”, or “q” is a necessary condition for “p”. But we will not usually
use these wordings.

If p is true and q is false then p ⇒ q is false, and in all other cases p ⇒ q is
true.

This may seem a bit strange at first, but it is essentially unavoidable. Consider
for example the true statement

∀x(x > 2⇒ x > 1).
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Since in general we want to be able to say that a statement of the form ∀xP (x) is
true if and only if the statement P (x) is true for every (real number) x, this leads
us to saying that the statement

x > 2⇒ x > 1

is true, for every x. Thus we require that

3 > 2 ⇒ 3 > 1,

1.5 > 2 ⇒ 1.5 > 1,

.5 > 2 ⇒ .5 > 1,

all be true statements. Thus we have examples where p is true and q is true, where
p is false and q is true, and where p is false and q is false; and in all three cases
p⇒ q is true.

Next, consider the false statement

∀x(x > 1⇒ x > 2).

Since in general we want to be able to say that a statement of the form ∀xP (x)
is false if and only if the statement P (x) is false for some x, this leads us into
requiring, for example, that

1.5 > 1⇒ 1.5 > 2

be false. This is an example where p is true and q is false, and p⇒ q is true.
In conclusion, if the truth or falsity of the statement p ⇒ q is to depend only

on the truth or falsity of p and q, then we cannot avoid the previous criterion in
italics. See also the truth tables in Section 2.5.

Finally, in this respect, note that the statements

If I am not a pink elephant then 1 = 1

If I am a pink elephant then 1 = 1

and

If pigs have wings then cabbages can be kings8

are true statements.

The statement p⇒ q is equivalent to ¬(p∧¬q), i.e. not(p and not q). This may
seem confusing, and is perhaps best understood by considering the four different
cases corresponding to the truth and/or falsity of p and q.

It follows that the negation of ∀x (P (x)⇒ Q(x)) is equivalent to the statement
∃x¬ (P (x)⇒ Q(x)) which in turn is equivalent to ∃x (P (x) ∧ ¬Q(x)).

As a final remark, note that the statement all elephants are pink can be written
in the form ∀x (E(x)⇒ P (x)), where E(x) means x is an elephant and P (x) means
x is pink. Previously we wrote it in the form ∀x∈E P (x), where here E is the set
of pink elephants, rather than the property of being a pink elephant.

2.4.5. Iff. If p and q are statements, then the statement

(9) p⇔ q

is read as “p if and only if q”, and is abbreviated to “p iff q”, or “p is equivalent
to q”.

Alternatively, one can say “p is a necessary and sufficient condition for q”.
If both p and q are true, or if both are false, then p⇔ q is true. It is false if (p

is true and q is false), and it is also false if (p is false and q is true).

Remark In definitions it is conventional to use “if” where one should more strictly
use “iff”.

8With apologies to Lewis Carroll.
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2.5. Truth Tables

In mathematics we require that the truth or falsity of ¬p, p ∧ q, p ∨ q, p ⇒ q
and p⇔ q depend only on the truth or falsity of p and q.

The previous considerations then lead us to the following truth tables.

p ¬p
T F
F T

p q p ∧ q p ∨ q p⇒ q p⇔ q
T T T T T T
T F F T F F
F T F T T F
F F F F T T

Remarks

(1) All the connectives can be defined in terms of ¬ and ∧.
(2) The statement ¬q ⇒ ¬p is called the contrapositive of p ⇒ q. It has the

same meaning as p⇒ q.
(3) The statement q ⇒ p is the converse of p ⇒ q and it does not have the

same meaning as p⇒ q.

2.6. Proofs

A mathematical proof of a theorem is a sequence of assertions (mathematical
statements), of which the last assertion is the desired conclusion. Each assertion

(1) is an axiom or previously proved theorem, or
(2) is an assumption stated in the theorem, or
(3) follows from earlier assertions in the proof in an “obvious” way.

The word “obvious” is a problem. At first you should be very careful to write out
proofs in full detail. Otherwise you will probably write out things which you think
are obvious, but in fact are wrong. After practice, your proofs will become shorter.

A common mistake of beginning students is to write out the very easy points
in much detail, but to quickly jump over the difficult points in the proof.

The problem of knowing “how much detail is required” is one which will become
clearer with (much) practice.

In the next few subsections we will discuss various ways of proving mathematical
statements.

Besides Theorem, we will also use the words Proposition, Lemma and Corol-
lary. The distiction between these is not a precise one. Generally, “Theorems” are
considered to be more significant or important than “Propositions”. “Lemmas”
are usually not considered to be important in their own right, but are intermediate
results used to prove a later Theorem. “Corollaries” are fairly easy consequences
of Theorems.

2.6.1. Proofs of Statements Involving Connectives. To prove a theorem
whose conclusion is of the form “p and q” we have to show that both p is true and
q is true.

To prove a theorem whose conclusion is of the form “p or q” we have to show
that at least one of the statements p or q is true. Three different ways of doing this
are:

• Assume p is false and use this to show q is true,
• Assume q is false and use this to show p is true,
• Assume p and q are both false and obtain a contradiction.

To prove a theorem of the type “p implies q” we may proceed in one of the
following ways:

• Assume p is true and use this to show q is true,
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• Assume q is false and use this to show p is false, i.e. prove the contrapos-
itive of “p implies q”,

• Assume p is true and q is false and use this to obtain a contradiction.

To prove a theorem of the type “p iff q” we usually

• Show p implies q and show q implies p.

2.6.2. Proofs of Statements Involving “There Exists”. In order to prove
a theorem whose conclusion is of the form “there exists x such that P (x)”, we
usually either

• show that for a certain explicit value of x, the statement P (x) is true;

or more commonly

• use an indirect argument to show that some x with property P (x) does
exist.

For example to prove
∃x such that x5 − 5x− 7 = 0

we can argue as follows: Let the function f be defined by f(x) =
x5 − 5x − 7 (for all real x). Then f(1) < 0 and f(2) > 0; so
f(x) = 0 for some x between 1 and 2 by the Intermediate Value
Theorem9 for continuous functions.

An alternative approach would be to

• assume P (x) is false for all x and deduce a contradiction.

2.6.3. Proofs of Statements Involving “For Every”. Consider the fol-
lowing trivial theorem:

Theorem 2.6.1. For every integer n there exists an integer m such that m > n.

We cannot prove this theorem by individually examining each integer n. Instead
we proceed as follows:

Proof. Let n be any integer.
What this really means is—let n be a completely arbitrary integer, so that

anything I prove about n applies equally well to any other integer. We continue
the proof as follows:

Choose the integer
m = n+ 1.

Then m > n.

Thus for every integer n there is a greater integer m. �

The above proof is an example of the arbitrary object method. We cannot
examine every relevant object individually. So instead, we choose an arbitrary
object x (integer, real number, etc.) and prove the result for this x. This is the
same as proving the result for every x.

We often combine the arbitrary object method with proof by contradiction. That
is, we often prove a theorem of the type “∀xP (x)” as follows: Choose an arbitrary
x and deduce a contradiction from “¬P (x)”. Hence P (x) is true, and since x was
arbitrary, it follows that “∀xP (x)” is also true.

For example consider the theorem:

Theorem 2.6.2.
√

2 is irrational.

From the definition of irrational, this theorem is interpreted as saying: “for all
integers m and n, m/n 6=

√
2 ”. We prove this equivalent formulation as follows:

9See later.
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Proof. Let m and n be arbitrary integers with n 6= 0 (as m/n is undefined if
n = 0). Suppose that

m/n =
√

2.

By dividing through by any common factors greater than 1, we obtain

m∗/n∗ =
√

2

where m∗ and n∗ have no common factors.
Then

(m∗)
2

= 2(n∗)2.

Thus (m∗)2 is even, and so m∗ must also be even (the square of an odd integer is
odd since (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1).

Let m∗ = 2p. Then
4p2 = (m∗)2 = 2(n∗)2,

and so
2p2 = (n∗)2.

Hence (n∗)2 is even, and so n∗ is even.
Since both m∗ and n∗ are even, they must have the common factor 2, which is

a contradiction. So m/n 6=
√

2. �

2.6.4. Proof by Cases. We often prove a theorem by considering various
possibilities. For example, suppose we need to prove that a certain result is true
for all pairs of integers m and n. It may be convenient to separately consider the
cases m = n, m < n and m > n.



CHAPTER 3

The Real Number System

3.1. Introduction

The Real Number System satisfies certain axioms, from which its other prop-
erties can be deduced. There are various slightly different, but equivalent, formu-
lations.

Definition 3.1.1. The Real Number System is a set1 of objects called Real
Numbers and denoted by R together with two binary operations2 called addition
and multiplication and denoted by + and × respectively (we usually write xy for
x×y), a binary relation called less than and denoted by <, and two distinct elements
called zero and unity and denoted by 0 and 1 respectively.

The axioms satisfied by these fall into three groups and are detailed in the
following sections.

3.2. Algebraic Axioms

Algebraic properties are the properties of the four operations: addition +, mul-
tiplication ×, subtraction −, and division ÷.

Properties of Addition If a, b and c are real numbers then:

A1: a+ b = b+ a
A2: (a+ b) + c = a+ (b+ c)
A3: a+ 0 = 0 + a = a
A4: there is exactly one real number, denoted by −a, such that
a+ (−a) = (−a) + a = 0

Property A1 is called the commutative property of addition; it says it does not
matter how one commutes (interchanges) the order of addition.

Property A2 says that if we add a and b, and then add c to the result, we get
the same as adding a to the result of adding b and c. It is called the associative
property of addition; it does not matter how we associate (combine) the brackets.
The analogous result is not true for subtraction or division.

Property A3 says there is a certain real number 0, called zero or the additive
identity, which when added to any real number a, gives a.

Property A4 says that for any real number a there is a unique (i.e. exactly one)
real number −a, called the negative or additive inverse of a, which when added to
a gives 0.

Properties of Multiplication If a, b and c are real numbers then:

A5: a× b = b× a
A6: (a× b)× c = a× (b× c)
A7: a× 1 = 1× a = a,and 1 6= 0.

1We discuss sets in the next Chapter.
2To say + is a binary operation means that + is a function such that + : R × R → R. We

write a+ b instead of +(a, b). Similar remarks apply to ·.

19
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A8: if a 6= 0 there is exactly one real number, denoted by a−1, such that
a× a−1 = a−1 × a = 1

Properties A5 and A6 are called the commutative and associative properties for
multiplication.

Property A7 says there is a real number 1 6= 0, called one or the multiplicative
identity, which when multiplied by any real number a, gives a.

Property A8 says that for any non-zero real number a there is a unique real
number a−1, called the multiplicative inverse of a, which when multiplied by a gives
1.
Convention We will often write ab for a× b.

The Distributive Property There is another property which involves both ad-
dition and multiplication:

A9: If a, b and c are real numbers then
a(b+ c) = ab+ ac

The distributive property says that we can separately distribute multiplication
over the two additive terms

Algebraic Axioms It turns out that one can prove all the algebraic properties
of the real numbers from properties A1–A9 of addition and multiplication. We will
do some of this in the next subsection.

We call A1–A9 the Algebraic Axioms for the real number system.

Equality One can write down various properties of equality. In particular, for all
real numbers a, b and c:

(1) a = a
(2) a = b⇒ b = a3

(3) a = b and4 b = c⇒ a = c5

Also, if a = b, then a + c = b + c and ac = bc. More generally, one can always
replace a term in an expression by any other term to which it is equal.

It is possible to write down axioms for “=” and deduce the other properties of
“=” from these axioms; but we do not do this. Instead, we take “=” to be a logical
notion which means “is the same thing as”; the previous properties of “=” are then
true from the meaning of “=”.

When we write a 6= b we will mean that a does not represent the same number
as b; i.e. a represents a different number from b.

Other Logical and Set Theoretic Notions We do not attempt to axiomatise
any of the logical notions involved in mathematics, nor do we attempt to axiomatise
any of the properties of sets which we will use (see later). It is possible to do this;
and this leads to some very deep and important results concerning the nature and
foundations of mathematics. See later courses on the foundations mathematics
(also some courses in the philosophy department).

3.2.1. Consequences of the Algebraic Axioms.

Subtraction and Division We first define subtraction in terms of addition and
the additive inverse, by

a− b = a+ (−b).

3By⇒ we mean “implies”. Let P and Q be two statements, then “P ⇒ Q” means “P implies

Q”; or equivalently “if P then Q”.
4We sometimes write “∧” for “and”.
5 Whenever we write “P ∧ Q ⇒ R”, or “P and Q ⇒ R”, the convention is that we mean

“(P ∧Q)⇒ R”, not “P ∧ (Q⇒ R)”.
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Similarly, if b 6= 0 define

a÷ b
(

= a/b =
a

b

)
= ab−1.

Some consequences of axioms A1–A9 are as follows. The proofs are given in
the AH1 notes.

Theorem 3.2.1 (Cancellation Law for Addition). If a, b and c are real numbers
and a+ c = b+ c, then a = b.

Theorem 3.2.2 (Cancellation Law for Multiplication). If a, b and c 6= 0 are
real numbers and ac = bc then a = b.

Theorem 3.2.3. If a, b, c, d are real numbers and c 6= 0, d 6= 0 then

(1) a0 = 0
(2) −(−a) = a
(3) (c−1)−1 = c
(4) (−1)a = −a
(5) a(−b) = −(ab) = (−a)b
(6) (−a) + (−b) = −(a+ b)
(7) (−a)(−b) = ab
(8) (a/c)(b/d) = (ab)/(cd)
(9) (a/c) + (b/d) = (ad+ bc)/cd

Remark Henceforth (unless we say otherwise) we will assume all the usual proper-
ties of addition, multiplication, subtraction and division. In particular, we can solve
simultaneous linear equations. We will also assume standard definitions including

x2 = x× x, x3 = x× x× x, x−2 =
(
x−1

)2
, etc.

3.2.2. Important Sets of Real Numbers. We define

2 = 1 + 1, 3 = 2 + 1 , . . . , 9 = 8 + 1 ,

10 = 9 + 1 , . . . , 19 = 18 + 1 , . . . , 100 = 99 + 1 , . . . .

The set N of natural numbers is defined by

N = {1, 2, 3, . . .}.
The set Z of integers is defined by

Z = {m : −m ∈ N, or m = 0, or m ∈ N}.
The set Q of rational numbers is defined by

Q = {m/n : m ∈ Z, n ∈ N}.
The set of all real numbers is denoted by R.
A real number is irrational if it is not rational.

3.2.3. The Order Axioms. As remarked in Section 3.1, the real numbers
have a natural ordering. Instead of writing down axioms directly for this ordering,
it is more convenient to write out some axioms for the set P of positive real numbers.
We then define < in terms of P .

Order Axioms There is a subset6 P of the set of real numbers, called the set of
positive numbers, such that:

A10: For any real number a, exactly one of the following holds:

a = 0 or a ∈ P or − a ∈ P

6We will use some of the basic notation of set theory. Refer forward to Chapter 4 if necessary.
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A11: If a ∈ P and b ∈ P then a+ b ∈ P and ab ∈ P
A number a is called negative when −a is positive.

The “Less Than” Relation We now define a < b to mean b− a ∈ P .
We also define:
a ≤ b to mean b− a ∈ P or a = b;
a > b to mean a− b ∈ P ;
a ≥ b to mean a− b ∈ P or a = b.

It follows that a < b if and only if7 b > a. Similarly, a ≤ b iff8 b ≥ a.

Theorem 3.2.4. If a, b and c are real numbers then

(1) a < b and b < c implies a < c
(2) exactly one of a < b, a = b and a > b is true
(3) a < b implies a+ c < b+ c
(4) a < b and c > 0 implies ac < bc
(5) a < b and c < 0 implies ac > bc
(6) 0 < 1 and −1 < 0
(7) a > 0 implies 1/a > 0
(8) 0 < a < b implies 0 < 1/b < 1/a

Similar properties of ≤ can also be proved.

Remark Henceforth, in addition to assuming all the usual algebraic properties
of the real number system, we will also assume all the standard results concerning
inequalities.

Absolute Value The absolute value of a real number a is defined by

|a| =
{
a if a ≥ 0
−a if a < 0

The following important properties can be deduced from the axioms; but we will
not pause to do so.

Theorem 3.2.5. If a and b are real numbers then:

(1) |ab| = |a| |b|
(2) |a+ b| ≤ |a|+ |b|
(3)

∣∣∣|a| − |b|∣∣∣ ≤ |a− b|
We will use standard notation for intervals:

[a, b] = {x : a ≤ x ≤ b}, (a, b) = {x : a < x < b},
(a,∞) = {x : x > a}, [a,∞) = {x : x ≥ a}

with similar definitions for [a, b), (a, b], (−∞, a], (−∞, a). Note that ∞ is not a real
number and there is no interval of the form (a,∞].

We only use the symbol ∞ as part of an expression which, when written out
in full, does not refer to ∞.

3.2.4. Ordered Fields. Any set S, together with two operations⊕ and⊗ and
two members 0⊕ and 0⊗ of S, and a subset P of S, which satisfies the corresponding
versions of A1–A11, is called an ordered field.

Both Q and R are ordered fields, but finite fields are not.

7If A and B are statements, then “A if and only if B” means that A implies B and B implies
A. Another way of expressing this is to say that A and B are either both true or both false.

8Iff is an abbreviation for if and only if.
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Another example is the field of real algebraic numbers; where a real number is
said to be algebraic if it is a solution of a polynomial equation of the form

a0 + a1x+ a2x
2 + · · ·+ anx

n = 0

for some integer n > 0 and integers a0, a1, . . . , an. Note that any rational number
x = m/n is algebraic, since m− nx = 0, and that

√
2 is algebraic since it satisfies

the equation 2 − x2 = 0. (As a nice exercise in algebra, show that the set of real
algebraic numbers is indeed a field.)

3.2.5. Completeness Axiom. We now come to the property that singles out
the real numbers from any other ordered field. There are a number of versions of
this axiom. We take the following, which is perhaps a little more intuitive. We will
later deduce the version in Adams.

Dedekind Completeness Axiom
A12 Suppose A and B are two (non-empty) sets of real numbers with the prop-
erties:

(1) if a ∈ A and b ∈ B then a < b
(2) every real number is in either A or B 9 (in symbols; A ∪B = R).

Then there is a unique real number c such that:

: a. if a < c then a ∈ A, and
: b. if b > c then b ∈ B

Figure 1. A Dedekind Cut {A,B}. Every a < c belongs to A
and every b > c belongs to B.

Note that every number < c belongs to A and every number > c belongs to
B. Moreover, either c ∈ A or c ∈ B by 2. Hence if c ∈ A then A = (−∞, c] and
B = (c,∞); while if c ∈ B then A = (−∞, c) and B = [c,∞).

The pair of sets {A,B} is called a Dedekind Cut.
The intuitive idea of A12 is that the Completeness Axiom says there are no

“holes” in the real numbers.

Remark The analogous axiom is not true in the ordered field Q. This is essentially
because

√
2 is not rational, as we saw in Theorem 2.6.2.

More precisely, let

A = {x ∈ Q : x <
√

2}, B = {x ∈ Q : x ≥
√

2}.(
If you do not like to define A and B, which are sets of rational numbers, by using

the irrational number
√

2, you could equivalently define

A = {x ∈ Q : x ≤ 0 or (x > 0 and x2 < 2)}, B = {x ∈ Q : x > 0 and x2 ≥ 2}
)

Suppose c satisfies a and b of A12. Then it follows from algebraic and order
properties10 that c2 ≥ 2 and c2 ≤ 2, hence c2 = 2. But we saw in Theorem 2.6.2
that c cannot then be rational.

9It follows that if x is any real number, then x is in exactly one of A and B, since otherwise
we would have x < x from 1.

10Related arguments are given in a little more detail in the proof of the next Theorem.
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We next use Axiom A12 to prove the existence of
√

2, i.e. the existence of a
number c such that c2 = 2.

Theorem 3.2.6. There is a (positive)11 real number c such that c2 = 2.

Proof. Let

A = {x ∈ R : x ≤ 0 or (x > 0 and x2 < 2)}, B = {x ∈ R : x > 0 and x2 ≥ 2}
It follows (from the algebraic and order properties of the real numbers; i.e. A1–
A11) that every real number x is in exactly one of A or B, and hence that the two
hypotheses of A12 are satisfied.
By A12 there is a unique real number c such that

(1) every number x less than c is either ≤ 0, or is > 0 and satisfies x2 < 2
(2) every number x greater than c is > 0 and satisfies x2 ≥ 2.

See Figure 1.
From the Note following A12, either c ∈ A or c ∈ B.
If c ∈ A then c < 0 or (c > 0 and c2 < 2). But then by taking ε > 0

sufficiently small, we would also have c+ ε ∈ A (from the definition
of A), which contradicts conclusion b in A12.

Hence c ∈ B, i.e. c > 0 and c2 ≥ 2.
If c2 > 2, then by choosing ε > 0 sufficiently small we would also have
c− ε ∈ B (from the definition of B), which contradicts a in A12.

Hence c2 = 2. �

3.2.6. Upper and Lower Bounds.

Definition 3.2.7. If S is a set of real numbers, then

(1) a is an upper bound for S if x ≤ a for all x ∈ S;
(2) b is the least upper bound (or l.u.b. or supremum or sup) for S if b is an

upper bound, and moreover b ≤ a whenever a is any upper bound for S.

We write
b = l.u.b.S = supS

One similarly defines lower bound and greatest lower bound (or g.l.b. or infimum or
inf ) by replacing “≤” by “≥”.

A set S is bounded above if it has an upper bound12 and is bounded below if it
has a lower bound.

Note that if the l.u.b. or g.l.b. exists it is unique, since if b1 and b2 are both
l.u.b.’s then b1 ≤ b2 and b2 ≤ b1, and so b1 = b2.

Examples

(1) If S = [1,∞) then any a ≤ 1 is a lower bound, and 1 = g.l.b.S. There is
no upper bound for S. The set S is bounded below but not above.

(2) If S = [0, 1) then 0 = g.l.b.S ∈ S and 1 = l.u.b.S 6∈ S. The set S is
bounded above and below.

(3) If S = {1, 1/2, 1/3, . . . , 1/n, . . .} then 0 = g.l.b.S 6∈ S and 1 = l.u.b.S ∈ S.
The set S is bounded above and below.

There is an equivalent form of the Completeness Axiom:

Least Upper Bound Completeness Axiom
A12′ Suppose S is a nonempty set of real numbers which is bounded above. Then
S has a l.u.b. in R.

11And hence a negative real number c such that c2 = 2; just replace c by −c.
12It follows that S has infinitely many upper bounds.
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A similar result follows for g.l.b.’s:

Corollary 3.2.8. Suppose S is a nonempty set of real numbers which is
bounded below. Then S has a g.l.b. in R.

Proof. Let
T = {−x : x ∈ S}.

Then it follows that a is a lower bound for S iff −a is an upper bound for T ; and
b is a g.l.b. for S iff −b is a l.u.b. for T .

Figure 2. T = {−x : x ∈ S} is obtained by reflecting S in the origin.

Since S is bounded below, it follows that T is bounded above. Moreover, T
then has a l.u.b. c (say) by A12’, and so −c is a g.l.b. for S. �

Equivalence of A12 and A12′

1) Suppose A12 is true. We will deduce A12′.
For this, suppose that S is a nonempty set of real numbers which is bounded

above.
Let

B = {x : x is an upper bound for S}, A = R \B.13

Note that B 6= ∅; and if x ∈ S then x− 1 is not an upper bound for S so A 6= ∅.
The first hypothesis in A12 is easy to check: suppose a ∈ A and b ∈ B. If a ≥ b
then a would also be an upper bound for S, which contradicts the definition of A,
hence a < b.
The second hypothesis in A12 is immediate from the definition of A as consisting
of every real number not in B.
Let c be the real number given by A12.

We claim that c = l.u.b. S.
If c ∈ A then c is not an upper bound for S and so there exists x ∈ S with c < x.
But then a = (c + x)/2 is not an upper bound for S, i.e. a ∈ A, contradicting the
fact from the conclusion of Axiom A12 that a ≤ c for all a ∈ A. Hence c ∈ B.
But if c ∈ B then c ≤ b for all b ∈ B; i.e. c is ≤ any upper bound for S. This proves
the claim; and hence proves A12′.

2) Suppose A12′ is true. We will deduce A12.
For this, suppose {A,B} is a Dedekind cut.
Then A is bounded above (by any element of B). Let c = l.u.b. A, using A12’.

We claim that
a < c⇒ a ∈ A, b > c⇒ b ∈ B.

Suppose a < c. Now every member of B is an upper bound for A, from the
first property of a Dedekind cut; hence a 6∈ B, as otherwise a would be an upper
bound for A which is less than the least upper bound c. Hence a ∈ A.

13R \B is the set of real numbers x not in B
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Next suppose b > c. Since c is an upper bound for A (in fact the least upper
bound), it follows we cannot have b ∈ A, and thus b ∈ B.

This proves the claim, and hence A12 is true.

The following is a useful way to characterise the l.u.b. of a set. It says that
b = l.u.b. S iff b is an upper bound for S and there exist members of S arbitrarily
close to b.

Proposition 3.2.9. Suppose S is a nonempty set of real numbers. Then b =
l.u.b. S iff

(1) x ≤ b for all x ∈ S, and
(2) for each ε > 0 there exist x ∈ S such that x > b− ε.

Proof. Suppose S is a nonempty set of real numbers.
First assume b = l.u.b. S. Then 1 is certainly true.

Suppose 2 is not true. Then for some ε > 0 it follows that x ≤ b−ε for every x ∈ S,
i.e. b− ε is an upper bound for S. This contradicts the fact b = l.u.b. S. Hence 2 is
true.

Next assume that 1 and 2 are true. Then b is an upper bound for S from 1.
Moreover, if b′ < b then from 2 it follows that b′ is not an upper bound of S. Hence
b′ is the least upper bound of S. �

We will usually use the version Axiom A12′ rather than Axiom A12; and we
will usually refer to either as the Completeness Axiom. Whenever we use the
Completeness axiom in our future developments, we will explictly refer to it. The
Completeness Axiom is essential in proving such results as the Intermediate Value
Theorem14.
Exercise: Give an example to show that the Intermediate Value Theorem does not
hold in the “world of rational numbers”.

3.2.7. *Existence and Uniqueness of the Real Number System. We
began by assuming that R, together with the operations + and × and the set of
positive numbers P , satisfies Axioms 1–12. But if we begin with the axioms for
set theory, it is possible to prove the existence of a set of objects satisfying the
Axioms 1–12.

This is done by first constructing the natural numbers, then the integers, then
the rationals, and finally the reals. The natural numbers are constructed as certain
types of sets, the negative integers are constructed from the natural numbers, the
rationals are constructed as sets of ordered pairs as in Chapter II-2 of Birkhoff and
MacLane. The reals are then constructed by the method of Dedekind Cuts as in
Chapter IV-5 of Birkhoff and MacLane or Cauchy Sequences as in Chapter 28 of
Spivak.

The structure consisting of the set R, together with the operations + and ×
and the set of positive numbers P , is uniquely characterised by Axioms 1–12, in
the sense that any two structures satisfying the axioms are essentially the same.
More precisely, the two systems are isomorphic, see Chapter IV-5 of Birkhoff and
MacLane or Chapter 29 of Spivak.

14If a continuous real valued function f : [a, b] → R satisfies f(a) < 0 < f(b), then f(c) = 0
for some c ∈ (a, b).
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3.2.8. The Archimedean Property. The fact that the set N of natural
numbers is not bounded above, does not follow from Axioms 1–11. However, it
does follow if we also use the Completeness Axiom.

Theorem 3.2.10. The set N of natural numbers is not bounded above.

Proof. Recall that N is defined to be the set

N = {1, 1 + 1, 1 + 1 + 1, . . .}.
Assume that N is bounded above.15 Then from the Completeness Axiom (version
A12′), there is a least upper bound b for N. That is,

(10) n ∈ N implies n ≤ b.
It follows that

(11) m ∈ N implies m+ 1 ≤ b,
since if m ∈ N then m+ 1 ∈ N, and so we can now apply (10) with n there replaced
by m+ 1.
But from (11) (and the properties of subtraction and of <) it follows that

m ∈ N implies m ≤ b− 1.

This is a contradiction, since b was taken to be the least upper bound of N. Thus
the assumption “N is bounded above” leads to a contradiction, and so it is false.
Thus N is not bounded above. �

The following Corollary is often implicitly used.

Corollary 3.2.11. If ε > 0 then there is a natural number n such that 0 <
1/n < ε.16

Proof. Assume there is no natural number n such that 0 < 1/n < ε. Then
for every n ∈ N it follows that 1/n ≥ ε and hence n ≤ 1/ε. Hence 1/ε is an upper
bound for N, contradicting the previous Theorem.

Hence there is a natural number n such that 0 < 1/n < ε. �

We can now prove that between any two real numbers there is a rational num-
ber.

Theorem 3.2.12. For any two reals x and y, if x < y then there exists a
rational number r such that x < r < y.

Proof. (a) First suppose y − x > 1. Then there is an integer k such that
x < k < y.

To see this, let l be the least upper bound of the set S of all integers j such that
j ≤ x. It follows that l itself is a member of S,and so in particular is an integer.17)

15Logical Point : Our intention is to obtain a contradiction from this assumption, and hence

to deduce that N is not bounded above.
16We usually use ε and δ to denote numbers that we think of as being small and positive.

Note, however, that the result is true for any real number ε; but it is more “interesting” if ε is

small.
17The least upper bound b of any set S of integers which is bounded above, must itself be

a member of S. This is fairly clear, using the fact that members of S must be at least the fixed
distance 1 apart.

More precisely, consider the interval [b− 1/2, b]. Since the distance between any two integers

is ≥ 1, there can be at most one member of S in this interval. If there is no member of S in
[b− 1/2, b] then b− 1/2 would also be an upper bound for S, contradicting the fact b is the least

upper bound. Hence there is exactly one member s of S in [b−1/2, b]; it follows s = b as otherwise

s would be an upper bound for S which is < b; contradiction.
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Hence l+ 1 > x, since otherwise l+ 1 ≤ x, i.e. l+ 1 ∈ S, contradicting the fact that
l = lubS.
Moreover, since l ≤ x and y − x > 1, it follows from the properties of < that

l + 1 < y.
(

Thus if k = l + 1 then x < k < y. See Figure 3.

Figure 3. Here y−x > 1 and l is the largest integer which is ≤ x.
It follows that x < l + 1 < y.

(b) Now just assume x < y.
By the previous Corollary choose a natural number n such that 1/n < y − x.
Hence ny − nx > 1 and so by (a) there is an integer k such that nx < k < ny.
Hence x < k/n < y, as required. �

A similar result holds for the irrationals.

Theorem 3.2.13. For any two reals x and y, if x < y then there exists an
irrational number r such that x < r < y.

Proof. First suppose a and b are rational and a < b.
Note that

√
2/2 is irrational (why? ) and

√
2/2 < 1. Hence

a < a+ (b− a)
√

2/2 < b and moreover a+ (b− a)
√

2/2 is irrational18.
To prove the result for general x < y, use the previous theorem twice to first

choose a rational number a and then another rational number b, such that x < a <
b < y.
By the first paragraph there is a rational number r such that x < a < r < b < y. �

Corollary 3.2.14. For any real number x, and any positive number ε >,
there a rational (resp. irrational) number r (resp.s) such that 0 < |r−x| < ε (resp.
0 < |s− x| < ε).

Note that this argument works for any set S whose members are all at least a fixed positive
distance d > 0 apart. Why?

18Let r = a+(b−a)
√

2/2. Hence
√

2 = 2(r−a)/(b−a). So if r were rational then
√

2 would
also be rational, which we know is not the case.



CHAPTER 4

Set Theory

4.1. Introduction

The notion of a set is fundamental to mathematics.
A set is, informally speaking, a collection of objects. We cannot use this as a

definition however, as we then need to define what we mean by a collection.
The notion of a set is a basic or primitive one, as is membership ∈, which

are not usually defined in terms of other notions. Synonyms for set are collection,
class1 and family.

It is possible to write down axioms for the theory of sets. To do this properly,
one also needs to formalise the logic involved. We will not follow such an axiomatic
approach to set theory, but will instead proceed in a more informal manner.

Sets are important as it is possible to formulate all of mathematics in set theory.
This is not done in practice, however, unless one is interested in the Foundations
of Mathematics2.

4.2. Russell’s Paradox

It would seem reasonable to assume that for any “property” or “condition” P ,
there is a set S consisting of all objects with the given property.

More precisely, if P (x) means that x has property P , then there should be a
set S defined by

(12) S = {x : P (x)} .
This is read as: “S is the set of all x such that P (x) (is true)”3.

For example, if P (x) is an abbreviation for

x is an integer > 5

or
x is a pink elephant,

then there is a corresponding set (although in the second case it is the so-called
empty set, which has no members) of objects x having property P (x).

However, Bertrand Russell came up with the following property of x:

x is not a member of itself4,

or in symbols
x 6∈ x.

Suppose
S = {x : x 6∈ x} .

If there is indeed such a set S, then either S ∈ S or S 6∈ S. But

1*Although we do not do so, in some studies of set theory, a distinction is made between set
and class.

2There is a third/fourth year course Logic, Set Theory and the Foundations of Mathematics.
3Note that this is exactly the same as saying “S is the set of all z such that P (z) (is true)”.
4Any x we think of would normally have this property. Can you think of some x which is a

member of itself? What about the set of weird ideas?

29
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• if the first case is true, i.e. S is a member of S, then S must satisfy the
defining property of the set S, and so S 6∈ S—contradiction;

• if the second case is true, i.e. S is not a member of S, then S does not
satisfy the defining property of the set S, and so S ∈ S—contradiction.

Thus there is a contradiction in either case.
While this may seem an artificial example, there does arise the important prob-

lem of deciding which properties we should allow in order to describe sets. This
problem is considered in the study of axiomatic set theory. We will not (hopefully!)
be using properties that lead to such paradoxes, our construction in the above situ-
ation will rather be of the form “given a set A, consider the elements of A satisfying
some defining property”.

None-the-less, when the German philosopher and mathematician Gottlob Frege
heard from Bertrand Russell (around the turn of the century) of the above property,
just as the second edition of his two volume work Grundgesetze der Arithmetik (The
Fundamental Laws of Arithmetic) was in press, he felt obliged to add the following
acknowledgment:

A scientist can hardly encounter anything more undesirable than
to have the foundation collapse just as the work is finished. I
was put in this position by a letter from Mr. Bertrand Russell
when the work was almost through the press.

4.3. Union, Intersection and Difference of Sets

The members of a set are sometimes called elements of the set. If x is a member
of the set S, we write

x ∈ S.
If x is not a member of S we write

x 6∈ S.
A set with a finite number of elements can often be described by explicitly

giving its members. Thus

(13) S =
{

1, 3, {1, 5}
}

is the set with members 1,3 and {1, 5}. Note that 5 is not a member5. If we write
the members of a set in a different order, we still have the same set.

If S is the set of all x such that . . . x . . . is true, then we write

(14) S = {x : . . . x . . .} ,
and read this as “S is the set of x such that . . . x . . .”. For example, if S = {x : 1 <
x ≤ 2}, then S is the interval of real numbers that we also denote by (1, 2].

Members of a set may themselves be sets, as in (13).
If A and B are sets, their union A ∪ B is the set of all objects which belong

to A or belong to B (remember that by the meaning of or this also includes those
objects belonging to both A and B). Thus

A ∪B = {x : x ∈ A or x ∈ B} .
The intersection A ∩B of A and B is defined by

A ∩B = {x : x ∈ A and x ∈ B} .
The difference A \B of A and B is defined by

A \B = {x : x ∈ A and x 6∈ B} .

5However, it is a member of a member; membership is generally not transitive.
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It is sometimes convenient to represent this schematically by means of a Venn
Diagram.

Figure 1. The union, intersection and difference of two sets.

We can take the union of more than two sets. If F is a family of sets, the union
of all sets in F is defined by

(15)
⋃
F = {x : x ∈ A for at least one A ∈ F} .

The intersection of all sets in F is defined by

(16)
⋂
F = {x : x ∈ A for every A ∈ F} .

If F is finite, say F = {A1, . . . , An}, then the union and intersection of members
of F are written

(17)

n⋃
i=1

Ai or A1 ∪ · · · ∪An

and

(18)

n⋂
i=1

Ai or A1 ∩ · · · ∩An

respectively. If F is the family of sets {Ai : i = 1, 2, . . .}, then we write

(19)

∞⋃
i=1

Ai and

∞⋂
i=1

Ai

respectively. More generally, we may have a family of sets indexed by a set other
than the integers— e.g. {Aλ : λ ∈ J}—in which case we write

(20)
⋃
λ∈J

Aλ and
⋂
λ∈J

Aλ

for the union and intersection.

Examples

(1)
⋃∞
n=1[0, 1− 1/n] = [0, 1)

(2)
⋂∞
n=1[0, 1/n] = {0}

(3)
⋂∞
n=1(0, 1/n) = ∅

We say two sets A and B are equal iff they have the same members, and in this
case we write

(21) A = B.

It is convenient to have a set with no members; it is denoted by

(22) ∅.
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There is only one empty set, since any two empty sets have the same members, and
so are equal!

If every member of the set A is also a member of B, we say A is a subset of B
and write

(23) A ⊂ B.

We include the possibility that A = B, and so in some texts this would be written
as A ⊆ B. Notice the distinction between “∈” and “⊂”. Thus in (13) we have
1 ∈ S, 3 ∈ S, {1, 5} ∈ S while {1, 3} ⊂ S, {1} ⊂ S, {3} ⊂ S, {{1, 5}} ⊂ S, S ⊂ S,
∅ ⊂ S.

We usually prove A = B by proving that A ⊂ B and that B ⊂ A, c.f. the proof
of (47) in Section 4.4.3.

If A ⊂ B and A 6= B, we say A is a proper subset of B and write A $ B.
The sets A and B are disjoint if A ∩B = ∅. The sets belonging to a family of

sets F are pairwise disjoint if any two distinctly indexed sets in F are disjoint.
The set of all subsets of the set A is called the Power Set of A and is denoted

by

P(A).

In particular, ∅ ∈ P(A) and A ∈ P(A).
The following simple properties of sets are made plausible by considering a

Venn diagram. We will prove some, and you should prove others as an exercise.
Note that the proofs essentially just rely on the meaning of the logical words and,
or, implies etc.

Proposition 4.3.1. Let A, B, C and Bλ (for λ ∈ J) be sets. Then

A ∪B = B ∪A A ∩B = B ∩A
A ∪ (B ∪ C) = (A ∪B) ∪ C A ∩ (B ∩ C) = (A ∩B) ∩ C

A ⊂ A ∪B A ∩B ⊂ A
A ⊂ B iff A ∪B = B A ⊂ B iff A ∩B = A

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A ∩
⋃
λ∈J

Bλ =
⋃
λ∈J

(A ∩Bλ) A ∪
⋂
λ∈J

Bλ =
⋂
λ∈J

(A ∪Bλ)

Proof. We prove A ⊂ B iff A ∩B = A as an example.
First assume A ⊂ B. We want to prove A ∩ B = A (we will show A ∩ B ⊂ A

and A ⊂ A ∩ B). If x ∈ A ∩ B then certainly x ∈ A, and so A ∩ B ⊂ A. If x ∈ A
then x ∈ B by our assumption, and so x ∈ A ∩ B, and hence A ⊂ A ∩ B. Thus
A ∩B = A.

Next assume A ∩B = A. We want to prove A ⊂ B. If x ∈ A, then x ∈ A ∩B
(as A ∩B = A) and so in particular x ∈ B. Hence A ⊂ B. �

If X is some set which contains all the objects being considered in a certain
context, we sometimes call X a universal set. If A ⊂ X then X \ A is called the
complement of A, and is denoted by

(24) Ac.

Thus if X is the (set of) reals and A is the (set of) rationals, then the complement
of A is the set of irrationals.

The complement of the union (intersection) of a family of sets is the intersection
(union) of the complements; these facts are known as de Morgan’s laws. More
precisely,
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Proposition 4.3.2.

(25) (A ∪B)
c

= Ac ∩Bc and (A ∩B)
c

= Ac ∪Bc.

More generally,

(26)

( ∞⋃
i=1

Ai

)c
=

∞⋂
i=1

Aci and

( ∞⋂
i=1

Ai

)c
=

∞⋃
i=1

Aci ,

and

(27)

(⋃
λ∈J

Aλ

)c
=
⋂
λ∈J

Acλ and

(⋂
λ∈J

Aλ

)c
=
⋃
λ∈J

Acλ.

4.4. Functions

We think of a function f :A→ B as a way of assigning to each element a ∈ A
an element f(a) ∈ B. We will make this idea precise by defining functions as
particular kinds of sets.

4.4.1. Functions as Sets. We first need the idea of an ordered pair . If x
and y are two objects, the ordered pair whose first member is x and whose second
member is y is denoted

(28) (x, y).

The basic property of ordered pairs is that

(29) (x, y) = (a, b) iff x = a and y = b.

Thus (x, y) = (y, x) iff x = y; whereas {x, y} = {y, x} is always true. Any way of
defining the notion of an ordered pair is satisfactory, provided it satisfies the basic
property.

One way to define the notion of an ordered pair in terms of sets
is by setting

(x, y) = {{x}, {x, y}} .
This is natural: {x, y} is the associated set of elements and {x}
is the set containing the first element of the ordered pair. As a
non-trivial problem, you might like to try and prove the basic
property of ordered pairs from this definition. HINT: consider
separately the cases x = y and x 6= y. The proof is in [La, pp.
42-43].

If A and B are sets, their Cartesian product is the set of all ordered pairs (x, y)
with x ∈ A and y ∈ B. Thus

(30) A×B = {(x, y) : x ∈ A and y ∈ B} .

We can also define n-tuples (a1, a2, . . . , an) such that

(31) (a1, a2, . . . , an) = (b1, b2, . . . , bn) iff a1 = b1, a2 = b2, . . . , an = bn.

The Cartesian Product of n sets is defined by

(32) A1 ×A2 × · · · ×An = {(a1, a2, . . . , an) : a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An} .

In particular, we write

(33) Rn =

n︷ ︸︸ ︷
R× · · · × R .
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If f is a set of ordered pairs from A×B with the property that for every x ∈ A
there is exactly one y ∈ B such that (x, y) ∈ f , then we say f is a function (or map
or transformation or operator) from A to B. We write

(34) f :A→ B,

which we read as: f sends (maps) A into B. If (x, y) ∈ f then y is uniquely
determined by x and for this particular x and y we write

(35) y = f(x).

We say y is the value of f at x.
Thus if

(36) f =
{

(x, x2) : x ∈ R
}

then f : R→ R and f is the function usually defined (somewhat loosely) by

(37) f(x) = x2,

where it is understood from context that x is a real number.
Note that it is exactly the same to define the function f by f(x) = x2 for all

x ∈ R as it is to define f by f(y) = y2 for all y ∈ R.

4.4.2. Notation Associated with Functions. Suppose f : A → B. A is
called the domain of f and B is called the co-domain of f .

The range of f is the set defined by

f [A] = {y : y = f(x) for some x ∈ A}(38)

= {f(x) : x ∈ A} .(39)

Note that f [A] ⊂ B but may not equal B. For example, in (37) the range of f is
the set [0,∞) = {x ∈ R : 0 ≤ x}.

We say f is one-one or injective or univalent if for every y ∈ B there is at most
one x ∈ A such that y = f(x). Thus the function f1 : R → R given by f1(x) = x2

for all x ∈ R is not one-one, while the function f2 : R→ R given by f2(x) = ex for
all x ∈ R is one-one.

We say f is onto or surjective if every y ∈ B is of the form f(x) for some x ∈ A.
Thus neither f1 nor f2 is onto. However, f1 maps R onto [0,∞).

If f is both one-one and onto, then there is an inverse function f−1 :B → A
defined by f(y) = x iff f(x) = y. For example, if f(x) = ex for all x ∈ R, then
f :R→ [0,∞) is one-one and onto, and so has an inverse which is usually denoted
by ln. Note, incidentally, that f :R→ R is not onto, and so strictly speaking does
not have an inverse.

If S ⊂ A, then the image of S under f is defined by

(40) f [S] = {f(x) : x ∈ S} .

Thus f [S] is a subset of B, and in particular the image of A is the range of f .
If S ⊂ A, the restriction f |S of f to S is the function whose domain is S and

which takes the same values on S as does f . Thus

(41) f |S = {(x, f(x)) : x ∈ S}

If T ⊂ B, then the inverse image of T under f is

(42) f−1[T ] = {x : f(x) ∈ T} .

It is a subset of A. Note that f−1[T ] is defined for any function f :A → B. It is
not necessary that f be one-one and onto, i.e. it is not necessary that the function
f−1 exist.
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If f : A → B and g :B → C then the composition function g ◦ f : A → C is
defined by

(43) (g ◦ f)(x) = g(f(x)) ∀x ∈ A.

For example, if f(x) = x2 for all x ∈ R and g(x) = sinx for all x ∈ R, then
(g ◦ f)(x) = sin(x2) and (f ◦ g)(x) = (sinx)2.

4.4.3. Elementary Properties of Functions. We have the following ele-
mentary properties:

Proposition 4.4.1.

f [C ∪D] = f [C] ∪ f [D] f
[⋃
λ∈J

Aλ

]
=
⋃
λ∈J

f [Aλ](44)

f [C ∩D] ⊂ f [C] ∩ f [D] f
[⋂
λ∈J

Cλ

]
⊂
⋂
λ∈J

f [Cλ](45)

f−1[U ∪ V ] = f−1[U ] ∪ f−1[V ] f−1
[⋃
λ∈J

Uλ

]
=
⋃
λ∈J

f−1 [Uλ](46)

f−1[U ∩ V ] = f−1[U ] ∩ f−1[V ] f−1
[⋂
λ∈J

Uλ

]
=
⋂
λ∈J

f−1 [Uλ](47)

(f−1[U ])c = f−1[U c](48)

A ⊂ f−1
[
f [A]

]
(49)

Proof. The proofs of the above are straightforward. We prove (47) as an
example of how to set out such proofs.

We need to show that f−1[U ∩ V ] ⊂ f−1[U ] ∩ f−1[V ] and f−1[U ] ∩ f−1[V ] ⊂
f−1[U ∩ V ].

For the first, suppose x ∈ f−1[U ∩ V ]. Then f(x) ∈ U ∩ V ; hence f(x) ∈ U
and f(x) ∈ V . Thus x ∈ f−1[U ] and x ∈ f−1[V ], so x ∈ f−1[U ] ∩ f−1[V ]. Thus
f−1[U ∩ V ] ⊂ f−1[U ] ∩ f−1[V ] (since x was an arbitrary member of f−1[U ∩ V ]).

Next suppose x ∈ f−1[U ] ∩ f−1[V ]. Then x ∈ f−1[U ] and x ∈ f−1[V ]. Hence
f(x) ∈ U and f(x) ∈ V . This implies f(x) ∈ U ∩ V and so x ∈ f−1[U ∩ V ]. Hence
f−1[U ] ∩ f−1[V ] ⊂ f−1[U ∩ V ]. �

Exercise Give a simple example to show equality need not hold in (45).

4.5. Equivalence of Sets

Definition 4.5.1. Two sets A and B are equivalent or equinumerous if there
exists a function f :A→ B which is one-one and onto. We write A ∼ B.

The idea is that the two sets A and B have the same number of elements. Thus
the sets {a, b, c}, {x, y, z} and that in (13) are equivalent.

Some immediate consequences are:

Proposition 4.5.2.

(1) A ∼ A (i.e. ∼ is reflexive).
(2) If A ∼ B then B ∼ A (i.e. ∼ is symmetric).
(3) If A ∼ B and B ∼ C then A ∼ C (i.e. ∼ is transitive).
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Proof. The first claim is clear.
For the second, let f :A → B be one-one and onto. Then the inverse function

f−1 :B → A, is also one-one and onto, as one can check (exercise).
For the third, let f :A→ B be one-one and onto, and let g :B → C be one-one

and onto. Then the composition g ◦ f :A→ B is also one-one and onto, as can be
checked (exercise). �

Definition 4.5.3. A set is finite if it is empty or is equivalent to the set
{1, 2, . . . , n} for some natural number n. Otherwise it is infinite.

When we consider infinite sets there are some results which may seem surprising
at first:

• The set E of even natural numbers is equivalent to the set N of natural
numbers.

To see this, let f :E → N be given by f(n) = n/2. Then f is
one-one and onto.

• The open interval (a, b) is equivalent to R (if a < b).
To see this let f1(x) = (x − a)/(b − a); then f1 : (a, b) → (0, 1)
is one-one and onto, and so (a, b) ∼ (0, 1). Next let f2(x) =
x/(1 − x); then f2 : (0, 1) → (0,∞) is one-one and onto6 and so
(0, 1) ∼ (0,∞). Finally, if f3(x) = (1/x)−x then f3 : (0,∞)→ R
is one-one and onto7 and so (0,∞) ∼ R. Putting all this together
and using the transitivity of set equivalence, we obtain the result.

Thus we have examples where an apparently smaller subset of N (respectively R)
is in fact equivalent to N (respectively R).

4.6. Denumerable Sets

Definition 4.6.1. A set is denumerable if it is equivalent to N. A set is
countable if it is finite or denumerable. If a set is denumerable, we say it has
cardinality d or cardinal number d 8.

Thus a set is denumerable iff it its members can be enumerated in a (non-
terminating) sequence (a1, a2, . . . , an, . . .). We show below that this fails to hold
for infinite sets in general.

The following may not seem surprising but it still needs to be proved.

Theorem 4.6.2. Any denumerable set is infinite (i.e. is not finite).

Proof. It is sufficient to show that N is not finite (why?). But in fact any
finite subset of N is bounded, whereas we know that N is not (Chapter 3). �

We have seen that the set of even integers is denumerable (and similarly for
the set of odd integers). More generally, the following result is straightforward (the
only problem is setting out the proof in a reasonable way):

Theorem 4.6.3. Any subset of a countable set is countable.

6This is clear from the graph of f2. More precisely:
(i) if x ∈ (0, 1) then x/(1− x) ∈ (0,∞) follows from elementary properties of inequalities,

(ii) for each y ∈ (0,∞) there is a unique x ∈ (0, 1) such that y = x/(1−x), namely x = y/(1 + y),

as follows from elementary algebra and properties of inequalities.
7As is again clear from the graph of f3, or by arguments similar to those used for for f2.
8See Section 4.8 for a more general discussion of cardinal numbers.
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Proof. Let A be countable and let (a1, a2, . . . , an) or (a1, a2, . . . , an, . . .) be
an enumeration of A (depending on whether A is finite or denumerable). If B ⊂ A
then we construct a subsequence (ai1 , ai2 , . . . , ain , . . .) enumerating B by taking aij
to be the j’th member of the original sequence which is in B. Either this process
never ends, in which case B is denumerable, or it does end in a finite number of
steps, in which case B is finite. �

Remark This proof is rather more subtle than may appear. Why is the resulting
function from N → B onto? We should really prove that every non-empty set of
natural numbers has a least member, but for this we need to be a little more precise
in our definition of N. See [St, pp 13–15] for details.

More surprising, at least at first, is the following result:

Theorem 4.6.4. The set Q is denumerable.

Proof. We have to show that N is equivalent to Q.
In order to simplify the notation just a little, we first prove that N is equivalent

to the set Q+ of positive rationals. We do this by arranging the rationals in a
sequence, with no repetitions.

Each rational in Q+ can be uniquely written in the reduced form m/n where
m and n are positive integers with no common factor. We write down a “doubly-
infinite” array as follows:

In the first row are listed all positive rationals whose reduced
form is m/1 for some m (this is just the set of natural numbers);
In the second row are all positive rationals whose reduced form
is m/2 for some m;
In the third row are all positive rationals whose reduced form is
m/3 for some m;
. . .

The enumeration we use for Q+ is shown in the following diagram:

(50)

1/1 2/1 → 3/1 4/1 → 5/1 . . .
↓ ↑ ↓ ↑ ↓

1/2 → 3/2 5/2 7/2 9/2 . . .
↓ ↑ ↓

1/3 ← 2/3 ← 4/3 5/3 7/3 . . .
↓ ↑ ↓

1/4 → 3/4 → 5/4 → 7/4 9/4 . . .
↓

...
...

...
...

...
. . .

Finally, if a1, a2, . . . is the enumeration of Q+ then 0, a1,−a1, a2,−a2, . . . is an
enumeration of Q. �

We will see in the next section that not all infinite sets are denumerable. How-
ever denumerable sets are the smallest infinite sets in the following sense:

Theorem 4.6.5. If A is infinite then A contains a denumerable subset.

Proof. Since A 6= ∅ there exists at least one element in A; denote one such
element by a1. Since A is not finite, A 6= {a1}, and so there exists a2, say, where
a2 ∈ A, a2 6= a1. Similarly there exists a3, say, where a3 ∈ A, a3 6= a2, a3 6=
a1. This process will never terminate, as otherwise A ∼ {a1, a2, . . . , an} for some
natural number n.
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Thus we construct a denumerable set B = {a1, a2, . . .}9 where B ⊂ A. �

4.7. Uncountable Sets

There now arises the question

Are all infinite sets denumerable?

It turns out that the answer is No, as we see from the next theorem. Two proofs
will be given, both are due to Cantor (late nineteenth century), and the underlying
idea is the same.

Theorem 4.7.1. The sets N and (0, 1) are not equivalent.

The first proof is by an ingenious diagonalisation argument . There are a couple
of footnotes which may help you understand the proof.

Proof. 10 We show that for any f :N→ (0, 1), the map f cannot be onto. It
follows that there is no one-one and onto map from N to (0, 1).

To see this, let yn = f(n) for each n. If we write out the decimal expansion for
each yn, we obtain a sequence

y1 = .a11a12a13 . . . a1i . . .

y2 = .a21a22a23 . . . a2i . . .

y3 = .a31a32a33 . . . a3i . . .(51)

...

yi = .ai1 ai2 ai3 . . . aii . . .

...

Some rational numbers have two decimal expansions, e.g. .14000 . . . = .13999 . . .
but otherwise the decimal expansion is unique. In order to have uniqueness, we
only consider decimal expansions which do not end in an infinite sequence of 9’s.

To show that f cannot be onto we construct a real number z not in the
above sequence, i.e. a real number z not in the range of f . To do this define
z = .b1b2b3 . . . bi . . . by “going down the diagonal” as follows:

Select b1 6= a11, b2 6= a22, b3 6= a33, . . . ,bi 6= aii,. . . . We make
sure that the decimal expansion for z does not end in an infinite
sequence of 9’s by also restricting bi 6= 9 for each i; one explicit
construction would be to set bn = ann + 1 mod 9.

It follows that z is not in the sequence (51)11, since for each i it is clear that
z differs from the i’th member of the sequence in the i’th place of z’s decimal
expansion. But this implies that f is not onto. �

Here is the second proof.

Proof. Suppose that (an) is a sequence of real numbers, we show that there
is a real number r ∈ (0, 1) such that r 6= an for every n.

Let I1 be a closed subinterval of (0, 1) with a1 6∈ I1, I2 a closed subinterval of
I1 such that a2 6∈ I2. Inductively, we obtain a sequence (In) of intervals such that

9To be precise, we need the so-called Axiom of Choice to justify the construction of B by

means of an infinite number of such choices of the ai. See 4.10.1 below.
10We will show that any sequence (“list”) of real numbers from (0, 1) cannot include all

numbers from (0, 1). In fact, there will be an uncountable (see Definition 4.7.3) set of real numbers
not in the list — but for the proof we only need to find one such number.

11First convince yourself that we really have constructed a number z. Then convince yourself

that z is not in the list, i.e. z is not of the form yn for any n.
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In+1 ⊆ In for all n. Writing In = [αn, βn], the nesting of the intervals shows that
αn ≤ αn+1 < βn+1 ≤ βn. In particular, (αn) is bounded above, (βn) is bounded
below, so that α = supn αn, β = infn βn are defined. Further it is clear that
[α, β] ⊆ In for all n, and hence excludes all the (an). Any r ∈ [α, β] suffices. �

Corollary 4.7.2. N is not equivalent to R.

Proof. If N ∼ R, then since R ∼ (0, 1) (from Section 4.5), it follows that
N ∼ (0, 1) from Proposition (4.5.2). This contradicts the preceding theorem. �

A Common Error Suppose that A is an infinite set. Then it is not always
correct to say “let A = {a1, a2, . . .}”. The reason is of course that this implicitly
assumes that A is countable.

Definition 4.7.3. A set is uncountable if it is not countable. If a set is equiv-
alent to R we say it has cardinality c (or cardinal number c)12.

Another surprising result (again due to Cantor) which we prove in the next
section is that the cardinality of R2 = R× R is also c.

Remark We have seen that the set of rationals has cardinality d. It follows13

that the set of irrationals has cardinality c. Thus there are “more” irrationals than
rationals.

On the other hand, the rational numbers are dense in the reals, in the sense
that between any two distinct real numbers there is a rational number14. (It is also
true that between any two distinct real numbers there is an irrational number15.)

4.8. Cardinal Numbers

The following definition extends the idea of the number of elements in a set
from finite sets to infinite sets.

Definition 4.8.1. With every set A we associate a symbol called the cardinal

number of A and denoted by A. Two sets are assigned the same cardinal number

iff they are equivalent16. Thus A = B iff A ∼ B.

If A = ∅ we write A = 0.
If A = {a1, . . . , an} (where a1, . . . , an are all distinct) we write A = n.

If A ∼ N we write A = d (or ℵ0, called “aleph zero”, where ℵ is the first letter of
the Hebrew alphabet).

If A ∼ R we write A = c.

12c comes from continuum, an old way of referring to the set R.
13We show in one of the problems for this chapter that if A has cardinality c and B ⊂ A has

cardinality d, then A \B has cardinality c.
14Suppose a < b. Choose an integer n such that 1/n < b − a. Then a < m/n < b for some

integer m.
15Using the notation of the previous footnote, take the irrational number m/n +

√
2/N for

some sufficiently large natural number N .
16We are able to do this precisely because the relation of equivalence is reflexive, symmetric

and transitive. For example, suppose 10 people are sitting around a round table. Define a relation

between people by A ∼ B iff A is sitting next to B, or A is the same as B. It is not possible to
assign to each person at the table a colour in such a way that two people have the same colour if

and only if they are sitting next to each other. The problem is that the relation we have defined
is reflexive and symmetric, but not transitive.
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Definition 4.8.2. Suppose A and B are two sets. We write A ≤ B (or B ≥ A)
if A is equivalent to some subset of B, i.e. if there is a one-one map from A into
B 17.

If A ≤ B and A 6= B, then we write A < B (or B > A)18.

Proposition 4.8.3.

(52) 0 < 1 < 2 < 3 < . . . < d < c.

Proof. Consider the sets

{a1}, {a1, a2}, {a1, a2, a3}, . . . ,N,R,

where a1, a2, a3, . . . are distinct from one another. There is clearly a one-one map
from any set in this “list” into any later set in the list (why?), and so

(53) 1 ≤ 2 ≤ 3 ≤ . . . ≤ d ≤ c.

For any integer n we have n 6= d from Theorem 4.6.2, and so n < d from (53).
Since d 6= c from Corollary 4.7.2, it also follows that d < c from (53).

Finally, the fact that 1 6= 2 6= 3 6= . . . (and so 1 < 2 < 3 < . . . from (53)) can
be proved by induction. �

Proposition 4.8.4. Suppose A is non-empty. Then for any set B, there exists

a surjective function g :B → A iff A ≤ B.

Proof. If g is onto, we can choose for every x ∈ A an element y ∈ B such
that g(y) = x. Denote this element by f(x)19. Thus g(f(x)) = x for all x ∈ A.

Then f :A→ B and f is clearly one-one (since if f(x1) = f(x2) then g(f(x1)) =

g(f(x2)); but g(f(x1)) = x1 and g(f(x2)) = x2, and hence x1 = x2). Hence A ≤ B.

Conversely, if A ≤ B then there exists a function f :A → B which is one-one.
Since A is non-empty there is an element in A and we denote one such member by
a. Now define g :B → A by

g(y) =

{
x if f(x) = y,
a if there is no such x.

Then g is clearly onto, and so we are done. �

We have the following important properties of cardinal numbers, some of which
are trivial, and some of which are surprisingly difficult. Statement 2 is known as
the Schröder-Bernstein Theorem.

Theorem 4.8.5. Let A, B and C be cardinal numbers. Then

(1) A ≤ A;

(2) A ≤ B and B ≤ A implies A = B;

(3) A ≤ B and B ≤ C implies A ≤ C;

(4) either A ≤ B or B ≤ A.

17This does not depend on the choice of sets A and B. More precisely, suppose A ∼ A′ and

B ∼ B′, so that A = A′ and B = B′. Then A is equivalent to some subset of B iff A′ is equivalent

to some subset of B′ (exercise).
18This is also independent of the choice of sets A and B in the sense of the previous footnote.

The argument is similar.
19This argument uses the Axiom of Choice, see Section 4.10.1 below.
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Proof. The first and the third results are simple. The first follows from The-
orem 4.5.2(1) and the third from Theorem 4.5.2(3).

The other two result are not easy.

*Proof of (2): Since A ≤ B there exists a function f :A→ B which is one-one
(but not necessarily onto). Similarly there exists a one-one function g :B → A since

B ≤ A.
If f(x) = y or g(u) = v we say x is a parent of y and u is a parent of v. Since

f and g are one-one, each element has exactly one parent, if it has any.
If y ∈ B and there is a finite sequence x1, y1, x2, y2, . . . , xn, y or y0, x1, y1,

x2, y2, . . . , xn, y, for some n, such that each member of the sequence is the parent
of the next member, and such that the first member has no parent, then we say y
has an original ancestor, namely x1 or y0 respectively. Notice that every member
in the sequence has the same original ancestor. If y has no parent, then y is its own
original ancestor. Some elements may have no original ancestor.

Let A = AA ∪ AB ∪ A∞, where AA is the set of elements in A with original
ancestor in A, AB is the set of elements in A with original ancestor in B, and A∞ is
the set of elements in A with no original ancestor. Similarly let B = BA∪BB∪B∞,
where BA is the set of elements in B with original ancestor in A, BB is the set of
elements in B with original ancestor in B, and B∞ is the set of elements in B with
no original ancestor.

Define h :A→ B as follows:

if x ∈ AA then h(x) = f(x),
if x ∈ AB then h(x) = the parent of x,
if x ∈ A∞ then h(x) = f(x).

Note that every element in AB must have a parent (in B), since if it did not
have a parent in B then the element would belong to AA. It follows that the
definition of h makes sense.

If x ∈ AA, then h(x) ∈ BA, since x and h(x) must have the same original
ancestor (which will be in A). Thus h : AA → BA. Similarly h : AB → BB and
h :A∞ → B∞.

Note that h is one-one, since f is one-one and since each x ∈ AB has exactly
one parent.

Every element y in BA has a parent in A (and hence in AA). This parent is
mapped to y by f and hence by h, and so h :AA → BA is onto. A similar argument
shows that h :A∞ → B∞ is onto. Finally, h :AB → BB is onto as each element y
in BB is the image under h of g(y). It follows that h is onto.

Thus h is one-one and onto, as required. End of proof of (2).
*Proof of (4): We do not really have the tools to do this, see Section 4.10.1

below. One lets

F = {f | f :U → V, U ⊂ A, V ⊂ B, f is one-one and onto}.

It follows from Zorn’s Lemma, see 4.10.1 below, that F contains a maximal element.
Either this maximal element is a one-one function from A into B, or its inverse is
a one-one function from B into A. �

Corollary 4.8.6. Exactly one of the following holds:

(54) A < B or A = B or B < A.

Proof. Suppose A = B. Then the second alternative holds and the first and
third do not.
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Suppose A 6= B. Either A ≤ B or B ≤ A from the previous theorem. Again
from the previous theorem exactly one of these possibilities can hold, as both to-

gether would imply A = B. If A ≤ B then in fact A < B since A 6= B. Similarly,

if B ≤ A then B < A. �

Corollary 4.8.7. If A ⊂ R and A includes an interval of positive length, then
A has cardinality c.

Proof. Suppose I ⊂ A where I is an interval of positive length. Then I ≤
A ≤ R. Thus c ≤ A ≤ c, using the result at the end of Section 4.5 on the cardinality
of an interval.

Hence A = c from the Schröder-Bernstein Theorem. �

NB The converse to Corollary 4.8.7 is false. As an example, consider the following
set

(55) S = {
∞∑
n=1

an3−n : an = 0 or 2}

The mapping S → [0, 1] :
∑∞
n=1

an
3n 7→

∑∞
n=1 an2−n−1 takes S onto [0, 1], so that S

must be uncountable. On the other hand, S contains no interval at all. To see this,
it suffices to show that for any x ∈ S, and any ε > 0 there are points in [x, x + ε]
lying outside S. It is a calculation to verify that x+a3−k is such a point for suitably
large k, and suitable choice of a = 1 or 2 (exercise).

The set S above is known as the Cantor ternary set. It has further important
properties which you will come across in topology and measure theory, see also
Section 14.1.2.

We now prove the result promised at the end of the previous Section.

Theorem 4.8.8. The cardinality of R2 = R× R is c.

Proof. Let f : (0, 1) → R be one-one and onto, see Section 4.5. The map
(x, y) 7→ (f(x), f(y)) is thus (exercise) a one-one map from (0, 1) × (0, 1) onto
R × R; thus (0, 1) × (0, 1) ∼ R × R. Since also (0, 1) ∼ R, it is sufficient to show
that (0, 1) ∼ (0, 1)× (0, 1).

Consider the map f : (0, 1)× (0, 1)→ (0, 1) given by

(56) (x, y) = (.x1x2x3 . . . , .y1y2y3 . . .) 7→ .x1y1x2y2x3y3 . . .

We take the unique decimal expansion for each of x and y given by requiring
that it does not end in an infinite sequence of 9’s. Then f is one-one but not
onto (since the number .191919 . . . for example is not in the range of f). Thus

(0, 1)× (0, 1) ≤ (0, 1).
On the other hand, there is a one-one map g : (0, 1) → (0, 1) × (0, 1) given by

g(z) = (z, 1/2), for example. Thus (0, 1) ≤ (0, 1)× (0, 1).

Hence (0, 1) = (0, 1)× (0, 1) from the Schröder-Bernstein Theorem, and the

result follows as (0, 1) = c. �

The same argument, or induction, shows that Rn has cardinality c for each
n ∈ N. But what about RN = {F : N→ R}?
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4.9. More Properties of Sets of Cardinality c and d

Theorem 4.9.1.

(1) The product of two countable sets is countable.
(2) The product of two sets of cardinality c has cardinality c.
(3) The union of a countable family of countable sets is countable.
(4) The union of a cardinality c family of sets each of cardinality c has cardi-

nality c.

Proof. (1) Let A = (a1, a2, . . .) and B = (b1, b2, . . .) (assuming A and B are
infinite; the proof is similar if either is finite). Then A × B can be enumerated as
follows (in the same way that we showed the rationals are countable):

(57)

(a1, b1) (a1, b2) → (a1, b3) (a1, b4) → (a1, b5) . . .
↓ ↑ ↓ ↑ ↓

(a2, b1) → (a2, b2) (a2, b3) (a2, b4) (a2, b5) . . .
↓ ↑ ↓

(a3, b1) ← (a3, b2) ← (a3, b3) (a3, b4) (a3, b5) . . .
↓ ↑ ↓

(a4, b1) → (a4, b2) → (a4, b3) → (a4, b4) (a4, b5) . . .
↓

...
...

...
...

...
. . .

(2) If the sets A and B have cardinality c then they are in one-one correspon-
dence20 with R. It follows that A × B is in one-one correspondence with R × R,
and so the result follows from Theorem 4.8.8.

(3) Let {Ai}∞i=1 be a countable family of countable sets. Consider an array
whose first column enumerates the members of A1, whose second column enumer-
ates the members of A2, etc. Then an enumeration similar to that in (1), but
suitably modified to take account of the facts that some columns may be finite,
that the number of columns may be finite, and that some elements may appear in
more than one column, gives the result.

(4) Let {Aα}α∈S be a family of sets each of cardinality c, where the index set
S has cardinality c. Let fα :Aα → R be a one-one and onto function for each α.

Let A =
⋃
α∈S Aα and define f :A→ R× R by f(x) = (α, fα(x)) if x ∈ Aα (if

x ∈ Aα for more than one α, choose one such α 21). It follows that A ≤ R× R,

and so A ≤ c from Theorem 4.8.8.
On the other hand there is a one-one map g from R into A (take g equal to the

inverse of fα for some α ∈ S) and so c ≤ A.
The result now follows from the Schröder-Bernstein Theorem. �

Remark The phrase “Let fα :Aα → R be a one-one and onto function for each α”
looks like another invocation of the axiom of choice, however one could interpret
the hypothesis on {Aα}α∈S as providing the maps fα. This has implicitly been
done in (3) and (4).

Remark It is clear from the proof that in (4) it is sufficient to assume that each set
is countable or of cardinality c, provided that at least one of the sets has cardinality
c.

20A and B are in one-one correspondence means that there is a one-one map from A onto
B.

21We are using the Axiom of Choice in simultaneously making such a choice for each x ∈ A.
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4.10. *Further Remarks

4.10.1. The Axiom of choice. For any non-empty set X, there is a function
f : P(X)→ X such that f(A) ∈ A for A ∈ P(X)\{∅}.

This axiom has a somewhat controversial history – it has some innocuous equiv-
alences (see below), but other rather startling consequences such as the Banach-
Tarski paradox22. It is known to be independent of the other usual axioms of set
theory (it cannot be proved or disproved from the other axioms) and relatively
consistent (neither it, nor its negation, introduce any new inconsistencies into set
theory). Nowadays it is almost universally accepted and used without any further
ado. For example, it is needed to show that any vector space has a basis or that
the infinite product of non-empty sets is itself non-empty.

Theorem 4.10.1. The following are equivalent to the axiom of choice:

(1) If h is a function with domain A, there is a function f with domain A
such that if x ∈ A and h(x) 6= ∅, then f(x) ∈ h(x).

(2) If ρ ⊆ A × B is a relation with domain A, then there exists a function
f : A→ B with f ⊆ ρ.

(3) If g : B → A is onto, then there exists f : A → B such that g ◦ f =
identity on A.

Proof. These are all straightforward; (3) was used in 4.8.4. �

For some of the most commonly used equivalent forms we need some further
concepts.

Definition 4.10.2. A relation ≤ on a set X is a partial order on X if, for all
x, y, z ∈ X,

(1) (x ≤ y) ∧ (y ≤ x)⇒ x = y (antisymmetry), and
(2) (x ≤ y) ∧ (y ≤ z)⇒ x ≤ z (transitivity), and
(3) x ≤ x for all x ∈ X (reflexivity).

An element x ∈ X is maximal if (y ∈ X) ∧ (x ≤ y)⇒ y = x, x is maximum (=
greatest) if z ≤ x for all z ∈ X. Similar for minimal and minimum ( = least), and
upper and lower bounds.

A subset Y of X such that for any x, y ∈ Y , either x ≤ y or y ≤ x is called
a chain. If X itself is a chain, the partial order is a linear or total order. A linear
order ≤ for which every non-empty subset of X has a least element is a well order.

Remark Note that if ≤ is a partial order, then ≥, defined by x ≥ y := y ≤ x,
is also a partial order. However, if both ≤ and ≥ are well orders, then the set is
finite. (exercise).

With this notation we have the following, the proof of which is not easy (though
some one way implications are).

Theorem 4.10.3. The following are equivalent to the axiom of choice:

(1) Zorn’s Lemma A partially ordered set in which any chain has an upper
bound has a maximal element.

(2) Hausdorff maximal principle Any partially ordered set contains a max-
imal chain.

(3) Zermelo well ordering principle Any set admits a well order.

22This says that a ball in R3 can be divided into five pieces which can be rearranged by rigid
body motions to give two disjoint balls of the same radius as before!
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(4) Teichmuller/Tukey maximal principle For any property of finite char-
acter on the subsets of a set, there is a maximal subset with the property23.

4.10.2. Other Cardinal Numbers. We have examples of infinite sets of
cardinality d (e.g. N ) and c (e.g. R).

A natural question is:

Are there other cardinal numbers?

The following theorem implies that the answer is YES.

Theorem 4.10.4. If A is any set, then A < P(A).

Proof. The map a→ {a} is a one-one map from A into P(A).
If f :A→ P(A), let

(58) X = {a ∈ A : a 6∈ f(a)} .
Then X ∈ P(A); suppose X = f(b) for some b in A. If b ∈ X then b 6∈ f(b) (from
the defining property of X), contradiction. If b 6∈ X then b ∈ f(b) (again from the
defining property of X), contradiction. Thus X is not in the range of f and so f
cannot be onto. �

Remark Note that the argument is similar to that used to obtain Russell’s Para-
dox.

Remark Applying the previous theorem successively toA = R,P(R), P(P(R)), . . .
we obtain an increasing sequence of cardinal numbers. We can take the union S
of all sets thus constructed, and it’s cardinality is larger still. Then we can repeat
the procedure with R replaced by S, etc., etc. And we have barely scratched the
surface!

It is convenient to introduce the notation A∪· B to indicate the union of A and
B, considering the two sets to be disjoint.

Theorem 4.10.5. The following are equivalent to the axiom of choice:

(1) If A and B are two sets then either A ≤ B or B ≤ A.

(2) If A and B are two sets, then (A×A = B ×B)⇒ A = B.

(3) A×A = A for any infinite set A. ( cf 4.9.1)

(4) A×B = A ∪· B for any two infinite sets A and B.

However A ∪· A = A for all infinite sets A 6⇒ AC.

4.10.3. The Continuum Hypothesis. Another natural question is:

Is there a cardinal number between c and d?

More precisely: Is there an infinite set A ⊂ R with no one-one map from A onto N
and no one-one map from A onto R? All infinite subsets of R that arise “naturally”
either have cardinality c or d. The assertion that all infinite subsets of R have this
property is called the Continuum Hypothesis (CH). More generally the assertion

that for every infinite set A there is no cardinal number between A and P(A) is
the Generalized Continuum Hypothesis (GCH). It has been proved that the CH is
an independent axiom in set theory, in the sense that it can neither be proved nor
disproved from the other axioms (including the axiom of choice)24. Most, but by no

23A property of subsets is of finite character if a subset has the property iff all of its finite
(sub)subsets have the property.

24We will discuss the Zermelo-Fraenkel axioms for set theory in a later course.



46 4. SET THEORY

means all, mathematicians accept at least CH. The axiom of choice is a consequence
of GCH.

4.10.4. Cardinal Arithmetic. If α = A and β = B are infinite cardinal
numbers, we define their sum and product by

α+ β = A ∪· B(59)

α× β = A×B,(60)

From Theorem 4.10.5 it follows that α+ β = α× β = max{α, β}.
More interesting is exponentiation; we define

(61) αβ = {f | f :B → A}.
Why is this consistent with the usual definition of mn and Rn where m and n are
natural numbers?

For more information, see [BM, Chapter XII].

4.10.5. Ordinal numbers. Well ordered sets were mentioned briefly in 4.10.1
above. They are precisely the sets on which one can do (transfinite) induction. Just
as cardinal numbers were introduced to facilitate the “size” of sets, ordinal numbers
may be introduced as the “order-types” of well-ordered sets. Alternatively they may
be defined explicitly as sets W with the following three properties.

(1) every member of W is a subset of W
(2) W is well ordered by ⊂
(3) no member of W is an member of itself

Then N, and its elements are ordinals, as is N ∪ {N}. Recall that for n ∈ N,
n = {m ∈ N : m < n}. An ordinal number in fact is equal to the set of ordinal
numbers less than itself.



CHAPTER 5

Vector Space Properties of Rn

In this Chapter we briefly review the fact that Rn, together with the usual
definitions of addition and scalar multiplication, is a vector space. With the usual
definition of Euclidean inner product, it becomes an inner product space.

5.1. Vector Spaces

Definition 5.1.1. A Vector Space (over the reals1) is a set V (whose members
are called vectors), together with two operations called addition and scalar multi-
plication, and a particular vector called the zero vector and denoted by 0. The sum
(addition) of u,v ∈ V is a vector2 in V and is denoted u + v; the scalar multiple of
the scalar (i.e. real number) c ∈ R and u ∈ V is a vector in V and is denoted cu.
The following axioms are satisfied:

(1) u + v = v + u for all u,v ∈ V (commutative law)
(2) u + (v + w) = (u + v) + w for all u,v,w ∈ V (associative law)
(3) u + 0 = u for all u ∈ V (existence of an additive identity)
(4) (c + d)u = cu + du, c(u + v) = cu + cv for all c, d ∈ R and u,v ∈ V

(distributive laws)
(5) (cd)u = c(du) for all c, d ∈ R and u ∈ V
(6) 1u = u for all u ∈ V

Examples

(1) Recall that Rn is the set of all n-tuples (a1, . . . , an) of real numbers. The
sum of two n-tuples is defined by

(62) (a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn) 3.

The product of a scalar and an n-tuple is defined by

(63) c(a1, . . . , an) = (ca1, . . . , can).

The zero n-vector is defined to be

(64) (0, . . . , 0).

With these definitions it is easily checked that Rn becomes a vector space.
(2) Other very important examples of vector spaces are various spaces of

functions. For example C[a, b], the set of continuous4 real-valued functions
defined on the interval [a, b], with the usual addition of functions and
multiplication of a scalar by a function, is a vector space (what is the zero
vector?).

1One can define a vector space over the complex numbers in an analogous manner.
2It is common to denote vectors in boldface type.
3This is not a circular definition; we are defining addition of n-tuples in terms of addition of

real numbers.
4We will discuss continuity in a later chapter. Meanwhile we will just use C[a, b] as a source

of examples.

47



48 5. VECTOR SPACE PROPERTIES OF Rn

Remarks You should review the following concepts for a general vector space
(see [Fl, Appendix 1] or [An]):

• linearly independent set of vectors, linearly dependent set of vectors,
• basis for a vector space, dimension of a vector space,
• linear operator between vector spaces.

The standard basis for Rn is defined by

(65)

e1 = (1, 0, . . . , 0)
e2 = (0, 1, . . . , 0)

...
en = (0, 0, . . . , 1)

Geometric Representation of R2 and R3 The vector x = (x1, x2) ∈ R2 is
represented geometrically in the plane either by the arrow from the origin (0, 0) to
the point P with coordinates (x1, x2), or by any parallel arrow of the same length,
or by the point P itself. Similar remarks apply to vectors in R3.

5.2. Normed Vector Spaces

A normed vector space is a vector space together with a notion of magnitude or
length of its members, which satisfies certain axioms. More precisely:

Definition 5.2.1. A normed vector space is a vector space V together with
a real-valued function on V called a norm. The norm of u is denoted by ||u||
(sometimes |u|). The following axioms are satisfied for all u ∈ V and all α ∈ R:

(1) ||u|| ≥ 0 and ||u|| = 0 iff u = 0 (positivity),
(2) ||αu|| = |α| ||u|| (homogeneity),
(3) ||u + v|| ≤ ||u||+ ||v|| (triangle inequality).

We usually abbreviate normed vector space to normed space.
Easy and important consequences (exercise) of the triangle inequality are

(66) ||u|| ≤ ||u− v||+ ||v||,

(67)
∣∣∣||u|| − ||v||∣∣∣ ≤ ||u− v||.

Examples

(1) The vector space Rn is a normed space if we define ||(x1, . . . , xn)||2 =(
(x1)2+· · · +(xn)2

)1/2

. The only non-obvious part to prove is the triangle

inequality. In the next section we will see that Rn is in fact an inner
product space, that the norm we just defined is the norm corresponding
to this inner product, and we will see that the triangle inequality is true
for the norm in any inner product space.

(2) There are other norms which we can define on Rn. For 1 ≤ p <∞,

(68) ||(x1, . . . , xn)||p =

(
n∑
i=1

|xi|p
)1/p

defines a norm on Rn, called the p-norm. It is also easy to check that

(69) ||(x1, . . . , xn)||∞ = max{|x1|, . . . , |xn|}
defines a norm on Rn, called the sup norm. Exercise: Show this notation
is consistent, in the sense that

(70) lim
p→∞

||x||p = ||x||∞
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(3) Similarly, it is easy to check (exercise) that the sup norm on C[a, b] defined
by

(71) ||f ||∞ = sup |f | = sup {|f(x)| : a ≤ x ≤ b}
is indeed a norm. (Note, incidentally, that since f is continuous, it follows
that the sup on the right side of the previous equality is achieved at some
x ∈ [a, b], and so we could replace sup by max.)

(4) A norm on C[a, b] is defined by

(72) ||f ||1 =

∫ b

a

|f |.

Exercise: Check that this is a norm.
C[a, b] is also a normed space5 with

(73) ||f || = ||f ||2 =

(∫ b

a

f2

)1/2

.

Once again the triangle inequality is not obvious. We will establish it in
the next section.

(5) Other examples are the set of all bounded sequences on N:

(74) `∞(N) = {(xn) : ||(xn)||∞ = sup |xn| <∞}.
and its subset c0(N) of those sequences which converge to 0.

(6) On the other hand, for RN, which is clearly a vector space under pointwise
operations, has no natural norm. Why?

5.3. Inner Product Spaces

A (real) inner product space is a vector space in which there is a notion of
magnitude and of orthogonality, see Definition 5.3.2. More precisely:

Definition 5.3.1. An inner product space is a vector space V together with
an operation called inner product. The inner product of u,v ∈ V is a real number
denoted by u · v or (u,v)6. The following axioms are satisfied for all u,v,w ∈ V :

(1) u · u ≥ 0, u · u = 0 iff u = 0 (positivity)
(2) u · v = v · u (symmetry)
(3) (u + v) ·w = u ·w + v ·w, (cu) · v = c(u · v) (bilinearity)7

Remark In the complex case v · u = u · v. Thus from 2. and 3. The inner
product is linear in the first variable and conjugate linear in the second variable,
that is, it is sesquilinear .

Examples

(1) The Euclidean inner product (or dot product or standard inner product)
of two vectors in Rn is defined by

(75) (a1, . . . , an) · (b1, . . . , bn) = a1b1 + · · ·+ anbn

It is easily checked that this does indeed satisfy the axioms for an inner
product. The corresponding inner product space is denoted by En in [Fl],
but we will abuse notation and use Rn for the set of n-tuples, for the
corresponding vector space, and for the inner product space just defined.

5We will see the reason for the || · ||2 notation when we discuss the Lp norm.
6Other notations are 〈·, ·〉 and (·|·).
7Thus an inner product is linear in the first argument. Linearity in the second argument

then follows from 2.
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(2) One can define other inner products on Rn, these will be considered in
the algebra part of the course. One simple class of examples is given by
defining

(76) (a1, . . . , an) · (b1, . . . , bn) = α1a1b1 + · · ·+ αnanbn,

where α1, . . . , αn is any sequence of positive real numbers. Exercise Check
that this defines an inner product.

(3) Another important example of an inner product space is C[a, b] with the

inner product defined by f · g =
∫ b
a
fg. Exercise: check that this defines

an inner product.

Definition 5.3.2. In an inner product space we define the length (or norm)
of a vector by

(77) |u| = (u · u)1/2,

and the notion of orthogonality between two vectors by

(78) u is orthogonal to v (written u ⊥ v) iff u · v = 0.

Example The functions

(79) 1, cosx, sinx, cos 2x, sin 2x, . . .

form an important (infinite) set of pairwise orthogonal functions in the inner prod-
uct space C[0, 2π], as is easily checked. This is the basic fact in the theory of Fourier
series (you will study this theory at some later stage).

Theorem 5.3.3. An inner product on V has the following properties: for any
u,v ∈ V ,

(80) |u · v| ≤ |u| |v| (Cauchy-Schwarz-Bunyakovsky Inequality),

and if v 6= 0 then equality holds iff u is a multiple of v.
Moreover, | · | is a norm, and in particular

(81) |u + v| ≤ |u|+ |v| (Triangle Inequality).

If v 6= 0 then equality holds iff u is a nonnegative multiple of v.

The proof of the inequality is in [Fl, p. 6]. Although the proof given there is
for the standard inner product in Rn, the same proof applies to any inner product
space. A similar remark applies to the proof of the triangle inequality in [Fl, p. 7].
The other two properties of a norm are easy to show.

An orthonormal basis for a finite dimensional inner product space is a basis
{v1, . . . ,vn} such that

(82) vi · vj =

{
0 if i 6= j
1 if i = j

Beginning from any basis {x1, . . . ,xn} for an inner product space, one can con-
struct an orthonormal basis {v1, . . . ,vn} by the Gram-Schmidt process described
in [F, p.10 Question 10]. See Figure 1.

If x is a unit vector (i.e. |x| = 1) in an inner product space then the component
of v in the direction of x is v ·x. In particular, in Rn the component of (a1, . . . , an)
in the direction of ei is ai.
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Figure 1. Gram-Schmidt process: Construct v1 of unit length in
the subspace generated by x1; then construct v2 of unit length,
orthogonal to v1, and in the subspace generated by x1 and x2;
then construct v3 of unit length, orthogonal to v1 and v2, and in
the subspace generated by x1, x2 and x3; etc.





CHAPTER 6

Metric Spaces

Metric spaces play a fundamental role in Analysis. In this chapter we will see
that Rn is a particular example of a metric space. We will also study and use other
examples of metric spaces.

6.1. Basic Metric Notions in Rn

Definition 6.1.1. The distance between two points x,y ∈ Rn is given by

d(x,y) = |x− y| =
(
(x1 − y1)2 + · · ·+ (xn − yn)2

)1/2
.

Theorem 6.1.2. For all x,y, z ∈ Rn the following hold:

(1) d(x,y) ≥ 0, d(x,y) = 0 iff x = y (positivity),
(2) d(x,y) = d(y,x) (symmetry),
(3) d(x,y) ≤ d(x, z) + d(z,y) (triangle inequality).

Proof. The first two are immediate. For the third we have d(x,y) = |x−y| =
|x − z + z − y| ≤ |x − z| + |z − y| = d(x, z) + d(z,y), where the inequality comes
from version (81) of the triangle inequality in Section 5.3. �

6.2. General Metric Spaces

We now generalise these ideas as follows:

Definition 6.2.1. A metric space (X, d) is a set X together with a distance
function d :X ×X → R such that for all x, y, z ∈ X the following hold:

(1) d(x, y) ≥ 0, d(x, y) = 0 iff x = y (positivity),
(2) d(x, y) = d(y, x) (symmetry),
(3) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

We often denote the corresponding metric space by (X, d), to indicate that a metric
space is determined by both the set X and the metric d.

Examples

(1) We saw in the previous section that Rn together with the distance function
defined by d(x,y) = |x− y| is a metric space. This is called the standard
or Euclidean metric on Rn.

Unless we say otherwise, when referring to the metric space Rn, we
will always intend the Euclidean metric.

(2) More generally, any normed space is also a metric space, if we define

d(x, y) = ||x− y||.

The proof is the same as that for Theorem 6.1.2. As examples, the sup
norm on Rn, and both the inner product norm and the sup norm on C[a, b]
(c.f. Section 5.2), induce corresponding metric spaces.
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(3) An example of a metric space which is not a vector space is a smooth
surface S in R3, where the distance between two points x,y ∈ S is defined
to be the length of the shortest curve joining x and y and lying entirely in
S. Of course to make this precise we first need to define smooth, surface,
curve, and length, as well as consider whether there will exist a curve of
shortest length (and is this necessary anyway?)

(4) French metro, Post Office Let X = {x ∈ R2 : |x| ≤ 1} and define

d(x,y) =

{
|x− y| if x = ty for some scalar t
|x|+ |y| otherwise

One can check that this defines a metric—the French metro with Paris
at the centre. The distance between two stations on different lines is
measured by travelling in to Paris and then out again.

(5) p-adic metric. Let X = Z, and let p ∈ N be a fixed prime. For x, y ∈
Z, x 6= y, we have x− y = pkn uniquely for some k ∈ N, and some n ∈ Z
not divisible by p. Define

d(x, y) =

{
(k + 1)−1 if x 6= y

0 if x = y

One can check that this defines a metric which in fact satisfies the strong
triangle inequality (which implies the usual one):

d(x, y) ≤ max{d(x, z), d(z, y)}.

Members of a general metric space are often called points, although they may be
functions (as in the case of C[a, b]), sets (as in 14.5) or other mathematical objects.

Definition 6.2.2. Let (X, d) be a metric space. The open ball of radius r > 0
centred at x, is defined by

(83) Br(x) = {y ∈ X : d(x, y) < r}.

Note that the open balls in R are precisely the intervals of the form (a, b) (the
centre is (a+ b)/2 and the radius is (b− a)/2).

Exercise: Draw the open ball of radius 1 about the point (1, 2) ∈ R2, with respect
to the Euclidean (L2), sup (L∞) and L1 metrics. What about the French metro?

It is often convenient to have the following notion 1.

Definition 6.2.3. Let (X, d) be a metric space. The subset Y ⊂ X is a
neighbourhood of x ∈ X if there is R > 0 such that Br(x) ⊂ Y .

Definition 6.2.4. A subset S of a metric space X is bounded if S ⊂ Br(x) for
some x ∈ X and some r > 0.

Proposition 6.2.5. If S is a bounded subset of a metric space X, then for
every y ∈ X there exists ρ > 0 (ρ depending on y) such that S ⊂ Bρ(y).

In particular, a subset S of a normed space is bounded iff S ⊂ Br(0) for some
r, i.e. iff for some real number r, ||x|| < r for all x ∈ S.

Proof. Assume S ⊂ Br(x) and y ∈ X. Then Br(x) ⊂ Bρ(y) where ρ =
r+ d(x, y); since if z ∈ Br(x) then d(z, y) ≤ d(z, x) + d(x, y) < r+ d(x, y) = ρ, and
so z ∈ Bρ(y). Since S ⊂ Br(x) ⊂ Bρ(y), it follows S ⊂ Bρ(y) as required. �

The previous proof is a typical application of the triangle inequality in a metric
space.

1Some definitions of neighbourhood require the set to be open (see Section 6.4 below).
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Figure 1. S ⊂ Br(x), and Br(x) ⊂ Bρ(y) if ρ = r + d(x, y).

6.3. Interior, Exterior, Boundary and Closure

Everything from this section, including proofs, unless indicated otherwise and
apart from specific examples, applies with Rn replaced by an arbitrary metric space
(X, d).

The following ideas make precise the notions of a point being strictly inside,
strictly outside, on the boundary of, or having arbitrarily close-by points from, a
set A.

Definition 6.3.1. Suppose that A ⊂ Rn. A point x ∈ Rn is an interior
(respectively exterior) point of A if some open ball centred at x is a subset of A
(respectively Ac). If every open ball centred at x contains at least one point of A
and at least one point of Ac, then x is a boundary point of A.

The set of interior (exterior) points of A is called the interior (exterior) of A
and is denoted by A0 or int A (ext A). The set of boundary points of A is called
the boundary of A and is denoted by ∂A.

Proposition 6.3.2. Suppose that A ⊂ Rn.

(84) Rn = int A ∪ ∂A ∪ ext A,

(85) ext A = int (Ac), int A = ext (Ac),

(86) int A ⊂ A, ext A ⊂ Ac.
The three sets on the right side of (84) are mutually disjoint.

Proof. These all follow immediately from the previous definition, why? �

We next make precise the notion of a point for which there are members of A
which are arbitrarily close to that point.

Definition 6.3.3. Suppose that A ⊂ Rn. A point x ∈ Rn is a limit point of A
if every open ball centred at x contains at least one member of A other than x. A
point x ∈ A ⊂ Rn is an isolated point of A if some open ball centred at x contains
no members of A other than x itself.

NB The terms cluster point and accumulation point are also used here. However,
the usage of these three terms is not universally the same throughout the literature.

Definition 6.3.4. The closure of A ⊂ Rn is the union of A and the set of limit
points of A, and is denoted by A.
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The following proposition follows directly from the previous definitions.

Proposition 6.3.5. Suppose A ⊂ Rn.

(1) A limit point of A need not be a member of A.
(2) If x is a limit point of A, then every open ball centred at x contains an

infinite number of points from A.
(3) A ⊂ A.
(4) Every point in A is either a limit point of A or an isolated point of A, but

not both.
(5) x ∈ A iff every Br(x) (r > 0) contains a point of A.

Proof. Exercise. �

Example 1 If A = {1, 1/2, 1/3, . . . , 1/n, . . .} ⊂ R, then every point in A is an
isolated point. The only limit point is 0.

If A = (0, 1] ⊂ R then there are no isolated points, and the set of limit points
is [0, 1].

Defining fn(t) = tn, set A = {m−1fn : m,n ∈ N}. Then A has only limit point
0 in (C[0, 1], ‖ · ‖∞).

Theorem 6.3.6. If A ⊂ Rn then

A = (ext A)
c
.(87)

A = int A ∪ ∂A.(88)

A = A ∪ ∂A.(89)

Proof. For (87) first note that x ∈ A iff every Br(x) (r > 0) contains at least
one member of A. On the other hand, x ∈ ext A iff some Br(x) is a subset of Ac,
and so x ∈ (ext A)c iff it is not the case that some Br(x) is a subset of Ac, i.e. iff
every Br(x) contains at least one member of A.

Equality (88) follows from (87), (84) and the fact that the sets on the right side
of (84) are mutually disjoint.

For 89 it is sufficient from (87) to show A ∪ ∂A = (int A) ∪ ∂A. But clearly
(int A) ∪ ∂A ⊂ A ∪ ∂A.

On the other hand suppose x ∈ A∪∂A. If x ∈ ∂A then x ∈ (int A)∪∂A, while
if x ∈ A then x 6∈ ext A from the definition of exterior, and so x ∈ (int A) ∪ ∂A
from (84). Thus A ∪ ∂A ⊂ (int A) ∪ ∂A. �

Example 2

Figure 2. A is the shaded region together with the unbroken line,
int A is the shaded region, ∂A is the unbroken line together with
the broken line, A is the shaded region together with the unbroken
line together with the broken line.
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The following proposition shows that we need to be careful in relying too much
on our intuition for Rn when dealing with an arbitrary metric space.

Proposition 6.3.7. Let A = Br(x) ⊂ Rn. Then we have int A = A, ext A =
{y : d(y,x) > r}, ∂A = {y : d(y,x) = r} and A = {y : d(y,x) ≤ r}.

If A = Br(x) ⊂ X where (X, d) is an arbitrary metric space, then int A =
A, ext A ⊃ {y : d(y, x) > r}, ∂A ⊂ {y : d(y, x) = r} and A ⊂ {y : d(y, x) ≤ r}.
Equality need not hold in the last three cases.

Proof. We begin with the counterexample to equality. Let X = {0, 1} with
the metric d(0, 1) = 1, d(0, 0) = d(1, 1) = 0. Let A = B1(0) = {0}. Then (check)
int A = A, ext A = {1}, ∂A = ∅ and A = A.

(int A = A): Since int A ⊂ A, we need to show every point in A is an
interior point. But if y ∈ A, then d(y, x) = s(say) < r and Br−s(y) ⊂ A
by the triangle inequality2,

(extA ⊃ {y : d(y, x) > r}): If d(y, x) > r, let d(y, x) = s. Then Bs−r(y) ⊂
Ac by the triangle inequality (exercise), i.e. y is an exterior point of A.

(ext A = {y : d(y,x) > r} in Rn): We have ext A ⊃ {y : d(y,x) > r} from
the previous result. If d(y,x) ≤ r then every Bs(y), where s > 0, contains
points in A3. Hence y 6∈ ext A. The result follows.

(∂A ⊂ {y : d(y, x) = r}, with equality for Rn): This follows from the pre-
vious results and the fact that ∂A = X \ ((int A) ∪ ext A).

(A ⊂ {y : d(y, x) ≤ r}, with equality for Rn): This follows from A = A∪
∂A and the previous results.

�

Example If Q is the set of rationals in R, then int Q = ∅, ∂Q = R, Q = R and
ext Q = ∅ (exercise).

6.4. Open and Closed Sets

Everything in this section apart from specific examples, applies with Rn replaced
by an arbitrary metric space (X, d).

The concept of an open set is very important in Rn and more generally is basic
to the study of topology4. We will see later that notions such as connectedness of a
set and continuity of a function can be expressed in terms of open sets.

Definition 6.4.1. A set A ⊂ Rn is open iff A ⊂ intA.

Remark Thus a set is open iff all its members are interior points. Note that since
always intA ⊂ A, it follows that

A is open iff A = intA.

We usually show a set A is open by proving that for every x ∈ A there exists
r > 0 such that Br(x) ⊂ A (which is the same as showing that every x ∈ A is an
interior point of A). Of course, the value of r will depend on x in general.

Note that ∅ and Rn are both open sets (for a set to be open, every member
must be an interior point—since the ∅ has no members it is trivially true that every

2If z ∈ Bs(y) then d(z, y) < r − s. But d(y, x) = s and so d(z, x) ≤ d(z, y) + d(y, x) <
(r − s) + s = r, i.e. d(z, x) < r and so z ∈ Br(x) as required. Draw a diagram in R2.

3Why is this true in Rn? It is not true in an arbitrary metric space, as we see from the
counterexample.

4There will be courses on elementary topology and algebraic topology in later years. Topo-
logical notions are important in much of contemporary mathematics.
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member of ∅ is an interior point!). Proposition 6.3.7 shows that Br(x) is open, thus
justifying the terminology of open ball.

The following result gives many examples of open sets.

Theorem 6.4.2. If A ⊂ Rn then int A is open, as is ext A.

Proof. See Figure 3.

Figure 3. Diagram for the proof of Theorem 6.4.2.

Let A ⊂ Rn and consider any x ∈ int A. Then Br(x) ⊂ A for some r > 0. We
claim that Br(x) ⊂ int A, thus proving int A is open.

To establish the claim consider any y ∈ Br(x); we need to show that y is
an interior point of A. Suppose d(y,x) = s (< r). From the triangle inequality
(exercise), Br−s(y) ⊂ Br(x), and so Br−s(y) ⊂ A, thus showing y is an interior
point.

The fact ext A is open now follows from (85). �

Exercise. Suppose A ⊂ Rn. Prove that the interior of A with respect to the
Euclidean metric, and with respect to the sup metric, are the same. Hint: First
show that each open ball about x ∈ Rn with respect to the Euclidean metric
contains an open ball with respect to the sup metric, and conversely.

Deduce that the open sets corresponding to either metric are the same.

The next result shows that finite intersections and arbitrary unions of open
sets are open. It is not true that an arbitrary intersection of open sets is open.
For example, the intervals (−1/n, 1/n) are open for each positive integer n, but⋂∞
n=1(−1/n, 1/n) = {0} which is not open.

Theorem 6.4.3. If A1, . . . , Ak are finitely many open sets then A1 ∩ · · · ∩ Ak
is also open. If {Aλ}λ∈S is a collection of open sets, then

⋃
λ∈S Aλ is also open.

Proof. Let A = A1∩· · ·∩Ak and suppose x ∈ A. Then x ∈ Ai for i = 1, . . . , k,
and for each i there exists ri > 0 such that Bri(x) ⊂ Ai. Let r = min{r1, . . . , rn}.
Then r > 0 and Br(x) ⊂ A, implying A is open.

Next let B =
⋃
λ∈S Aλ and suppose x ∈ B. Then x ∈ Aλ for some λ. For some

such λ choose r > 0 such that Br(x) ⊂ Aλ. Then certainly Br(x) ⊂ B, and so B
is open. �

We next define the notion of a closed set.

Definition 6.4.4. A set A ⊂ Rn is closed iff its complement is open.
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Proposition 6.4.5. A set is open iff its complement is closed.

Proof. Exercise. �

We saw before that a set is open iff it is contained in, and hence equals, its
interior. Analogously we have the following result.

Theorem 6.4.6. A set A is closed iff A = A.

Proof. A is closed iff Ac is open iff Ac = int (Ac) iff Ac = ext A (from (85))
iff A = A (taking complements and using (87)). �

Remark Since A ⊂ A it follows from the previous theorem that A is closed iff
A ⊂ A, i.e. iff A contains all its limit points.

The following result gives many examples of closed sets, analogous to Theo-
rem (6.4.2).

Theorem 6.4.7. The sets A and ∂A are closed.

Proof. Since A = (ext A)
c

it follows A is closed, ∂A = (int A ∪ ext A)
c
, so

that ∂A is closed. �

Examples We saw in Proposition 6.3.7 that the set C = {y : |y − x| ≤ r} in Rn
is the closure of Br(x) = {y : |y − x| < r}, and hence is closed. We also saw that

in an arbitrary metric space we only know that Br(x) ⊆ C. But it is always true
that C is closed.

To see this, note that the complement of C is {y : d(y, x) > r}. This is open
since if y is a member of the complement and d(x, y) = s (> r), then Bs−r(y) ⊂ Cc
by the triangle inequality (exercise).

Similarly, {y : d(y, x) = r} is always closed; it contains but need not equal
∂Br(x).

In particular, the interval [a, b] is closed in R.
Also ∅ and Rn are both closed, showing that a set can be both open and closed

(these are the only such examples in Rn, why?).

Remark “Most” sets are neither open nor closed. In particular, Q and (a, b] are
neither open nor closed in R.

An analogue of Theorem 6.4.3 holds:

Theorem 6.4.8. If A1, . . . , An are closed sets then A1∪ · · ·∪An is also closed.
If Aλ(λ ∈ S) is a collection of closed sets, then

⋂
λ∈S Aλ is also closed.

Proof. This follows from the previous theorem by DeMorgan’s rules. More
precisely, if A = A1 ∪ · · · ∪An then Ac = Ac1 ∩ · · · ∩Acn and so Ac is open and hence
A is closed. A similar proof applies in the case of arbitrary intersections. �

Remark The example (0, 1) =
⋃∞
n=1[1/n, 1− 1/n] shows that a non-finite union

of closed sets need not be closed.

In R we have the following description of open sets. A similar result is not true
in Rn for n > 1 (with intervals replaced by open balls or open n-cubes).

Theorem 6.4.9. A set U ⊂ R is open iff U =
⋃
i≥1 Ii, where {Ii} is a countable

(finite or denumerable) family of disjoint open intervals.
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Proof. *Suppose U is open in R. Let a ∈ U . Since U is open, there exists
an open interval I with a ∈ I ⊂ U . Let Ia be the union of all such open intervals.
Since the union of a family of open intervals with a point in common is itself an
open interval (exercise), it follows that Ia is an open interval. Clearly Ia ⊂ U .

We next claim that any two such intervals Ia and Ib with a, b ∈ U are either
disjoint or equal. For if they have some element in common, then Ia ∪ Ib is itself
an open interval which is a subset of U and which contains both a and b, and so
Ia ∪ Ib ⊂ Ia and Ia ∪ Ib ⊂ Ib. Thus Ia = Ib.

Thus U is a union of a family F of disjoint open intervals. To see that F is
countable, for each I ∈ F select a rational number in I (this is possible, as there
is a rational number between any two real numbers, but does it require the axiom
of choice?). Different intervals correspond to different rational numbers, and so the
set of intervals in F is in one-one correspondence with a subset of the rationals.
Thus F is countable. �

*A Surprising Result Suppose ε is a small positive number (e.g. 10−23). Then
there exist disjoint open intervals I1, I2, . . . such that Q ⊂

⋃∞
i=1 Ii and such that∑∞

i=1 |Ii| ≤ ε (where |Ii| is the length of Ii)!
To see this, let r1, r2, . . . be an enumeration of the rationals. About each ri

choose an interval Ji of length ε/2i. Then Q ⊂
⋃
i≥1 Ji and

∑
i≥1 |Ji| = ε. However,

the Ji are not necessarily mutually disjoint.
We say two intervals Ji and Jj are “connectable” if there is a sequence of

intervals Ji1 , . . . , Jin such that i1 = i, in = j and any two consecutive intervals
Jip , Jip+1 have non-zero intersection.

Define I1 to be the union of all intervals connectable to J1.
Next take the first interval Ji after J1 which is not connectable to J1 and define I2
to be the union of all intervals connectable to this Ji.
Next take the first interval Jk after Ji which is not connectable to J1 or Ji and
define I3 to be the union of all intervals connectable to this Jk.
And so on.

Then one can show that the Ii are mutually disjoint intervals and that
∑∞
j=1 |Ii| ≤∑∞

i=1 |Ji| = ε.

6.5. Metric Subspaces

Definition 6.5.1. Suppose (X, d) is a metric space and S ⊂ X. Then the
metric subspace corresponding to S is the metric space (S, dS), where

(90) dS(x, y) = d(x, y).

The metric dS (often just denoted d) is called the induced metric on S 5.

It is easy (exercise) to see that the axioms for a metric space do indeed hold
for (S, dS).

Examples

(1) The sets [a, b], (a, b] and Q all define metric subspaces of R.
(2) Consider R2 with the usual Euclidean metric. We can identify R with

the “x-axis” in R2, more precisely with the subset {(x, 0) : x ∈ R}, via
the map x 7→ (x, 0). The Euclidean metric on R then corresponds to the
induced metric on the x-axis.

5There is no connection between the notions of a metric subspace and that of a vector
subspace! For example, every subset of Rn defines a metric subspace, but this is certainly not
true for vector subspaces.
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Since a metric subspace (S, dS) is a metric space, the definitions of open ball;
of interior, exterior, boundary and closure of a set; and of open set and closed set;
all apply to (S, dS).

There is a simple relationship between an open ball about a point in a metric
subspace and the corresponding open ball in the original metric space.

Proposition 6.5.2. Suppose (X, d) is a metric space and (S, d) is a metric
subspace. Let a ∈ S. Let the open ball in S of radius r about a be denoted by
BSr (a). Then

BSr (a) = S ∩Br(a).

Proof.

BSr (a) := {x ∈ S : dS(x, a) < r} = {x ∈ S : d(x, a) < r}
= S ∩ {x ∈ X : d(x, a) < r} = S ∩Br(a).

�

The symbol “:=” means “by definition, is equal to”.
There is also a simple relationship between the open (closed) sets in a metric

subspace and the open (closed) sets in the original space.

Theorem 6.5.3. Suppose (X, d) is a metric space and (S, d) is a metric sub-
space. Then for any A ⊂ S:

(1) A is open in S iff A = S ∩ U for some set U (⊂ X) which is open in X.
(2) A is closed in S iff A = S∩C for some set C (⊂ X) which is closed in X.

Proof. (i) Suppose that A = S ∩ U , where U (⊂ X) is open in X. Then
for each a ∈ A (since a ∈ U and U is open in X) there exists r > 0 such that
Br(a) ⊂ U . Hence S ∩Br(a) ⊂ S ∩ U , i.e. BSr (a) ⊂ A as required.

Figure 4. Diagram for proof of Theorem 6.5.3.

(ii) Next suppose A is open in S. Then for each a ∈ A there exists r = ra > 06

such that BSra(a) ⊂ A, i.e. S ∩Bra(a) ⊂ A. Let U =
⋃
a∈ABra(a). Then U is open

in X, being a union of open sets.
We claim that A = S ∩ U . Now

S ∩ U = S ∩
⋃
a∈A

Bra(a) =
⋃
a∈A

(S ∩Bra(a)) =
⋃
a∈A

BSra(a).

But BSra(a) ⊂ A, and for each a ∈ A we trivially have that a ∈ BSra(a). Hence
S ∩ U = A as required.

6We use the notation r = ra to indicate that r depends on a.
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The result for closed sets follow from the results for open sets together with
DeMorgan’s rules.

(iii) First suppose A = S∩C, where C (⊂ X) is closed in X. Then S\A = S∩Cc
from elementary properties of sets. Since Cc is open in X, it follows from (1) that
S \A is open in S, and so A is closed in S.

(iv) Finally suppose A is closed in S. Then S \A is open in S, and so from (1),
S \ A = S ∩ U where U ⊂ X is open in X. From elementary properties of sets
it follows that A = S ∩ U c. But U c is closed in X, and so the required result
follows. �

Examples

(1) Let S = (0, 2]. Then (0, 1) and (1, 2] are both open in S (why?), but (1, 2]
is not open in R. Similarly, (0, 1] and [1, 2] are both closed in S (why?),
but (0, 1] is not closed in R.

(2) Consider R as a subset of R2 by identifying x ∈ R with (x, 0) ∈ R2. Then
R is open and closed as a subset of itself, but is closed (and not open) as
a subset of R2.

(3) Note that [−
√

2,
√

2] ∩ Q = (−
√

2,
√

2) ∩ Q. It follows that Q has many
clopen sets.



CHAPTER 7

Sequences and Convergence

In this chapter you should initially think of the cases X = R and X = Rn.

7.1. Notation

If X is a set and xn ∈ X for n = 1, 2, . . ., then (x1, x2, . . .) is called a sequence
in X and xn is called the nth term of the sequence. We also write x1, x2, . . ., or
(xn)∞n=1, or just (xn), for the sequence.

NB Note the difference between (xn) and {xn}.
More precisely, a sequence in X is a function f :N→ X, where f(n) = xn with

xn as in the previous notation.
We write (xn)∞n=1 ⊂ X or (xn) ⊂ X to indicate that all terms of the sequence

are members of X. Sometimes it is convenient to write a sequence in the form
(xp, xp+1, . . .) for some (possible negative) integer p 6= 1.

Given a sequence (xn), a subsequence is a sequence (xni) where (ni) is a strictly
increasing sequence in N.

7.2. Convergence of Sequences

Definition 7.2.1. Suppose (X, d) is a metric space, (xn) ⊂ X and x ∈ X.
Then we say the sequence (xn) converges to x, written xn → x, if for every r > 0
1 there exists an integer N such that

(91) n ≥ N ⇒ d(xn, x) < r.

Thus xn → x if for every open ball Br(x) centred at x the sequence (xn) is
eventually contained in Br(x). The “smaller” the ball, i.e. the smaller the value of
r, the larger the value of N required for (91) to be true, as we see in the following
diagram for three different balls centred at x. Although for each r > 0 there will
be a least value of N such that (91) is true, this particular value of N is rarely of
any significance.

Figure 1. The sequence xn converges to x.

1It is sometimes convenient to replace r by ε, to remind us that we are interested in small
values of r (or ε).

63
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Remark The notion of convergence in a metric space can be reduced to the notion
of convergence in R, since the above definition says xn → x iff d(xn, x) → 0, and
the latter is just convergence of a sequence of real numbers.

Examples

(1) Let θ ∈ R be fixed, and set

xn =

(
a+

1

n
cosnθ, b+

1

n
sinnθ

)
∈ R2.

Then xn → (a, b) as n → ∞. The sequence (xn) “spirals” around the
point (a, b), with d (xn, (a, b)) = 1/n, and with a rotation by the angle θ
in passing from xn to xn+1.

(2) Let
(x1, x2, . . .) = (1, 1, . . .).

Then xn → 1 as n→∞.
(3) Let

(x1, x2, . . .) = (1,
1

2
, 1,

1

3
, 1,

1

4
, . . .).

Then it is not the case that xn → 0 and it is not the case that xn → 1.
The sequence (xn) does not converge.

(4) Let A ⊂ R be bounded above and suppose a = lubA. Then there exists
(xn) ⊂ A such that xn → a.

Proof. Suppose n is a natural number. By the definition of least
upper bound, a− 1/n is not an upper bound for A. Thus there exists an
x ∈ A such that a − 1/n < x ≤ a. Choose some such x and denote it by
xn. Then xn → a since d(xn, a) < 1/n 2. �

(5) As an indication of “strange” behaviour, for the p-adic metric on Z we
have pn → 0.

Series An infinite series
∑∞
n=1 xn of terms from R (more generally, from Rn or

from a normed space) is just a certain type of sequence. More precisely, for each i
we define the nth partial sum by

sn = x1 + · · ·+ xn.

Then we say the series
∑∞
n=1 xn converges iff the sequence (of partial sums) (sn)

converges, and in this case the limit of (sn) is called the sum of the series.

NB Note that changing the order (re-indexing) of the (xn) gives rise to a possibly
different sequence of partial sums (sn).

Example
If 0 < r < 1 then the geometric series

∑∞
n=0 r

n converges to (1−r)−1.

7.3. Elementary Properties

Theorem 7.3.1. A sequence in a metric space can have at most one limit.

Proof. Suppose (X, d) is a metric space, (xn) ⊂ X, x, y ∈ X, xn → x as
n→∞, and xn → y as n→∞.

Supposing x 6= y, let d(x, y) = r > 0. From the definition of convergence there
exist integers N1 and N2 such that

n ≥ N1 ⇒ d(xn, x) < r/4,

n ≥ N2 ⇒ d(xn, y) < r/4.

2Note the implicit use of the axiom of choice to form the sequence (xn).
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Let N = max{N1, N2}. Then

d(x, y) ≤ d(x, xN ) + d(xN , y)

< r/4 + r/4 = r/2,

i.e. d(x, y) < r/2, which is a contradiction. �

Definition 7.3.2. A sequence is bounded if the set of terms from the sequence
is bounded.

Theorem 7.3.3. A convergent sequence in a metric space is bounded.

Proof. Suppose that (X, d) is a metric space, (xn)∞n=1 ⊂ X, x ∈ X and
xn → x. Let N be an integer such that n ≥ N implies d(xn, x) ≤ 1.

Let r = max{d(x1, x), . . . , d(xN−1, x), 1} (this is finite since r is the maximum
of a finite set of numbers). Then d(xn, x) ≤ r for all n and so (xn)∞n=1 ⊂ Br+1/10(x).
Thus (xn) is bounded, as required. �

Remark This method, of using convergence to handle the ‘tail’ of the sequence,
and some separate argument for the finitely many terms not in the tail, is of fun-
damental importance.

The following result on the distance function is useful. As we will see in Chapter
11, it says that the distance function is continuous.

Theorem 7.3.4. Let xn → x and yn → y in a metric space (X, d). Then
d(xn, yn)→ d(x, y).

Proof. Two applications of the triangle inequality show that

d(x, y) ≤ d(x, xn) + d(xn, yn) + d(yn, y),

and so

(92) d(x, y)− d(xn, yn) ≤ d(x, xn) + d(yn, y).

Similarly

d(xn, yn) ≤ d(xn, x) + d(x, y) + d(y, yn),

and so

(93) d(xn, yn)− d(x, y) ≤ d(x, xn) + d(yn, y).

It follows from (92) and (93) that

|d(x, y)− d(xn, yn)| ≤ d(x, xn) + d(yn, y).

Since d(x, xn) → 0 and d(y, yn) → 0, the result follows immediately from
properties of sequences of real numbers (or see the Comparison Test in the next
section). �
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7.4. Sequences in R

The results in this section are particular to sequences in R. They do not even
make sense in a general metric space.

Definition 7.4.1. A sequence (xn)∞n=1 ⊂ R is

(1) increasing (or non-decreasing) if xn ≤ xn+1 for all n,
(2) decreasing (or non-increasing) if xn+1 ≥ xn for all n,
(3) strictly increasing if xn < xn+1 for all n,
(4) strictly decreasing if xn+1 < xn for all n.

A sequence is monotone if it is either increasing or decreasing.

The following theorem uses the Completeness Axiom in an essential way. It
is not true if we replace R by Q. For example, consider the sequence of rational
numbers obtained by taking the decimal expansion of

√
2; i.e. xn is the decimal

approximation to
√

2 to n decimal places.

Theorem 7.4.2. Every bounded monotone sequence in R has a limit in R.

Proof. Suppose (xn)∞n=1 ⊂ R and (xn) is increasing (if (xn) is decreasing, the
argument is analogous). Since the set of terms {x1, x2, . . .} is bounded above, it
has a least upper bound x, say. We claim that xn → x as n→∞.

To see this, note that xn ≤ x for all n; but if ε > 0 then xk > x − ε for some
k, as otherwise x − ε would be an upper bound. Choose such k = k(ε). Since
xk > x− ε, then xn > x− ε for all n ≥ k as the sequence is increasing. Hence

x− ε < xn ≤ x

for all n ≥ k. Thus |x − xn| < ε for n ≥ k, and so xn → x (since ε > 0 is
arbitrary). �

It follows that a bounded closed set in R contains its infimum and supremum,
which are thus the minimum and maximum respectively.

For sequences (xn) ⊂ R it is also convenient to define the notions xn →∞ and
xn → −∞ as n→∞.

Definition 7.4.3. If (xn) ⊂ R then xn → ∞ (−∞) as n → ∞ if for every
positive real number M there exists an integer N such that

n ≥ N implies xn > M (xn < −M).

We say (xn) has limit ∞ (−∞) and write limn→∞ xn =∞(−∞).

Note When we say a sequence (xn) converges, we usually mean that xn → x for
some x ∈ R; i.e. we do not allow xn →∞ or xn → −∞.

The following Comparison Test is easy to prove (exercise). Notice that the
assumptions xn < yn for all n, xn → x and yn → y, do not imply x < y. For
example, let xn = 0 and yn = 1/n for all n.

Theorem 7.4.4 (Comparison Test).

(1) If 0 ≤ xn ≤ yn for all n ≥ N , and yn → 0 as n → ∞, then xn → 0 as
n→∞.

(2) If xn ≤ yn for all n ≥ N , xn → x as n→∞ and yn → y as n→∞, then
x ≤ y.

(3) In particular, if xn ≤ a for all n ≥ N and xn → x as n→∞, then x ≤ a.
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Example Let xm = (1 + 1/m)m and ym = 1 + 1 + 1/2! + · · ·+ 1/m!
The sequence (ym) is increasing and for each m ∈ N,

ym ≤ 1 + 1 +
1

2
+

1

22
+ · · · 1

2m
< 3.

Thus ym → y0(say) ≤ 3, from Theorem 7.4.2.
From the binomial theorem,

xm = 1 +m
1

m
+
m(m− 1)

2!

1

m2
+
m(m− 1)(m− 2)

3!

1

m3
+ · · ·+ m!

m!

1

mm
.

This can be written as

xm = 1 + 1 +
1

2!

(
1− 1

m

)
+

1

3!

(
1− 1

m

)(
1− 2

m

)
+ · · ·+ 1

m!

(
1− 1

m

)(
1− 2

m

)
· · ·
(

1− m− 1

m

)
.

It follows that xm ≤ xm+1, since there is one extra term in the expression for
xm+1 and the other terms (after the first two) are larger for xm+1 than for xm.
Clearly xm ≤ ym (≤ y0 ≤ 3). Thus the sequence (xm) has a limit x0 (say) by
Theorem 7.4.2. Moreover, x0 ≤ y0 from the Comparison test.

In fact x0 = y0 and is usually denoted by e(= 2.71828...)3. It is the base of the
natural logarithms.

Example Let zn =
∑n
k=1

1
k − log n. Then (zn) is monotonically decreasing and

0 < zn < 1 for all n. Thus (zn) has a limit γ say. This is Euler’s constant, and
γ = 0.577 . . .. It arises when considering the Gamma function:

Γ(z) =

∞∫
0

e−ttz−1dt =
eγz

z

∞∏
1

(1 +
1

n
)−1ez/n

For n ∈ N, Γ(n) = (n− 1)!.

7.5. Sequences and Components in Rk

The result in this section is particular to sequences in Rn and does not apply
(or even make sense) in a general metric space.

Theorem 7.5.1. A sequence (xn)∞n=1 in Rn converges iff the corresponding
sequences of components (xin) converge for i = 1, . . . , k. Moreover,

lim
n→∞

xn = ( lim
n→∞

x1
n, . . . , lim

n→∞
xkn).

Proof. Suppose (xn) ⊂ Rn and xn → x. Then |xn − x| → 0, and since
|xin − xi| ≤ |xn − x| it follows from the Comparison Test that xin → xi as n→∞,
for i = 1, . . . , k.

Conversely, suppose that xin → xi for i = 1, . . . , k. Then for any ε > 0 there
exist integers N1, . . . , Nk such that

n ≥ Ni ⇒ |xin − xi| < ε

for i = 1, . . . , k.
Since

|xn − x| =

(
k∑
i=1

|xin − xi|2
) 1

2

,

3See the Problems.
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it follows that if N = max{N1, . . . , Nk} then

n ≥ N ⇒ |xn − x| <
√
kε2 =

√
kε.

Since ε > 0 is otherwise arbitrary4, the result is proved. �

7.6. Sequences and the Closure of a Set

The following gives a useful characterisation of the closure of a set in terms of
convergent sequences.

Theorem 7.6.1. Let X be a metric space and let A ⊂ X. Then x ∈ A iff there
is a sequence (xn)∞n=1 ⊂ A such that xn → x.

Proof. If (xn) ⊂ A and xn → x, then for every r > 0, Br(x) must contain
some term from the sequence. Thus x ∈ A from Definition (6.3.3) of a limit point.

Conversely, if x ∈ A then (again from Definition (6.3.3)), B1/n(x) ∩ A 6= ∅ for
each n ∈ N . Choose xn ∈ B1/n(x) ∩ A for n = 1, 2, . . .. Then (xn)∞n=1 ⊂ A. Since
d(xn, x) ≤ 1/n it follows xn → x as n→∞. �

Corollary 7.6.2. Let X be a metric space and let A ⊂ X. Then A is closed
in X iff

(94) (xn)∞n=1 ⊂ A and xn → x implies xn ∈ A.

Proof. From the theorem, (94) is true iff A = A, i.e. iff A is closed. �

Remark Thus in a metric space X the closure of a set A equals the set of all
limits of sequences whose members come from A. And this is generally not the
same as the set of limit points of A (which points will be missed?). The set A is
closed iff it is “closed” under the operation of taking limits of convergent sequences
of elements from A5.

Exercise Let A = {( nm ,
1
n ) : m,n ∈ N}. Determine A.

Exercise Use Corollary 7.6.2 to show directly that the closure of a set is indeed
closed.

7.7. Algebraic Properties of Limits

The important cases in this section are X = R, X = Rn and X is a function
space such as C[a, b]. The proofs are essentially the same as in the case X = R.
We need X to be a normed space (or an inner product space for the third result in
the next theorem) so that the algebraic operations make sense.

4More precisely, to be consistent with the definition of convergence, we could replace ε

throughout the proof by ε/
√
k and so replace ε

√
k on the last line of the proof by ε. We would

not normally bother doing this.
5There is a possible inconsistency of terminology here. The sequence (1, 1 + 1, 1/2, 1 +

1/2, 1/3, 1 + 1/3, . . . , 1/n, 1 + 1/n, . . .) has no limit; the set A = {1, 1 + 1, 1/2, 1 + 1/2, 1/3, 1 +
1/3, . . . , 1/n, 1 + 1/n, . . .} has the two limit points 0 and 1; and the closure of A, i.e. the set of
limit points of sequences whose members belong to A, is A ∪ {0, 1}.

Exercise: What is a sequence with members from A converging to 0, to 1, to 1/3?
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Theorem 7.7.1. Let (xn)∞n=1 and (yn)∞n=1 be convergent sequences in a normed
space X, and let α be a scalar. Let limn→∞ xn = x and limn→∞ yn = y. Then the
following limits exist with the values stated:

lim
n→∞

(xn + yn) = x+ y,(95)

lim
n→∞

αxn = αx.(96)

More generally, if also αn → α, then

(97) lim
n→∞

αnxn = αx.

If X is an inner product space then also

(98) lim
n→∞

xn · yn = x · y.

Proof. Suppose ε > 0. Choose N1, N2 so that

||xn − x|| < ε if n ≥ N1,

||yn − y|| < ε if n ≥ N2.

Let N = max{N1, N2}.
(i) If n ≥ N then

||(xn + yn)− (x+ y)|| = ||(xn − x) + (yn − y)||
≤ ||xn − x||+ ||yn − y||
< 2ε.

Since ε > 0 is arbitrary, the first result is proved.
(ii) If n ≥ N1 then

||αxn − αx|| = |α| ||xn − x||
≤ |α|ε.

Since ε > 0 is arbitrary, this proves the second result.
(iii) For the fourth claim, we have for n ≥ N
|xn · yn − x · y| = |(xn − x) · yn + x · (yn − y)|

≤ |(xn − x) · yn|+ |x · (yn − y)|
≤ |xn − x| |yn|+ |x| |yn − y| by Cauchy-Schwarz

≤ ε|yn|+ |x|ε,
Since (yn) is convergent, it follows from Theorem 7.3.3 that |yn| ≤M1 (say) for all
n. Setting M = max{M1, |x|} it follows that

|xn · yn − x · y| ≤ 2Mε

for n ≥ N . Again, since ε > 0 is arbitrary, we are done.
(iv) The third claim is proved like the fourth (exercise). �





CHAPTER 8

Cauchy Sequences

8.1. Cauchy Sequences

Our definition of convergence of a sequence (xn)∞n=1 refers not only to the
sequence but also to the limit. But it is often not possible to know the limit a
priori , (see example in Section 7.4). We would like, if possible, a criterion for
convergence which does not depend on the limit itself. We have already seen that
a bounded monotone sequence in R converges, but this is a very special case.

Theorem 8.1.3 below gives a necessary and sufficient criterion for convergence
of a sequence in Rn, due to Cauchy (1789–1857), which does not refer to the actual
limit. We discuss the generalisation to sequences in other metric spaces in the next
section.

Definition 8.1.1. Let (xn)∞n=1 ⊂ X where (X, d) is a metric space. Then (xn)
is a Cauchy sequence if for every ε > 0 there exists an integer N such that

m,n ≥ N ⇒ d(xm, xn) < ε.

We sometimes write this as d(xm, xn)→ 0 as m,n→∞.

Thus a sequence is Cauchy if, for each ε > 0, beyond a certain point in the
sequence all the terms are within distance ε of one another.

Warning This is stronger than claiming that, beyond a certain point in the se-
quence, consecutive terms are within distance ε of one another.

For example, consider the sequence xn =
√
n. Then

|xn+1 − xn| =
(√

n+ 1−
√
n
)√n+ 1 +

√
n√

n+ 1 +
√
n

=
1√

n+ 1 +
√
n
.

(99)

Hence |xn+1 − xn| → 0 as n→∞.
But |xm − xn| =

√
m −

√
n if m > n, and so for any N we can choose n = N

and m > N such that |xm − xn| is as large as we wish. Thus the sequence (xn) is
not Cauchy.

Theorem 8.1.2. In a metric space, every convergent sequence is a Cauchy
sequence.

Proof. Let (xn) be a convergent sequence in the metric space (X, d), and
suppose x = limxn.

Given ε > 0, choose N such that

n ≥ N ⇒ d(xn, x) < ε.

It follows that for any m,n ≥ N
d(xm, xn) ≤ d(xm, x) + d(x, xn)

≤ 2ε.

71
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Thus (xn) is Cauchy. �

Remark The converse of the theorem is true in Rn, as we see in the next theorem,
but is not true in general. For example, a Cauchy sequence from Q (with the usual
metric) will not necessarily converge to a limit in Q (take the usual example of the

sequence whose nth term is the n place decimal approximation to
√

2). We discuss
this further in the next section.

Cauchy implies Bounded A Cauchy sequence in any metric space is bounded.
This simple result is proved in a similar manner to the corresponding result for
convergent sequences (exercise).

Theorem 8.1.3 (Cauchy). A sequence in Rn converges (to a limit in Rn) iff
it is Cauchy.

Proof. We have already seen that a convergent sequence in any metric space
is Cauchy.

Assume for the converse that the sequence (xn)∞n=1 ⊂ Rn is Cauchy.
The Case k = 1: We will show that if (xn) ⊂ R is Cauchy then it is convergent

by showing that it converges to the same limit as an associated monotone increasing
sequence (yn).

Define

yn = inf{xn, xn+1, . . .}
for each n ∈ N 1. It follows that yn+1 ≥ yn since yn+1 is the infimum over a
subset of the set corresponding to yn. Moreover the sequence (yn) is bounded since
the sequence (xn) is Cauchy and hence bounded (if |xn| ≤ M for all n then also
|yn| ≤M for all n).

From Theorem 7.4.2 on monotone sequences, yn → a (say) as n→∞. We will
prove that also xn → a.

Suppose ε > 0. Since (xn) is Cauchy there exists N = N(ε) 2 such that

(100) xn − ε ≤ xm ≤ x` + ε

for all `,m, n ≥ N .
Claim:

(101) yn − ε ≤ xm ≤ yn + ε

for all m,n ≥ N .
To establish the first inequality in (101), note that from the first inequality

in (100) we immediately have for m,n ≥ N that

yn − ε ≤ xm,

since yn ≤ xn.
To establish the second inequality in (101), note that from the second inequality

in (100) we have for `,m ≥ N that

xm ≤ x` + ε .

But yn + ε = inf{x` + ε : ` ≥ n} as is easily seen3. Thus yn + ε is greater or equal
to any other lower bound for {xn + ε, xn+1 + ε, . . .}, whence

xm ≤ yn + ε.

1You may find it useful to think of an example such as xn = (−1)n/n.
2The notation N(ε) is just a way of noting that N depends on ε.
3If y = inf S, then y + α = inf{x+ α : x ∈ S}.
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It now follows from the Claim, by fixing m and letting n → ∞, and from the
Comparison Test (Theorem 7.4.4) that

a− ε ≤ xm ≤ a+ ε

for all m ≥ N = N(ε).
Since ε > 0 is arbitrary, it follows that xm → a as m → ∞. This finishes the

proof in the case k = 1.
The Case k > 1: If (xn)∞n=1 ⊂ Rn is Cauchy it follows easily that each se-

quence of components is also Cauchy, since

|xin − yin| ≤ |xn − yn|

for i = 1, . . . , k. From the case k = 1 it follows xin → ai (say) for i = 1, . . . , k. Then
from Theorem 7.5.1 it follows xn → a where a = (a1, . . . , an). �

Remark In the case k = 1, and for any bounded sequence, the number a con-
structed above,

a = sup
n

inf{xi : i ≥ n}

is denoted lim inf xn or lim xn. It is the least of the limits of the subsequences of
(xn)∞n=1 (why?).4 One can analogously define lim supxn or lim xn (exercise).

8.2. Complete Metric Spaces

Definition 8.2.1. A metric space (X, d) is complete if every Cauchy sequence
in X has a limit in X.

If a normed space is complete with respect to the associated metric, it is called
a complete normed space or a Banach space.

We have seen that Rn is complete, but that Q is not complete. The next
theorem gives a simple criterion for a subset of Rn (with the standard metric) to
be complete.

Examples

(1) We will see in Corollary 12.3.5 that C[a, b] (see Section 5.1 for the def-
inition) is a Banach space with respect to the sup metric. The same
argument works for `∞(N).

On the other hand, C[a, b] with respect to the L1 norm (see 72) is not
complete. For example, let fn ∈ C[−1, 1] be defined by

fn(x) =

 0 −1 ≤ x ≤ 0
nx 0 ≤ x ≤ 1

n
1 1

n ≤ x ≤ 1

Then there is no f ∈ C[−1, 1] such that ||fn − f ||L1 → 0, i.e. such that∫ 1

−1
|fn − f | → 0. (If there were such an f , then we would have to have

f(x) = 0 if −1 ≤ x < 0 and f(x) = 1 if 0 < x ≤ 1 (why?). But such an f
cannot be continuous on [−1, 1].)

The same example shows that C[a, b] with respect to the L2 norm
(see 73) is not complete.

(2) Take X = R with metric

d(x, y) =

∣∣∣∣ x

1 + |x|
− y

1 + |y|

∣∣∣∣ .
(Exercise) show that this is indeed a metric.

4Note that the limit of a subsequence of (xn) may not be a limit point of the set {xn}.
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If (xn) ⊂ R with |xn − x| → 0, then certainly d(xn, x) → 0. Not
so obviously, the converse is also true. But whereas (R, | · |) is complete,
(X, d) is not, as consideration of the sequence xn = n easily shows. Define
Y = R ∪ {−∞,∞}, and extend d by setting

d(±∞, x) =

∣∣∣∣ x

1 + |x|
− (±1)

∣∣∣∣ , d(−∞,∞) = 2

for x ∈ R. Then (Y, d) is complete (exercise).

Remark The second example here utilizes the following simple fact. Given a
set X, a metric space (Y, dY ) and a suitable function f : X → Y , the function
dX(x, x′) = dY (f(x), f(x′)) is a metric on X. (Exercise : what does suitable
mean here?) The cases X = (0, 1), Y = R2, f(x) = (x, sinx−1) and f(x) =
(cos 2πx, sin 2πx) are of interest.

Theorem 8.2.2. If S ⊂ Rn and S has the induced Euclidean metric, then S is
a complete metric space iff S is closed in Rn.

Proof. Assume that S is complete. From Corollary 7.6.2, in order to show
that S is closed in Rn it is sufficient to show that whenever (xn)∞n=1 is a sequence
in S and xn → x ∈ Rn, then x ∈ S. But (xn) is Cauchy by Theorem 8.1.2, and
so it converges to a limit in S, which must be x by the uniqueness of limits in a
metric space5.

Assume S is closed in Rn. Let (xn) be a Cauchy sequence in S. Then (xn)
is also a Cauchy sequence in Rn and so xn → x for some x ∈ Rn by Theorem 8.1.3.
But x ∈ S from Corollary 7.6.2. Hence any Cauchy sequence from S has a limit in
S, and so S with the Euclidean metric is complete. �

Generalisation If S is a closed subset of a complete metric space (X, d), then S
with the induced metric is also a complete metric space. The proof is the same.

*Remark A metric space (X, d) fails to be complete because there are Cauchy
sequences from X which do not have any limit in X. It is always possible to enlarge
(X, d) to a complete metric space (X∗, d∗), where X ⊂ X∗, d is the restriction of d∗

to X, and every element in X∗ is the limit of a sequence from X. We call (X∗, d∗)
the completion of (X, d).

For example, the completion of Q is R, and more generally the completion of
any S ⊂ Rn is the closure of S in Rn.

In outline, the proof of the existence of the completion of (X, d) is as follows6:

Let S be the set of all Cauchy sequences from X. We say two such
sequences (xn) and (yn) are equivalent if |xn− yn| → 0 as n→∞.
The idea is that the two sequences are “trying” to converge to the
same element. Let X∗ be the set of all equivalence classes from
S (i.e. elements of X∗ are sets of Cauchy sequences, the Cauchy
sequences in any element of X∗ are equivalent to one another, and
any two equivalent Cauchy sequences are in the same element of
X∗).

Each x ∈ X is “identified” with the set of Cauchy sequences
equivalent to the Cauchy sequence (x, x, . . .) (more precisely one
shows this defines a one-one map from X into X∗). The distance

5To be more precise, let xn → y in S (and so in Rk) for some y ∈ S. But we also know that
xn → x in Rk). Thus by uniqeness of limits in the metric space Rk) , it follows that x = y.

6Note how this proof also gives a construction of the reals from the rationals.
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d∗ between two elements (i.e. equivalence classes) of X∗ is defined
by

d∗((xn), (yn)) = lim
n→∞

|xn − yn|,

where (xn) is a Cauchy sequence from the first eqivalence class and
(yn) is a Cauchy sequence from the second eqivalence class. It is
straightforward to check that the limit exists, is independent of the
choice of representatives of the equivalence classes, and agrees with
d when restricted to elements of X∗ which correspond to elements
of X. Similarly one checks that every element of X∗ is the limit of
a sequence “from” X in the appropriate sense.

Finally it is necessary to check that (X∗, d∗) is complete. So
suppose that we have a Cauchy sequence from X∗. Each member
of this sequence is itself equivalent to a Cauchy sequence from X.
Let the nth member xn of the sequence correspond to a Cauchy
sequence (xn1, xn2, xn3, . . .). Let x be the (equivalence class cor-
responding to the) diagonal sequence (x11, x22, x33, . . .) (of course,
this sequence must be shown to be Cauchy in X). Using the fact
that (xn) is a Cauchy sequence (of equivalence classes of Cauchy
sequences), one can check that xn → x (with respect to d∗). Thus
(X∗, d∗) is complete.

It is important to reiterate that the completion depends crucially on the metric
d, see Example 2 above.

8.3. Contraction Mapping Theorem

Let (X, d) be a metric space and let F :A(⊂ X)→ X. We say F is a contraction
if there exists λ where 0 ≤ λ < 1 such that

(102) d(F (x), F (y)) ≤ λd(x, y)

for all x, y ∈ X.

Remark It is essential that there is a fixed λ, 0 ≤ λ < 1 in (102). The function
f(x) = x2 is a contraction on each interval on [0, a], 0 < a < 0.5, but is not a
contraction on [0, 0.5].

A simple example of a contraction map on Rn is the map

(103) x 7→ a + r(x− b),

where 0 ≤ r < 1 and a,b ∈ Rn. In this case λ = r, as is easily checked.
If b = 0, then (103) is just dilation by the factor r followed by translation by

the vector a. More generally, since

a + r(x− b) = b + r(x− b) + a− b,

we see (103) is dilation about b by the factor r, followed by translation by the
vector a− b.

We say z is a fixed point of a map F : A(⊂ X) → X if F (z) = z. In the
preceding example, it is easily checked that the unique fixed point for any r 6= 1 is
(a− rb)/(1− r).

The following result is known as the Contraction Mapping Theorem or as the
Banach Fixed Point Theorem. It has many important applications; we will use
it to show the existence of solutions of differential equations and of integral equa-
tions, the existence of certain types of fractals, and to prove the Inverse Function
Theorem 19.1.1.

You should first follow the proof in the case X = Rn.
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Theorem 8.3.1 (Contraction Mapping Theorem). Let (X, d) be a complete
metric space and let F :X → X be a contraction map. Then F has a unique fixed
point7.

Proof. We will find the fixed point as the limit of a Cauchy sequence.
Let x be any point in X and define a sequence (xn)∞n=1 by

x1 = F (x), x2 = F (x1), x3 = F (x2), . . . , xn = F (xn−1), . . . .

Let λ be the contraction ratio.
1. Claim: (xn) is Cauchy.

We have

d(xn, xn+1) = d(F (xn−1), F (xn)

≤ λd(xn−1, xn)

= λd(F (xn−2, F (xn−1)

≤ λ2d(xn−2, xn−1)

...

≤ λn−1d(x1, x2).

Thus if m > n then

d(xm, xn) ≤ d(xn, xn+1) + · · ·+ d(xm−1, xm)

≤ (λn−1 + · · ·+ λm−2)d(x1, x2).

But

λn−1 + · · ·+ λm−2 ≤ λn−1(1 + λ+ λ2 + · · · )

= λn−1 1

1− λ
→ 0 as n→∞.

It follows (why?) that (xn) is Cauchy.
Since X is complete, (xn) has a limit in X, which we denote by x.

2. Claim: x is a fixed point of F .
We claim that F (x) = x, i.e. d(x, F (x)) = 0. Indeed, for any n

d(x, F (x)) ≤ d(x, xn) + d(xn, F (x))

= d(x, xn) + d(F (xn−1), F (x))

≤ d(x, xn) + λd(xn−1, x)

→ 0

as n→∞. This establishes the claim.
3. Claim: The fixed point is unique.

If x and y are fixed points, then F (x) = x and F (y) = y and so

d(x, y) = d(F (x), F (y)) ≤ λd(x, y).

Since 0 ≤ λ < 1 this implies d(x, y) = 0, i.e. x = y. �

Remark Fixed point theorems are of great importance for proving existence re-
sults. The one above is perhaps the simplest, but has the advantage of giving an
algorithm for determining the fixed point. In fact, it also gives an estimate of how
close an iterate is to the fixed point (how?).

In applications, the following Corollary is often used.

7In other words, F has exactly one fixed point.
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Corollary 8.3.2. Let S be a closed subset of a complete metric space (X, d)
and let F :S → S be a contraction map on S. Then F has a unique fixed point in
S.

Proof. We saw following Theorem 8.2.2 that S is a complete metric space
with the induced metric. The result now follows from the preceding Theorem. �

Example Take R with the standard metric, and let a > 1. Then the map

f(x) =
1

2
(x+

a

x
)

takes [1,∞) into itself, and is contractive with λ = 1
2 . What is the fixed point?

(This was known to the Babylonians, nearly 4000 years ago.)
Somewhat more generally, consider Newton’s method for finding a simple root

of the equation f(x) = 0, given some interval containing the root. Assume that f ′′

is bounded on the interval. Newton’s method is an iteration of the function

g(x) = x− f(x)

f ′(x)
.

To see why this could possibly work, suppose that there is a root ξ in the interval
[a, b], and that f ′ > 0 on [a, b]. Since

g′(x) =
f(x)

(f ′(x)2
f ′′(x) ,

we have |g′| < 0.5 on some interval [α, β] containing ξ. Since g(ξ) = ξ, it follows
that g is a contraction on [α, β].

Example Consider the problem of solving Ax = b where x,b ∈ Rn and A ∈
Mn(R). Let λ ∈ R be fixed. Then the task is equivalent to solving Tx = x where

Tx = (I − λA)x + λb.

The role of λ comes when one endeavours to ensure T is a contraction under some
norm on Mn(R):

||Tx1 − Tx2||p = |λ|||A(x1 − x2)||p ≤ k||x1 − x2||p
for some 0 < k < 1 by suitable choice of |λ| sufficiently small(depending on A and
p).

Exercise When S ⊆ R is an interval it is often easy to verify that a function
f : S → S is a contraction by use of the mean value theorem. What about the
following function on [0, 1]?

f(x) =

{
sin(x)
x x 6= 0 ≤ 0

1 x = 0





CHAPTER 9

Sequences and Compactness

9.1. Subsequences

Recall that if (xn)∞n=1 is a sequence in some set X and n1 < n2 < n3 < . . .,
then the sequence (xni

)∞i=1 is called a subsequence of (xn)∞n=1.
The following result is easy.

Theorem 9.1.1. If a sequence in a metric space converges then every subse-
quence converges to the same limit as the original sequence.

Proof. Let xn → x in the metric space (X, d) and let (xni
) be a subsequence.

Let ε > 0 and choose N so that

d(xn, x) < ε

for n ≥ N . Since ni ≥ i for all i, it follows

d(xni
, x) < ε

for i ≥ N . �

Another useful fact is the following.

Theorem 9.1.2. If a Cauchy sequence in a metric space has a convergent
subsequence, then the sequence itself converges.

Proof. Suppose that (xn) is cauchy in the metric space (X, d). So given ε > 0
there is N such that d(xn, xm) < ε provided m,n > N . If (xnj

) is a subsequence
convergent to x ∈ X, then there is N ′ such that d(xnj

, x) < ε for j > N ′. Thus for
m > N , take any j > max{N,N ′} (so that nj > N certainly), to see that

d(x, xm) ≤ d(x, xnj
) + d(xnj

, xm) < 2ε .

�

9.2. Existence of Convergent Subsequences

It is often very important to be able to show that a sequence, even though it
may not be convergent, has a convergent subsequence. The following is a simple
criterion for sequences in Rn to have a convergent subsequence. The same result is
not true in an arbitrary metic space, as we see in Remark 2 following the Theorem.

Theorem 9.2.1 (Bolzano-Weierstrass). 1 Every bounded sequence in Rn has a
convergent subsequence.

Let us give two proofs of this significant result.

1Other texts may have different forms of the Bolzano-Weierstrass Theorem.

79
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Proof. By the remark following the proof of Theorem 8.1.3, a bounded se-
quence in R has a limit point, and necessarily there is a subsequence which converges
to this limit point.

Suppose then, that the result is true in Rn for 1 ≤ k < m, and take a bounded
sequence (xn) ⊂ Rm. For each n, write xn = (yn, x

m
n ) in the obvious way. Then

(yn) ⊂ Rm−1 is a bounded sequence, and so has a convergent subsequence (ynj
)

by the inductive hypothesis. But then (xmnj
) is a bounded sequence in R, so has a

subsequence (xmn′j
) which converges. It follows from Theorem 7.5.1 that the subse-

quence (xnj
)of the original sequence (xn) is convergent. Thus the result is true for

k = m. �

Note the “diagonal” argument in the second proof.

Proof. (See Figure 1.)
Let (xn)∞n=1 be a bounded sequence of points in Rn, which for convenience we

rewrite as (xn
(1))∞n=1. All terms (xn

(1)) are contained in a closed cube

I1 =
{
y : |yi| ≤ r, i = 1, . . . , k

}
for some r > 0.

Figure 1. Diagram for the second proof of Theorem 9.2.1.

Divide I1 into 2k closed subcubes as indicated in the diagram. At least one of
these cubes must contain an infinite number of terms from the sequence (xn

(1))∞n=1.
Choose one such cube and call it I2. Let the corresponding subsequence in I2 be
denoted by (xn

(2))∞n=1.
Repeating the argument, divide I2 into 2k closed subcubes. Once again, at

least one of these cubes must contain an infinite number of terms from the sequence
(xn

(2))∞n=1. Choose one such cube and call it I3. Let the corresponding subsequence
be denoted by (xn

(3))∞n=1.
Continuing in this way we find a decreasing sequence of closed cubes

I1 ⊃ I2 ⊃ I3 ⊃ · · ·
and sequences

(x
(1)
1 ,x

(1)
2 ,x

(1)
3 , . . .)

(x
(2)
1 ,x

(2)
2 ,x

(2)
3 , . . .)

(x
(3)
1 ,x

(3)
2 ,x

(3)
3 , . . .)

...
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where each sequence is a subsequence of the preceding sequence and the terms of
the ith sequence are all members of the cube Ii.

We now define the sequence (yi) by yi = x
(i)
i for i = 1, 2, . . .. This is a

subsequence of the original sequence.
Notice that for each N , the terms yN ,yN+1,yN+2, . . . are all members of IN .

Since the distance between any two points in IN is2 ≤
√
kr/2N−2 → 0 as N →∞,

it follows that (yi) is a Cauchy sequence. Since Rn is complete, it follows (yi)
converges in Rn. This proves the theorem. �

Remark 1 If a sequence in Rn is not bounded, then it need not contain a con-
vergent subsequence. For example, the sequence (1, 2, 3, . . .) in R does not contain
any convergent subsequence (since the nth term of any subsequence is ≥ n and so
any subsequence is not even bounded).

Remark 2 The Theorem is not true if Rn is replaced by C[0, 1]. For example,
consider the sequence of functions (fn) whose graphs are as shown in Figure 2.

Figure 2. A sequence of uniformly bounded functions without a
convergent subsequence in the sup norm.

The sequence is bounded since ||fn||∞ = 1, where we take the sup norm (and
corresponding metric) on C[0, 1].

But if n 6= m then

||fn − fm||∞ = sup {|fn(x)− fm(x)| : x ∈ [0, 1]} = 1,

as is seen by choosing appropriate x ∈ [0, 1]. Thus no subsequence of (fn) can
converge in the sup norm3.

We often use the previous theorem in the following form.

Corollary 9.2.2. If S ⊂ Rn, then S is closed and bounded iff every sequence
from S has a subsequence which converges to a limit in S.

Proof. Let S ⊂ Rn, be closed and bounded. Then any sequence from S is
bounded and so has a convergent subsequence by the previous Theorem. The limit
is in S as S is closed.

Conversely, first suppose S is not bounded. Then for every natural number n
there exists xn ∈ S such that |xn| ≥ n. Any subsequence of (xn) is unbounded and
so cannot converge.

2The distance between any two points in I1 is ≤ 2
√
kr, between any two points in I2 is thus

≤
√
kr, between any two points in I3 is thus ≤

√
kr/2, etc.

3We will consider the sup norm on functions in detail in a later chapter. Notice that fn(x)→ 0
as n → ∞ for every x ∈ [0, 1]—we say that (fn) converges pointwise to the zero function. Thus

here we have convergence pointwise but not in the sup metric. This notion of pointwise convergence
cannot be described by a metric.
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Next suppose S is not closed. Then there exists a sequence (xn) from S which
converges to x 6∈ S. Any subsequence also converges to x, and so does not have its
limit in S. �

Remark The second half of this corollary holds in a general metric space, the
first half does not.

9.3. Compact Sets

Definition 9.3.1. A subset S of a metric space (X, d) is compact if every
sequence from S has a subsequence which converges to an element of S. If X is
compact, we say the metric space itself is compact.

Remark

(1) This notion is also called sequential compactness. There is another def-
inition of compactness in terms of coverings by open sets which applies
to any topological space4 and agrees with the definition here for metric
spaces. We will investigate this more general notion in Chapter 15.

(2) Compactness turns out to be a stronger condition than completeness,
though in some arguments one notion can be used in place of the other.

Examples

(1) From Corollary 9.2.2 the compact subsets of Rn are precisely the closed
bounded subsets. Any such compact subset, with the induced metric, is
a compact metric space. For example, [a, b] with the usual metric is a
compact metric space.

(2) The Remarks on C[0, 1] in the previous section show that the closed5

bounded set S = {f ∈ C[0, 1] : ||f ||∞ = 1} is not compact. The set S is
just the “closed unit sphere” in C[0, 1]. (You will find later that C[0, 1] is
not unusual in this regard, the closed unit ball in any infinite dimensional
normed space fails to be compact.)

Relative and Absolute Notions Recall from the Note at the end of Section (6.4)
that if X is a metric space the notion of a set S ⊂ X being open or closed is a
relative one, in that it depends also on X and not just on the induced metric on S.

However, whether or not S is compact depends only on S itself and the induced
metric, and so we say compactess is an absolute notion. Similarly, completeness is
an absolute notion.

9.4. Nearest Points

We now give a simple application in Rn of the preceding ideas.

Definition 9.4.1. Suppose A ⊂ X and x ∈ X where (X, d) is a metric space.
The distance from x to A is defined by

(104) d(x,A) = inf
y∈A

d(x, y).

It is not necessarily the case that there exists y ∈ A such that d(x,A) = d(x, y).
For example if A = [0, 1) ⊂ R and x = 2 then d(x,A) = 1, but d(x, y) > 1 for all
y ∈ A.

4You will study general topological spaces in a later course.
5S is the boundary of the unit ball B1(0) in the metric space C[0, 1] and is closed as noted

in the Examples following Theorem 6.4.7.
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Moreover, even if d(x,A) = d(x, y) for some y ∈ A, this y may not be unique.
For example, let S = {y ∈ R2 : ||y|| = 1} and let x = (0, 0). Then d(x, S) = 1 and
d(x, y) = 1 for every y ∈ S.

Notice also that if x ∈ A then d(x,A) = 0. But d(x,A) = 0 does not imply
x ∈ A. For example, take A = [0, 1) and x = 1.

However, we do have the following theorem. Note that in the result we need S
to be closed but not necessarily bounded.

The technique used in the proof, of taking a “minimising” sequence and ex-
tracting a convergent subsequence, is a fundamental idea.

Theorem 9.4.2. Let S be a closed subset of Rn, and let x ∈ Rn. Then there
exists y ∈ S such that d(x, y) = d(x, S).

Proof. Let
γ = d(x, S)

and choose a sequence (yn) in S such that

d(x, yn)→ γ as n→∞.
(Draw a diagram.) This is possible from (104) by the definition of inf.

The sequence (yn) is bounded6 and so has a convergent subsequence which we
also denote by (yn)7.

Let y be the limit of the convergent subsequence (yn). Then d(x, yn)→ d(x, y)
by Theorem 7.3.4, but d(x, yn)→ γ since this is also true for the original sequence.
It follows d(x, y) = γ as required. �

6This is fairly obvious and the actual argument is similar to showing that convergent se-
quences are bounded, c.f. Theorem 7.3.3. More precisely, we have there exists an integer N such

that d(x, yn) ≤ γ + 1 for all n ≥ N , by the fact d(x, yn)→ γ. Let

M = max{γ + 1, d(x, y1), . . . , d(x, yN−1)}.

Then d(x, yn) ≤M for all n, and so (yn) is bounded.
7This abuse of notation in which we use the same notation for the subsequence as for the

original sequence is a common one. It saves using subscripts ynij
— which are particularly messy

when we take subsequences of subsequences — and will lead to no confusion provided we are

careful.





CHAPTER 10

Limits of Functions

10.1. Diagrammatic Representation of Functions

In this Chapter we will consider functions f :A (⊂ X)→ Y where X and Y are
metric spaces.

Important cases to keep in mind are f :A (⊂ R) → R, f :A (⊂ Rn) → R and
f :A (⊂ Rn)→ Rm.

Sometimes we can represent a function by its graph. Of course functions can be
quite complicated, and we should be careful not to be misled by the simple features
of the particular graphs which we are able to sketch.

Figure 1. Graphs of a function f : A (⊂ R)→ R and a function
f : A (⊂ R2)→ R.

Sometimes we can sketch the domain and the range of the function, perhaps
also with a coordinate grid and its image. See the following diagram.

Sometimes we can represent a function by drawing a vector at various points
in its domain to represent f(x).

Sometimes we can represent a real-valued function by drawing the level sets
(contours) of the function. See Section 17.6.2.

In other cases the best we can do is to represent the graph, or the domain and
range of the function, in a highly idealised manner. See the following diagrams.

10.2. Definition of Limit

Suppose f :A (⊂ X)→ Y where X and Y are metric spaces. In considering the
limit of f(x) as x→ a we are interested in the behaviour of f(x) for x near a. We
are not concerned with the value of f at a and indeed f need not even be defined
at a, nor is it necessary that a ∈ A. See Example 1 following the definition below.
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86 10. LIMITS OF FUNCTIONS

Figure 2. Graph of a function f : U (⊂ R)→ R2.

Figure 3. Domain with grid, range with image of grid, for a func-
tion f : R2 → R2.

Figure 4. Vector field representation of a function f : R2 → R2.

For the above reasons we assume a is a limit point of A, which is equivalent
to the existence of some sequence (xn)∞n=1 ⊂ A \ {a} with xn → a as n → ∞. In
particular, a is not an isolated point of A.
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Figure 5. Schematic/Idealised representation of a function f :
Rn → Rm.

Figure 6. Another schematic/Idealised representation of a func-
tion f : Rn → Rm.

The following definition of limit in terms of sequences is equivalent to the usual
ε–δ definition as we see in the next section. The definition here is perhaps closer
to the usual intuitive notion of a limit. Moreover, with this definition we can
deduce the basic properties of limits directly from the corresponding properties of
sequences, as we will see in Section 10.4.

Definition 10.2.1. Let f :A (⊂ X) → Y where X and Y are metric spaces,
and let a be a limit point of A. Suppose

(xn)∞n=1 ⊂ A \ {a} and xn → a together imply f(xn)→ b.

Then we say f(x) approaches b as x approaches a, or f has limit b at a and write

f(x)→ b as x→ a (x ∈ A),

or

lim
x→a
x∈A

f(x) = b,

or

lim
x→a

f(x) = b

(where in the last notation the intended domain A is understood from the context).



88 10. LIMITS OF FUNCTIONS

Definition 10.2.2. [One-sided Limits] If in the previous definition X = R and
A is an interval with a as a left or right endpoint, we write

lim
x→a+

f(x) or lim
x→a−

f(x)

and say the limit as x approaches a from the right or the limit as x approaches a
from the left, respectively.

Example 1 (a) Let A = (−∞, 0) ∪ (0,∞). Let f :A→ R be given by f(x) = 1 if
x ∈ A. Then limx→0 f(x) = 1, even though f is not defined at 0.

(b) Let f : R → R be given by f(x) = 1 if x 6= 0 and f(0) = 0. Then again
limx→0 f(x) = 1.

This example illustrates why in the Definition 10.2.1 we require xn 6= a, even
if a ∈ A.

Example 2 If g :R→ R then

lim
x→a

g(x)− g(a)

x− a
is (if the limit exists) called the derivative of g at a. Note that in Definition 10.2.1

we are taking f(x) =
(
g(x)− g(a)

)
/(x− a) and that f(x) is not defined at x = a.

We take A = R \ {a}, or A = (a− δ, a) ∪ (a, a+ δ) for some δ > 0.

Example 3 (Exercise: Draw a sketch.)

(105) lim
x→0

x sin

(
1

x

)
= 0.

To see this take any sequence (xn) where xn → 0 and xn 6= 0. Now

−|xn| ≤ xn sin

(
1

xn

)
≤ |xn|.

Since−|xn| → 0 and |xn| → 0 it follows from the Comparison Test that xn sin(1/xn)→
0, and so (105) follows.

We can also use the definition to show in some cases that limx→a f(x) does not
exist. For this it is sufficient to show that for some sequence (xn) ⊂ A \ {a} with
xn → a the corresponding sequence (f(xn)) does not have a limit. Alternatively, it
is sufficient to give two sequences (xn) ⊂ A \ {a} and (yn) ⊂ A \ {a} with xn → a
and yn → a but limxn 6= lim yn.

Example 4 (Draw a sketch). limx→0 sin(1/x) does not exist. To see this con-
sider, for example, the sequences xn = 1/(nπ) and yn = 1/((2n + 1/2)π). Then
sin(1/xn) = 0→ 0 and sin(1/yn) = 1→ 1.

Example 5
Consider the function g : [0, 1]→ [0, 1] defined by

g(x) =



1/2 if x = 1/2
1/4 if x = 1/4, 3/4
1/8 if x = 1/8, 3/8, 5/8, 7/8

...
1/2k if x = 1/2k, 3/2k, 5/2k, . . . , (2k − 1)/2k

...

g(x) = 0 otherwise.
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Figure 7. An attempt to sketch the graph of the function g :
[0, 1]→ [0, 1] in Example 5.

In fact, in simpler terms,

g(x) =

{
1/2k x = p/2k for p odd, 1 ≤ p < 2k

0 otherwise

Then we claim limx→ag(x) = 0 for all a ∈ [0, 1].
First define Sk = {1/2k, 2/2k, 3/2k, . . . , (2k − 1)/2k} for k = 1, 2, . . .. Notice

that g(x) will take values 1/2, 1/4, . . . , 1/2k for x ∈ Sk, and

(106) g(x) < 1/2k if x 6∈ Sk.

For each a ∈ [0, 1] and k = 1, 2, . . . define the distance from a to Sk \ {a}
(whether or not a ∈ Sk) by

(107) da,k = min
{
|x− a| : x ∈ Sk \ {a}

}
.

Then da,k > 0, even if a ∈ Sk, since it is the minimum of a finite set of strictly
positive (i.e. > 0) numbers.

Now let (xn) be any sequence with xn → a and xn 6= a for all n. We need to
show g(xn)→ 0.

Suppose ε > 0 and choose k so 1/2k ≤ ε. Then from (106), g(xn) < ε if xn 6∈ Sk.
On the other hand, 0 < |xn− a| < da,k for all n ≥ N (say), since xn 6= a for all

n and xn → a. It follows from (107) that xn 6∈ Sk for n ≥ N . Hence g(xn) < ε for
n ≥ N .

Since also g(x) ≥ 0 for all x it follows that g(xn) → 0 as n → ∞. Hence
limx→a g(x) = 0 as claimed.

Example 6 Define h :R→ R by

h(x) = lim
m→∞

lim
n→∞

(cos(m!πx))n

Then h fails to have a limit at every point of R.

Example 7 Let

f(x, y) =
xy

x2 + y2

for (x, y) 6= (0, 0).
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If y = ax then f(x, y) = a(1 + a2)−1 for x 6= 0. Hence

lim
(x,y)→a
y=ax

f(x, y) =
a

1 + a2
.

Thus we obtain a different limit of f as (x, y) → (0, 0) along different lines. It
follows that

lim
(x,y)→(0,0)

f(x, y)

does not exist.
A partial diagram of the graph of f is shown

Figure 8. The function f : R2 → R is continuous along every line
through the origin, but is not continuous at the origin.

One can also visualize f by sketching level sets1 of f as shown in the next
diagram. Then you can visualise the graph of f as being swept out by a straight
line rotating around the origin at a height as indicated by the level sets.

Figure 9. Level sets of the function in Figure 8.

1A level set of f is a set on which f is constant.
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Example 8 Let

f(x, y) =
x2y

x4 + y2

for (x, y) 6= (0, 0).
Then

lim
(x,y)→a
y=ax

f(x, y) = lim
x→0

ax3

x4 + a2x2

= lim
x→0

ax

x2 + a2

= 0.

Thus the limit of f as (x, y) → (0, 0) along any line y = ax is 0. The limit along
the y-axis x = 0 is also easily seen to be 0.

But it is still not true that lim(x,y)→(0,0) f(x, y) exists. For if we consider the

limit of f as (x, y)→ (0, 0) along the parabola y = bx2 we see that f = b(1 + b2)−1

on this curve and so the limit is b(1 + b2)−1.
You might like to draw level curves (corresponding to parabolas y = bx2).

Figure 10. Graph of the function f in Example 8. The limit at
the origin along every straight line through the origin exists and
equals 0. Yet the limit at the origin does not exist.

This example reappears in Chapter 17. Clearly we can make such examples as
complicated as we please.

10.3. Equivalent Definition

In the following theorem, (2) is the usual ε–δ definition of a limit.

Theorem 10.3.1. Suppose (X, d) and (Y, ρ) are metric spaces, A ⊂ X, f :A→ Y ,
and a is a limit point of A. Then the following are equivalent:

(1) limx→a f(x) = b;
(2) For every ε > 0 there is a δ > 0 such that

x ∈ A \ {a} and d(x, a) < δ implies ρ(f(x), b) < ε;

i.e. x ∈
(
A ∩Bδ(a)

)
\ {a} ⇒ f(x) ∈ Bε(b).
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Figure 11. Illustration of condition (2) in Theorem 10.3.1.

Proof. (1) ⇒ (2): Assume (1), so that whenever (xn) ⊂ A \ {a} and xn → a
then f(xn)→ b.

Suppose (by way of obtaining a contradiction) that (2) is not true. Then for
some ε > 0 there is no δ > 0 such that

x ∈ A \ {a} and d(x, a) < δ implies ρ(f(x), b) < ε.

In other words, for some ε > 0 and every δ > 0, there exists an x depending on δ,
with

(108) x ∈ A \ {a} and d(x, a) < δ and ρ(f(x), b) ≥ ε.

Choose such an ε, and for δ = 1/n, n = 1, 2, . . ., choose x = xn satisfying (108).
It follows xn → a and (xn) ⊂ A \ {a} but f(xn) 6→ b. This contradicts (1) and so
(2) is true.

(2)⇒ (1): Assume (2).
In order to prove (1) suppose (xn) ⊂ A \ {a} and xn → a. We have to show

f(xn)→ b.
In order to do this take ε > 0. By (2) there is a δ > 0 (depending on ε) such

that
∗︷ ︸︸ ︷

xn ∈ A \ {a} and d(xn, a) < δ implies ρ(f(xn), b) < ε.

But * is true for all n ≥ N (say, where N depends on δ and hence on ε), and so
ρ(f(xn), b) < ε for all n ≥ N . Thus f(xn)→ b as required and so (1) is true. �

10.4. Elementary Properties of Limits

Assumption In this section we let f, g :A (⊂ X)→ Y where (X, d) and (Y, ρ) are
metric spaces.

The next definition is not surprising.

Definition 10.4.1. The function f is bounded on the set E ⊂ A if f [E] is a
bounded set in Y .

Thus the function f : (0,∞)→ R given by f(x) = x−1 is bounded on [a,∞) for
any a > 0 but is not bounded on (0,∞).

Proposition 10.4.2. Assume limx→a f(x) exists. Then for some r > 0, f is
bounded on the set A ∩Br(a).
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Proof. Let limx→a f(x) = b and let V = B1(b). V is certainly a bounded set.
For some r > 0 we have f [(A \ {a}) ∩Br(a)] ⊂ V from Theorem 10.3.1(2).

Since a subset of a bounded set is bounded, it follows that f [(A \ {a}) ∩Br(a)] is
bounded, and so f [A ∩ Br(a)] is bounded if a 6∈ A. If a ∈ A then f [A ∩ Br(a)] =
f [(A \ {a}) ∩Br(a)] ∪ {f(a)}, and so again f [A ∩Br(a)] is bounded. �

Most of the basic properties of limits of functions follow directly from the
corresponding properties of limits of sequences without the necessity for any ε–δ
arguments.

Theorem 10.4.3. Limits are unique; in the sense that if limx→a f(x) = b1 and
limx→a f(x) = b2 then b1 = b2.

Proof. Suppose limx→a f(x) = b1 and limx→a f(x) = b2. If b1 6= b2, then

ε = |b1−b2|
2 > 0. By the defienition of the limit, there are δ1, δ2 > 0 such that

0 < d(x, a) < δ1 ⇒ ρ(f(x)− b1) < ε ,

0 < d(x, a) < δ2 ⇒ ρ(f(x)− b2) < ε .

Taking 0 < d(x, a) < min{δ1, δ − 2} gives a contradiction. �

Notation Assume f :A (⊂ X) → Rn. (In applications it is often the case that
X = Rm for some m). We write

f(x) = (f1(x), . . . , fk(x)).

Thus each of the f i is just a real-valued function defined on A.

For example, the linear transformation f : R2 → R2 described by the matrix[
a b
c d

]
is given by

f(x) = f(x1, x2) = (ax1 + bx2, cx1 + dx2).

Thus f1(x) = ax1 + bx2 and f2(x) = cx1 + dx2.

Theorem 10.4.4. Let f : A (⊂ X) → Rn. Then limx→a f(x) exists iff the
component limits, limx→a f

i(x), exist for all i = 1, . . . , k. In this case

(109) lim
x→a

f(x) = ( lim
x→a

f1(x), . . . , lim
x→a

fk(x)).

Proof. Suppose limx→a f(x) exists and equals b = (b1, . . . , bk). We want to
show that limx→a f

i(x) exists and equals bi for i = 1, . . . , k.
Let (xn)∞n=1 ⊂ A \ {a} and xn → a. From Definition (10.2.1) we have that

lim f(xn) = b and it is sufficient to prove that lim f i(xn) = bi. But this is imme-
diate from Theorem (7.5.1) on sequences.

Conversely, if limx→a f
i(x) exists and equals bi for i = 1, . . . , k, then a similar

argument shows limx→a f(x) exists and equals (b1, . . . , bk). �

More Notation Let f, g :S → V where S is any set (not necessarily a subset of
a metric space) and V is any vector space. In particular, V = R is an important
case. Let α ∈ R. Then we define addition and scalar multiplication of functions as
follows:

(f + g)(x) = f(x) + g(x),

(αf)(x) = αf(x),

for all x ∈ S. That is, f+g is the function defined on S whose value at each x ∈ S is
f(x) + g(x), and similarly for αf . Thus addition of functions is defined by addition
of the values of the functions, and similarly for multiplication of a function and a
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scalar. The zero function is the function whose value is everywhere 0. (It is easy
to check that the set F of all functions f : S → V is a vector space whose “zero
vector” is the zero function.)

If V = R then we define the product and quotient of functions by

(fg)(x) = f(x)g(x),(
f

g

)
(x) =

f(x)

g(x)
.

The domain of f/g is defined to be S \ {x : g(x) = 0}.
If V = X is an inner product space, then we define the inner product of the

functions f and g to be the function f · g :S → R given by

(f · g)(x) = f(x) · g(x).

The following algebraic properties of limits follow easily from the corresponding
properties of sequences. As usual you should think of the case X = Rn and V = Rn
(in particular, m = 1).

Theorem 10.4.5. Let f, g : A (⊂ X) → V where X is a metric space and V
is a normed space. Let limx→a f(x) and limx→a g(x) exist. Let α ∈ R. Then the
following limits exist and have the stated values:

lim
x→a

(f + g)(x) = lim
x→a

f(x) + lim
x→a

g(x),

lim
x→a

(αf)(x) = α lim
x→a

f(x).

If V = R then

lim
x→a

(fg)(x) = lim
x→a

f(x) lim
x→a

g(x),

lim
x→a

(
f

g

)
(x) =

limx→a f(x)

limx→a g(x)
,

provided in the last case that g(x) 6= 0 for all x ∈ A \ {a}2 and limx→a g(x) 6= 0.
If X = V is an inner product space, then

lim
x→a

(f · g)(x) = lim
x→a

f(x) · lim
x→a

g(x).

Proof. Let limx→a f(x) = b and limx→a g(x) = c.
We prove the result for addition of functions.
Let (xn) ⊂ A \ {a} and xn → a. From Definition 10.2.1 we have that

(110) f(xn)→ b, g(xn)→ c,

and it is sufficient to prove that

(f + g)(xn)→ b+ c.

But

(f + g)(xn) = f(xn) + g(xn)

→ b+ c

from (110) and the algebraic properties of limits of sequences, Theorem 7.7.1. This
proves the result.

The others are proved similarly. For the second last we also need the Problem in
Chapter 7 about the ratio of corresponding terms of two convergent sequences. �

2It is often convenient to instead just require that g(x) 6= 0 for all x ∈ Br(a)∩ (A \ {a}) and
some r > 0. In this case the function f/g will be defined everywhere in Br(a)∩ (A \ {a}) and the
conclusion still holds.
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One usually uses the previous Theorem, rather than going back to the original
definition, in order to compute limits.

Example If P and Q are polynomials then

lim
x→a

P (x)

Q(x)
=
P (a)

Q(a)

if Q(a) 6= 0.
To see this, let P (x) = a0+a1x+a2x

2+· · ·+anxn. It follows (exercise) from the
definition of limit that limx→a c = c (for any real number c) and limx→a x = a. It
then follows by repeated applications of the previous theorem that limx→a P (x) =
P (a). Similarly limx→aQ(x) = Q(a) and so the result follows by again using the
theorem.





CHAPTER 11

Continuity

As usual, unless otherwise clear from context, we consider functions
f :A (⊂ X)→ Y , where X and Y are metric spaces.

You should think of the case X = Rn and Y = Rn, and in particular Y = R.

11.1. Continuity at a Point

We first define the notion of continuity at a point in terms of limits, and then
we give a few useful equivalent definitions.

The idea is that f :A→ Y is continuous at a ∈ A if f(x) is arbitrarily close to
f(a) for all x sufficiently close to a. Thus the value of f does not have a “jump” at
a. However, one’s intuition can be misleading, as we see in the following examples.

If a is a limit point of A, continuity of f at a means limx→a, x∈A f(x) = f(a).
If a is an isolated point of A then limx→a, x∈A f(x) is not defined and we always
define f to be continuous at a in this (uninteresting) case.

Definition 11.1.1. Let f :A (⊂ X) → Y where X and Y are metric spaces
and let a ∈ A. Then f is continuous at a if a is an isolated point of A, or if a is a
limit point of A and limx→a, x∈A f(x) = f(a).

If f is continuous at every a ∈ A then we say f is continuous. The set of all
such continuous functions is denoted by

C(A;Y ),

or by

C(A)

if Y = R.

Example 1 Define

f(x) =

{
x sin(1/x) if x 6= 0,

0 if x = 0.

From Example 3 of Section 10.2, it follows f is continuous at 0. From the rules about
products and compositions of continuous functions, see Example 1 Section 11.2, it
follows that f is continuous everywhere on R.

Example 2 From the Example in Section 10.4 it follows that any rational function
P/Q, and in particular any polynomial, is continuous everywhere it is defined, i.e.
everywhere Q(x) 6= 0.

Example 3 Define

f(x) =

{
x if x ∈ Q
−x if x 6∈ Q

Then f is continuous at 0, and only at 0.

Example 4 If g is the function from Example 5 of Section 10.2 then it follows
that g is not continuous at any x of the form k/2m but is continuous everywhere
else.

97
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The similar function

h(x) =

{
0 if x is irrational

1/q x = p/q in simplest terms

is continuous at every irrational and discontinuous at every rational. (*It is possible
to prove that there is no function f : [0, 1]→ [0, 1] such that f is continuous at every
rational and discontinuous at every irrational.)

Example 5 Let g :Q → R be given by g(x) = x. Then g is continuous at every
x ∈ Q = dom g and hence is continuous. On the other hand, if f is the function
defined in Example 3, then g agrees with f everywhere in Q, but f is continuous
only at 0. The point is that f and g have different domains.

The following equivalent definitions are often useful. They also have the ad-
vantage that it is not necessary to consider the case of isolated points and limit
points separately. Note that, unlike in Theorem 10.3.1, we allow xn = a in (2), and
we allow x = a in (3).

Theorem 11.1.2. Let f : A (⊂ X) → Y where (X, d) and (Y, ρ) are metric
spaces. Let a ∈ A. Then the following are equivalent.

(1) f is continuous at a;
(2) whenever (xn)∞n=1 ⊂ A and xn → a then f(xn)→ f(a);
(3) for each ε > 0 there exists δ > 0 such that

x ∈ A and d(x, a) < δ implies ρ(f(x), f(a)) < ε;

i.e. f
(
Bδ(a)

)
⊆ Bε

(
f(a)

)
.

Proof. (1) ⇒ (2): Assume (1). Then in particular for any sequence (xn) ⊂
A \ {a} with xn → a, it follows f(xn)→ f(a).

In order to prove (2) suppose we have a sequence (xn) ⊂ A with xn → a (where
we allow xn = a). If xn = a for all n ≥ someN then f(xn) = f(a) for n ≥ N and
so trivially f(xn)→ f(a). If this case does not occur then by deleting any xn with
xn = a we obtain a new (infinite) sequence x′n → a with (x′n) ⊂ A \ {a}. Since f is
continuous at a it follows f(x′n) → f(a). As also f(xn) = f(a) for all terms from
(xn) not in the sequence (x′n), it follows that f(xn)→ f(a). This proves (2).

(2) ⇒ (1): This is immediate, since if f(xn) → f(a) whenever (xn) ⊂ A and
xn → a, then certainly f(xn) → f(a) whenever (xn) ⊂ A \ {a} and xn → a, i.e. f
is continuous at a.

The equivalence of (2) and (3) is proved almost exactly as is the equivalence of
the two corresponding conditions (1)and (2) in Theorem 10.3.1. The only essential
difference is that we replace A \ {a} everywhere in the proof there by A. �

Remark Property (3) here is perhaps the simplest to visualize, try giving a dia-
gram which shows this property.

11.2. Basic Consequences of Continuity

Remark (See Figure 1.)
Note that if f :A→ R, f is continuous at a, and f(a) = r > 0, then f(x) > r/2

for all x sufficiently near a. In particular, f is strictly positive for all x sufficiently
near a. This is an immediate consequence of Theorem 11.1.2 (3), since r/2 <
f(x) < 3r/2 if d(x, a) < δ, say. Similar remarks apply if f(a) < 0.

A useful consequence of this observation is that if f : [a, b] → R is continuous,

and
∫ b
a
|f | = 0, then f = 0. (This fact has already been used in Section 5.2.)
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Figure 1. Since f is continuous at a and f(a) = r > 0, it follows
that f(x) > r/2 for all x sufficiently near a.

The following two Theorems are proved using Theorem 11.1.2 (2) in the same
way as are the corresponding properties for limits. The only difference is that we
no longer require sequences xn → a with (xn) ⊂ A to also satisfy xn 6= a.

Theorem 11.2.1. Let f :A (⊂ X)→ Rn, where X is a metric space. Then f is
continuous at a iff f i is continuous at a for every i = 1, . . . , k.

Proof. As for Theorem 10.4.4 �

Theorem 11.2.2. Let f, g :A (⊂ X)→ V where X is a metric space and V is
a normed space. Let f and g be continuous at a ∈ A. Let α ∈ R. Then f + g and
αf are continuous at a.

If V = R then fg is continuous at a, and moreover f/g is continuous at a if
g(a) 6= 0.

If X = V is an inner product space then f · g is continuous at a.

Proof. Using Theorem 11.1.2 (2), the proofs are as for Theorem 10.4.5, except
that we take sequences (xn) ⊂ A with possibly xn = a. The only extra point is that
because g(a) 6= 0 and g is continuous at a then from the remark at the beginning
of this section, g(x) 6= 0 for all x sufficiently near a. �

The following Theorem implies that the composition of continuous functions is
continuous.

Theorem 11.2.3. Let f :A (⊂ X) → B (⊂ Y ) and g :B → Z where X, Y and
Z are metric spaces. If f is continuous at a and g is continuous at f(a), then g ◦ f
is continuous at a.

Proof. Let (xn)→ a with (xn) ⊂ A. Then f(xn)→ f(a) since f is continuous
at a. Hence g(f(xn))→ g(f(a)) since g is continuous at f(a). �

Remark Use of property (3) again gives a simple picture of this result.

Example 1 Recall the function

f(x) =

{
x sin(1/x) if x 6= 0,

0 if x = 0.

from Section 11.1. We saw there that f is continuous at 0. Assuming the function
x 7→ sinx is everywhere continuous1 and recalling from Example 2 of Section 11.1

1To prove this we need to first give a proper definition of sinx. This can be done by means
of an infinite series expansion.
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that the function x 7→ 1/x is continuous for x 6= 0, it follows from the previous
theorem that x 7→ sin(1/x) is continuous if x 6= 0. Since the function x is also
everywhere continuous and the product of continuous functions is continuous, it
follows that f is continuous at every x 6= 0, and hence everywhere.

11.3. Lipschitz and Hölder Functions

We now define some classes of functions which, among other things, are very
important in the study of partial differential equations. An important case to keep
in mind is A = [a, b] and Y = R.

Definition 11.3.1. A function f :A (⊂ X) → Y , where (X, d) and (Y, ρ) are
metric spaces, is a Lipschitz continuous function if there is a constant M with

ρ(f(x), f(x′)) ≤Md(x, x′)

for all x, y ∈ A. The least such M is the Lipschitz constant M of f .

More generally:

Definition 11.3.2. A function f :A (⊂ X) → Y , where (X, d) and (Y, ρ) are
metric spaces, is Hölder continuous with exponent α ∈ (0, 1] if

ρ(f(x), f(x′)) ≤Md(x, x′)α

for all x, x′ ∈ A and some fixed constant M .

Remarks

(1) Hölder continuity with exponent α = 1 is just Lipschitz continuity.

(2) Hölder continuous functions are continuous. Just choose δ =
( ε
M

)1/α
in

Theorem 11.1.2(3).
(3) A contraction map (recall Section 8.3) has Lipschitz constant M < 1, and

conversely.

Examples

(1) Let f : [a, b]→ R be a differentiable function and suppose |f ′(x)| ≤M for
all x ∈ [a, b]. If x 6= y are in [a, b] then from the Mean Value Theorem,

f(y)− f(x)

y − x
= f ′(ξ)

for some ξ between x and y. It follows |f(y)− f(x)| ≤M |y− x| and so f
is Lipschitz with Lipschitz constant at most M .

(2) An example of a Hölder continuous function defined on [0, 1], which is
not Lipschitz continuous, is f(x) =

√
x. This is Hölder continuous with

exponent 1/2 since∣∣∣√x−√x′∣∣∣ =
|x− x′|
√
x+
√
x′

=
√
|x− x′|

√
|x− x′|

√
x+
√
x′

≤
√
|x− x′|.

This function is not Lipschitz continuous since

|f(x)− f(0)|
|x− 0|

=
1√
x
,

and the right side is not bounded by any constant independent of x for
x ∈ (0, 1].
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11.4. Another Definition of Continuity

The following theorem gives a definition of “continuous function” in terms only
of open (or closed) sets. It does not deal with continuity of a function at a point.

Theorem 11.4.1. Let f :X → Y , where (X, d) and (Y, ρ) are metric spaces.
Then the following are equivalent:

(1) f is continuous;
(2) f−1[E] is open in X whenever E is open in Y ;
(3) f−1[C] is closed in X whenever C is closed Y .

Proof. (See Figure 2.)
(1) ⇒ (2): Assume (1). Let E be open in Y . We wish to show that f−1[E] is
open (in X).

Let x ∈ f−1[E]. Then f(x) ∈ E, and since E is open there exists r > 0 such that

Br

(
f(x)

)
⊂ E. From Theorem 11.1.2(3) there exists δ > 0 such that f

[
Bδ(x)

]
⊂

Br

(
f(x)

)
. This implies Bδ(x) ⊂ f−1

[
Br

(
f(x)

)]
. But f−1

[
Br

(
f(x)

)]
⊂ f−1[E]

and so Bδ(x) ⊂ f−1[E].
Thus every point x ∈ f−1[E] is an interior point and so f−1[E] is open.

Figure 2. Diagram for (1) =⇒ (2) in proof of Theorem 11.4.1.

(2)⇔ (3): Assume (2), i.e. f−1[E] is open in X whenever E is open in Y . If

C is closed in Y then Cc is open and so f−1[Cc] is open. But
(
f−1[C]

)c
= f−1[Cc].

Hence f−1[C] is closed.
We can similarly show (3)⇒ (2).

(2)⇒ (1): Assume (2). We will use Theorem 11.1.2(3) to prove (1).

Let x ∈ X. In order to prove f is continuous at x take anyBr

(
f(x)

)
⊂ Y . Since

Br

(
f(x)

)
is open it follows that f−1

[
Br

(
f(x)

)]
is open. Since x ∈ f−1[Br

(
f(x)

)
]

it follows there exists δ > 0 such that Bδ(x) ⊂ f−1[Br

(
f(x)

)
]. Hence f

[
Bδ(x)

]
⊂

f
[
f−1

[
Br

(
f(x)

)]]
; but f

[
f−1

[
Br

(
f(x)

)]]
⊂ Br

(
f(x)

)
(exercise) and so f

[
Bδ(x)

]
⊂

Br

(
f(x)

)
.

It follows from Theorem 11.1.2(3) that f is continuous at x. Since x ∈ X was
arbitrary, it follows that f is continuous on X. �

Corollary 11.4.2. Let f :S (⊂ X) → Y , where (X, d) and (Y, ρ) are metric
spaces. Then the following are equivalent:

(1) f is continuous;
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(2) f−1[E] is open in S whenever E is open (in Y );
(3) f−1[C] is closed in S whenever C is closed (in Y ).

Proof. Since (S, d) is a metric space, this follows immediately from the pre-
ceding theorem. �

Note The function f :R → R given by f(x) = 0 if x is irrational and f(x) = 1
if x is rational is not continuous anywhere, (this is Example 10.2). However, the
function g obtained by restricting f to Q is continuous everywhere on Q.

Applications The previous theorem can be used to show that, loosely speaking,
sets defined by means of continuous functions and the inequalities < and > are
open; while sets defined by means of continuous functions, =, ≤ and ≥, are closed.

(1) The half space

H (⊂ Rn) = {x : z · x < c} ,

where z ∈ Rn and c is a scalar, is open (c.f. the Problems on Chapter 6.)
To see this, fix z and define f :Rn → R by

f(x) = z · x.

Then H = f−1(−∞, c). Since f is continuous2 and (−∞, c) is open, it
follows H is open.

(2) The set

S (⊂ R2) =
{

(x, y) : x ≥ 0 and x2 + y2 ≤ 1
}

is closed. To see this let S = S1 ∩ S2 where

S1 = {(x, y) : x ≥ 0} , S2 =
{

(x, y) : x2 + y2 ≤ 1
}
.

Then S1 = g−1[0,∞) where g(x, y) = x. Since g is continuous and [0,∞)
is closed, it follows that S1 is closed. Similarly S2 = f−1[0, 1] where
f(x, y) = x2 + y2, and so S2 is closed. Hence S is closed being the
intersection of closed sets.

Remark It is not always true that a continuous image3 of an open set is open;
nor is a continuous image of a closed set always closed. But see Theorem 11.5.1
below.

For example, if f : R → R is given by f(x) = x2 then f [(−1, 1)] = [0, 1), so
that a continuous image of an open set need not be open. Also, if f(x) = ex then
f [R] = (0,∞), so that a continuous image of a closed set need not be closed.

11.5. Continuous Functions on Compact Sets

We saw at the end of the previous section that a continuous image of a closed
set need not be closed. However, the continuous image of a closed bounded subset
of Rn is a closed bounded set.

More generally, for arbitrary metric spaces the continuous image of a compact
set is compact.

Theorem 11.5.1. Let f :K (⊂ X)→ Y be a continuous function, where (X, d)
and (Y, ρ) are metric spaces, and K is compact. Then f [K] is compact.

2If xn → x then fxn) = z · xn → z · x = f(x) from Theorem 7.7.1.
3By a continuous image we just mean the image under a continuous function.
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Proof. Let (yn) be any sequence from f [K]. We want to show that some
subsequence has a limit in f [K].

Let yn = f(xn) for some xn ∈ K. Since K is compact there is a subsequence
(xni) such that xni → x (say) as i→∞, where x ∈ K. Hence yni = f(xni)→ f(x)
since f is continuous, and moreover f(x) ∈ f [K] since x ∈ K. It follows that f [K]
is compact. �

You know from your earlier courses on Calculus that a continuous function de-
fined on a closed bounded interval is bounded above and below and has a maximum
value and a minimum value. This is generalised in the next theorem.

Theorem 11.5.2. Let f :K (⊂ X)→ R be a continuous function, where (X, d)
is a metric space and K is compact. Then f is bounded (above and below) and has
a maximum and a minimum value.

Proof. From the previous theorem f [K] is a closed and bounded subset of
R. Since f [K] is bounded it has a least upper bound b (say), i.e. b ≥ f(x) for all
x ∈ K. Since f [K] is closed it follows that b ∈ f [K]4. Hence b = f(x0) for some
x0 ∈ K, and so f(x0) is the maximum value of f on K.

Similarly, f has a minimum value taken at some point in K. �

Remarks The need for K to be compact in the previous theorem is illustrated
by the following examples:

(1) Let f(x) = 1/x for x ∈ (0, 1]. Then f is continuous and (0, 1] is bounded,
but f is not bounded above on the set (0, 1].

(2) Let f(x) = x for x ∈ [0, 1). Then f is continuous and is even bounded
above on [0, 1), but does not have a maximum on [0, 1).

(3) Let f(x) = 1/x for x ∈ [1,∞). Then f is continuous and is bounded
below on [1,∞) but does not have a minimum on [1,∞).

11.6. Uniform Continuity

In this Section, you should first think of the case X is an interval in R and
Y = R.

Definition 11.6.1. Let (X, d) and (Y, ρ) be metric spaces. The function
f :X → Y is uniformly continuous on X if for each ε > 0 there exists δ > 0 such
that

d(x, x′) < δ ⇒ ρ(f(x), f(x′)) < ε,

for all x, x′ ∈ X.

Remark The point is that δ may depend on ε, but does not depend on x or x′.

Examples

(1) Hölder continuous (and in particular Lipschitz continuous) functions are

uniformly continuous. To see this, just choose δ =
( ε
M

)1/α
in Defini-

tion 11.6.1.
(2) The function f(x) = 1/x is continuous at every point in (0, 1) and hence

is continuous on (0, 1). But f is not uniformly continuous on (0, 1).
For example, choose ε = 1 in the definition of uniform continuity.

Suppose δ > 0. By choosing x sufficiently close to 0 (e.g. if |x| < δ) it
is clear that there exist x′ with |x − x′| < δ but |1/x − 1/x′| ≥ 1. This
contradicts uniform continuity.

4To see this take a sequence from f [K] which converges to b (the existence of such a sequence

(yn) follows from the definition of least upper bound by choosing yn ∈ f [K], yn ≥ b − 1/n.) It
follows that b ∈ f [K] since f [K] is closed.
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(3) The function f(x) = sin(1/x) is continuous and bounded, but not uni-
formly continuous, on (0, 1).

(4) Also, f(x) = x2 is continuous, but not uniformly continuous, on R(why?).
On the other hand, f is uniformly continuous on any bounded interval
from the next Theorem. Exercise: Prove this fact directly.

You should think of the previous examples in relation to the following theorem.

Theorem 11.6.2. Let f : S → Y be continuous, where X and Y are metric
spaces, S ⊂ X and S is compact. Then f is uniformly continuous.

Proof. If f is not uniformly continuous, then there exists ε > 0 such that for
every δ > 0 there exist x, y ∈ S with

d(x, y) < δ and ρ(f(x), f(y)) ≥ ε.

Fix some such ε and using δ = 1/n, choose two sequences (xn) and (yn) such
that for all n

(111) xn, yn ∈ S, d(xn, yn) < 1/n, ρ(f(xn), f(yn)) ≥ ε.

See Figure 3. Since S is compact, by going to a subsequence if necessary we can
suppose that xn → x for some x ∈ S. Since

d(yn, x) ≤ d((yn, xn) + d(xn, x),

and both terms on the right side approach 0, it follows that also yn → x.

Figure 3. Here xn → x and d(xn, yn)→ 0, so yn → x.

Since f is continuous at x, there exists τ > 0 such that

(112) z ∈ S, d(z, x) < τ ⇒ ρ(f(z), f(x)) < ε/2.

Since xn → x and yn → x, we can choose k so d(xk, x) < τ and d(yk, x) < τ .
It follows from (112) that for this k

ρ(f(xk), f(yk)) ≤ ρ(f(xk), f(x)) + ρ(f(x), f(yk))

< ε/2 + ε/2 = ε.

But this contradicts (111). Hence f is uniformly continuous. �

Corollary 11.6.3. A continuous real-valued function defined on a closed bounded
subset of Rn is uniformly continuous.

Proof. This is immediate from the theorem, as closed bounded subsets of Rn
are compact. �
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Corollary 11.6.4. Let K be a continuous real-valued function on the square
[0, 1]2. Then the function

f(x) =

∫ 1

0

K(x, t)dt

is (uniformly) continuous.

Proof. We have

|f(x)− f(y)| ≤
∫ 1

0

|K(x, t)−K(y, t)|dt .

Uniform continuity of K on [0, 1]2 means that given ε > 0 there is δ > 0 such that
|K(x, s)−K(y, t)| < ε provided d((x, s), (y, t)) < δ. So if |x−y| < δ |f(x)−f(y)| <
ε. �

Exercise There is a converse to Corollary 11.6.3: if every function continuous
on a subset of R is uniformly continuous, then the set is closed. Must it also be
bounded?





CHAPTER 12

Uniform Convergence of Functions

12.1. Discussion and Definitions

Consider the following examples of sequences of functions (fn)∞n=1, with graphs
as shown. In each case f is in some sense the limit function, as we discuss subse-
quently.

Figure 1. The graph of the continuous fn is shown. Here fn → 0
pointwise where 0 is the zero function.

Figure 2. The graph of the continuous fn is shown. Then fn → 0
pointwise, where 0 is the zero function. Note that

∫
fn = 1/2 for

all n, but
∫
f = 0.

In every one of the preceding cases, fn(x)→ f(x) as n→∞ for each x ∈ domf ,
where domf is the domain of f .

For example, in 1, consider the cases x ≤ 0 and x > 0 separately. If x ≤ 0 then
fn(x) = 0 for all n, and so it is certainly true that fn(x) → 0 as n → ∞. On the
other hand, if x > 0, then fn(x) = 0 for all n > 1/x 1, and in particular fn(x)→ 0
as n→∞.

1Notice that how large n needs to be depends on x.

107
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Figure 3. The graph of the continuous fn is shown. Then fn → 0
pointwise, where f(x) = 0 if x 6= 0, and f(0) = 1.

Figure 4. The graph of the continuous fn is shown. Then fn → 0
pointwise, where f(x) = 0 if x < 0 and f(x) = 1 if x ≥ 0.

Figure 5. The graph of the continuous fn is shown. Then fn → 0
pointwise, where 0 is the zero function.

Figure 6. The graph of the continuous fn is shown. Then fn → 0
pointwise, where 0 is the zero function.
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Figure 7. The graph of the continuous fn is shown, where
fn(x) = 1

n sinnx. Then fn → 0 pointwise, where 0 is the zero
function.

In all cases we say that fn → f in the pointwise sense. That is, for each ε > 0
and each x there exists N such that

n ≥ N ⇒ |fn(x)− f(x)| < ε.

In cases 1–6, N depends on x as well as ε: there is no N which works for all x.
We can see this by imagining the “ε-strip” about the graph of f , which we

define to be the set of all points (x, y) ∈ R2 such that

f(x)− ε < y < f(x) + ε.

Figure 8. The ε-strip around the graph of f .

Then it is not the case for Examples 1–6 that the graph of fn is a subset of the
ε-strip about the graph of f for all sufficiently large n.

However, in Example 7, since

|fn(x)− f(x)| = | 1
n

sinnx− 0| ≤ 1

n
,

it follows that |fn(x)− f(x)| < ε for all n > 1/ε. In other words, the graph of fn is
a subset of the ε-strip about the graph of f for all sufficiently large n. In this case
we say that fn → f uniformly.

Finally we remark that in Examples 5 and 6, if we consider fn and f restricted
to any fixed bounded set B, then it is the case that fn → f uniformly on B.

Motivated by the preceding examples we now make the following definitions.
In the following think of the case S = [a, b] and Y = R.
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Definition 12.1.1. Let f, fn :S → Y for n = 1, 2, . . ., where S is any set and
(Y, ρ) is a metric space.

If fn(x)→ f(x) for all x ∈ S then fn → f pointwise.
If for every ε > 0 there exists N such that

n ≥ N ⇒ ρ
(
fn(x), f(x)

)
< ε

for all x ∈ S, then fn → f uniformly (on S).

Remarks (i) Informally, fn → f uniformly means ρ
(
fn(x), f(x)

)
→ 0 “uni-

formly” in x. See also Proposition 12.2.3.
(ii) If fn → f uniformly then clearly fn → f pointwise, but not necessarily con-
versely, as we have seen. However, see the next theorem for a partial converse.
(iii) Note that fn → f does not converge uniformly iff there exists ε > 0 and a
sequence (xn) ⊂ S such that |f(x)− fn(xn)| ≥ ε for all n.

It is also convenient to define the notion of a uniformly Cauchy sequence of
functions.

Definition 12.1.2. Let fn : S → Y for n = 1, 2, . . ., where S is any set and
(Y, ρ) is a metric space. Then the sequence (fn) is uniformly Cauchy if for every
ε > 0 there exists N such that

m,n ≥ N ⇒ ρ
(
fn(x), fm(x)

)
< ε

for all x ∈ S.

Remarks (i) Thus (fn) is uniformly Cauchy iff the following is true: for each
ε > 0, any two functions from the sequence after a certain point (which will depend
on ε) lie within the ε-strip of each other.

(ii) Informally, (fn) is uniformly Cauchy if ρ
(
fn(x), fm(x)

)
→ 0 “uniformly” in x

as m,n→∞.
(iii) We will see in the next section that if Y is complete (e.g. Y = Rn) then a
sequence (fn) (where fn : S → Y ) is uniformly Cauchy iff fn → f uniformly for
some function f :S → Y .

Theorem 12.1.3 (Dini’s Theorem). Suppose (fn) is an increasing sequence
(i.e. f1(x) ≤ f2(x) ≤ . . . for all x ∈ S) of real-valued continuous functions defined
on the compact subset S of some metric space (X, d). Suppose fn → f pointwise
and f is continuous. Then fn → f uniformly.

Proof. Suppose ε > 0. For each n let

Aεn = {x ∈ S : f(x)− fn(x) < ε}.

Since (fn) is an increasing sequence,

(113) Aε1 ⊂ Aε2 ⊂ . . . .

Since fn(x)→ f(x) for all x ∈ S,

(114) S =

∞⋃
n=1

Aεn.

Since fn and f are continuous,

(115) Aεn is open in S

for all n (see Corollary 11.4.2).
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In order to prove uniform convergence, it is sufficient (why?) to show there
exists n (depending on ε) such that

(116) S = Aεn

(note that then S = Aεm for all m > n from (113)). If no such n exists then for
each n there exists xn such that

(117) xn ∈ S \Aεn
for all n. By compactness of S,there is a subsequence xnk

with xnk
→ x0(say) ∈ S.

From (114) it follows x0 ∈ AεN for some N . From (115) it follows xnk
∈ AεN for

all nk ≥M(say), where we may take M ≥ N . But then from (113) we have

xnk
∈ Aεnk

for all nk ≥M . This contradicts (117). Hence (116) is true for some n, and so the
theorem is proved. �

Remarks (i) The same result hold if we replace “increasing” by “decreasing”.
The proof is similar; or one can deduce the result directly from the theorem by
replacing fn and f by −fn and −f respectively.
(ii) The proof of the Theorem can be simplified by using the equivalent definition
of compactness given in Definition 15.1.2. See the Exercise after Theorem 15.2.1.
(iii) Exercise: Give examples to show why it is necessary that the sequence be
increasing (or decreasing) and that f be continuous.

12.2. The Uniform Metric

In the following think of the case S = [a, b] and Y = R.
In order to understand uniform convergence it is useful to introduce the uniform

“metric” du. This is not quite a metric, only because it may take the value +∞,
but it otherwise satisfies the three axioms for a metric.

Definition 12.2.1. Let F(S, Y ) be the set of all functions f :S → Y , where S
is a set and (Y, ρ) is a metric space. Then the uniform “metric” du on F(S, Y ) is
defined by

du(f, g) = sup
x∈S

ρ
(
f(x), g(x)

)
.

If Y is a normed space (e.g. R), then we define the uniform “norm” by

||f ||u = sup
x∈S
||f(x)||.

(Thus in this case the uniform “metric” is the metric corresponding to the uniform
“norm”, as in the examples following Definition 6.2.1)

In the case S = [a, b] and Y = R it is clear that the ε-strip about f is precisely
the set of functions g such that du(f, g) < ε. A similar remark applies for general
S and Y if the “ε-strip” is appropriately defined.

The uniform metric (norm) is also known as the sup metric (norm). We have
in fact already defined the sup metric and norm on the set C[a, b] of continuous
real-valued functions; c.f. the examples of Section 5.2 and Section 6.2. The present
definition just generalises this to other classes of functions.

The distance du between two functions can easily be +∞. For example, let
S = [0, 1], Y = R. Let f(x) = 1/x if x 6= 0 and f(0) = 0, and let g be the zero
function. Then clearly du(f, g) = ∞. In applications we will only be interested in
the case du(f, g) is finite, and in fact small.
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We now show the three axioms for a metric are satisfied by du, provided we
define

(118) ∞+∞ =∞, c∞ =∞ if c > 0, c∞ = 0 if c = 0.

Theorem 12.2.2. The uniform “metric” (“norm”) satisfies the axioms for a
metric space (Definition 6.2.1) (Definition 5.2.1) provided we interpret arithmetic
operations on ∞ as in (118).

Proof. It is easy to see that du satisfies positivity and symmetry (Exercise).
For the triangle inequality let f, g, h :S → Y . Then2

du(f, g) = supx∈S ρ
(
f(x), g(x)

)
≤ supx∈S

[
ρ
(
f(x), h(x)

)
+ ρ
(
h(x), g(x)

)]
≤ supx∈S ρ

(
f(x), h(x)

)
+ supx∈S ρ

(
h(x), g(x)

)
= du(f, h) + du(h, g).

This completes the proof in this case. �

Proposition 12.2.3. A sequence of functions is uniformly convergent iff it is
convergent in the uniform metric.

Proof. Let S be a set and (Y, ρ) be a metric space.
Let f, fn ∈ F(S, Y ) for n = 1, 2, . . .. From the definition we have that fn → f

uniformly iff for every ε > 0 there exists N such that

n ≥ N ⇒ ρ
(
fn(x), f(x)

)
< ε

for all x ∈ S. This is equivalent to

n ≥ N ⇒ du(fn, f) < ε.

The result follows. �

Proposition 12.2.4. A sequence of functions is uniformly Cauchy iff it is
Cauchy in the uniform metric.

Proof. As in previous result. �

We next establish the relationship between uniformly convergent, and uniformly
Cauchy, sequences of functions.

Theorem 12.2.5. Let S be a set and (Y, ρ) be a metric space.
If f, fn ∈ F(S, Y ) and fn → f uniformly, then (fn)∞n=1 is uniformly Cauchy.
Conversely, if (Y, ρ) is a complete metric space, and (fn)∞n=1 ⊂ F(S, Y ) is

uniformly Cauchy, then fn → f uniformly for some f ∈ F(S, Y ).

Proof. First suppose fn → f uniformly.
Let ε > 0. Then there exists N such that

n ≥ N ⇒ ρ(fn(x), f(x)) < ε

for all x ∈ S. Since

ρ
(
fn(x), fm(x)

)
≤ ρ
(
fn(x), f(x)

)
+ ρ
(
f(x), fm(x)

)
,

2The third line uses uses the fact (Exercise) that if u and v are two real-valued functions
defined on the same domain S, then supx∈S(u(x) + v(x)) ≤ supx∈S u(x) + supx∈S v(x).
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it follows
m,n ≥ N ⇒ ρ(fn(x), fm(x)) < 2ε

for all x ∈ S. Thus (fn) is uniformly Cauchy.

Next assume (Y, ρ) is complete and suppose (fn) is a uniformly Cauchy se-
quence.

It follows from the definition of uniformly Cauchy that
(
fn(x)

)
is a Cauchy

sequence for each x ∈ S, and so has a limit in Y since Y is complete. Define the
function f :S → Y by

f(x) = lim
n→∞

fn(x)

for each x ∈ S.
We know that fn → f in the pointwise sense, but we need to show that fn → f

uniformly.
So suppose that ε > 0 and, using the fact that (fn) is uniformly Cauchy, choose

N such that

m,n ≥ N ⇒ ρ
(
fn(x), fm(x)

)
< ε

for all x ∈ S. Fixing m ≥ N and letting n → ∞3, it follows from the Comparison
Test that

ρ
(
f(x), fm(x)

)
≤ ε

for all x ∈ S4.
Since this applies to every m ≥ N , we have that

m ≥ N ⇒ ρ
(
f(x), fm(x)

)
≤ ε.

for all x ∈ S. Hence fn → f uniformly. �

12.3. Uniform Convergence and Continuity

In the following think of the case X = [a, b] and Y = R.

We saw in Examples 3 and 4 of Section 12.1 that a pointwise limit of continuous
functions need not be continuous. The next theorem shows however that a uniform
limit of continuous functions is continuous.

Theorem 12.3.1. Let (X, d) and (Y, ρ) be metric spaces. Let fn :X → Y for
n = 1, 2, . . . be a sequence of continuous functions such that fn → f uniformly.
Then f is continuous.

Proof. (See Figure 9.) Consider any x0 ∈ X; we will show f is continuous at
x0.

Suppose ε > 0. Using the fact that fn → f uniformly, first choose N so that

(119) ρ
(
fN (x), f(x)

)
< ε

for all x ∈ X. Next, using the fact that fN is continuous, choose δ > 0 so that

(120) d(x, x0) < δ ⇒ ρ
(
fN (x), fN (x0)

)
< ε.

3This is a commonly used technique; it will probably seem strange at first.
4In more detail, we argue as follows: Every term in the sequence of real numbers

ρ
(
fN (x), fm(x)

)
, ρ
(
fN+1(x), fm(x)

)
, ρ
(
fN+2(x), fm(x)

)
, . . .

is < ε. Since fN+p(x) → f(x) as p → ∞, it follows that ρ
(
fN+p(x), fm(x)

)
→ ρ

(
f(x), fm(x)

)
as p → ∞ (this is clear if Y is R or Rk, and follows in general from Theorem 7.3.4). By the

Comparison Test it follows that ρ
(
f(x), fm(x)

)
≤ ε.
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It follows from (119) and (120) that if d(x, x0) < δ then

ρ
(
f(x), f(x0)

)
≤ ρ

(
f(x), fN (x)

)
+ ρ
(
fN (x), fN (x0)

)
+ ρ
(
fN (x0), f(x0)

)
< 3ε.

Figure 9. Diagram for the proof of Thorem 12.3.1.

Hence f is continuous at x0, and hence continuous as x0 was an arbitrary point
in X. �

The next result is very important. We will use it in establishing the existence
of solutions to systems of differential equations.

Recall from Definition 11.1.1 that if X and Y are metric spaces and A ⊂ X,
then the set of all continuous functions f : A → Y is denoted by C(A;Y ). If A
is compact, then we have seen that f [A] is compact and hence bounded5, i.e. f is
bounded. If A is not compact, then continuous functions need not be bounded6.

Definition 12.3.2. The set of bounded continuous functions f : A → Y is
denoted by

BC(A;Y ).

Theorem 12.3.3. Suppose A ⊂ X, (X, d) is a metric space and (Y, ρ) is a
complete metric spaces. Then BC(A;Y ) is a complete metric space with the uni-
form metric du.

Proof. It has already been verified in Theorem 12.2.2 that the three axioms
for a metric are satisfied. We need only check that du(f, g) is always finite for
f, g ∈ BC(A;Y ).

But this is immediate. For suppose b ∈ Y . Then since f and g are bounded on
A, it follows there exist K1 and K2 such that ρ(f(x), b) ≤ K1 and ρ(g(x), b) ≤ K2

for all x ∈ A. But then du(f, g) ≤ K1 + K2 from the definition of du and the
triangle inequality. Hence BC(A;Y ) is a metric space with the uniform metric.

In order to verify completeness, let (fn)∞n=1 be a Cauchy sequence from BC(A;Y ).
Then (fn) is uniformly Cauchy, as noted in Proposition 12.2.4. From Theorem 12.2.5
it follows that fn → f uniformly, for some function f : A → Y . From Proposi-
tion 12.2.3 it follows that fn → f in the uniform metric.

From Theorem 12.3.1 it follows that f is continuous. It is also clear that f is
bounded7. Hence f ∈ BC(A;Y ).

5In Rn, compactness is the same as closed and bounded . This is not true in general, but it is

always true that compact implies closed and bounded . The proof is the same as in Corollary 9.2.2.
6Let A = (0, 1) and f(x) = 1/x, or A = R and f(x) = x.
7Choose N so du(fN , f) ≤ 1. Choose any b ∈ Y . Since fN is bounded, ρ(fN (x), b) ≤ K say,

for all x ∈ A. It follows ρ(f(x), b) ≤ K + 1 for all x ∈ A.
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We have shown that fn → f in the sense of the uniform metric du, where
f ∈ BC(A;Y ). Hence (BC(A;Y ), du) is a complete metric space. �

Corollary 12.3.4. Let (X, d) be a metric space and (Y, ρ) be a complete metric
space. Let A ⊂ X be compact. Then C(A;Y ) is a complete metric space with the
uniform metric du.

Proof. SinceA is compact, every continuous function defined onA is bounded.
The result now follows from the Theorem. �

Corollary 12.3.5. The set C[a, b] of continuous real-valued functions defined
on the interval [a, b], and more generally the set C([a, b] : Rn) of continuous maps
into Rn, are complete metric spaces with the sup metric.

We will use the previous corollary to find solutions to (systems of) differential
equations.

12.4. Uniform Convergence and Integration

It is not necessarily true that if fn → f pointwise, where f, fn : [a, b] → R
are continuous, then

∫ b
a
fn →

∫ b
a
f . In particular, in Example 2 from Section 12.1,∫ 1

−1
fn = 1/2 for all n but

∫ 1

−1
f = 0. However, integration is better behaved under

uniform convergence.

Theorem 12.4.1. Suppose that f, fn : [a, b]→ R for n = 1, 2, . . . are continuous
functions and fn → f uniformly. Then∫ b

a

fn →
∫ b

a

f.

Moreover,
∫ x
a
fn →

∫ x
a
f uniformly for x ∈ [a, b].

Proof. Suppose ε > 0. By uniform convergence, choose N so that

(121) n ≥ N ⇒ |fn(x)− f(x)| < ε

for all x ∈ [a, b]
Since fn and f are continuous, they are Riemann integrable. Moreover,8 for

n ≥ N ∣∣∣∫ ba fn − ∫ ba f ∣∣∣ =
∣∣∣∫ ba(fn − f)∣∣∣

≤
∫ b
a
|fn − f |

≤
∫ b
a
ε from (121)

= (b− a)ε.

It follows that
∫ b
a
fn →

∫ b
a
f , as required.

For uniform convergence just note that the same proof gives
∣∣∫ x
a
fn −

∫ x
a
f
∣∣

≤ (x− a)ε ≤ (b− a)ε. �

*Remarks

8For the following, recall ∣∣∣∣∫ b

a
g

∣∣∣∣ ≤ ∫ b

a
|g|,

f(x) ≤ g(x) for all x ∈ [a, b]⇒
∫ b

a
f ≤

∫ b

a
g.



116 12. UNIFORM CONVERGENCE OF FUNCTIONS

(1) More generally, it is not hard to show that the uniform limit of a sequence
of Riemann integrable functions is also Riemann integrable, and that the
corresponding integrals converge. See [Sm, Theorem 4.4, page 101].

(2) There is a much more important notion of integration, called Lebesgue
integration. Lebesgue integration has much nicer properties with respect
to convergence than does Riemann integration. See, for example, [Fl], [St]
and [Sm].

12.5. Uniform Convergence and Differentiation

Suppose that fn : [a, b] → R, for n = 1, 2, . . ., is a sequence of differentiable
functions, and that fn → f uniformly. It is not true that f ′n(x) → f ′(x) for all
x ∈ [a, b], in fact it need not even be true that f is differentiable.

For example, let f(x) = |x| for x ∈ [0, 1]. Then f is not differentiable at 0.
But, as indicated in the following diagram, it is easy to find a sequence (fn) of
differentiable functions such that fn → f uniformly.

Figure 10. The uniform limit of a sequence of differentiable func-
tions may not be differentiable.

In particular, let

fn(x) =

{
n
2x

2 + 1
2n 0 ≤ |x| ≤ 1

n
|x| 1

n ≤ |x| ≤ 1

Then the fn are differentiable on [−1, 1] (the only points to check are x = ±1/n),
and fn → f uniformly since du(fn, f) ≤ 1/n.

Example 7 from Section 12.1 gives an example where fn → f uniformly and
f is differentiable, but f ′n does not converge for most x. In fact, f ′n(x) = cosnx
which does not converge (unless x = 2kπ for some k ∈ Z (exercise)).

However, if the derivatives themselves converge uniformly to some limit, then
we have the following theorem.

Theorem 12.5.1. Suppose that fn : [a, b] → R for n = 1, 2, . . . and that the f ′n
exist and are continuous. Suppose fn → f pointwise on [a, b] and (f ′n) converges
uniformly on [a, b].

Then f ′ exists and is continuous on [a, b] and f ′n → f ′ uniformly on [a, b].
Moreover, fn → f uniformly on [a, b].

Proof. By the Fundamental Theorem of Calculus,

(122)

∫ x

a

f ′n = fn(x)− fn(a)

for every x ∈ [a, b].
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Let f ′n → g(say) uniformly. Then from (122), Theorem 12.4.1 and the hypothe-
ses of the theorem,

(123)

∫ x

a

g = f(x)− f(a).

Since g is continuous, the left side of (123) is differentiable on [a, b] and the
derivative equals g9. Hence the right side is also differentiable and moreover

g(x) = f ′(x)

on [a, b].
Thus f ′ exists and is continuous and f ′n → f ′ uniformly on [a, b].
Since fn(x) =

∫ x
a
f ′n and f(x) =

∫ x
a
f ′, uniform convergence of fn to f now

follows from Theorem 12.4.1. �

9Recall that the integral of a continuous function is differentiable, and the derivative is just
the original function.





CHAPTER 13

First Order Systems of Differential Equations

The main result in this Chapter is the Existence and Uniqueness Theorem for
first order systems of (ordinary) differential equations. Essentially any differential
equation or system of differential equations can be reduced to a first-order system,
so the result is very general. The Contraction Mapping Principle is the main
ingredient in the proof.

The local Existence and Uniqueness Theorem for a single equation, together
with the necessary preliminaries, is in Sections 13.3, 13.7–13.9. See Sections 13.10
and 13.11 for the global result and the extension to systems. These sections are
independent of the remaining sections.

In Section 13.1 we give two interesting examples of systems of differential equa-
tions.

In Section 13.2 we show how higher order differential equations (and more
generally higher order systems) can be reduced to first order systems.

In Sections 13.4 and 13.5 we discuss “geometric” ways of analysing and under-
standing the solutions to systems of differential equations.

In Section 13.6 we give two examples to show the necessity of the conditions
assumed in the Existence and Uniqueness Theorem.

13.1. Examples

13.1.1. Predator-Prey Problem. Suppose there are two species of animals,
and let the populations at time t be x(t) and y(t) respectively. We assume we can
approximate x(t) and y(t) by differentiable functions. Species x is eaten by species
y . The rates of increase of the species are given by

(124)

dx

dt
= ax− bxy − ex2,

dy

dt
= −cy + dxy − fy2.

The quantities a, b, c, d, e, f are constants and depend on the environment and the
particular species.

A quick justification of this model is as follows:

The term ax represents the usual rate of growth of x in the case of
an unlimited food supply and no predators. The term bxy comes
from the number of contacts per unit time between predator and
prey, it is proportional to the populations x and y, and represents
the rate of decrease in species x due to species y eating it. The term
ex2 is similarly due to competition between members of species x
for the limited food supply.

The term −cy represents the natural rate of decrease of species
y if its food supply, species x, were removed. The term dxy is pro-
portional to the number of contacts per unit time between preda-
tor and prey, and accounts for the growth rate of y in the absence
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of other effects. The term fy2 accounts for competition between
members of species y for the limited food supply (species x).

We will return to this system later. It is first order, since only first deriva-
tives occur in the equation, and nonlinear, since some of the terms involving the
unknowns (or dependent variables) x and y occur in a nonlinear way (namely the
terms xy, x2 and y2). It is a system of ordinary differential equations since there is
only one independent variable t, and so we only form ordinary derivatives; as op-
posed to differential equations where there are two or more independent variables,
in which case the differential equation(s) will involve partial derivatives.

13.1.2. A Simple Spring System. Consider a body of mass m connected
to a wall by a spring and sliding over a surface which applies a frictional force, as
shown in the following diagram.

Figure 1. A mass on a spring displaced from its equilibrium position.

Let x(t) be the displacement at time t from the equilibrium position. From
Newton’s second law, the force acting on the mass is given by

Force = mx′′(t).

If the spring obeys Hooke’s law, then the force is proportional to the displacement,
but acts in the opposite direction, and so

Force = −kx(t),

for some constant k > 0 which depends on the spring. Thus

mx′′(t) = −kx(t),

i.e.

mx′′(t) + kx(t) = 0.

If there is also a force term, due to friction, and proportional to the velocity
but acting in the opposite direction, then

Force = −kx− cx′,

for some constant c > 0, and so

(125) mx′′(t) + cx′(t) + kx(t) = 0.

This is a second order ordinary differential equation, since it contains second
derivatives of the “unknown” x, and is linear since the unknown and its derivatives
occur in a linear manner.
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13.2. Reduction to a First Order System

It is usually possible to reduce a higher order ordinary differential equation or
system of ordinary differential equations to a first order system.

For example, in the case of the differential equation (125) for the spring system
in Section 13.1.2, we introduce a new variable y corresponding to the velocity x′,
and so obtain the following first order system for the “unknowns” x and y:

(126)
x′ = y
y′ = −m−1cy −m−1kx

This is a first order system (linear in this case).
If x, y is a solution of (126) then it is clear that x is a solution of (125). Con-

versely, if x is a solution of (125) and we define y(t) = x′(t), then x, y is a solution
of (126).

An nth order differential equation is a relation between a function x and its
first n derivatives. We can write this in the form

F
(
x(n)(t), x(n−1)(t), . . . , x′(t), x(t), t

)
= 0,

or

F
(
x(n), x(n−1), . . . , x′, x, t

)
= 0.

Here t ∈ I for some interval I ⊂ R, where I may be open, closed, or infinite, at
either end. If I = [a, b], say, then we take one-sided derivatives at a and b.

One can usually, in principle, solve this for xn, and so write

(127) x(n) = G
(
x(n−1), . . . , x′, x, t

)
.

In order to reduce this to a first order system, introduce new functions x1, x2, . . . , xn,
where

x1(t) = x(t)

x2(t) = x′(t)

x3(t) = x′′(t)

...

xn(t) = x(n−1)(t).

Then from (127) we see (exercise) that x1, x2, . . . , xn satisfy the first order
system

(128)

dx1

dt
= x2(t)

dx2

dt
= x3(t)

dx3

dt
= x4(t)

...

dxn−1

dt
= xn(t)

dxn

dt
= G(xn, . . . , x2, x1, t)

Conversely, if x1, x2, . . . , xn satisfy (128) and we let x(t) = x1(t), then we can
check (exercise) that x satisfies (127).
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13.3. Initial Value Problems

Notation If x is a real-valued function defined in some interval I, we say x is
continuously differentiable (or C1) if x is differentiable on I and its derivative is
continuous on I. Note that since x is differentiable, it is in particular continuous.
Let

C1(I)

denote the set of real-valued continuously differentiable functions defined on I.
Usually I = [a, b] for some a and b, and in this case the derivatives at a and b are
one-sided.

More generally, let x(t) = (x1(t), . . . , xn(t)) be a vector-valued function with
values in Rn.1 Then we say x is continuously differentiable (or C1) if each xi(t) is
C1. Let

C1(I;Rn)

denote the set of all such continuously differentiable functions.
In an analogous manner, if a function is continuous, we sometimes say it is C0.

We will consider the general first order system of differential equations in the
form

dx1

dt
= f1(t, x1, x2, . . . , xn)

dx2

dt
= f2(t, x1, x2, . . . , xn)

...
dxn

dt
= fn(t, x1, x2, . . . , xn),

which we write for short as
dx

dt
= f(t,x).

Here

x = (x1, . . . , xn)

dx

dt
= (

dx1

dt
, . . . ,

dxn

dt
)

f(t,x) = f(t, x1, . . . , xn)

=
(
f1(t, x1, . . . , xn), . . . , fn(t, x1, . . . , xn)

)
.

It is usually convenient to think of t as representing time, but this is not necessary.
We will always assume f is continuous for all (t,x) ∈ U , where U ⊂ R× Rn =

Rn+1.
By an initial condition is meant a condition of the form

x1(t0) = x1
0, x

2(t0) = x2
0, . . . , x

n(t0) = xn0

for some given t0 and some given x0 = (x1
0, . . . , x

n
0 ). That is,

x(t0) = x0.

Here, (t0,x0) ∈ U .
The following diagram sketches the situation (schematically in the case n > 1).
In case n = 2, we have the following diagram.
As an example, in the case of the predator-prey problem (124), it is reasonable

to restrict (x, y) to U = {(x, y) : x > 0, y > 0}2. We might think of restricting t to

1You can think of x(t) as tracing out a curve in Rn.
2 What happens if one of x or y vanishes at some point in time ?
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Figure 2. Notation and partial graph of solution for an ODE as
discussed in Section 13.3.

Figure 3. Notation and graph of solution for an ODE in case
n = 2 as discussed in Section 13.3.

t ≥ 0, but since the right side of (124) is independent of t, and since in any case the
choice of what instant in time should correspond to t = 0 is arbitrary, it is more
reasonable not to make any restrictions on t. Thus we might take U = R×{(x, y) :
x > 0, y > 0} in this example. We also usually assume for this problem that we
know the values of x and y at some “initial” time t0.

Definition 13.3.1. [Initial Value Problem] Assume U ⊂ R × Rn = Rn+1,
U is open3 and (t0,x0) ∈ U . Assume f (= f(t,x)) :U → R is continuous. Then the
following is called an initial value problem, with initial condition (130):

dx

dt
= f(t,x),(129)

x(t0) = x0.(130)

We say x(t) = (x1(t), . . . , xn(t)) is a solution of this initial value problem for t in
the interval I if:

(1) t0 ∈ I,
(2) x(t0) = x0,

3Sometimes it is convenient to allow U to be the closure of an open set.
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(3) (t,x(t)) ∈ U and x(t) is C1 for t ∈ I,
(4) the system of equations (129) is satisfied by x(t) for all t ∈ I.

13.4. Heuristic Justification for the
Existence of Solutions

To simplify notation, we consider the case n = 1 in this section. Thus we
consider a single differential equation and an initial value problem of the form

x′(t) = f(t, x(t)),(131)

x(t0) = x0.(132)

As usual, assume f is continuous on U , where U is an open set containing (t0, x0).
It is reasonable to expect that there should exist a (unique) solution x = x(t)

to (131) satisfying the initial condition (132) and defined for all t in some time
interval I containing t0. We make this plausible as follows (See Figure 4.)

Figure 4. Diagram for the discussion in Section 13.4.

From (131) and (132) we know x′(t0) = f(t0, x0). It follows that
for small h > 0

x(t0 + h) ≈ x0 + hf(t0, x0) =: x1
4

Similarly

x(t0 + 2h) ≈ x1 + hf(t0 + h, x1) =: x2

x(t0 + 3h) ≈ x2 + hf(t0 + 2h, x2) =: x3

...

Suppose t∗ > t0. By taking sufficiently many steps, we thus
obtain an approximation to x(t∗) (in the diagram we have shown
the case where h is such that t∗ = t0 + 3h). By taking h < 0 we
can also find an approximation to x(t∗) if t∗ < t0. By taking h
very small we expect to find an approximation to x(t∗) to any
desired degree of accuracy.

4a := b means that a, by definition, is equal to b. And a =: b means that b, by definition, is
equal to a.
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In the previous diagram

P = (t0, x0)

Q = (t0 + h, x1)

R = (t0 + 2h, x2)

S = (t0 + 3h, x3)

The slope of PQ is f(t0, x0) = f(P ), of QR is f(t0 + h, x1) =
f(Q), and of RS is f(t0 + 2h, x2) = f(R).

The method outlined is called the method of Euler polygons. It can be used
to solve differential equations numerically, but there are refinements of the method
which are much more accurate. Euler’s method can also be made the basis of a
rigorous proof of the existence of a solution to the initial value problem (131), (132).
We will take a different approach, however, and use the Contraction Mapping The-
orem.

Direction field

Figure 5. Direction field and solutions of x′(t) = −x− sin t.

Consider again the differential equation (131). At each point in the (t, x) plane,
one can draw a line segment with slope f(t, x). The set of all line segments con-
structed in this way is called the direction field for the differential equation. The
graph of any solution to (131) must have slope given by the line segment at each
point through which it passes. The direction field thus gives a good idea of the
behaviour of the set of solutions to the differential equation.

13.5. Phase Space Diagrams

A useful way of visualising the behaviour of solutions to a system of differential
equations (129) is by means of a phase space diagram. This is nothing more than a
set of paths (solution curves) in Rn (here called phase space) traced out by various
solutions to the system. It is particularly usefu in the case n = 2 (i.e. two unknowns)
and in case the system is autonomous (i.e. the right side of (129) is independent of
time).

Note carefully the difference between the graph of a solution, and the path traced
out by a solution in phase space. In particular, see the second diagram in Sec-
tion 13.3, where R2 is phase space.

We now discuss some general considerations in the context of the following
example.
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Competing Species
Consider the case of two species whose populations at time t are x(t) and y(t).

Suppose they have a good food supply but fight each other whenever they come
into contact. By a discussion similar to that in Section 13.1.1, their populations
may be modelled by the equations

(133)

dx

dt
= ax− bxy

(
= f1(x, y)

)
,

dy

dt
= cy − dxy

(
= f2(x, y)

)
,

for suitable a, b, c, d > 0. Consider as an example the case a = 1000, b = 1, c = 2000
and d = 1.

If a solution x(t), y(t) passes through a point (x, y) in phase space at some time
t, then the “velocity” of the path at this point is (f1(x, y), f2(x, y)) = (x(1000 −
y), y(2000−x)). In particular, the path is tangent to the vector (x(1000−y), y(2000−
x)) at the point (x, y). The set of all such velocity vectors (f1(x, y), f2(x, y)) at the
points (x, y) ∈ R2 is called the velocity field associated to the system of differential
equations. Notice that as the example we are discussing is autonomous, the velocity
field is independent of time.

Figure 6. Direction field (only some arrows shown) and some
solutions for the system (133).

In the previous diagram we have shown some vectors from the velocity field for
the present system of equations. For simplicity, we have only shown their directions
in a few cases, and we have normalised each vector to have the same length; we
sometimes call the resulting vector field a direction field5.

Once we have drawn the velocity field (or direction field), we have a good idea
of the structure of the set of solutions, since each solution curve must be tangent
to the velocity field at each point through which it passes.

Next note that (f1(x, y), f2(x, y)) = (0, 0) if (x, y) = (0, 0) or (2000, 1000).
Thus the “velocity” (or rate of change) of a solution passing through either of these
pairs of points is zero. The pair of constant functions given by x(t) = 2000 and
y(t) = 1000 for all t is a solution of the system, and from Theorem 13.10.1 is the

5Note the distinction between the direction field in phase space and the direction field for
the graphs of solutions as discussed in the last section.
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only solution passing through (2000, 1000). Such a constant solution is called a
stationary solution or stationary point. In this example the other stationary point
is (0, 0) (this is not surprising!).

The stationary point (2000, 1000) is unstable in the sense that if we change
either population by a small amount away from these values, then the populations
do not converge back to these values. In this example, one population will always
die out. This is all clear from the diagram.

13.6. Examples of Non-Uniqueness and Non-Existence

Example 1 (Non-Uniqueness) Consider the initial value problem

dx

dt
=

√
|x|,(134)

x(0) = 0.(135)

We use the method of separation of variables and formally compute from (134) that

dx√
|x|

= dt.

If x > 0, integration gives

x1/2

1/2
= t− a,

for some a. That is, for x > 0,

(136) x(t) = (t− a)2/4.

We need to justify these formal computations. By differentiating, we check
that (136) is indeed a solution of (134) provided t ≥ a.

Note also that x(t) = 0 is a solution of (134) for all t.
Moreover, we can check that for each a ≥ 0 there is a solution of (134) and (135)

given by

x(t) =

{
0 t ≤ a

(t− a)2/4 t > a.

See the following diagram.

Figure 7. Different solutions of (134) and (135), one for each real a.

Thus we do not have uniqueness for solutions of (134), (135). There are even
more solutions to (134), (135), what are they? (exercise).
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We will later prove uniqueness of solutions of the initial value problem (131), (132)
provided the function f(t, x) is locally Lipschitz with respect to x, as defined in the
next section.

Example 2 (Non-Existence) Let f(t, x) = 1 if x ≤ 1, and f(t, x) = 2 if x > 1.
Notice that f is not continuous. Consider the initial value problem

x′(t) = f(t, x(t)),(137)

x(0) = 0.(138)

Then it is natural to take the solution to be

x(t) =

{
t t ≤ 1

2t− 1 t > 1

Figure 8. “Solution” of (137) and (138).

Notice that x(t) satisfies the initial condition and also satisfies the differential
equation provided t 6= 1. But x(t) is not differentiable at t = 1. There is no
solution of this initial value problem, in the usual sense of a solution. It is possible
to generalise the notion of a solution, and in this case the “solution” given is the
correct one.

13.7. A Lipschitz Condition

As we saw in Example 1 of Section 13.6, we need to impose a further condition
on f , apart from continuity, if we are to have a unique solution to the Initial Value
Problem (131), (132). We do this by generalising slightly the notion of a Lipschitz
function as defined in Section 11.3.

Definition 13.7.1. The function f = f(t,x) :A (⊂ R × Rn) → R is Lipschitz
with respect to x (in A) if there exists a constant K such that

(t,x1), (t,x2) ∈ A⇒ |f(t,x1)− f(t,x2)| ≤ K|x1 − x2|.

If f is Lipschitz with respect to x in Ah,k(t0,x0), for every set Ah,k(t0,x0) ⊂ A of
the form

(139) Ah,k(t0,x0) := {(t,x) : |t− t0| ≤ h, |x− x0| ≤ k} ,

then we say f is locally Lipschitz with respect to x. (See Figure 9.)
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Figure 9. Diagram for Definition 13.7.1.

We could have replaced the sets Ah,k(t0,x0) by closed balls centred at (t,x0)
without affecting the definition, since each such ball contains a set Ah,k(t0,x0) for
some h, k > 0, and conversely. We choose sets of the form Ah,k(t0,x0) for later
convenience.

The difference between being Lipschitz with respect to x and being locally
Lipschitz with respect to x is clear from the following Examples.

Example 1 Let n = 1 and A = R× R. Let f(t, x) = t2 + 2 sinx. Then

|f(t, x1)− f(t, x2)| = |2 sinx1 − 2 sinx2|
= |2 cos ξ| |x1 − x2|
≤ 2|x1 − x2|,

for some ξ between x1 and x2, using the Mean Value Theorem.
Thus f is Lipschitz with respect to x (it is also Lipschitz in the usual sense).

Example 2 Let n = 1 and A = R× R. Let f(t, x) = t2 + x2. Then

|f(t, x1)− f(t, x2)| = |x2
1 − x2

2|
= |2ξ| |x1 − x2|,

for some ξ between x1 and x2, again using the Mean Value Theorem. If x1, x2 ∈ B
for some bounded set B, in particular if B is of the form
{(t, x) : |t− t0| ≤ h, |x− x0| ≤ k}, then ξ is also bounded, and so f is locally Lip-
schitz in A. But f is not Lipschitz in A.

We now give an analogue of the result from Example 1 in Section 11.3.

Theorem 13.7.2. Let U ⊂ R × Rn be open and let f = f(t,x) : U → R. If

the partial derivatives
∂f

∂xi
(t,x) all exist and are continuous in U , then f is locally

Lipschitz in U with respect to x.

Proof. Let (t0,x0) ∈ U . Since U is open, there exist h, k > 0 such that

Ah,k(t0,x0) := {(t,x) : |t− t0| ≤ h, |x− x0| ≤ k} ⊂ U.

Since the partial derivatives
∂f

∂xi
(t,x) are continuous on the compact set Ah,k, they

are also bounded on Ah,k from Theorem 11.5.2. Suppose

(140)

∣∣∣∣ ∂f

∂xi
(t,x)

∣∣∣∣ ≤ K,
for i = 1, . . . , n and (t,x) ∈ Ah,k.

Let (t,x1), (t,x2) ∈ Ah,k. To simplify notation, let n = 2 and let x1 = (x1
1, x

2
1),

x2 = (x1
2, x

2
2). Then

(see Figure 10–note that it is in Rn, not in R× Rn; here n = 2.)
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Figure 10. Diagram for the proof of Thorem 13.7.2.

|f(t,x1)− f(t,x2)| = |f(t, x1
1, x

2
1)− f(t, x1

2, x
2
2)|

≤ |f(t, x1
1, x

2
1)− f(t, x1

2, x
2
1)|+ |f(t, x1

2, x
2
1)− f(t, x1

2, x
2
2)|

= | ∂f

∂x1
(ξ1)| |x1

2 − x1
1|+ |

∂f

∂x2
(ξ2)| |x2

2 − x2
1|

≤ K|x1
2 − x1

1|+K|x2
2 − x2

1| from (140)

≤ 2K|x1 − x2|,
In the third line, ξ1 is between x1 and x∗ = (x1

2, x
2
1), and ξ2 is between x∗ =

(x1
2, x

2
1) and x2. This uses the usual Mean Value Theorem for a function of one

variable, applied on the interval [x1
1, x

1
2], and on the interval [x2

1, x
2
2].

This completes the proof if n = 2. For n > 2 the proof is similar. �

13.8. Reduction to an Integral Equation

We again consider the case n = 1 in this section.
Thus we again consider the Initial Value Problem

x′(t) = f(t, x(t)),(141)

x(t0) = x0.(142)

As usual, assume f is continuous in U , where U is an open set containing (t0, x0).
The first step in proving the existence of a solution to (141), (142) is to show

that the problem is equivalent to solving a certain integral equation. This follows
easily by integrating both sides of (141) from t0 to t. More precisely:

Theorem 13.8.1. Assume the function x satifies (t, x(t)) ∈ U for all t ∈ I,
where I is some closed bounded interval. Assume t0 ∈ I. Then x is a C1 solution
to (141), (142) in I iff x is a C0 solution to the integral equation

(143) x(t) = x0 +

∫ t

t0

f
(
s, x(s)

)
ds

in I.

Proof. First let x be a C1 solution to (141), (142) in I. Then the left side,
and hence both sides, of (141) are continuous and in particular integrable. Hence
for any t ∈ I we have by integrating (141) from t0 to t that

x(t)− x(t0) =

∫ t

t0

f
(
s, x(s)

)
ds.

Since x(t0) = x0, this shows x is a C1 (and in particular a C0) solution to (143)
for t ∈ I.
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Conversely, assume x is a C0 solution to (143) for t ∈ I. Since the functions t 7→
x(t) and t 7→ t are continuous, it follows that the function s 7→ (s, x(s)) is continuous
from Theorem 11.2.1. Hence s 7→ f(s, x(s)) is continuous from Theorem 11.2.3. It
follows from (143), using properties of indefinite integrals of continuous functions6,
that x′(t) exists and

x′(t) = f(t, x(t))

for all t ∈ I. In particular, x is C1 on I. Finally, it follows immediately from 143
that x(t0) = x0. Thus x is a C1 solution to (141), (142) in I. �

Remark A bootstrap argument shows that the solution x is in fact C∞ provided
f is C∞.

13.9. Local Existence

We again consider the case n = 1 in this section.
We first use the Contraction Mapping Theorem to show that the integral equa-

tion (143) has a solution on some interval containing t0.

Theorem 13.9.1. Assume f is continuous, and locally Lipschitz with respect
to the second variable, on the open set U ⊂ R × R. Let (t0, x0) ∈ U . Then there
exists h > 0 such that the integral equation

(144) x(t) = x0 +

∫ t

t0

f
(
t, x(t)

)
dt

has a unique C0 solution for t ∈ [t0 − h, t0 + h].

Figure 11. Diagram for the proof of Theorem 13.9.1.

Proof. Choose h, k > 0 so that

Ah,k(t0,x0) := {(t,x) : |t− t0| ≤ h, |x− x0| ≤ k} ⊂ U.
Since f is continuous, it is bounded on the compact set Ah,k(t0,x0) by Theo-

rem 11.5.2. Choose M such that

(145) |f(t, x)| ≤M if (t, x) ∈ Ah,k(t0,x0).

6If h exists and is continuous on I, t0 ∈ I and g(t) =
∫ t
t0
h(s) ds for all t ∈ I, then g′ exists

and g′ = h on I. In particular, g is C1.
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Since f is locally Lipschitz with respect to x, there exists K such that

(146) |f(t, x1)− f(t, x2)| ≤ K|x1 − x2| if (t, x1), (t, x2) ∈ Ah,k(t0,x0).

By decreasing h if necessary, we will require

(147) h ≤ min

{
k

M
,

1

2K

}
.

Let C∗[t0−h, t0 +h] be the set of continuous functions defined on [t0−h, t0 +h]
whose graphs lie in Ah,k(t0,x0). That is,

C∗[t0 − h, t0 + h] = C[t0 − h, t0 + h]
⋂

{
x(t) : |x(t)− x0| ≤ k for all t ∈ [t0 − h, t0 + h]

}
.

Now C[t0 − h, t0 + h] is a complete metric space with the uniform metric, as noted
in Example 1 of Section 12.3. Since C∗[t0 − h, t0 + h] is a closed subset7, it follows
from the “generalisation” following Theorem 8.2.2 that C∗[t0 − h, t0 + h] is also a
complete metric space with the uniform metric.

We want to solve the integral equation (144).
To do this consider the map

T :C∗[t0 − h, t0 + h]→ C∗[t0 − h, t0 + h]

defined by

(148) (Tx)(t) = x0 +

∫ t

t0

f
(
t, x(t)

)
dt for t ∈ [t0 − h, t0 + h].

Notice that the fixed points of T are precisely the solutions of (144).
We check that T is indeed a map into C∗[t0 − h, t0 + h] as follows:

(i): Since in (148) we are taking the definite integral of a continuous function,
Corollary 11.6.4 shows that Tx is a continuous function.

(ii): Using (145) and (147) we have

|(Tx)(t)− x0| =

∣∣∣∣∫ t

t0

f
(
t, x(t)

)
dt

∣∣∣∣
≤

∫ t

t0

∣∣∣f(t, x(t)
)∣∣∣ dt

≤ hM

≤ k.

It follows from the definition of C∗[t0 − h, t0 + h] that Tx ∈ C∗[t0 − h, t0 + h].
We next check that T is a contraction map. To do this we compute for x1, x2 ∈

C∗[t0 − h, t0 + h], using (146) and (147), that

|(Tx1)(t)− (Tx2)(t)| =

∣∣∣∣∫ t

t0

(
f
(
t, x1(t)

)
− f

(
t, x2(t)

))
dt

∣∣∣∣
≤

∫ t

t0

∣∣∣f(t, x1(t)
)
− f

(
t, x2(t)

)∣∣∣ dt
≤

∫ t

t0

K|x1(t)− x2(t)| dt

≤ Kh sup
t∈[t0−h,t0+h]

|x1(t)− x2(t)|

≤ 1

2
du(x1, x2).

7If xn → x uniformly and |xn(t)| ≤ k for all t, then |x(t)| ≤ k for all t.
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Hence

du(Tx1, Tx2) ≤ 1

2
du(x1, x2).

Thus we have shown that T is a contraction map on the complete metric space
C∗[t0 − h, t0 + h], and so has a unique fixed point. This completes the proof of
the theorem, since as noted before the fixed points of T are precisely the solutions
of (144). �

Since the contraction mapping theorem gives an algorithm for finding the fixed
point, this can be used to obtain approximates to the solution of the differential
equation. In fact the argument can be sharpened considerably. At the step (149)

|(Tx1)(t)− (Tx2)(t)| ≤
∫ t

t0

K|x1(t)− x2(t)| dt

≤ K|t− t0|du(x1, x2).

Thus applying the next step of the iteration,

|(T 2x1)(t)− (T 2x2)(t)| ≤
∫ t

t0

K|(Tx1)(t)− (Tx2)(t)| dt

≤ K2

∫ t

t0

|t− t0| dt du(x1, x2)

≤ K2 |t− t0|2

2
du(x1, x2).

Induction gives

|(T rx1)(t)− (T rx2)(t) ≤ Kr |t− t0|r

r!
du(x1, x2).

Without using the fact that Kh < 1/2, it follows that some power of T is a
contraction. Thus by one of the problems T itself has a unique fixed point. This
observation generally facilitates the obtaining of a larger domain for the solution.

Example The simple equation x′(t) = x(t), x(0) = 1 is well known to have
solution the exponential function. Applying the above algorithm, with x1(t) = 1
we would have

(Tx1)(t) = 1 +

∫ t

t0

f
(
t, x1(t)

)
dt = 1 + t,

(T 2x1)(t) = 1 +

∫ t

t0

(1 + t)dt = 1 + t+
t2

2

...

(T kx1)(t) =

k∑
i=0

ti

i!
,

giving the exponential series, which in fact converges to the solution uniformly on
any bounded interval.

Theorem 13.9.2 (Local Existence and Uniqueness). Assume that f(t, x) is
continuous, and locally Lipschitz with respect to x, in the open set U ⊂ R×R. Let
(t0, x0) ∈ U . Then there exists h > 0 such that the initial value problem

x′(t) = f(t, x(t)),

x(t0) = x0,

has a unique C1 solution for t ∈ [t0 − h, t0 + h].
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Proof. By Theorem 13.8.1, x is a C1 solution to this initial value problem iff
it is a C0 solution to the integral equation (144). But the integral equation has a
unique solution in some [t0 − h, t0 + h], by the previous theorem. �

13.10. Global Existence

Theorem 13.9.2 shows the existence of a (unique) solution to the initial value
problem in some (possibly small) time interval containing t0. Even if U = R×R it
is not necessarily true that a solution exists for all t.

Example 1 Consider the initial value problem

x′(t) = x2,

x(0) = a,

where for this discussion we take a ≥ 0.
If a = 0, this has the solution

x(t) = 0, (all t).

If a > 0 we use separation of variables to show that the solution is

x(t) =
1

a−1 − t
, (t < a−1).

It follows from the Existence and Uniqueness Theorem that for each a this gives
the only solution.

Notice that if a > 0, then the solution x(t)→∞ as t→ a−1 from the left, and
x(t) is undefined for t = a−1. Of course this x also satisfies x′(t) = x for t > a−1,
as do all the functions

xb(t) =
1

b−1 − t
, (0 < b < a).

Thus the presciption of x(0) = a gives zero information about the solution for
t > a−1.

The following diagram shows the solution for various a.

Figure 12. Solutions to the initial value problem in Exam-
ple 13.10 for different a.
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The following theorem more completely analyses the situation.

Theorem 13.10.1 (Global Existence and Uniqueness). There is a unique so-
lution x to the initial value problem (141), (142) and

(1) either the solution exists for all t ≥ t0,
(2) or the solution exists for all t0 ≤ t < T , for some (finite) T > t0; in which

case for any closed bounded subset A ⊂ U we have (t, x(t)) 6∈ A for all
t < T sufficiently close to T .

A similar result applies to t ≤ t0.

Remark* The second alternative in the Theorem just says that the graph of the
solution eventually leaves any closed bounded A ⊂ U . We can think of it as saying
that the graph of the solution either escapes to infinity or approaches the boundary
of U as t→ T .

Proof. * (Outline) Let T be the supremum of all t∗ such that a solution
exists for t ∈ [t0, t

∗]. If T =∞, then we are done.
If T is finite, let A ⊂ U where A is compact. If (t,x(t)) does not eventually

leave A, then there exists a sequence tn → T such that (tn,x(tn)) ∈ A. From
the definition of compactness, a subsequence of (tn,x(tn)) must have a limit in A.
Let (tni

,x(tni
)) → (T,x) ∈ A (note that tni

→ T since tn → T ). In particular,
x(tni

)→ x.
The proof of the Existence and Uniqueness Theorem shows that a solution

beginning at (T,x) exists for some time h > 0, and moreover, that for t′ = T −h/4,
say, the solution beginning at (t′,x(t′)) exists for time h/2. But this then extends
the original solution past time T , contradicting the definition of T .

Hence (t,x(t)) does eventually leave A. �

13.11. Extension of Results to Systems

The discussion, proofs and results in Sections 13.4, 13.8, 13.9 and 13.10 gener-
alise to systems, with essentially only notational changes, as we now sketch.

Thus we consider the following initial value problem for systems:

dx

dt
= f(t,x),

x(t0) = x0.

This is equivalent to the integral equation

x(t) = x0 +

∫ t

t0

f
(
s,x(s)

)
ds.

The integral of the vector function on the right side is defined componentwise in
the natural way, i.e.∫ t

t0

f
(
s,x(s)

)
ds :=

(∫ t

t0

f1
(
s,x(s)

)
ds, . . . ,

∫ t

t0

f2
(
s,x(s)

)
ds

)
.

The proof of equivalence is essentially the proof in Section 13.8 for the single equa-
tion case, applied to each component separately.

Solutions of the integral equation are precisely the fixed points of the operator
T , where

(Tx)(t) = x0 +

∫ t

t0

f
(
s,x(s)

)
ds t ∈ [t0 − h, t0 + h].
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As is the proof of Theorem 13.9.1, T is a contraction map on

C∗([t0 − h, t0 + h];Rn) = C([t0 − h, t0 + h];Rn)
⋂

{
x(t) : |x(t)− x0| ≤ k for all t ∈ [t0 − h, t0 + h]

}
for some I and some k > 0, provided f is locally Lipschitz in x. This is proved
exactly as in Theorem 13.9.1. Thus the integral equation, and hence the initial
value problem has a unique solution in some time interval containing t0.

The analogue of Theorem 13.10.1 for global (or long-time) existence is also
valid, with the same proof.



CHAPTER 14

Fractals

So, naturalists observe, a flea
Hath smaller fleas that on him prey;
And these have smaller still to bite ’em;
And so proceed ad infinitum.

Jonathan Swift On Poetry. A Rhapsody [1733]

Big whorls have little whorls
which feed on their velocity;
And little whorls have lesser whorls,
and so on to viscosity.

Lewis Fry Richardson

Fractals are, loosely speaking, sets which

• have a fractional dimension;
• have certain self-similarity or scale invariance properties.

There is also a notion of a random (or probabilistic) fractal.
Until recently, fractals were considered to be only of mathematical interest.

But in the last few years they have been used to model a wide range of mathemat-
ical phenomena—coastline patterns, river tributary patterns, and other geological
structures; leaf structure, error distribution in electronic transmissions, galactic
clustering, etc. etc. The theory has been used to achieve a very high magnitude of
data compression in the storage and generation of computer graphics.

References include the book [Ma], which is written in a somewhat informal
style but has many

and [Ba] provide an accessible discussion of many aspects of fractals and are
quite readable. The book [BD] has a number of good articles.

14.1. Examples

14.1.1. Koch Curve. A sequence of approximationsA = A(0), A(1), A(2), . . . , A(n), . . .
to the Koch Curve (or Snowflake Curve) is sketched in the following diagrams.

The actual Koch curve K ⊂ R2 is the limit of these approximations in a sense
which we later make precise.

Notice that

A(1) = S1[A] ∪ S2[A] ∪ S3[A] ∪ S4[A],

where each Si :R2 → R2, and Si equals a dilation with dilation ratio 1/3, followed
by a translation and a rotation. For example, S1 is the map given by dilating with
dilation ratio 1/3 about the fixed point P , see the diagram. S2 is obtained by
composing this map with a suitable translation and then a rotation through 600 in
the anti-clockwise direction. Similarly for S3 and S4.

Likewise,

A(2) = S1[A(1)] ∪ S2[A(1)] ∪ S3[A(1)] ∪ S4[A(1)].

In general,

A(n+1) = S1[A(n)] ∪ S2[A(n)] ∪ S3[A(n)] ∪ S4[A(n)].

137
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Figure 1. Approximations to the Koch curve.

Moreover, the Koch curve K itself has the property that

K = S1[K] ∪ S2[K] ∪ S3[K] ∪ S4[K].

This is quite plausible, and will easily follow after we make precise the limiting
process used to define K.

14.1.2. Cantor Set. We next sketch a sequence of approximations A = A(0),
A(1), A(2),. . . , A(n), . . . to the Cantor Set C.

Figure 2. Approximations to the Cantor set.

We can think of C as obtained by first removing the open middle third (1/3, 2/3)
from [0, 1]; then removing the open middle third from each of the two closed intervals
which remain; then removing the open middle third from each of the four closed
interval which remain; etc.
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More precisely, let

A = A(0) = [0, 1]

A(1) = [0, 1/3] ∪ [2/3, 1]

A(2) = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1]

...

Let C =
⋂∞
n=0A

(n). Since C is the intersection of a family of closed sets, C is
closed.

Note that A(n+1) ⊂ A(n) for all n and so the A(n) form a decreasing family of
sets.

Consider the ternary expansion of numbers x ∈ [0, 1], i.e. write each x ∈ [0, 1]
in the form

(149) x = .a1a2 . . . an . . . =
a1

3
+
a2

32
+ · · ·+ an

3n
+ · · ·

where an = 0, 1 or 2. Each number has either one or two such representations, and
the only way x can have two representations is if

x = .a1a2 . . . an222 . . . = .a1a2 . . . an−1(an+1)000 . . .

for some an = 0 or 1. For example, .210222 . . . = .211000 . . ..
Note the following:

(1) x ∈ A(n) iff x has an expansion of the form (149) with each of a1, . . . , an
taking the values 0 or 2.

(2) It follows that x ∈ C iff x has an expansion of the form (149) with every
an taking the values 0 or 2.

(3) Each endpoint of any of the 2n intervals associated with A(n) has an
expansion of the form (149) with each of a1, . . . , an taking the values 0
or 2 and the remaining ai either all taking the value 0 or all taking the
value 2.

Next let

S1(x) =
1

3
x, S2(x) = 1 +

1

3
(x− 1).

Notice that S1 is a dilation with dilation ratio 1/3 and fixed point 0. Similarly, S2

is a dilation with dilation ratio 1/3 and fixed point 1.
Then

A(n+1) = S1[A(n)] ∪ S2[A(n)].

Moreover,

C = S1[C] ∪ S2[C].

14.1.3. Sierpinski Sponge. The following diagrams show two approxima-
tions to the Sierpinski Sponge.

The Sierpinski Sponge P is obtained by first drilling out from the closed unit
cube A = A(0) = [0, 1]× [0, 1]× [0, 1], the three open, square cross-section, tubes

(1/3, 2/3)× (1/3, 2/3)× R,
(1/3, 2/3)× R× (1/3, 2/3),

R× (1/3, 2/3)× (1/3, 2/3).

The remaining (closed) set A = A(1) is the union of 20 small cubes (8 at the top,
8 at the bottom, and 4 legs).

From each of these 20 cubes, we again remove three tubes, each of cross-section
equal to one-third that of the cube. The remaining (closed) set is denoted by
A = A(2).
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Figure 3. First approximation to the Sierpinski Sponge.

Figure 4. A subsequent approximation to the Sierpinski Sponge.

Repeating this process, we obtain A = A(0), A(1), A(2), . . . , A(n), . . .; a sequence
of closed sets such that

A(n+1) ⊂ A(n),

for all n. We define

P =
⋂
n≥1

A(n).

Notice that P is also closed, being the intersection of closed sets.

14.2. Fractals and Similitudes

Motivated by the three previous examples we make the following:

Definition 14.2.1. A fractal1 in Rn is a compact set K such that

(150) K =

N⋃
i=1

Si[K]

1The word fractal is often used to denote a wider class of sets, but with analogous properties
to those here.
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for some finite family
S = {S1, . . . , SN}

of similitudes Si :Rn → Rn.

Similitudes A similitude is any map S : Rn → Rn which is a composition of
dilations2, orthonormal transformations3, and translations4.

Note that translations and orthonormal transformations preserve distances, i.e.
|F (x) − F (y)| = |x − y| for all x,y ∈ Rn if F is such a map. On the other hand,
|D(x) − D(y)| = r|x − y| if D is a dilation with dilation ratio r ≥ 05. It follows
that every similitude S has a well-defined dilation ratio r ≥ 0, i.e.

|S(x)− S(y)| = r|x− y|,
for all x,y ∈ Rn.

Theorem 14.2.2. Every similitude S can be expressed in the form

S = D ◦ T ◦O,
with D a dilation about 0, T a translation, and O an orthonormal transformation.
In other words,

(151) S(x) = r(Ox + a),

for some r ≥ 0, some a ∈ Rn and some orthonormal transformation O.
Moreover, the dilation ratio of the composition of two similitudes is the product

of their dilation ratios.

Proof. Every map of type (151) is a similitude.
On the other hand, any dilation, translation or orthonormal transformation is

clearly of type (151). To show that a composition of such maps is also of type (151),
it is thus sufficient to show that a composition of maps of type (151) is itself of
type (151). But

r1

(
O1

(
r2(O2x + a2)

)
+ a1

)
= r1r2

(
O1O2x +

(
O1a2 + r−1

2 a1

))
.

This proves the result, including the last statement of the Theorem. �

14.3. Dimension of Fractals

A curve has dimension 1, a surface has dimension 2, and a “solid” object has
dimension 3. By the k-volume of a “nice” k-dimensional set we mean its length if
k = 1, area if k = 2, and usual volume if k = 3.

One can in fact define in a rigorous way the so-called Hausdorff dimension
of an arbitrary subset of Rn. The Hausdorff dimension is a real number h with
0 ≤ h ≤ n. We will not do this here, but you will see it in a later course in the
context of Hausdorff measure. Here, we will give a simple definition of dimension
for fractals, which agrees with the Hausdorff dimension in many important cases.

Suppose by way of motivation that a k-dimensional set K has the property

K = K1 ∪ · · · ∪KN ,

2A dilation with fixed point a and dilation ratio r ≥ 0 is a map D : Rn → Rn of the form

D(x) = a + r(x− a).
3An orthonormal transformation is a linear transformation O :Rn → Rn such that O−1 = Ot.

In R2 and R3, such maps consist of a rotation, possibly followed by a reflection.
4A translation is a map T :Rn → Rn of the form T (x) = x + a.
5There is no need to consider dilation ratios r < 0. Such maps are obtained by composing a

positive dilation with the orthonormal transformation −I, where I is the identity map on Rn.
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where the sets Ki are “almost”6 disjoint. Suppose moreover, that

Ki = Si[K]

where each Si is a similitude with dilation ratio ri > 0. See Figure 5 for a few
examples.

Figure 5. The set K is, in each case, the union of rescale copies of itself.

Suppose K is one of the previous examples and K is k-dimensional. Since
dilating a k-dimensional set by the ratio r will multiply the k-volume by rk, it
follows that

V = rk1V + · · ·+ rkNV,

where V is the k-volume of K. Assume V 6= 0,∞, which is reasonable if V is
k-dimensional and is certainly the case for the examples in the previous diagram.
It follows

(152)

N∑
i=1

rki = 1.

In particular, if r1 = . . . = rN = r, say, then

Nrk = 1,

and so

k =
logN

log 1/r
.

Thus we have a formula for the dimension k in terms of the number N of “almost
disjoint” sets Ki whose union is K, and the dilation ratio r used to obtain each Ki

from K.

6In the sense that the Hausdorff dimension of the intersection is less than k.
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More generally, if the ri are not all equal, the dimension k can be determined
from N and the ri as follows. Define

g(p) =

N∑
i=1

rpi .

Then g(0) = N (> 1), g is a strictly decreasing function (assuming 0 < ri < 1), and
g(p)→ 0 as p→∞. It follows there is a unique value of p such that g(p) = 1, and
from (152) this value of p must be the dimension k.

The preceding considerations lead to the following definition:

Definition 14.3.1. Assume K ⊂ Rn is a compact set and

K = S1[K] ∪ · · · ∪ Sn[K],

where the Si are similitudes with dilation ratios 0 < ri < 1. Then the similarity
dimension of K is the unique real number D such that

1 =

N∑
i=1

rDi .

Remarks This is only a good definition if the sets Si[K] are “almost” disjoint
in some sense (otherwise different decompositions may lead to different values of
D). In this case one can prove that the similarity dimension and the Hausdorff
dimension are equal. The advantage of the similarity dimension is that it is easy
to calculate.

Examples For the Koch curve,

N = 4, r =
1

3
,

and so

D =
log 4

log 3
≈ 1.2619 .

For the Cantor set,

N = 2, r =
1

3
,

and so

D =
log 2

log 3
≈ 0.6309 .

And for the Sierpinski Sponge,

N = 20, r =
1

3
,

and so

D =
log 20

log 3
≈ 2.7268 .

14.4. Fractals as Fixed Points

We defined a fractal in (150) to be a compact non-empty set K ⊂ Rn such that

(153) K =

N⋃
i=1

Si[K],

for some finite family

S = {S1, . . . , SN}
of similitudes Si :Rn → Rn.
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The surprising result is that given any finite family S = {S1, . . . , SN} of simili-
tudes with contraction ratios less than 1, there always exists a compact non-empty
set K such that (153) is true. Moreover, K is unique.

We can replace the similitudes Si by any contraction map (i.e. Lipschitz map
with Lipschitz constant less than 1)7. The following Theorem gives the result.

Theorem 14.4.1 (Existence and Uniqueness of Fractals). Let S
= {S1, . . . , SN} be a family of contraction maps on Rn. Then there is a unique
compact non-empty set K such that

(154) K = S1[K] ∪ · · · ∪ SN [K].

Proof. For any compact set A ⊂ Rn, define

S(A) = S1[A] ∪ · · · ∪ SN [A].

Then S(A) is also a compact subset of Rn 8.
Let

K = {A : A ⊂ Rn, A 6= ∅, A compact}
denote the family of all compact non-empty subsets of Rn. Then S :K → K, and
K satisfies (154) iff K is fixed point of S.

In the next section we will define the Hausdorff metric dH on K, and show that
(K, dH) is a complete metric space. Moreover, we will show that S is a contraction
mapping on K 9, and hence has a unique fixed point K, say. Thus there is a unique
compact set K such that (154) is true. �

A Computational Algorithm From the proof of the Contraction Mapping The-
orem, we know that if A is any compact subset of Rn, then the sequence10

A, S(A), S2(A), . . . ,Sk(A), . . .

converges to the fractal K (in the Hausdorff metric).
The approximations to the Koch curve which are shown in Section (14.1.1)

were obtained by taking A = A(0) as shown there. We could instead have taken
A = [P,Q], in which case the A shown in the first approximation is obtained after
just one iteration.

The approximations to the Cantor set were obtained by taking A = [0, 1], and
to the Sierpinski sponge by taking A to be the unit cube.

Another convenient choice of A is the set consisting of the N fixed points of
the contraction maps {S1, . . . , SN}. The advantage of this choice is that the sets
Sk(A) are then subsets of the fractal K (exercise).

Variants on the Koch Curve Let K be the Koch curve. We have seen how we
can write

K = S1[K] ∪ · · · ∪ S4[K].

It is also clear that we can write

K = S1[K] ∪ S2[K]

for suitable other choices of similitudes S1, S2. Here S1[K] is the left side of the
Koch curve, as shown in the next diagram, and S2[K] is the right side.

7The restriction to similitudes is only to ensure that the similarity and Hausdorff dimensions
agree under suitable extra hypotheses.

8Each Si[A] is compact as it is the continuous image of a compact set. Hence S(A) is compact
as it is a finite union of compact sets.

9Do not confuse this with the fact that the Si are contraction mappings on Rn.
10Define S2(A) := S(S(A)), S3(A) := S(S2(A)), etc.
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Figure 6. The Koch curve as the union of two scaled copies of itself.

The map S1 consists of a reflection in the PQ axis, followed by a dilation about P
with the appropriate dilation factor (which a simple calculation shows to be 1/

√
3),

followed by a rotation about P such that the final image of Q is R. Similarly, S2 is
a reflection in the PQ axis, followed by a dilation about Q, followed by a rotation
about Q such that the final image of P is R.

The previous diagram was generated with a simple Fortran program by the
previous computational algorithm, using A = [P,Q], and taking 6 iterations.

Simple variations on S = {S1, S2} give quite different fractals. If S2 is as before,
and S1 is also as before except that no reflection is performed, then the following
Dragon fractal is obtained:

Figure 7. Dragon fractal.

If S1, S2 are as for the Koch curve, except that no reflection is performed in
either case, then the following Brain fractal is obtained:

Figure 8. Brain fractal.

If S1, S2 are as for the previous case except that now S1 maps Q to (−.15, .6)

instead of to R = (0, 1/
√

3) ≈ (0, .6), and S2 maps P to (.15, .6), then the following
Clouds are obtained:

An important point worth emphasising is that despite the apparent complexity
in the fractals we have just sketched, all the relevant information is already encoded
in the family of generating similitudes. And any such similitude, as in (151), is
determined by r ∈ (0, 1), a ∈ Rn, and the n × n orthogonal matrix O. If n = 2,
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Figure 9. Clouds fractal.

then O =

[
cos θ − sin θ
sin θ cos θ

]
, i.e. O is a rotation by θ in an anticlockwise direction,

or O =

[
cos θ − sin θ
− sin θ − cos θ

]
, i.e. O is a rotation by θ in an anticlockwise direction

followed by reflection in the x-axis.
For a given fractal it is often a simple matter to work “backwards” and find a

corresponding family of similitudes. One needs to find S1, . . . , SN such that

K = S1[K] ∪ · · · ∪ SN [K].

If equality is only approximately true, then it is not hard to show that the fractal
generated by S1, . . . , SN will be approximately equal to K11.

In this way, complicated structures can often be encoded in very efficient ways.
The point is to find appropriate S1, . . . , SN . There is much applied and commercial
work (and venture capital!) going into this problem.

14.5. *The Metric Space of Compact Subsets of Rn

Let K is the family of compact non-empty subsets of Rn.
In this Section we will define the Hausdorff metric dH on K, show that (dH,K),

is a complete metric space, and prove that the map S :K → K is a contraction map
with respect to dH. This completes the proof of Theorem (14.4.1).

Recall that the distance from x ∈ Rn to A ⊂ Rn was defined (c.f. (104)) by

(155) d(x,A) = inf
a∈A

d(x, a).

If A ∈ K, it follows from Theorem 9.4.2 that the sup is realised, i.e.

(156) d(x,A) = d(x, a)

for some a ∈ A. Thus we could replace inf by min in (155).

Definition 14.5.1. LetA ⊂ Rn and ε ≥ 0. Then for any ε > 0 the ε-enlargement
of A is defined by

Aε = {x ∈ Rn : d(x,A) ≤ ε} .
Hence from (156), x ∈ Aε iff d(x, a) ≤ ε for some a ∈ A.

The following diagram shows the ε-enlargement Aε of a set A.

Properties of the ε-enlargement

(1) A ⊂ B ⇒ Aε ⊂ Bε.
(2) Aε is closed. (Exercise: check that the complement is open)
(3) A0 is the closure of A. (Exercise)
(4) A ⊂ Aε for any ε ≥ 0, and Aε ⊂ Aγ if ε ≤ γ. (Exercise)

11In the Hausdorff distance sense, as we will discuss in Section 14.5.
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Figure 10. The set Aε is the ε-enlargement of the curve A.

(5)

(157)
⋂
ε>δ

Aε = Aδ.

To see this12 first note that Aδ ⊂
⋂
ε>δ Aε, since Aδ ⊂ Aε whenever ε > δ.

On the other hand, if x ∈
⋂
ε>δ Aε then x ∈ Aε for all ε > δ. Hence

d(x,A) ≤ ε for all ε > δ, and so d(x,A) ≤ δ. That is, x ∈ Aδ.
We regard two sets A and B as being close to each other if A ⊂ Bε and B ⊂ Aε

for some small ε. This leads to the following definition.

Definition 14.5.2. Let A,B ⊂ Rn. Then the (Hausdorff) distance between
A and B is defined by

(158) dH(A,B) = d(A,B) = inf {ε : A ⊂ Bε, B ⊂ Aε} .
We call dH (or just d), the Hausdorff metric on K.

We give some examples in the following diagrams.

Figure 11. There is a small ε such that both B ⊂ Aε and A ⊂ Bε.
Thus d(A,B) ≤ ε for this particular ε.

Figure 12. B ⊂ Aε for some small ε, but there is no small ε such
that A ⊂ Bε. Thus d(A,B) is not small.

12The result is not completely obvious. Suppose we had instead defined Aε =
{x ∈ Rn : d(x,A) < ε}. Let A = [0, 1] ⊂ R. With this changed definition we would have
Aε = (−ε, 1 + ε), and so ⋂

ε>δ

Aε =
⋂
ε>δ

(−ε, 1 + ε) = [−δ, 1 + δ] 6= Aδ.
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Figure 13. A and B are not close, although there are members
from A and B respectively which are close to one another.

Remark 1 It is easy to see that the three notions13 of d are consistent, in the
sense that d(x, y) = d(x, {y}) and d(x, y) = d({x}, {y}).

Remark 2 Let δ = d(A,B). Then A ⊂ Bε for all ε > δ, and so A ⊂ Bδ from (157).
Similarly, B ⊂ Aδ. It follows that the inf in Definition 14.5.2 is realised, and so we
could there replace inf by min.

Notice that if d(A,B) = ε, then d(a,B) ≤ ε for every a ∈ A. Similarly,
d(b, A) ≤ ε for every b ∈ B.

Elementary Properties of dH

(1) (Exercise) If E,F,G,H ⊂ Rn then

d(E ∪ F,G ∪H) ≤ max{d(E,G), d(F,H)}.

(2) (Exercise) If A,B ⊂ Rn and F : Rn → Rn is a Lipschitz map with
Lipschitz constant λ, then

d(F [A], F [B]) ≤ λd(A,B).

The Hausdorff metric is not a metric on the set of all subsets of Rn. For
example, in R we have

d
(

(a, b), [a, b]
)

= 0.

Thus the distance between two non-equal sets is 0. But if we restrict to compact
sets, the d is indeed a metric, and moreover it makes K into a complete metric
space.

Theorem 14.5.3. (K, d) is a complete metric space.

Proof. (a) We first prove the three properties of a metric from Definition 6.2.1.
In the following, all sets are compact and non-empty.

(1) Clearly d(A,B) ≥ 0. If d(A,B) = 0, then A ⊂ B0 and B ⊂ A0. But
A0 = A and B0 = B since A and B are closed. This implies A = B.

(2) Clearly d(A,B) = d(B,A), i.e. symmetry holds.
(3) Finally, suppose d(A,C) = δ1 and d(C,B) = δ2. We want to show

d(A,B) ≤ δ1 + δ2, i.e. that the triangle inequality holds.
We first claim A ⊂ Bδ1+δ2 . To see this consider any a ∈ A. Then

d(a,C) ≤ δ1 and so d(a, c) ≤ d1 for some c ∈ C (by (156)). Similarly,
d(c, b) ≤ δ2 for some b ∈ B. Hence d(a, b) ≤ δ1 + δ2, and so a ∈ Bδ1+δ2 ,
and so A ⊂ Bδ1+δ2 , as claimed.

Similarly, B ⊂ Aδ1+δ2 . Thus d(A,B) ≤ δ1 + δ2, as required.

13The distance between two points, the distance between a point and a set, and the Hausdorff
distance between two sets.
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(b) Assume (Ai)i≥1 is a Cauchy sequence (of compact non-empty sets) fromK.
Let

Cj =
⋃
i≥j

Ai,

for j = 1, 2, . . .. Then the Cj are closed and bounded14, and hence compact.
Moreover, the sequence (Cj) is decreasing, i.e.

Cj ⊂ Ck,
if j ≥ k.

Let
C =

⋂
j≥1

Cj .

Then C is also closed and bounded, and hence compact.

Claim: Ak → C in the Hausdorff metric, i.e. d(Ai, C)→ 0 as i→∞.

Suppose that ε > 0. Choose N such that

(159) j, k ≥ N ⇒ d(Aj , Ak) ≤ ε.
We claim that

j ≥ N ⇒ d(Aj , C) ≤ ε,
i.e.

(160) j ≥ N ⇒ C ⊂ Ajε .
and

(161) j ≥ N ⇒ Aj ⊂ Cε
To prove (160), note from (159) that if j ≥ N then⋃

i≥j

Ai ⊂ Ajε .

Since Ajε is closed, it follows

Cj =
⋃
i≥j

Ai ⊂ Ajε .

Since C ⊂ Cj , this establishes (160).
To prove (161), assume j ≥ N and suppose

x ∈ Aj .
Then from (159), x ∈ Akε if k ≥ j, and so

k ≥ j ⇒ x ∈
⋃
i≥k

Aiε ⊂

⋃
i≥k

Ai


ε

⊂ Ckε ,

where the first “⊂” follows from the fact Aiε ⊂
(⋃

i≥k A
i
)
ε

for each i ≥ k. For each

k ≥ j, we can then choose xk ∈ Ck with

(162) d(x, xk) ≤ ε.
Since (xk)k≥j is a bounded sequence, there exists a subsequence converging to y,
say. For each set Ck with k ≥ j, all terms of the sequence (xi)i≥j beyond a certain
term are members of Ck. Hence y ∈ Ck as Ck is closed. But C =

⋂
k≥j C

k, and so
y ∈ C.

14This follows from the fact that (Ak) is a Cauchy sequence.
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Since y ∈ C and d(x, y) ≤ ε from (162), it follows that

x ∈ Cε
As x was an arbitrary member of Aj , this proves (161) �

Recall that if S = {S1, . . . , SN}, where the Si are contractions on Rn, then we
defined S :K → K by S(K) = S1[K] ∪ . . . ∪ SN [K].

Theorem 14.5.4. If S is a finite family of contraction maps on Rn, then the
corresponding map S :K → K is a contraction map (in the Hausdorff metric).

Proof. Let S = {S1, . . . , SN}, where the Si are contractions on Rn with
Lipschitz constants r1, . . . , rN < 1.

Consider any A,B ∈ K. From the earlier properties of the Hausdorff metric it
follows

d(S(A),S(B)) = d

 ⋃
1≤i≤N

Si[A],
⋃

1≤i≤N

Si[B]


≤ max

1≤i≤N
d(Si[A], Si[B])

≤ max
1≤i≤N

rid(A,B),

Thus S is a contraction map with Lipschitz constant given by max{r1, . . . , rn}. �

14.6. *Random Fractals

There is also a notion of a random fractal. A random fractal is not a particular
compact set, but is a probability distribution on K, the family of all compact subsets
(of Rn).

One method of obtaining random fractals is to randomise the Computational
Algorithm in Section 14.4.

As an example, consider the Koch curve. In the discussion, “Variants on the
Koch Curve”, in Section 14.4, we saw how the Koch curve could be generated from
two similitudes S1 and S2 applied to an initial compact set A. We there took A
to be the closed interval [P,Q], where P and Q were the fixed points of S1 and
S2 respectively. The construction can be randomised by selecting S = {S1, S2} at
each stage of the iteration according to some probability distribution.

For example, assume that S1 is always a reflection in the PQ axis, followed
by a dilation about P and then followed by a rotation, such that the image of Q
is some point R. Assume that S2 is a reflection in the PQ axis, followed by a
dilation about Q and then followed by a rotation about Q, such that the image
of P is the same point R. Finally, assume that R is chosen according to some
probability distribution over R2 (this then gives a probability distribution on the
set of possible S). We have chosen R to be normally distributed in <2 with mean

position (0,
√

3/3) and variance (.4, .5). Figure 14 shows three realisations.
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Figure 14. Three realisations of a random fractal.





CHAPTER 15

Compactness

15.1. Definitions

In Definition 9.3.1 we defined the notion of a compact subset of a metric space.
As noted following that Definition, the notion defined there is usually called se-
quential compactness.

We now give another definition of compactness, in terms of coverings by open
sets (which applies to any topological space)1. We will show that compactness and
sequential compactness agree for metric spaces. (There are examples to show that
neither implies the other in an arbitrary topological space.)

Definition 15.1.1. A collection Xα) of subsets of a set X is a cover or covering
of a subset Y of X if ∪αXαsupseteqY .

Definition 15.1.2. A subset K of a metric space (X, d) is compact if whenever

K ⊂
⋃
U∈F

U

for some collection F of open sets from X, then

K ⊂ U1 ∪ . . . ∪ UN
for some U1, . . . , UN ∈ F . That is, every open cover has a finite subcover.

If X is compact, we say the metric space itself is compact.

Remark Exercise: A subset K of a metric space (X, d) is compact in the sense
of the previous definition iff the induced metric space (K, d) is compact.

The main point is that U ⊂ K is open in (K, d) iff U = K ∩V for some V ⊂ X
which is open in X.

Examples It is clear that if A ⊂ Rn and A is unbounded, then A is not compact
according to the definition, since

A ⊂
∞⋃
i=1

Bi(0),

but no finite number of such open balls covers A.
Also B1(0) is not compact, as

B1(0) =

∞⋃
i=2

B1−1/i(0),

and again no finite number of such open balls covers B1(0).
In Example 1 of Section 9.3 we saw that the sequentially compact subsets of Rn

are precisely the closed bounded subsets of Rn. It then follows from Theorem 15.2.1
below that the compact subsets of Rn are precisely the closed bounded subsets of
Rn.

In a general metric space, this is not true, as we will see.

1You will consider general topological spaces in later courses.

153
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There is an equivalent definition of compactness in terms of closed sets, which
is called the finite intersection property.

Theorem 15.1.3. A topological space X is compact iff for every family F of
closed subsets of X,⋂

C∈F
C = ∅ ⇒ C1 ∩ · · · ∩ CN = ∅ for some finite subfamily {C1, . . . , CN} ⊂ F .

Proof. The result follows from De Morgan’s laws (exercise). �

15.2. Compactness and Sequential Compactness

We now show that these two notions agree in a metric space.
The following is an example of a non-trivial proof. Think of the case that

X = [0, 1] × [0, 1] with the induced metric. Note that an open ball Br(a) in X is
just the intersection of X with the usual ball Br(a) in R2.

Theorem 15.2.1. A metric space is compact iff it is sequentially compact.

Proof. First suppose that the metric space (X, d) is compact.
Let (xn)∞n=1 be a sequence from X. We want to show that some subsequence

converges to a limit in X.
Let A = {xn}. Note that A may be finite (in case there are only a finite number

of distinct terms in the sequence).
(1) Claim: If A is finite, then some subsequence of (xn) converges.
Proof: If A is finite there is only a finite number of distinct terms in the

sequence. Thus there is a subsequence of (xn) for which all terms are equal. This
subsequence converges to the common value of all its terms.

(2) Claim: If A is infinite, then A has at least one limit point.
Proof: Assume A has no limit points.
It follows that A = A from Definition 6.3.4, and so A is closed by Theorem 6.4.6.
It also follows that each a ∈ A is not a limit point of A, and so from Defi-

nition 6.3.3 there exists a neighbourhood Va of a (take Va to be some open ball
centred at a) such that

(163) Va ∩A = {a}.
In particular,

X = Ac ∪
⋃
a∈A

Va

gives an open cover of X. By compactness, there is a finite subcover. Say

(164) X = Ac ∪ Va1 ∪ · · · ∪ VaN ,
for some {a1, . . . , aN} ⊂ A. But this is impossible, as we see by choosing a ∈ A
with a 6= a1, . . . , aN (remember that A is infinite), and noting from (163) that a
cannot be a member of the right side of (164). This establishes the claim.

(3) Claim: If x is a limit point of A, then some subsequence of (xn) converges
to x2.

Proof: Any neighbourhood of x contains an infinite number of points from A
(Proposition 6.3.5) and hence an infinite number of terms from the sequence (xn).

2From Theorem 7.5.1 there is a sequence (yn) consisting of points from A (and hence of
terms from the sequence (xn)) converging to x; but this sequence may not be a subsequence of

(xn) because the terms may not occur in the right order. So we need to be a little more careful
in order to prove the claim.
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Construct a subsequence (x′k) from (xn) so that, for each k, d(x′k, x) < 1/k and
x′k is a term from the original sequence (xn) which occurs later in that sequence
than any of the finite number of terms x′1, . . . , x

′
k−1. Then (x′k) is the required

subsequence.

From (1), (2) and (3) we have established that compactness implies sequential
compactness.

Next assume that (X, d) is sequentially compact.
(4) Claim: 3 For each integer k there is a finite set {x1, . . . , xN} ⊂ X such

that

x ∈ X ⇒ d(xi, x) < 1/k for some i = 1, . . . , N.

Proof: Choose x1; choose x2 so d(x1, x2) ≥ 1/k; choose x3 so d(xi, x3) ≥ 1/k
for i = 1, 2; choose x4 so d(xi, x4) ≥ 1/k for i = 1, 2, 3; etc. This procedure must
terminate in a finite number of steps

For if not, we have an infinite sequence (xn). By sequential
compactness, some subsequence converges and in particular is
Cauchy. But this contradicts the fact that any two members of
the subsequence must be distance at least 1/k apart.

Let x1, . . . , xN be some such (finite) sequence of maximum length.
It follows that any x ∈ X satisfies d(xi, x) < 1/k for some i = 1, . . . , N . For if

not, we could enlarge the sequence x1, . . . , xN by adding x, thereby contradicting
its maximality.

(5) Claim: There exists a countable dense4 subset of X.
Proof: Let Ak be the finite set of points constructed in (4). Let A =

⋃∞
k=1Ak.

Then A is countable. It is also dense, since if x ∈ X then there exist points in A
arbitrarily close to x; i.e. x is in the closure of A.

(6) Claim: Every open cover of X has a countable subcover5.
Proof: Let F be a cover of X by open sets. For each x ∈ A (where A is the

countable dense set from (5)) and each rational number r > 0, if Br(x) ⊂ U for
some U ∈ F , choose one such set U and denote it by Ux,r. The collection F∗ of all
such Ux,r is a countable subcollection of F . Moreover, we claim it is a cover of X.

To see this, suppose y ∈ X and choose U ∈ F with y ∈ U . Choose s > 0 so
Bs(y) ⊂ U . Choose x ∈ A so d(x, y) < s/4 and choose a rational number r so
s/4 < r < s/2. Then y ∈ Br(x) ⊂ Bs(y) ⊂ U . In particular, Br(x) ⊂ U ∈ F and
so there is a set Ux,r ∈ F∗ (by definition of F∗). Moreover, y ∈ Br(x) ⊂ Ux,r and
so y is a member of the union of all sets from F∗. Since y was an arbitrary member
of X, F∗ is a countable cover of X.

(7) Claim: Every countable open cover of X has a finite subcover.
Proof: Let G be a countable cover of X by open sets, which we write as

G = {U1, U2, . . .}. Let

Vn = U1 ∪ · · · ∪ Un
for n = 1, 2, . . .. Notice that the sequence (Vn)∞n=1 is an increasing sequence of sets.
We need to show that

X = Vn

for some n.

3The claim says that X is totally bounded, see Section 15.5.
4A subset of a topological space is dense if its closure is the entire space. A topological space

is said to be separable if it has a countable dense subset. In particular, the reals are separable
since the rationals form a countable dense subset. Similarly Rn is separable for any n.

5This is called the Lindelöf property.
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Suppose not. Then there exists a sequence (xn) where xn 6∈ Vn for each n. By
assumption of sequential compactness, some subsequence (x′n) converges to x, say.
Since G is a cover of X, it follows x ∈ UN , say, and so x ∈ VN . But VN is open and
so

(165) x′n ∈ VN for n > M,

for some M .
On the other hand, xk 6∈ Vk for all k, and so

(166) xk 6∈ VN
for all k ≥ N since the (Vk) are an increasing sequence of sets.

From 165 and 166 we have a contradiction. This establishes the claim.

From (6) and (7) it follows that sequential compactness implies compactness.
�

Exercise Use the definition of compactness in Definition 15.1.2 to simplify the
proof of Dini’s Theorem (Theorem 12.1.3).

15.3. *Lebesgue covering theorem

Definition 15.3.1. The diameter of a subset Y of a metric space (X, d) is

d(Y ) = sup{d(y, y′) : y, y′ ∈ Y } .

Note this is not necessarily the same as the diameter of the smallest ball con-
taining the set, however, Y ⊆ Bd(Y )(y)l for any y ∈ Y .

Theorem 15.3.2. Suppose (Gα) is a covering of a compact metric space (X, d)
by open sets. Then there exists δ > 0 such that any (non-empty) subset Y of X
whose diameter is less than δ lies in some Gα.

Proof. Supposing the result fails, there are non-empty subsets Cn ⊆ X with
d(Cn) < n−1 each of which fails to lie in any single Gα. Taking xn ∈ Cn, (xn) has
a convergent subsequence, say, xnj

→ x. Since (Gα) is a covering, there is some
α such that x ∈ Gα. Now Gα is open, so that Bε(x) ⊆ Gα for some ε > 0. But
xnj
∈ Bε(x) for all j sufficiently large. Thus for j so large that nj > 2ε−1, we have

Cnj ⊆ Bn−1
j

(xn)j) ⊂ Bεx, contrary to the definition of (xnj ). �

15.4. Consequences of Compactness

We review some facts:

1: As we saw in the previous section, compactness and sequential compact-
ness are the same in a metric space.

2: In a metric space, if a set is compact then it is closed and bounded. The
proof of this is similar to the proof of the corresponding fact for Rn given
in the last two paragraphs of the proof of Corollary 9.2.2. As an exercise
write out the proof.

3: In Rn if a set is closed and bounded then it is compact. This is proved in
Corollary 9.2.2, using the Bolzano Weierstrass Theorem 9.2.1.

4: It is not true in general that closed and bounded sets are compact. In
Remark 2 of Section 9.2 we see that the set

F := C[0, 1] ∩ {f : ||f ||∞ ≤ 1}

is not compact. But it is closed and bounded (exercise).
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5: A subset of a compact metric space is compact iff it is closed. Exercise:
prove this directly from the definition of sequential compactness; and then
give another proof directly from the definition of compactness.

We also have the following facts about continuous functions and compact sets:

6: If f is continuous and K is compact, then f [K] is compact (Theorem 11.5.1).
7: Suppose f : K → R, f is continuous and K is compact. Then f is

bounded above and below and has a maximum and minimum value. (The-
orem 11.5.2)

8: Suppose f : K → Y , f is continuous and K is compact. Then f is
uniformly continuous. (Theorem 11.6.2)

It is not true in general that if f :X → Y is continuous, one-one and onto, then
the inverse of f is continuous.

For example, define the function

f : [0, 2π)→ S1 = {(cos θ, sin θ) : [0, 2π)} ⊂ R2

by
f(θ) = (cos θ, sin θ).

Then f is clearly continuous (assuming the functions cos and sin are continuous),
one-one and onto. But f−1 is not continuous, as we easily see by finding a sequence
xn (∈ S1)→ (1, 0) (∈ S1) such that f−1(xn) 6→ f−1((1, 0)) = 0.

Figure 1. A one-one continuous map from the noncompact space
[0, 1) onto the compact space S1. The inverse map is not continuous.

Note that [0, 2π) is not compact (exercise: prove directly from the definition of
sequential compactness that it is not sequentially compact, and directly from the
definition of compactness that it is not compact).

Theorem 15.4.1. Let f :X → Y be continuous and bijective. If X is compact
then f is a homeomorphism.

Proof. We need to show that the inverse function f−1 :Y → X 6 is continuous.
To do this, we need to show that the inverse image under f−1 of a closed set C ⊂ X
is closed in Y ; equivalently, that the image under f of C is closed.

But if C is closed then it follows C is compact from remark 5 at the beginning
of this section; hence f [C] is compact by remark 6; and hence f [C] is closed by
remark 2. This completes the proof. �

We could also give a proof using sequences (Exercise).

6The function f−1 exists as f is one-one and onto.
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15.5. A Criterion for Compactness

We now give an important necessary and sufficient condition for a metric
space to be compact. This will generalise the Bolzano-Weierstrass Theorem, The-
orem 9.2.1. In fact, the proof of one direction of the present Theorem is very
similar.

The most important application will be to finding compact subsets of C[a, b].

Definition 15.5.1. Let (X, d) be a metric space. A subset A ⊂ X is totally
bounded iff for every δ > 0 there exist a finite set of points x1, . . . , xN ∈ X such
that

A ⊂
N⋃
i=1

Bδ(xi).

Remark If necessary, we can assume that the centres of the balls belong to A.
To see this, first cover A by balls of radius δ/2, as in the Definition. Let the

centres be x1, . . . , xN . If the ball Bδ/2(xi) contains some point ai ∈ A, then we
replace the ball by the larger ball Bδ(ai) which contains it. If Bδ/2(xi) contains no
point from A then we discard this ball. In this way we obtain a finite cover of A
by balls of radius δ with centres in A.

Remark In any metric space, “totally bounded” implies “bounded”. For if A ⊂⋃N
i=1Bδ(xi), then A ⊂ BR(x1) where R = maxi d(xi, x1) + δ.

In Rn, we also have that “bounded” implies “totally bounded”. To see this in
R2, cover the bounded set A by a finite square lattice with grid size δ. Then A is
covered by the finite number of open balls with centres at the vertices and radius
δ
√

2. In Rn take radius δ
√
n.

Figure 2. Covering of the set A by a finite square lattice.

Note that as the dimension n increases, the number of vertices in a grid of total
side L is of the order (L/δ)

n
.

It is not true in a general metric space that “bounded” implies “totally bounded”.
The problem, as indicated roughly by the fact that (L/δ)

n →∞ as n→∞, is that
the number of balls of radius δ necessary to cover may be infinite if A is not a
subset of a finite dimensional vector space.

In particular, the set of functions A = {fn}n≥1 in Remark 2 of Section 9.2 is
clearly bounded. But it is not totally bounded, since the distance between any two
functions in A is 1, and so no finite number of balls of radius less than 1/2 can
cover A as any such ball can contain at most one member of A.
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In the following theorem, first think of the case X = [a, b].

Theorem 15.5.2. A metric space X is compact iff it is complete and totally
bounded.

Proof. (a) First assume X is compact.
In order to prove X is complete, let (xn) be a Cauchy sequence from X. Since

compactness in a metric space implies sequential compactness by Theorem 15.2.1,
a subsequence (x′k) converges to some x ∈ X. We claim the original sequence also
converges to x.

This follows from the fact that

d(xn, x) ≤ d(xn, x
′
k) + d(x′k, x).

Given ε > 0, first use convergence of (x′k) to choose N1 so that
d(x′k, x) < ε/2 if k ≥ N1. Next use the fact (xn) is Cauchy to
choose N2 so d(xn, x

′
k) < ε/2 if k, n ≥ N2. Hence d(xn, x) < ε if

n ≥ max{N1, N2}.
That X is totally bounded follows from the observation that the set of all balls

Bδ(x), where x ∈ X, is an open cover of X, and so has a finite subcover by
compactness of A.

(b) Next assume X is complete and totally bounded.

Let (xn) be a sequence from X, which for convenience we rewrite as (x
(1)
n ).

Using total boundedness, cover X by a finite number of balls of radius 1. Then

at least one of these balls must contain an (infinite) subsequence of (x
(1)
n ). Denote

this subsequence by (x
(2)
n ).

Repeating the argument, cover X by a finite number of balls of radius 1/2. At

least one of these balls must contain an (infinite) subsequence of (x
(2)
n ). Denote

this subsequence by (x
(3)
n ).

Continuing in this way we find sequences

(x
(1)
1 , x

(1)
2 , x

(1)
3 , . . .)

(x
(2)
1 , x

(2)
2 , x

(2)
3 , . . .)

(x
(3)
1 , x

(3)
2 , x

(3)
3 , . . .)

...

where each sequence is a subsequence of the preceding sequence and the terms of
the ith sequence are all members of some ball of radius 1/i.

Define the (diagonal) sequence (yi) by yi = x
(i)
i for i = 1, 2, . . .. This is a

subsequence of the original sequence.
Notice that for each i, the terms yi, yi+1, yi+2, . . . are all members of the ith

sequence and so lie in a ball of radius 1/i. It follows that (yi) is a Cauchy sequence.
Since X is complete, it follows (yi) converges to a limit in X.

This completes the proof of the theorem, since (yi) is a subsequence of the
original sequence (xn). �

The following is a direct generalisation of the Bolzano-Weierstrass theorem.

Corollary 15.5.3. A subset of a complete metric space is compact iff it is
closed and totally bounded.
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Proof. Let X be a complete metric space and A be a subset.
If A is closed (in X) then A (with the induced metric) is complete, by the

generalisation following Theorem 8.2.2. Hence A is compact from the previous
theorem.

If A is compact, then A is complete and totally bounded from the previous
theorem. Since A is complete it must be closed7 in X. �

15.6. Equicontinuous Families of Functions

Throughout this Section you should think of the case X = [a, b] and Y = R.
We will use the notion of equicontinuity in the next Section in order to give an

important criterion for a family F of continuous functions to be compact (in the
sup metric).

Definition 15.6.1. Let (X, d) and (Y, ρ) be metric spaces. Let F be a family
of functions from X to Y .

Then F is equicontinuous at the point x ∈ X if for every ε > 0 there exists
δ > 0 such that

d(x, x′) < δ ⇒ ρ(f(x), f(x′)) < ε

for all f ∈ F . The family F is equicontinuous if it is equicontinuous at every
x ∈ X.
F is uniformly equicontinuous on X if for every ε > 0 there exists δ > 0 such

that

d(x, x′) < δ ⇒ ρ(f(x), f(x′)) < ε

for all x ∈ X and all f ∈ F .

Remarks

(1) The members of an equicontinuous family of functions are clearly contin-
uous; and the members of a uniformly equicontinuous family of functions
are clearly uniformly continuous.

(2) In case of equicontinuity, δ may depend on ε and x but not on the partic-
ular function f ∈ F . For uniform equicontinuity, δ may depend on ε, but
not on x or x′ (provided d(x, x′) < δ) and not on f .

(3) The most important of these concepts is the case of uniform equicontinuity.

Example 1 Let LipM (X;Y ) be the set of Lipschitz functions f : X → Y with
Lipschitz constant at most M . The family LipM (X;Y ) is uniformly equicontinuous
on the set X. This is easy to see since we can take δ = ε/M in the Definition. Notice
that δ does not depend on either x or on the particular function f ∈ LipM (X;Y ).

Example 2 The family of functions fn(x) = xn for n = 1, 2, . . . and x ∈ [0, 1] is
not equicontinuous at 1. To see this just note that if x < 1 then

|fn(1)− fn(x)| = 1− xn > 1/2, say

for all sufficiently large n. So taking ε = 1/2 there is no δ > 0 such that |1− x| < δ
implies |fn(1)− fn(x)| < 1/2 for all n.

On the other hand, this family is equicontinuous at each a ∈ [0, 1). In fact it
is uniformly equicontinuous on any interval [0, b] provided b < 1.

To see this, note

|fn(a)− fn(x)| = |an − xn| = |f ′(ξ)| |a− x| = nξn−1|a− x|

7To see this suppose (xn) ⊂ A and xn → x ∈ X. Then (xn) is Cauchy, and so by completeness
has a limit x′ ∈ A. But then in X we have xn → x′ as well as xn → x. By uniqueness of limits
in X it follows x = x′, and so x ∈ A.
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Figure 3. The family of continuous functions fn(x) = xn for
n = 1, 2, 3, . . . is not an equicontinuous family.

for some ξ between x and a. If a, x ≤ b < 1, then ξ ≤ b, and so nξn−1 is bounded by
a constant c(b) that depends on b but not on n (this is clear since nξn−1 ≤ nbn−1,
and nbn−1 → 0 as n→∞; so we can take c(b) = maxn≥1 nb

n−1). Hence

|fn(1)− fn(x)| < ε

provided

|a− x| < ε

c(b)
.

Exercise: Prove that the family in Example 2 is uniformly equicontinuous on
[0, b] (if b < 1) by finding a Lipschitz constant independent of n and using the result
in Example 1.

Example 3 In the first example, equicontinuity followed from the fact that the
families of functions had a uniform Lipschitz bound.

More generally, families of Hölder continuous functions with a fixed exponent
α and a fixed constant M (see Definition 11.3.2) are also uniformly equicontinuous.
This follows from the fact that in the definition of uniform equicontinuity we can

take δ =
( ε
M

)1/α
.

We saw in Theorem 11.6.2 that a continuous function on a compact metric space
is uniformly continuous. Almost exactly the same proof shows that an equicontin-
uous family of functions defined on a compact metric space is uniformly equicon-
tinuous.

Theorem 15.6.2. Let F be an equicontinuous family of functions f :X → Y ,
where (X, d) is a compact metric space and (Y, ρ) is a metric space. Then F is
uniformly equicontinuous.

Proof. Suppose ε > 0. For each x ∈ X there exists δx > 0 (where δx may
depend on x as well as ε) such that

x′ ∈ Bδx(x)⇒ ρ(f(x), f(x′)) < ε

for all f ∈ F .
The family of all ballsB(x, δx/2) = Bδx/2(x) forms an open cover ofX. By com-

pactness there is a finite subcover B1, . . . , BN by open balls with centres x1, . . . , xn
and radii δ1/2 = δx1/2, . . . , δN/2 = δxN

/2, say.
Let

δ = min{δ1, . . . , δN}.
Take any x, x′ ∈ X with d(x, x′) < δ/2. See Figure 4.

Then d(xi, x) < δi/2 for some xi since the balls Bi = B(xi, δi/2) cover X.
Moreover,

d(xi, x
′) ≤ d(xi, x) + d(x, x′) < δi/2 + δ/2 ≤ δi.
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Figure 4. Diagram for the proof of Theorem 15.6.2.

In particular, both x, x′ ∈ B(xi, δi).
It follows that for all f ∈ F ,

ρ(f(x), f(x′)) ≤ ρ(f(x), f(xi)) + ρ(f(xi), f(x′))

< ε+ ε = 2ε.

Since ε is arbitrary, this proves F is a uniformly equicontinuous family of func-
tions. �

15.7. Arzela-Ascoli Theorem

Throughout this Section you should think of the case X = [a, b] and Y = R.

Theorem 15.7.1 (Arzela-Ascoli). Let (X, d) be a compact metric space and let
C(X;Rn) be the family of continuous functions from X to Rn. Let F be any subfam-
ily of C(X;Rn) which is closed, uniformly bounded8 and uniformly equicontinuous.
Then F is compact in the sup metric.

Remarks

(1) Recall from Theorem 15.6.2 that since X is compact, we could replace
uniform equicontinuity by equicontinuity in the statement of the Theorem.

(2) Although we do not prove it now, the converse of the theorem is also true.
That is, F is compact iff it is closed, uniformly bounded, and uniformly
equicontinuous.

(3) The Arzela-Ascoli Theorem is one of the most important theorems in
Analysis. It is usually used to show that certain sequences of functions
have a convergent subsequence (in the sup norm). See in particular the
next section.

Example 1 Let CαM,K(X;Rn) denote the family of Hölder continuous functions

f :X → Rn with exponent α and constant M (as in Definition 11.3.2), which also
satisfy the uniform bound

|f(x)| ≤ K for all x ∈ X.

Claim: CαM,K(X;Rn) is closed, uniformly bounded and uniformly equicontinu-
ous, and hence compact by the Arzela-Ascoli Theorem.

We saw in Example 3 of the previous Section that CαM,K(X;Rn) is equicontin-
uous.

Boundedness is immediate, since the distance from any f ∈ CαM,K(X;Rn) to

the zero function is at most K (in the sup metric).

8That is, bounded in the sup metric.
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In order to show closure in C(X;Rn), suppose that

fn ∈ CαM,K(X;Rn)

for n = 1, 2, . . ., and
fn → f uniformly as n→∞,

(uniform convergence is just convergence in the sup metric). We know f is contin-
uous by Theorem 12.3.1. We want to show f ∈ CαM,K(X;Rn).

We first need to show

|f(x)| ≤ K for each x ∈ X.
But for any x ∈ X we have |fn(x)| ≤ K, and so the result follows by letting n→∞.

We also need to show that

|f(x)− f(y)| ≤M |x− y|α for all x, y ∈ X.
But for any fixed x, y ∈ X this is true with f replaced by fn, and so is true for f
as we see by letting n→∞.

This completes the proof that CαM,K(X;Rn) is closed in C(X;Rn).

Example 2 An important case of the previous example is X = [a, b], Rn = R,
and F = LipM,K [a, b] (the class of real-valued Lipschitz functions with Lipschitz
constant at most M and uniform bound at most K).

You should keep this case in mind when reading the proof of the Theorem.

Remark 15.7.2. The Arzela-Ascoli Theorem implies that any sequence from
the class LipM,K [a, b] has a convergent subsequence. This is not true for the set
CK [a, b] of all continuous functions f from C[a, b] merely satisfying sup |f | ≤ K. For
example, consider the sequence of functions (fn) defined by

fn(x) = sinnx x ∈ [0, 2π].

See figure 5.

Figure 5. Graphs of f1(x) = sinx, f2(x) =∼ 2x and f12(x) =
sin 12x, as in Remark 15.7.2.

It seems clear that there is no convergent subsequence. More precisely, one can
show that for any m 6= n there exists x ∈ [0, 2π] such that sinmx > 1/2, sinnx <
−1/2, and so du(fn, fm) > 1 (exercise). Thus there is no uniformly convergent
subsequence as the distance (in the sup metric) between any two members of the
sequence is at least 1.

If instead we consider the sequence of functions (gn) defined by

gn(x) =
1

n
sinnx x ∈ [0, 2π],

then the absolute value of the derivatives, and hence the Lipschitz constants, are
uniformly bounded by 1. In this case the entire sequence converges uniformly to
the zero function, as is easy to see.



164 15. COMPACTNESS

Proof of Theorem We need to prove that F is complete and totally bounded.
(1) Completeness of F .
We know that C(X;Rn) is complete from Corollary 12.3.4. Since F is a closed

subset, it follows F is complete as remarked in the generalisation following Theo-
rem 8.2.2.

(2) Total boundedness of F .
Suppose δ > 0.
We need to find a finite set S of functions in C(X;Rn) such that for any f ∈ F ,

(167) there exists some g ∈ S satisfying max |f − g| < δ.

From boundedness of F there is a finite K such that |f(x)| ≤ K for all x ∈ X
and f ∈ F .

By uniform equicontinuity choose δ1 > 0 so that

d(u, v) < δ1 ⇒ |f(u)− f(v)| < δ/4

for all u, v ∈ X and all f ∈ F .
Next by total boundedness of X choose a finite set of points x1, . . . , xp ∈ X

such that for any x ∈ X there exists at least one xi for which

d(x, xi) < δ1

and hence

(168) |f(x)− f(xi)| < δ/4.

Also choose a finite set of points y1, . . . , yq ∈ Rn so that if y ∈ Rn and |y| ≤ K
then there exists at least one yj for which

(169) |y − yj | < δ/4.

Figure 6. The graph of the discrete function α is indicated by
the �. See (170).

Consider the set of all functions α where

(170) α :{x1, . . . , xp} → {y1, . . . , yq}.
Thus α is a function assigning to each of x1, . . . , xp one of the values y1, . . . , yq.
There are only a finite number (in fact qp) possible such α. For each α, if there
exists a function f ∈ F satisfying

|f(xi)− α(xi)| < δ/4 for i = 1, . . . , p,

then choose one such f and label it gα. Let S be the set of all gα. Thus

(171) |gα(xi)− α(xi)| < δ/4 for i = 1, . . . , p.
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Note that S is a finite set (with at most qp members).
Now consider any f ∈ F . For each i = 1, . . . , p, by (169) choose one of the yj

so that

|f(xi)− yj | < δ/4.

Let α be the function that assigns to each xi this corresponding yj . Thus

(172) |f(xi)− α(xi)| < δ/4

for i = 1, . . . , p. Note that this implies the function gα defined previously does
exist.

We aim to show du(f, gα) < δ.
Consider any x ∈ X. By (168) choose xi so

(173) d(x, xi) < δ1.

Then

|f(x)− gα(x)| ≤ |f(x)− f(xi)|+ |f(xi)− α(xi)|
+|α(xi)− gα(xi)|+ +|gα(xi)− gα(x)|

≤ 4× δ

4
from (168), (172), (173) and (171)

< δ.

This establishes (167) since x was an arbitrary member of X. Thus F is totally
bounded.

15.8. Peano’s Existence Theorem

In this Section we consider the initial value problem

x′(t) = f(t, x(t)),

x(t0) = x0.

For simplicity of notation we consider the case of a single equation, but everything
generalises easily to a system of equations.

Suppose f is continuous, and locally Lipschitz with respect to the first variable,
in some open set U ⊂ R × R, where (t0, x0) ∈ U . Then we saw in the chapter on
Differential Equations that there is a unique solution in some interval [t0−h, t0 +h]
(and the solution is C1).

If f is continuous, but not locally Lipschitz with respect to the first variable,
then there need no longer be a unique solution, as we saw in Example 1 of the
Differential Equations Chapter. The Example was

dx

dt
=

√
|x|,

x(0) = 0.

It turns out that this example is typical. Provided we at least assume that f is
continuous, there will always be a solution. However, it may not be unique. Such
examples are physically reasonable. In the example, f(x) =

√
x may be determined

by a one dimensional material whose properties do not change smoothly from the
region x < 0 to the region x > 0.

We will prove the following Theorem.

Theorem 15.8.1 (Peano). Assume that f is continuous in the open set U ⊂
R×R. Let (t0, x0) ∈ U . Then there exists h > 0 such that the initial value problem

x′(t) = f(t, x(t)),

x(t0) = x0,
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has a C1 solution for t ∈ [t0 − h, t0 + h].

We saw in Theorem 13.8.1 that every (C1) solution of the initial value problem
is a solution of the integral equation

x(t) = x0 +

∫ t

t0

f
(
s, x(s)

)
ds

(obtained by integrating the differential equation). And conversely, we saw that
every C0 solution of the integral equation is a solution of the initial value problem
(and the solution must in fact be C1). This Theorem only used the continuity of f .

Thus Theorem 15.8.1 follows from the following Theorem.

Theorem 15.8.2. Assume f is continuous in the open set U ⊂ R × R. Let
(t0, x0) ∈ U . Then there exists h > 0 such that the integral equation

(174) x(t) = x0 +

∫ t

t0

f
(
s, x(s)

)
ds

has a C0 solution for t ∈ [t0 − h, t0 + h].

Remark We saw in Theorem 13.9.1 that the integral equation does indeed have a
solution, assuming f is also locally Lipschitz in x. The proof used the Contraction
Mapping Principle. But if we merely assume continuity of f , then that proof no
longer applies (if it did, it would also give uniqueness, which we have just remarked
is not the case).

In the following proof, we show that some subsequence of the sequence of Euler
polygons, first constructed in Section 13.4, converges to a solution of the integral
equation.

Proof of Theorem
(1) Choose h, k > 0 so that

Ah,k(t0,x0) := {(t,x) : |t− t0| ≤ h, |x− x0| ≤ k} ⊂ U.

Since f is continuous, it is bounded on the compact set Ah,k(t0,x0). Choose
M such that

(175) |f(t, x)| ≤M if (t, x) ∈ Ah,k(t0,x0).

By decreasing h if necessary, we will require

(176) h ≤ k

M
.

(2) (See the diagram for n = 3) For each integer n ≥ 1, let xn(t) be the
piecewise linear function, defined as in Section 13.4, but with step-size h/n. More
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Figure 7. Graph of x3(t) as defined in Step (2) of the proof of Theorem 15.8.2.

precisely, if t ∈ [t0, t0 + h],

xn(t) = x0 + (t− t0) f(t0, x0)

for t ∈
[
t0, t0 +

h

n

]
xn(t) = xn

(
t0 +

h

n

)
+

(
t−
(
t0 +

h

n

))
f

(
t0 +

h

n
, xn

(
t0 +

h

n

))
for t ∈

[
t0 +

h

n
, t0 + 2

h

n

]
xn(t) = xn

(
t0 + 2

h

n

)
+

(
t−
(
t0 + 2

h

n

))
f

(
t0 + 2

h

n
, xn

(
t0 + 2

h

n

))
for t ∈

[
t0 + 2

h

n
, t0 + 3

h

n

]
...

Similarly for t ∈ [t0 − h, t0].

(3) From (175) and (176), and as is clear from the diagram, | ddtx
n(t)| ≤ M

(except at the points t0, t0± h
n , t0±2hn , . . .). It follows (exercise) that xn is Lipschitz

on [t0 − h, t0 + h] with Lipschitz constant at most M .
In particular, since k ≥ Mh, the graph of t 7→ xn(t) remains in the closed

rectangle Ah,k(t0,x0) for t ∈ [t0 − h, t0 + h].

(4) From (3), the functions xn belong to the family F of Lipschitz functions

f : [t0 − h, t0 + h]→ R

such that

Lipf ≤M
and

|f(t)− x0| ≤ k for all t ∈ [t0 − h, t0 + h].

But F is closed, uniformly bounded, and uniformly equicontinuous, by the same
argument as used in Example 1 of Section 15.7. It follows from the Arzela-Ascoli
Theorem that some subsequence (xn

′
) of (xn) converges uniformly to a function

x ∈ F .
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Our aim now is to show that x is a solution of (174).

(5) For each point (t, xn(t)) on the graph of xn, let Pn(t) ∈ R2 be the coor-
dinates of the point at the left (right) endpoint of the corresponding line segment
if t ≥ 0 (t ≤ 0). More precisely

Pn(t) =

(
t0 + (i− 1)

h

n
, xn

(
t0 + (i− 1)

h

n

))
if t ∈

[
t0 + (i− 1)

h

n
, t0 + i

h

n

]
for i = 1, . . . , n. A similar formula is true for t ≤ 0.

Notice that Pn(t) is constant for t ∈
[
t0 + (i− 1)hn , t0 + ihn

)
, (and in particular

Pn(t) is of course not continuous in [t0 − h, t0 + h]).

(6) Without loss of generality, suppose t ∈
[
t0 + (i− 1)hn , t0 + ihn

]
. Then

from (5) and (3)

|Pn(t)− (t, xn(t)| ≤

√(
t−
(
t0 + i

h

n

))2

+

(
xn(t)− xn

(
t0 + i

h

n

))2

≤
√(h

n

)2

+
(
M
h

n

)2

=
√

1 +M2
h

n
.

Thus |Pn(t)− (t, xn(t))| → 0, uniformly in t, as n→∞.

(7) It follows from the definitions of xn and Pn, and is clear from the diagram,
that

(177) xn(t) = x0 +

∫ t

t0

f(Pn(s)) ds

for t ∈ [t0− h, t0 + h]. Although Pn(s) is not continuous in s, the previous integral
still exists (for example, we could define it by considering the integral over the
various segments on which Pn(s) and hence f(Pn(s)) is constant).

(8) Our intention now is to show (on passing to a suitable subsequence) that
xn(t) → x(t) uniformly, Pn(t) → (t, x(t)) uniformly, and to use this and (177) to
deduce (174).

(9) Since f is continuous on the compact set Ah,k(t0,x0), it is uniformly
continuous there by (8) of Section 15.4.

Suppose ε > 0. By uniform continuity of f choose δ > 0 so that for any two
points P,Q ∈ Ah,k(t0,x0), if |P −Q| < δ then |f(P )− f(Q)| < ε.

In order to obtain (174) from (177), we compute

|f(s, x(s))− f(Pn(s))| ≤ |f(s, x(s))− f(s, xn(s))|+ |f(s, xn(s))− f(Pn(s))|.
From (6), |(s, xn(s))−Pn(s)| < δ for all n ≥ N1 (say), independently of s. From

uniform convergence (4), |x(s) − xn′(s)| < δ for all n′ ≥ N2 (say), independently
of s. By the choice of δ it follows

(178) |f(s, x(s))− f(Pn
′
(s))| < 2ε,

for all n′ ≥ N := max{N1, N2}.
(10) From (4), the left side of (177) converges to the left side of (174), for the

subsequence (xn
′
).

From (178), the difference of the right sides of (177) and (174) is bounded by

2εh for members of the subsequence (xn
′
) such that n′ ≥ N(ε). As ε is arbitrary, it

follows that for this subsequence, the right side of (177) converges to the right side
of (174).

This establishes (174), and hence the Theorem.



CHAPTER 16

Connectedness

16.1. Introduction

One intuitive idea of what it means for a set S to be “connected” is that S
cannot be written as the union of two sets which do not “touch” one another. We
make this precise in Definition 16.2.1.

Another informal idea is that any two points in S can be connected by a
“path” which joins the points and which lies entirely in S. We make this precise in
definition 16.4.2.

These two notions are distinct, though they agree on open subsets of Rn, see
Theorem 16.4.4 below.

16.2. Connected Sets

Definition 16.2.1. A metric space (X, d) is connected if there do not exist
two non-empty disjoint open sets U and V such that X = U ∪ V .

The metric space is disconnected if it is not connected, i.e. if there exist two
non-empty disjoint open sets U and V such that X = U ∪ V .

A set S ⊂ X is connected (disconnected) if the metric subspace (S, d) is con-
nected (disconnected).

Remarks and Examples

(1) In the following diagram, S is disconnected. On the other hand, T is
connected; in particular although T = T1 ∪ T2, any open set containing
T1 will have non-empty intersection with T2. However, T is not pathwise
connected — see Example 3 in Section 16.4.

Figure 1. On the left side, S = S − 1 ∪ S2. On the right side
T = T1 ∪ T2, where T1 is the interval [−1, 1] on the y-axis and T2

is the graph of y = sin(1/x) for 0 < x ≤ 6π. The set S is neither
connected nor pathwise connected. The set T is connected, but it
is not pathwise connected.

(2) The sets U and V in the previous definition are required to be open in X.
For example, let

A = [0, 1] ∪ (2, 3].

We claim that A is disconnected.

169
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Let U = [0, 1] and V = (2, 3]. Then both these sets are open in the
metric subspace (A, d) (where d is the standard metric induced from R).
To see this, note that both U and V are the intersection of A with sets
which are open in R (see Theorem 6.5.3). It follows from the definition
that X is disconnected.

(3) In the definition, the sets U and V cannot be arbitrary disjoint sets. For
example, we will see in Theorem 16.3.2 that R is connected. But R = U∪V
where U and V are the disjoint sets (−∞, 0] and (0,∞) respectively.

(4) Q is disconnected. To see this write

Q =
(
Q ∩ (−∞,

√
2)
)
∪
(
Q ∩ (

√
2,∞)

)
.

The following proposition gives two other definitions of connectedness.

Proposition 16.2.2. A metric space (X, d) is connected

(1) iff there do not exist two non-empty disjoint closed sets U and V such
that X = U ∪ V ;

(2) iff the only non-empty subset of X which is both open and closed1 is X
itself.

Proof. (1) Suppose X = U ∪ V where U ∩ V = ∅. Then U = X \ V and
V = X \ U . Thus U and V are both open iff they are both closed2. The first
equivalence follows.

(2) In order to show the second condition is also equivalent to connectedness,
first suppose that X is not connected and let U and V be the open sets given by
Definition 16.2.1. Then U = X \ V and so U is also closed. Since U 6= ∅, X, (2) in
the statement of the theorem is not true.

Conversely, if (2) in the statement of the theorem is not true let E ⊂ X be
both open and closed and E 6= ∅, X. Let U = E, V = X \ E. Then U and V are
non-empty disjoint open sets whose union is X, and so X is not connected. �

Example We saw before that if A = [0, 1]∪ (2, 3] (⊂ R), then A is not connected.
The sets [0, 1] and (2, 3] are both open and both closed in A.

16.3. Connectedness in Rn

Not surprisingly, the connected sets in R are precisely the intervals in R.
We first need a precise definition of interval.

Definition 16.3.1. A set S ⊂ R is an interval if

a, b ∈ S and a < x < b⇒ x ∈ S.

Theorem 16.3.2. S ⊂ R is connected iff S is an interval.

Proof. (a) Suppose S is not an interval. Then there exist a, b ∈ S and there
exists x ∈ (a, b) such that x 6∈ S.

Then

S =
(
S ∩ (−∞, x)

)
∪
(
S ∩ (x,∞)

)
.

Both sets on the right side are open in S, are disjoint, and are non-empty (the first
contains a, the second contains b). Hence S is not connected.

(b) Suppose S is an interval.

1Such a set is called clopen.
2Of course, we mean open, or closed, in X.
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Assume that S is not connected. Then there exist nonempty sets U and V
which are open in S such that

S = U ∪ V, U ∩ V = ∅.
Choose a ∈ U and b ∈ V . Without loss of generality we may assume a < b.

Since S is an interval, [a, b] ⊂ S.
Let

c = sup([a, b] ∩ U).

Since c ∈ [a, b] ⊂ S it follows c ∈ S, and so either c ∈ U or c ∈ V .
Suppose c ∈ U . Then c 6= b and so a ≤ c < b. Since c ∈ U and U is open,

there exists c′ ∈ (c, b) such that c′ ∈ U . This contradicts the definition of c as
sup([a, b] ∩ U).

Suppose c ∈ V . Then c 6= a and so a < c ≤ b. Since c ∈ V and V is open,
there exists c′′ ∈ (a, c) such that [c′′, c] ⊂ V . But this implies that c is again not
the sup. Thus we again have a contradiction.

Hence S is connected. �

Remark There is no such simple chararacterisation in Rn for n > 1.

16.4. Path Connected Sets

Definition 16.4.1. A path connecting two points x and y in a metric space
(X, d) is a continuous function f : [0, 1] (⊂ R)→ X such that f(0) = x and f(1) = y.

Definition 16.4.2. A metric space (X, d) is path connected if any two points
in X can be connected by a path in X.

A set S ⊂ X is path connected if the metric subspace (S, d) is path connected.

The notion of path connected may seem more intuitive than that of connected.
However, the latter is usually mathematically easier to work with.

Every path connected set is connected (Theorem 16.4.3). A connected set
need not be path connected (Example (3) below), but for open subsets of Rn (an
important case) the two notions of connectedness are equivalent (Theorem 16.4.4).

Theorem 16.4.3. If a metric space (X, d) is path connected then it is connected.

Proof. Assume X is not connected3.
Thus there exist non-empty disjoint open sets U and V such that X = U ∪ V .
Choose x ∈ U , y ∈ V and suppose there is a path from x to y, i.e. suppose

there is a continuous function f : [0, 1] (⊂ R)→ X such that f(0) = x and f(1) = y.
Consider f−1[U ], f−1[V ] ⊂ [0, 1]. They are open (continuous inverse images

of open sets), disjoint (since U and V are), non-empty (since 0 ∈ f−1[U ], 1 ∈
f−1[V ]), and [0, 1] = f−1[U ] ∪ f−1[V ] (since X = U ∪ V ). But this contradicts
the connectedness of [0, 1]. Hence there is no such path and so X is not path
connected. �

3We want to show that X is not path connected.
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Examples

(1) Br(x) ⊂ R2 is path connected and hence connected. Since for u,v ∈
Br(x) the path f : [0, 1] → R2 given by f(t) = (1 − t)u + tv is a path in
R2 connecting u and v. The fact that the path does lie in R2 is clear, and
can be checked from the triangle inequality (exercise).

The same argument shows that in any normed space the open balls
Br(x) are path connected, and hence connected. The closed balls {y :
d(y, x) ≤ r} are similarly path connected and hence connected.

(2) A = R2\{(0, 0), (1, 0), ( 1
2 , 0) ( 1

3 , 0), . . . , ( 1
n , 0), . . .} is path connected (take

a semicircle joining points in A) and hence connected.
(3) Let

A = {(x, y) : x > 0 and y = sin 1
x , or x = 0 and y ∈ [0, 1]}.

Then A is connected but not path connected (*exercise).

Theorem 16.4.4. Let U ⊂ Rn be an open set. Then U is connected iff it is
path connected.

Proof. From Theorem 16.4.3 it is sufficient to prove that if U is connected
then it is path connected.

Assume then that U is connected.
The result is trivial if U = ∅ (why? ). So assume U 6= ∅ and choose some a ∈ U.

Let

E = {x ∈ U : there is a path in U from a to x}.

We want to show E = U . Clearly E 6= ∅ since a ∈ E4. If we can show that E
is both open and closed, it will follow from Proposition 16.2.2(2) that E = U5.

To show that E is open, suppose x ∈ E and choose r > 0 such that Br(x) ⊂ U .
From the previous Example(1), for each y ∈ Br(x) there is a path in Br(x) from x
to y. If we “join” this to the path from a to x, it is not difficult to obtain a path
from a to y6. Thus y ∈ E and so E is open.

To show that E is closed in U , suppose (xn)∞n=1 ⊂ E and xn → x ∈ U . We
want to show x ∈ E. Choose r > 0 so Br(x) ⊂ U . Choose n so xn ∈ Br(x). There
is a path in U joining a to xn (since xn ∈ E) and a path joining xn to x (as Br(x)
is path connected). As before, it follows there is a path in U from a to x. Hence
x ∈ E and so E is closed.

Since E is open and closed, it follows as remarked before that E = U , and so
we are done. �

4A path joining a to a is given by f(t) = a for t ∈ [0, 1].
5This is a very important technique for showing that every point in a connected set has a

given property.
6Suppose f : [0, 1] → U is continuous with f(0) = a and f(1) = x, while g : [0, 1] → U is

continuous with g(0) = x and g(1) = y. Define

h(t) =

{
f(2t) 0 ≤ t ≤ 1/2

g(2t− 1) 1/2 ≤ t ≤ 1

Then it is easy to see that h is a continuous path in U from a to y (the main point is to check
what happens at t = 1/2).
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16.5. Basic Results

Theorem 16.5.1. The continuous image of a connected set is connected.

Proof. Let f :X → Y , where X is connected.
Suppose f [X] is not connected (we intend to obtain a contradiction).
Then there exists E ⊂ f [X], E 6= ∅, f [X], and E both open and closed in f [X].

It follows there exists an open E′ ⊂ Y and a closed E′′ ⊂ Y such that

E = f [X] ∩ E′ = f [X] ∩ E′.
In particular,

f−1[E] = f−1[E′] = f−1[E′′],

and so f−1[E] is both open and closed in X. Since E 6= ∅, f [X] it follows that
f−1[E] 6= ∅, X. Hence X is not connected, contradiction.

Thus f [X] is connected. �

The next result generalises the usual Intermediate Value Theorem.

Corollary 16.5.2. Suppose f :X → R is continuous, X is connected, and f
takes the values a and b where a < b. Then f takes all values between a and b.

Proof. By the previous theorem, f [X] is a connected subset of R. Then, by
Theorem 16.3.2, f [X] is an interval. Since a, b ∈ f [X] it then follows c ∈ f [X] for
any c ∈ [a, b]. �





CHAPTER 17

Differentiation of Real-Valued Functions

17.1. Introduction

In this Chapter we discuss the notion of derivative (i.e. differential) for functions
f :D (⊂ Rn) → R. In the next chapter we consider the case for functions f :D (⊂
Rn)→ Rn.

We can represent such a function (m = 1) by drawing its graph, as is done in the
first diagrams in Section 10.1 in case n = 1 or n = 2, or as is done “schematically”
in the second last diagram in Section 10.1 for arbitrary n. In case n = 2 (or perhaps
n = 3) we can draw the level sets, as is done in Section 17.6.

Convention Unless stated otherwise, we will always consider functions f : D(⊂ Rn)→ R
where the domain D is open. This implies that for any x ∈ D there exists r > 0
such that Br(x) ⊂ D. See Figure 1.

Figure 1. A domain D ⊂ R2.

Most of the following applies to more general domains D by taking one-sided,
or otherwise restricted, limits. No essentially new ideas are involved.

17.2. Algebraic Preliminaries

The inner product in Rn is represented by

y · x = y1x1 + . . .+ ynxn

where y = (y1, . . . , yn) and x = (x1, . . . , xn).
For each fixed y ∈ Rn the inner product enables us to define a linear function

Ly = L : Rn → R
given by

L(x) = y · x.
Conversely, we have the following.

Proposition 17.2.1. For any linear function

L :Rn → R
there exists a unique y ∈ Rn such that

(179) L(x) = y · x ∀x ∈ Rn.

175
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The components of y are given by yi = L(ei).

Proof. Suppose L :Rn → R is linear. Define y = (y1, . . . , yn) by

yi = L(ei) i = 1, . . . , n.

Then

L(x) = L(x1e1 + · · ·+ xnen)

= x1L(e1) + · · ·+ xnL(en)

= x1y1 + · · ·+ xnyn

= y · x.

This proves the existence of y satisfying (179).
The uniqueness of y follows from the fact that if (179) is true for some y, then

on choosing x = ei it follows we must have

L(ei) = yi i = 1, . . . , n.

�

Note that if L is the zero operator , i.e. if L(x) = 0 for all x ∈ Rn, then the
vector y corresponding to L is the zero vector.

17.3. Partial Derivatives

Definition 17.3.1. The ith partial derivative of f at x is defined by

∂f

∂xi
(x) = lim

t→0

f(x + tei)− f(x)

t
(180)

= lim
t→0

f(x1, . . . , xi + t, . . . , xn)− f(x1, . . . , xi, . . . , xn)

t
,

provided the limit exists. The notation ∆if(x) is also used.

Figure 2. Diagram for Definition 17.3.1 and the discussion which
follows it.

Thus
∂f

∂xi
(x) is just the usual derivative at t = 0 of the real-valued function g

defined by g(t) = f(x1, . . . , xi + t, . . . , xn). Think of g as being defined along the
line L in Figure 2, with t = 0 corresponding to the point x.
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17.4. Directional Derivatives

Definition 17.4.1. The directional derivative of f at x in the direction v 6= 0
is defined by

(181) Dvf(x) = lim
t→0

f(x + tv)− f(x)

t
,

provided the limit exists.

See Figure 3. It follows immediately from the definitions that

(182)
∂f

∂xi
(x) = Dei

f(x).

Figure 3. Diagram for Definition 17.4.1 and the discussion which
follows it.

Note that Dvf(x) is just the usual derivative at t = 0 of the real-valued function
g defined by g(t) = f(x + tv). As before, think of the function g as being defined
along the line L in the previous diagram.

Thus we interpret Dvf(x) as the rate of change of f at x in the direction v; at
least in the case v is a unit vector.

Exercise: Show that Dαvf(x) = αDvf(x) for any real number α.

17.5. The Differential (or Derivative)

Motivation Suppose f : I (⊂ R) → R is differentiable at a ∈ I. Then f ′(a) can
be used to define the best linear approximation to f(x) for x near a. Namely:

(183) f(x) ≈ f(a) + f ′(a)(x− a).

Note that the right-hand side of (183) is linear in x. (More precisely, the right
side is a polynomial in x of degree one.)

The error, or difference between the two sides of (183), approaches zero as
x→ a, faster than |x− a| → 0. More precisely∣∣∣f(x)−

(
f(a) + f ′(a)(x− a)

)∣∣∣
|x− a|

=

∣∣∣∣∣∣
f(x)−

(
f(a) + f ′(a)(x− a)

)
x− a

∣∣∣∣∣∣
=

∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣
→ 0 as x→ a.(184)

We make this the basis for the next definition in the case n > 1.
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Figure 4. Graph of the best linear approximation to f near a.

Definition 17.5.1. Suppose f : D (⊂ Rn) → R. Then f is differentiable at
a ∈ D if there is a linear function L :Rn → R such that

(185)

∣∣∣f(x)−
(
f(a) + L(x− a)

)∣∣∣
|x− a|

→ 0 as x→ a.

The linear function L is denoted by f ′(a) or df(a) and is called the derivative or
differential of f at a. (We will see in Proposition 17.5.2 that if L exists, it is
uniquely determined by this definition.)

Figure 5. Graph of the best linear approximation to f near a,
where f : R2 → R.
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The idea is that the graph of x 7→ f(a) +L(x− a) is “tangent” to the graph of

f(x) at the point
(
a, f(a)

)
.

Notation: We write 〈df(a),x−a〉 for L(x−a), and read this as “df at a applied to
x− a”. We think of df(a) as a linear transformation (or function) which operates
on vectors x− a whose “base” is at a.

The next proposition gives the connection between the differential operating
on a vector v, and the directional derivative in the direction corresponding to v.
In particular, it shows that the differential is uniquely defined by Definition 17.5.1.

Temporarily, we let df(a) be any linear map satisfying the definition for the
differential of f at a.

Proposition 17.5.2. Let v ∈ Rn and suppose f is differentiable at a.
Then Dvf(a) exists and

〈df(a),v〉 = Dvf(a).

In particular, the differential is unique.

Proof. Let x = a + tv in (185). Then

lim
t→0

∣∣∣f(a + tv)−
(
f(a) + 〈df(a), tv〉

)∣∣∣
t

= 0.

Hence

lim
t→0

f(a + tv)− f(a)

t
− 〈df(a),v〉 = 0.

Thus

Dvf(a) = 〈df(a),v〉
as required. �

Thus 〈df(a),v〉 is just the directional derivative at a in the direction v.
The next result shows df(a) is the linear map given by the row vector of partial

derivatives of f at a.

Corollary 17.5.3. Suppose f is differentiable at a. Then for any vector v,

〈df(a),v〉 =

n∑
i=1

vi
∂f

∂xi
(a).

Proof.

〈df(a),v〉 = 〈df(a), v1e1 + · · ·+ vnen〉
= v1〈df(a), e1〉+ · · ·+ vn〈df(a), en〉
= v1De1

f(a) + · · ·+ vnDen
f(a)

= v1 ∂f

∂x1
(a) + · · ·+ vn

∂f

∂xn
(a).

�

Example Let f(x, y, z) = x2 + 3xy2 + y3z + z.
Then

〈df(a),v〉 = v1
∂f

∂x
(a) + v2

∂f

∂y
(a) + v3

∂f

∂z
(a)

= v1(2a1 + 3a2
2) + v2(6a1a2 + 3a2

2a3) + v3(a2
3 + 1).
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Thus df(a) is the linear map corresponding to the row vector (2a1 + 3a2
2, 6a1a2 +

3a2
2a3, a2

3 + 1).
If a = (1, 0, 1) then 〈df(a),v〉 = 2v1 + v3. Thus df(a) is the linear map corre-

sponding to the row vector (2, 0, 1).

If a = (1, 0, 1) and v = e1 then 〈df(1, 0, 1), e1〉 =
∂f

∂x
(1, 0, 1) = 2.

Rates of Convergence If a function ψ(x) has the property that

|ψ(x)|
|x− a|

→ 0 as x→ a,

then we say “|ψ(x)| → 0 as x → a, faster than |x − a| → 0”. We write o(|x − a|)
for ψ(x), and read this as “little oh of |x− a|”.

If
|ψ(x)|
|x− a|

≤M ∀|x− a| < ε,

for some M and some ε > 0, i.e. if
|ψ(x)|
|x− a|

is bounded as x → a, then we say

“|ψ(x)| → 0 as x → a, at least as fast as |x − a| → 0”. We write O(|x − a|) for
ψ(x), and read this as “big oh of |x− a|”.

For example, we can write

o(|x− a|) for |x− a|3/2,
and

O(|x− a|) for sin(x− a).

Clearly, if ψ(x) can be written as o(|x − a|) then it can also be written as
O(|x− a|), but the converse may not be true as the above example shows.

The next proposition gives an equivalent definition for the differential of a
function.

Proposition 17.5.4. If f is differentiable at a then

f(x) = f(a) + 〈df(a),x− a〉+ ψ(x),

where ψ(x) = o(|x− a|).
Conversely, suppose

f(x) = f(a) + L(x− a) + ψ(x),

where L :Rn → R is linear and ψ(x) = o(|x−a|). Then f is differentiable at a and
df(a) = L.

Proof. Suppose f is differentiable at a. Let

ψ(x) = f(x)−
(
f(a) + 〈df(a),x− a〉

)
.

Then
f(x) = f(a) + 〈df(a),x− a〉+ ψ(x),

and ψ(x) = o(|x− a|) from Definition 17.5.1.
Conversely, suppose

f(x) = f(a) + L(x− a) + ψ(x),

where L :Rn → R is linear and ψ(x) = o(|x− a|). Then

f(x)−
(
f(a) + L(x− a)

)
|x− a|

=
ψ(x)

|x− a|
→ 0 as x→ a,

and so f is differentiable at a and df(a) = L. �
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Remark The word “differential” is used in [Sw] in an imprecise, and different,
way from here.

Finally we have:

Proposition 17.5.5. If f, g :D (⊂ Rn) → R are differentiable at a ∈ D, then
so are αf and f + g. Moreover,

d(αf)(a) = αdf(a),

d(f + g)(a) = df(a) + dg(a).

Proof. This is straightforward (exercise) from Proposition 17.5.4. �

The previous proposition corresponds to the fact that the partial derivatives for
f + g are the sum of the partial derivatives corresponding to f and g respectively.
Similarly for αf 1.

17.6. The Gradient

Strictly speaking, df(a) is a linear operator on vectors in Rn (where, for con-
venience, we think of these vectors as having their “base at a”).

We saw in Section 17.2 that every linear operator from Rn to R corresponds to
a unique vector in Rn. In particular, the vector corresponding to the differential at
a is called the gradient at a.

Definition 17.6.1. Suppose f is differentiable at a. The vector ∇f(a) ∈ Rn
(uniquely) determined by

∇f(a) · v = 〈df(a),v〉 ∀v ∈ Rn,

is called the gradient of f at a.

Proposition 17.6.2. If f is differentiable at a, then

∇f(a) =

(
∂f

∂x1
(a), . . . ,

∂f

∂xn
(a)

)
.

Proof. It follows from Proposition 17.2.1 that the components of ∇f(a) are

〈df(a), ei〉, i.e.
∂f

∂xi
(a). �

Example For the example in Section 17.5 we have

∇f(a) = (2a1 + 3a2
2, 6a1a2 + 3a2

2a3, a
3
2 + 1),

∇f(1, 0, 1) = (2, 0, 1).

1We cannot establish the differentiability of f + g (or αf) this way, since the existence of the
partial derivatives does not imply differentiability.
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17.6.1. Geometric Interpretation of the Gradient.

Proposition 17.6.3. Suppose f is differentiable at x. Then the directional
derivatives at x are given by

Dvf(x) = v · ∇f(x).

The unit vector v for which this is a maximum is v = ∇f(x)/|∇f(x)| (assum-
ing |∇f(x)| 6= 0), and the directional derivative in this direction is |∇f(x)|.

Proof. From Definition 17.6.1 and Proposition 17.5.2 it follows that

∇f(x) · v = 〈df(x),v〉 = Dvf(x)

This proves the first claim.
Now suppose v is a unit vector. From the Cauchy-Schwartz Inequality (80) we

have

(186) ∇f(x) · v ≤ |∇f(x)|.
By the condition for equality in (80), equality holds in (186) iff v is a positive
multiple of∇f(x). Since v is a unit vector, this is equivalent to v = ∇f(x)/|∇f(x)|.
The left side of (186) is then |∇f(x)|. �

17.6.2. Level Sets and the Gradient.

Definition 17.6.4. If f :Rn → R then the level set through x is {y: f(y) = f(x) }.
For example, the contour lines on a map are the level sets of the height function.

Figure 6. The graph of f(x) = x2
1 + x2

2 is on the left. The level
sets are on the right.

Definition 17.6.5. A vector v is tangent at x to the level set S through x if

Dvf(x) = 0.

This is a reasonable definition, since f is constant on S, and so the rate of
change of f in any direction tangent to S should be zero.

Proposition 17.6.6. Suppose f is differentiable at x. Then ∇f(x) is orthog-
onal to all vectors which are tangent at x to the level set through x.

Proof. Immediate by the previous Definition and Proposition 17.6.3. �

In the previous proposition, we say∇f(x) is orthogonal to the level set through x.
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Figure 7. The level sets of f(x) = x2
1−x2

2. (The graph of f looks
like a sadle.)

17.7. Some Interesting Examples

(1) An example where the partial derivatives exist but the other direc-
tional derivatives do not exist.

Let

f(x, y) = (xy)1/3.

Then

(1)
∂f

∂x
(0, 0) = 0 since f = 0 on the x-axis;

(2)
∂f

∂y
(0, 0) = 0 since f = 0 on the y-axis;

(3) Let v be any vector. Then

Dvf(0, 0) = lim
t→0

f(tv)− f(0, 0)

t

= lim
t→0

t2/3(v1v2)1/3

t

= lim
t→0

(v1v2)1/3

t1/3
.

This limit does not exist, unless v1 = 0 or v2 = 0.

(2) An example where the directional derivatives at some point all ex-
ist, but the function is not differentiable at the point.

Let

f(x, y) =


xy2

x2 + y4
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)
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Let v = (v1, v2) be any non-zero vector. Then

Dvf(0, 0) = lim
t→0

f(tv)− f(0, 0)

t

= lim
t→0

t3v1v2
2

t2v1
2 + t4v2

4
− 0

t

= lim
t→0

v1v2
2

v1
2 + t2v2

4

=

{
v2

2/v1 v1 6= 0
0 v1 = 0

(187)

Thus the directional derivatives Dvf(0, 0) exist for all v, and are given by (187).
In particular

(188)
∂f

∂x
(0, 0) =

∂f

∂y
(0, 0) = 0.

But if f were differentiable at (0, 0), then we could compute any directional
derivative from the partial drivatives. Thus for any vector v we would have

Dvf(0, 0) = 〈df(0, 0),v〉

= v1
∂f

∂x
(0, 0) + v2

∂f

∂y
(0, 0)

= 0 from (188)

This contradicts (187).

(3) An Example where the directional derivatives at a point all exist,
but the function is not continuous at the point

Take the same example as in (2). Approach the origin along the curve x = λ2,
y = λ. Then

lim
λ→0

f(λ2, λ) = lim
λ→0

λ4

2λ4
=

1

2
.

But if we approach the origin along any straight line of the form (λv1, λv2),
then we can check that the corresponding limit is 0.

Thus it is impossible to define f at (0, 0) in order to make f continuous there.

17.8. Differentiability Implies Continuity

Despite Example (3) in Section 17.7, we have the following result.

Proposition 17.8.1. If f is differentiable at a, then it is continuous at a.

Proof. Suppose f is differentiable at a. Then

f(x) = f(a) +

n∑
i=1

∂f

∂xi
(a)(xi − ai) + o(|x− a|).

Since xi − ai → 0 and o(|x − a|) → 0 as x → a, it follows that f(x) → f(a) as
x→ a. That is, f is continuous at a. �
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17.9. Mean Value Theorem and Consequences

Theorem 17.9.1. Suppose f is continuous at all points on the line segment L
joining a and a + h; and is differentiable at all points on L, except possibly at the
end points.

Then

f(a + h)− f(a) = 〈df(x),h〉(189)

=

n∑
i=1

∂f

∂xi
(x)hi(190)

for some x ∈ L, x not an endpoint of L.

Figure 8. Diagram for Theorem 17.9.1 and its proof.

Proof. Note that (190) follows immediately from (189) by Corollary 17.5.3.
Define the one variable function g by

g(t) = f(a + th).

(See Figure 8.) Then g is continuous on [0, 1], being the composition of the contin-
uous functions t 7→ a + th and x 7→ f(x). Moreover,

(191) g(0) = f(a), g(1) = f(a + h).

We next show that g is differentiable and compute its derivative.
If 0 < t < 1, then f is differentiable at a + th, and so

(192) 0 = lim
|w|→0

f(a + th + w)− f(a + th)− 〈df(a + th),w〉
|w|

.

Let w = sh where s is a small real number, positive or negative. Since |w| = ±s|h|,
and since we may assume h 6= 0 (as otherwise (189) is trivial), we see from (192)
that

0 = lim
s→0

f
(

(a + (t+ s)h
)
− f(a + th)− 〈df(a + th), sh〉

s

= lim
s→0

(
g(t+ s)− g(t)

s
− 〈df(a + th),h〉

)
,

using the linearity of df(a + th).
Hence g′(t) exists for 0 < t < 1, and moreover

(193) g′(t) = 〈df(a + th),h〉.
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By the usual Mean Value Theorem for a function of one variable, applied to g,
we have

(194) g(1)− g(0) = g′(t)

for some t ∈ (0, 1).
Substituting (191) and (193) in (194), the required result (189) follows. �

If the norm of the gradient vector of f is bounded by M , then it is not surprising
that the difference in value between f(a) and f(a + h) is bounded by M |h|. More
precisely.

Corollary 17.9.2. Assume the hypotheses of the previous theorem and sup-
pose |∇f(x)| ≤M for all x ∈ L. Then

|f(a + h)− f(a)| ≤M |h|

Proof. From the previous theorem

|f(a + h)− f(a)| = |〈df(x),h〉| for some x ∈ L
= |∇f(x) · h|
≤ |∇f(x)| |h|
≤ M |h|.

�

Corollary 17.9.3. Suppose Ω ⊂ Rn is open and connected and f : Ω → R.
Suppose f is differentiable in Ω and df(x) = 0 for all x ∈ Ω2.

Then f is constant on Ω.

Proof. Choose any a ∈ Ω and suppose f(a) = α. Let

E = {x ∈ Ω : f(x) = α}.
Then E is non-empty (as a ∈ E). We will prove E is both open and closed in Ω.
Since Ω is connected, this will imply that E is all of Ω3. This establishes the result.

To see E is open4, suppose x ∈ E and choose r > 0 so that Br(x) ⊂ Ω.
If y ∈ Br(x), then from (189) for some u between x and y,

f(y)− f(x) = 〈df(u),y − x〉
= 0, by hypothesis.

Thus f(y) = f(x) (= α), and so y ∈ E.
Hence Br(x) ⊂ E and so E is open.
To show that E is closed in Ω, it is sufficient to show that Ec ={y : f(x) 6= α}

is open in Ω.
From Proposition 17.8.1 we know that f is continuous. Since we have Ec =

f−1[R\{α}] and R\{α} is open, it follows that Ec is open in Ω. Hence E is closed
in Ω, as required.

Since E 6= ∅, and E is both open and closed in Ω, it follows E = Ω (as Ω is
connected).

In other words, f is constant (= α) on Ω. �

2Equivalently, ∇f(x) = 0 in Ω.
3This is a standard technique for showing that all points in a connected set have a certain

property, c.f. the proof of Theorem 16.4.4.
4Being open in Ω and being open in Rn is the same for subsets of Ω, since we are assuming

Ω is itself open in Rn.
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17.10. Continuously Differentiable Functions

We saw in Section 17.7, Example (2), that the partial derivatives (and even
all the directional derivatives) of a function can exist without the function being
differentiable.

However, we do have the following important theorem:

Theorem 17.10.1. Suppose f : Ω (⊂ Rn) → R where Ω is open. If the partial
derivatives of f exist and are continuous at every point in Ω, then f is differentiable
everywhere in Ω.

Remark: If the partial derivatives of f exist in some neighbourhood of, and are
continuous at, a single point, it does not necessarily follow that f is differentiable
at that point. The hypotheses of the theorem need to hold at all points in some
open set Ω.

Proof. We prove the theorem in case n = 2 (the proof for n > 2 is only
notationally more complicated). See Figure 9.

Suppose that the partial derivatives of f exist and are continuous in Ω. Then
if a ∈ Ω and a + h is sufficiently close to a,

f(a1 + h1, a2 + h2) = f(a1, a2)

+f(a1 + h1, a2)− f(a1, a2)

+f(a1 + h1, a2 + h2)− f(a1 + h1, a2)

= f(a1, a2) +
∂f

∂x1
(ξ1, a2)h1 +

∂f

∂x2
(a1 + h1, ξ2)h2,

for some ξ1 between a1 and a1 + h1, and some ξ2 between a2 and a2 + h2. The
first partial derivative comes from applying the usual Mean Value Theorem, for a
function of one variable, to the function f(x1, a2) obtained by fixing a2 and taking
x1 as a variable. The second partial derivative is similarly obtained by considering
the function f(a1 + h1, x2), where a1 + h1 is fixed and x2 is variable.

Figure 9. Diagram for the proof of Theorem 17.10.1.
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Hence

f(a1 + h1, a2 + h2) = f(a1, a2) +
∂f

∂x1
(a1, a2)h1 +

∂f

∂x2
(a1, a2)h2

+

(
∂f

∂x1
(ξ1, a2)− ∂f

∂x1
(a1, a2)

)
h1

+

(
∂f

∂x2
(a1 + h1, ξ2)− ∂f

∂x2
(a1, a2)

)
h2

= f(a1, a2) + L(h) + ψ(h), say.

Here L is the linear map defined by

L(h) =
∂f

∂x1
(a1, a2)h1 +

∂f

∂x2
(a1, a2)h2

=

[
∂f

∂x1
(a1, a2)

∂f

∂x2
(a1, a2)

] [
h1

h2

]
.

Thus L is represented by the previous 1× 2 matrix.
We claim that the error term

ψ(h) =

(
∂f

∂x1
(ξ1, a2)− ∂f

∂x1
(a1, a2)

)
h1 +

(
∂f

∂x2
(a1 + h1, ξ2)− ∂f

∂x2
(a1, a2)

)
h2

can be written as o(|h|)
This follows from the facts:

(1)
∂f

∂x1
(ξ1, a2)→ ∂f

∂x1
(a1, a2) as h→ 0 (by continuity of the partial deriva-

tives),

(2)
∂f

∂x2
(a1 + h1, ξ2) → ∂f

∂x2
(a1, a2) as h → 0 (again by continuity of the

partial derivatives),
(3) |h1| ≤ |h|, |h2| ≤ |h|.

It now follows from Proposition 17.5.4 that f is differentiable at a, and the
differential of f is given by the previous 1× 2 matrix of partial derivatives.

Since a ∈ Ω is arbitrary, this completes the proof. �

Definition 17.10.2. If the partial derivatives of f exist and are continuous in
the open set Ω, we say f is a C1 (or continuously differentiable) function on Ω.
One writes f ∈ C1(Ω).

It follows from the previous Theorem that if f ∈ C1(Ω) then f is indeed differen-
tiable in Ω. Exercise: The converse may not be true, give a simple counterexample
in R.

17.11. Higher-Order Partial Derivatives

Suppose f :Ω (⊂ Rn)→ R. The partial derivatives
∂f

∂x1
, . . . ,

∂f

∂xn
, if they exist,

are also functions from Ω to R, and may themselves have partial derivatives.

The jth partial derivative of
∂f

∂xi
is denoted by

∂2f

∂xj∂xi
or fij or Dijf.
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If all first and second partial derivatives of f exist and are continuous in Ω 5

we write

f ∈ C2(Ω).

Similar remarks apply to higher order derivatives, and we similarly define Cq(Ω)
for any integer q ≥ 0.

Note that

C0(Ω) ⊃ C1(Ω) ⊃ C2(Ω) ⊃ . . .
The usual rules for differentiating a sum, product or quotient of functions of a

single variable apply to partial derivatives. It follows that Ck(Ω) is closed under
addition, products and quotients (if the denominator is non-zero).

The next theorem shows that for higher order derivatives, the actual order of
differentiation does not matter, only the number of derivatives with respect to each
variable is important. Thus

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
,

and so
∂3f

∂xi∂xj∂xk
=

∂3f

∂xj∂xi∂xk
=

∂3f

∂xj∂xk∂xi
, etc.

Theorem 17.11.1. If f ∈ C1(Ω)6 and both fij and fji exist and are continuous
(for some i 6= j) in Ω, then fij = fji in Ω.

In particular, if f ∈ C2(Ω) then fij = fji for all i 6= j.

Proof. For notational simplicity we take n = 2. The proof for n > 2 is very
similar.

Suppose a ∈ Ω and suppose h > 0 is some sufficiently small real number.
Consider the second difference quotient defined by

A(h) =
1

h2

((
f(a1 + h, a2 + h)− f(a1, a2 + h)

)
−
(
f(a1 + h, a2)− f(a1, a2)

))
(195)

=
1

h2

(
g(a2 + h)− g(a2)

)
,(196)

where

g(x2) = f(a1 + h, x2)− f(a1, x2).

From the definition of partial differentiation, g′(x2) exists and

(197) g′(x2) =
∂f

∂x2
(a1 + h, x2)− ∂f

∂x2
(a1, x2)

for a2 ≤ x ≤ a2 + h.
Applying the mean value theorem for a function of a single variable to (196),

we see from (197) that

A(h) =
1

h
g′(ξ2) some ξ2 ∈ (a2, a2 + h)

=
1

h

(
∂f

∂x2
(a1 + h, ξ2)− ∂f

∂x2
(a1, ξ2)

)
.(198)

5In fact, it is sufficient to assume just that the second partial derivatives are continuous. For
under this assumption, each ∂f/∂xi must be differentiable by Theorem 17.10.1 applied to ∂f/∂xi.
From Proposition 17.8.1 applied to ∂f/∂xi it then follows that ∂f/∂xi is continuous.

6As usual, Ω is assumed to be open.
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Figure 10. Diagram for the proof of Theorem 17.11.1. Note that

A(h) =
((
f(B)− f(A)

)
−
(
f(D)− f(C)

))
/h2

=
((
f(B)− f(D)

)
−
(
f(A)− f(C)

))
/h2.

Applying the mean value theorem again to the function
∂f

∂x2
(x1, ξ2), with ξ2

fixed, we see

(199) A(h) =
∂2f

∂x1∂x2
(ξ1, ξ2) some ξ1 ∈ (a1, a1 + h).

If we now rewrite (195) as

A(h) =
1

h2

((
f(a1 + h, a2 + h)− f(a1 + h, a2)

)
−
(
f(a1, a2 + h)− f(a1 + a2)

))
(200)

and interchange the roles of x1 and x2 in the previous argument, we obtain

(201) A(h) =
∂2f

∂x2∂x1
(η1, η2)

for some η1 ∈ (a1, a1 + h), η2 ∈ (a2, a2 + h).
If we let h → 0 then (ξ1, ξ2) and (η1, η2) → (a1, a2), and so from (199), (201)

and the continuity of f12 and f21 at a, it follows that

f12(a) = f21(a).

This completes the proof. �

17.12. Taylor’s Theorem

If g ∈ C1[a, b], then we know

g(b) = g(a) +

∫ b

a

g′(t) dt

This is the case k = 1 of the following version of Taylor’s Theorem for a function
of one variable.

Theorem 17.12.1 (Taylor’s Formula; Single Variable, First Version).
Suppose g ∈ Ck[a, b]. Then

g(b) = g(a) + g′(a)(b− a) +
1

2!
g′′(a)(b− a)2 + · · ·(202)

+
1

(k − 1)!
g(k−1)(a)(b− a)k−1 +

∫ b

a

(b− t)k−1

(k − 1)!
g(k)(t) dt.
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Proof. An elegant (but not obvious) proof is to begin by computing:

d

dt

(
gϕ(k−1) − g′ϕ(k−2) + g′′ϕ(k−3) − · · ·+ (−1)k−1g(k−1)ϕ

)
=
(
gϕ(k) + g′ϕ(k−1)

)
−
(
g′ϕ(k−1) + g′′ϕ(k−2)

)
+
(
g′′ϕ(k−2) + g′′′ϕ(k−3)

)
−

· · ·+ (−1)k−1
(
g(k−1)ϕ′ + g(k)ϕ

)
= gϕ(k) + (−1)k−1g(k)ϕ.(203)

Now choose

ϕ(t) =
(b− t)k−1

(k − 1)!
.

Then

ϕ′(t) = (−1)
(b− t)k−2

(k − 2)!

ϕ′′(t) = (−1)2 (b− t)k−3

(k − 3)!

...

ϕ(k−3)(t) = (−1)k−3 (b− t)2

2!

ϕ(k−2)(t) = (−1)k−2(b− t)
ϕ(k−1)(t) = (−1)k−1

ϕk(t) = 0.(204)

Hence from (203) we have

(−1)k−1 d

dt

(
g(t) + g′(t)(b− t) + g′′(t)

(b− t)2

2!
+ · · ·+ gk−1(t)

(b− t)k−1

(k − 1)!

)
= (−1)k−1g(k)(t)

(b− t)k−1

(k − 1)!
.

Dividing by (−1)k−1 and integrating both sides from a to b, we get

g(b)−
(
g(a) + g′(a)(b− a) + g′′(a)

(b− a)2

2!
+ · · ·+ g(k−1)(a)

(b− a)k−1

(k − 1)!

)
=

∫ b

a

g(k)(t)
(b− t)k−1

(k − 1)!
dt.

This gives formula (202). �

Theorem 17.12.2 (Taylor’s Formula; Single Variable, Second Version). Sup-
pose g ∈ Ck[a, b]. Then

g(b) = g(a) + g′(a)(b− a) +
1

2!
g′′(a)(b− a)2 + · · ·

+
1

(k − 1)!
g(k−1)(a)(b− a)k−1 +

1

k!
g(k)(ξ)(b− a)k(205)

for some ξ ∈ (a, b).

Proof. We establish (205) from (202).
Since g(k) is continuous in [a, b], it has a minimum value m, and a maximum

value M , say.
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By elementary properties of integrals, it follows that∫ b

a

m
(b− t)k−1

(k − 1)!
dt ≤

∫ b

a

g(k)(t)
(b− t)k−1

(k − 1)!
dt ≤

∫ b

a

M
(b− t)k−1

(k − 1)!
dt,

i.e.

m ≤

∫ b

a

g(k)(t)
(b− t)k−1

(k − 1)!
dt∫ b

a

(b− t)k−1

(k − 1)!
dt

≤M.

By the Intermediate Value Theorem, g(k) takes all values in the range [m,M ],
and so the middle term in the previous inequality must equal g(k)(ξ) for some
ξ ∈ (a, b). Since ∫ b

a

(b− t)k−1

(k − 1)!
dt =

(b− a)k

k!
,

it follows ∫ b

a

g(k)(t)
(b− t)k−1

(k − 1)!
dt =

(b− a)k

k!
g(k)(ξ).

Formula (205) now follows from (202). �

Remark For a direct proof of (205), which does not involve any integration,
see [Sw, pp 582–3] or [Fl, Appendix A2].

Taylor’s Theorem generalises easily to functions of more than one variable.

Theorem 17.12.3 (Taylor’s Formula; Several Variables).
Suppose f ∈ Ck(Ω) where Ω ⊂ Rn, and the line segment joining a and a + h is a
subset of Ω.

Then

f(a + h) = f(a) +

n∑
i−1

Dif(a)hi +
1

2!

n∑
i,j=1

Dijf(a)hihj + · · ·

+
1

(k − 1)!

n∑
i1,··· ,ik−1=1

Di1...ik−1
f(a)hi1 · . . . · hik−1 +Rk(a,h)

where

Rk(a,h) =
1

(k − 1)!

n∑
i1,...,ik=1

∫ 1

0

(1− t)k−1Di1...ikf(a + th) dt

=
1

k!

n∑
i1,...,ik=1

Di1,...,ikf(a + sh)hi1 · . . . · hik for some s ∈ (0, 1).

Proof. First note that for any differentiable function F :D (⊂ Rn) → R we
have

(206)
d

dt
F (a + th) =

n∑
i=1

DiF (a + th)hi.

This is just a particular case of the chain rule, which we will discuss later. This
particular version follows from (193) and Corollary 17.5.3 (with f there replaced
by F ).

Let
g(t) = f(a+ th).

Then g : [0, 1] → R. We will apply Taylor’s Theorem for a function of one variable
to g.
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From (206) we have

(207) g′(t) =

n∑
i−1

Dif(a + th)hi.

Differentiating again, and applying (206) to DiF , we obtain

g′′(t) =

n∑
i=1

 n∑
j=1

Dijf(a + th)hj

hi

=

n∑
i,j=1

Dijf(a + th)hihj .(208)

Similarly

(209) g′′′(t) =

n∑
i,j,k=1

Dijkf(a + th)hihjhk,

etc. In this way, we see g ∈ Ck[0, 1] and obtain formulae for the derivatives of g.
But from (202) and (205) we have

g(1) = g(0) + g′(0) +
1

2!
g′′(0) + · · ·+ 1

(k − 1)!
g(k−1)(0)

+


1

(k − 1)!

∫ 1

0

(1− t)k−1g(k)(t) dt

or
1

k!
g(k)(s) some s ∈ (0, 1).

If we substitute (207), (208), (209) etc. into this, we obtain the required results. �

Remark The first two terms of Taylor’s Formula give the best first order ap-
proximation7 in h to f(a + h) for h near 0. The first three terms give the best
second order approximation8 in h, the first four terms give the best third order
approximation, etc.

Note that the remainder term Rk(a,h) in Theorem 17.12.3 can be written as
O(|h|k) (see the Remarks on rates of convergence in Section 17.5), i.e.

Rk(a,h)

|h|k
is bounded as h→ 0.

This follows from the second version for the remainder in Theorem 17.12.3 and the
facts:

(1) Di1...ikf(x) is continuous, and hence bounded on compact sets,
(2) |hi1 · . . . · hik | ≤ |h|k.

Example Let

f(x, y) = (1 + y2)1/2 cosx.

One finds the best second order approximation to f for (x, y) near (0, 1) as follows.
First note that

f(0, 1) = 21/2.

7I.e. constant plus linear term.
8I.e. constant plus linear term plus quadratic term.
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Moreover,

f1 = −(1 + y2)1/2 sinx; = 0 at (0, 1)
f2 = y(1 + y2)−1/2 cosx; = 2−1/2 at (0, 1)
f11 = −(1 + y2)1/2 cosx; = −21/2 at (0, 1)
f12 = −y(1 + y2)−1/2 sinx; = 0 at (0, 1)
f22 = (1 + y2)−3/2 cosx; = 2−3/2 at (0, 1).

Hence

f(x, y) = 21/2 + 2−1/2(y − 1)− 21/2x2 + 2−3/2(y − 1)2 +R3

(
(0, 1), (x, y)

)
,

where

R3

(
(0, 1), (x, y)

)
= O

(
|(x, y)− (0, 1)|3

)
= O

((
x2 + (y − 1)2

)3/2)
.



CHAPTER 18

Differentiation of Vector-Valued Functions

18.1. Introduction

In this chapter we consider functions

f :D (⊂ Rn)→ Rn,

with m ≥ 1. You should have a look back at Section 10.1.
We write

f(x1, . . . , xn) =
(
f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)

)
where

f i :D → R, i = 1, . . . ,m,

are real -valued functions.

Example Let

f(x, y, z) = (x2 − y2, 2xz + 1).

Then f1(x, y, z) = x2 − y2 and f2(x, y, z) = 2xz + 1.

Reduction to Component Functions For many purposes we can reduce the
study of functions f , as above, to the study of the corresponding real -valued func-
tions f1, . . . , fm. However, this is not always a good idea, since studying the f i

involves a choice of coordinates in Rn, and this can obscure the geometry involved.
In Definitions 18.2.1, 18.3.1 and 18.4.1 we define the notion of partial derivative,

directional derivative, and differential of f without reference to the component
functions. In Propositions 18.2.2, 18.3.2 and 18.4.2 we show these definitions are
equivalent to definitions in terms of the component functions.

18.2. Paths in Rm

In this section we consider the case corresponding to n = 1 in the notation
of the previous section. This is an important case in its own right and also helps
motivates the case n > 1.

Definition 18.2.1. Let I be an interval in R. If f :I → Rn then the derivative
or tangent vector at t is the vector

f ′(t) = lim
s→0

f(t+ s)− f(t)

s
,

provided the limit exists1. In this case we say f is differentiable at t. If, moreover,
f ′(t) 6= 0 then f ′(t)/|f ′(t)| is called the unit tangent at t.

Remark Although we say f ′(t) is the tangent vector at t, we should really think
of f ′(t) as a vector with its “base” at f(t). See the next diagram.

1If t is an endpoint of I then one takes the corresponding one-sided limits.

195
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Proposition 18.2.2. Let f(t) =
(
f1(t), . . . , fm(t)

)
. Then f is differentiable

at t iff f1, . . . , fm are differentiable at t. In this case

f ′(t) =
(
f1′(t), . . . , fm′(t)

)
.

Proof. Since

f(t+ s)− f(t)

s
=

(
f1(t+ s)− f1(t)

s
, . . . ,

fm(t+ s)− fm(t)

s

)
,

The theorem follows by applying Theorem 10.4.4. �

Definition 18.2.3. If f(t) =
(
f1(t), . . . , fm(t)

)
then f is C1 if each f i is C1.

We have the usual rules for differentiating the sum of two functions from I
to <m, and the product of such a function with a real valued function (exercise:
formulate and prove such a result). The following rule for differentiating the inner
product of two functions is useful.

Proposition 18.2.4. If f1, f2 :I → Rn are differentable at t then

d

dt

(
f1(t), f2(t)

)
=
(
f ′1(t), f2(t)

)
+
(
f1(t), f ′2(t)

)
.

Proof. Since (
f1(t), f2(t)

)
=

m∑
i=1

f i1(t)f i2(t),

the result follows from the usual rule for differentiating sums and products. �

If f : I → Rn, we can think of f as tracing out a “curve” in Rn (we will make
this precise later). The terminology tangent vector is reasonable, as we see from
the following diagram. Sometimes we speak of the tangent vector at f(t) rather
than at t, but we need to be careful if f is not one-one, as in the second diagram
in figure 1.

Figure 1. Two examples of a curve in R2. That is, of the path
traced out by a function f : I → R2, where I is an interval in R.

Examples (See Figure 2.)
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(1) Let

f(t) = (cos t, sin t) t ∈ [0, 2π).

This traces out a circle in R2 and

f ′(t) = (− sin t, cos t).

(2) Let

f(t) = (t, t2).

This traces out a parabola in R2 and

f ′(t) = (1, 2t).

Figure 2. A circle and a parabola in R2, each being the image of
a function f : I → R2 for some interval I ⊂ R.

Example Consider the functions

(1) f1(t) = (t, t3) t ∈ R,
(2) f2(t) = (t3, t9) t ∈ R,
(3) f3(t) = ( 3

√
t, t) t ∈ R.

Then each function f i traces out the same “cubic” curve in R2, (i.e., the image is
the same set of points), and

f1(0) = f2(0) = f3(0) = (0, 0).

However,

f ′1(0) = (1, 0), f ′2(0) = (0, 0), f ′3(0) is undefined.

Intuitively, we will think of a path in Rn as a function f which neither stops nor
reverses direction. It is often convenient to consider the variable t as representing
“time”. We will think of the corresponding curve as the set of points traced out by
f . Many different paths (i.e. functions) will give the same curve; they correspond
to tracing out the curve at different times and velocities. We make this precise as
follows:

Definition 18.2.5. We say f :I → Rn is a path2 in Rn if f is C1 and f ′(t) 6= 0
for t ∈ I. We say the two paths f1 :I1 → Rn and f2 :I2 → Rn are equivalent if there
exists a function φ :I1 → I2 such that f1 = f2 ◦ φ, where φ is C1 and φ′(t) > 0 for
t ∈ I1.

A curve is an equivalence class of paths. Any path in the equivalence class is
called a parametrisation of the curve.

2Other texts may have different terminology.
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We can think of φ as giving another way of measuring “time”.
We expect that the unit tangent vector to a curve should depend only on the

curve itself, and not on the particular parametrisation. This is indeed the case, as
is shown by the following Proposition.

Figure 3. A curve with two parametrisations f1 : I1 → R2 and
f2 : I1 → R2, where φ : I1 → I2 and f1(t) = f2(φ(t)).

Proposition 18.2.6. Suppose f1 : I1 → Rn and f2 : I2 → Rn are equivalent
parametrisations; and in particular f1 = f2 ◦ φ where φ : I1 → I2, φ is C1 and
φ′(t) > 0 for t ∈ I1. Then f1 and f2 have the same unit tangent vector at t and
φ(t) respectively.

Proof. From the chain rule for a function of one variable, we have

f ′1(t) =
(
f1

1
′
(t), . . . , fm1

′(t)
)

=
(
f1

2
′
(φ(t))φ′(t), . . . , fm2

′(φ(t))φ′(t)
)

= f ′2(φ(t))φ′(t).

Hence, since φ′(t) > 0,

f ′1(t)∣∣f ′1(t)
∣∣ =

f ′2(t)∣∣f ′2(t)
∣∣ .

�

Definition 18.2.7. If f is a path in Rn, then the acceleration at t is f ′′(t).

Example If |f ′(t)| is constant (i.e. the “speed” is constant) then the velocity and
the acceleration are orthogonal.

Proof. Since |f(t)|2 =
(
f ′(t), f ′(y)

)
is constant, we have from Proposition 18.2.4

that

0 =
d

dt

(
f ′(t), f ′(y)

)
= 2

(
f ′′(t), f ′(y)

)
.

This gives the result. �
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18.2.1. Arc length. Suppose f : [a, b] → Rn is a path in Rn. Let a = t1 <
t2 < . . . < tn = b be a partition of [a, b], where ti − ti−1 = δt for all i.

We think of the length of the curve corresponding to f as being

(210) ≈
N∑
i=2

|f(ti)− f(ti−1)| =
N∑
i=2

|f(ti)− f(ti−1)|
δt

δt ≈
∫ b

a

∣∣f ′(t)∣∣ dt.
See Figure 4.

Figure 4. Diagram for (210).

Motivated by this we make the following definition.

Definition 18.2.8. Let f : [a, b]→ Rn be a path in Rn. Then the length of the
curve corresponding to f is given by∫ b

a

∣∣f ′(t)∣∣ dt.
The next result shows that this definition is independent of the particular

parametrisation chosen for the curve.

Proposition 18.2.9. Suppose f1 : [a1, b1] → Rn and f2 : [a2, b2] → Rn are
equivalent parametrisations; and in particular f1 = f2◦φ where φ : [a1, b1]→ [a2, b2],
φ is C1 and φ′(t) > 0 for t ∈ I1. Then∫ b1

a1

∣∣f ′1(t)
∣∣ dt =

∫ b2

a2

∣∣f ′2(s)
∣∣ ds.

Proof. From the chain rule and then the rule for change of variable of inte-
gration, ∫ b1

a1

∣∣f ′1(t)
∣∣ dt =

∫ b1

a1

∣∣f ′2(φ(t))
∣∣φ′(t)dt =

∫ b2

a2

∣∣f ′2(s)
∣∣ ds.

�
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18.3. Partial and Directional Derivatives

Analogous to Definitions 17.3.1 and 17.4.1 we have:

Definition 18.3.1. The ith partial derivative of f at x is defined by

∂f

∂xi
(x)

(
or Dif(x)

)
= lim
t→0

f(x + tei)− f(x)

t
,

provided the limit exists. More generally, the directional derivative of f at x in the
direction v is defined by

Dvf(x) = lim
t→0

f(x + tv)− f(x)

t
,

provided the limit exists.

Remarks See Figure 5.

(1) It follows immediately from the Definitions that

∂f

∂xi
(x) = Dei

f(x).

(2) The partial and directional derivatives are vectors in Rn. In the terminol-

ogy of the previous section,
∂f

∂xi
(x) is tangent to the path t 7→ f(x + tei)

and Dvf(x) is tangent to the path t 7→ f(x + tv). Note that the curves
corresponding to these paths are subsets of the image of f .

(3) As we will discuss later, we may regard the partial derivatives at x as a
basis for the tangent space to the image of f at f(x)3.

Figure 5. (Diagram is poor quality!) A rectangular grid in R2,
its image under f : R2 → R3, and a geometric representation of
one directional derivative and two partial derivatives.

Proposition 18.3.2. If f1, . . . , fm are the component functions of f then

∂f

∂xi
(a) =

(
∂f1

∂xi
(a), . . . ,

∂fm

∂xi
(a)

)
for i = 1, . . . , n

Dvf(a) =
(
Dvf

1(a), . . . , Dvf
m(a)

)
3More precisely, if n ≤ m and the differential df(x) has rank n. See later.
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in the sense that if one side of either equality exists, then so does the other, and
both sides are then equal.

Proof. Essentially the same as for the proof of Proposition 18.2.2. �

Example Let f :R2 → R3 be given by

f(x, y) = (x2 − 2xy, x2 + y3, sinx).

Then

∂f

∂x
(x, y) =

(
∂f1

∂x
,
∂f2

∂x
,
∂f3

∂x

)
= (2x− 2y, 2x, cosx),

∂f

∂y
(x, y) =

(
∂f1

∂y
,
∂f2

∂y
,
∂f3

∂y

)
= (−2x, 3y2, 0),

are vectors in R3.

18.4. The Differential

Analogous to Definition 17.5.1 we have:

Definition 18.4.1. Suppose f :D (⊂ Rn) → Rn. Then f is differentiable at
a ∈ D if there is a linear transformation L :Rn → Rn such that

(211)

∣∣∣f(x)−
(
f(a) + L(x− a)

)∣∣∣
|x− a|

→ 0 as x→ a.

The linear transformation L is denoted by f ′(a) or df(a) and is called the derivative
or differential of f at a4.

A vector-valued function is differentiable iff the corresponding component func-
tions are differentiable. More precisely:

Proposition 18.4.2. f is differentiable at a iff f1, . . . , fm are differentiable
at a. In this case the differential is given by

(212) 〈df(a),v〉 =
(
〈df1(a),v〉, . . . , 〈dfm(a),v〉

)
.

In particular, the differential is unique.

Proof. For any linear map L : Rn → Rn, and for each i = 1, . . . ,m, let

Li :Rn → R be the linear map defined by Li(v) =
(
L(v)

)i
.

From Theorem 10.4.4 it follows∣∣∣f(x)−
(
f(a) + L(x− a)

)∣∣∣
|x− a|

→ 0 as x→ a

iff ∣∣∣f i(x)−
(
f i(a) + Li(x− a)

)∣∣∣
|x− a|

→ 0 as x→ a for i = 1, . . . ,m.

Thus f is differentiable at a iff f1, . . . , fm are differentiable at a.
In this case we must have

Li = df i(a) i = 1, . . . ,m

4It follows from Proposition 18.4.2 that if L exists then it is unique and is given by the right
side of (212).
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(by uniqueness of the differential for real -valued functions), and so

L(v) =
(
〈df1(a),v〉, . . . , 〈dfm(a),v〉

)
.

But this says that the differential df(a) is unique and is given by (212). �

Corollary 18.4.3. If f is differentiable at a then the linear transformation
df(a) is represented by the matrix

∂f1

∂x1
(a) · · · ∂f1

∂xn
(a)

...
. . .

...
∂fm

∂x1
(a) · · · ∂fm

∂xn
(a)

 : Rn → Rn(213)

Proof. The ith column of the matrix corresponding to df(a) is the vector
〈df(a), ei〉5. From Proposition 18.4.2 this is the column vector corresponding to(

〈df1(a), ei〉, . . . , 〈dfm(a), ei〉
)
,

i.e. to (∂f1

∂xi
(a), . . . ,

∂fm

∂xi
(a)
)
.

This proves the result. �

Remark The jth column is the vector in Rn corresponding to the partial deriva-

tive
∂f

∂xj
(a). The ith row represents df i(a).

The following proposition is immediate.

Proposition 18.4.4. If f is differentiable at a then

f(x) = f(a) + 〈df(a),x− a〉+ ψ(x),

where ψ(x) = o(|x− a|).
Conversely, suppose

f(x) = f(a) + L(x− a) + ψ(x),

where L :Rn → Rn is linear and ψ(x) = o(|x − a|). Then f is differentiable at a
and df(a) = L.

Proof. As for Proposition 17.5.4. �

Thus as is the case for real-valued functions, the previous proposition implies
f(a) + 〈df(a),x− a〉 gives the best first order approximation to f(x) for x near a.

Example Let f :R2 → R2 be given by

f(x, y) = (x2 − 2xy, x2 + y3).

Find the best first order approximation to f(x) for x near (1, 2).

5For any linear transformation L :Rn → Rm, the ith column of the corresponding matrix is
L(ei).
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Solution:

f(1, 2) =

[
−3
9

]
,

df(x, y) =

[
2x− 2y −2x

2x 3y2

]
,

df(1, 2) =

[
−2 −2
2 12

]
.

So the best first order approximation near (1, 2) is

f(1, 2) + 〈df(1, 2), (x− 1, y − 2)〉

=

[
−3
9

]
+

[
−2 −2
2 12

] [
x− 1
y − 2

]
=

[
−3− 2(x− 1)− 4(y − 2)
9 + 2(x− 1) + 12(y − 2)

]
=

[
7− 2x− 4y
−17 + 2x+ 12y

]
.

Alternatively, working with each component separately, the best first order
approximation is(

f1(1, 2) +
∂f1

∂x
(1, 2)(x− 1) +

∂f1

∂y
(1, 2)(y − 2),

f2(1, 2) +
∂f2

∂x
(1, 2)(x− 1) +

∂f2

∂y
(y − 2)

)
=
(
−3− 2(x− 1)− 4(y − 2), 9 + 2(x− 1) + 12(y − 2)

)
=
(

7− 2x− 4y, −17 + 2x+ 12y
)
.

Remark One similarly obtains second and higher order approximations by using
Taylor’s formula for each component function.

Proposition 18.4.5. If f ,g :D (⊂ Rn)→ Rn are differentiable at a ∈ D, then
so are αf and f + g. Moreover,

d(αf)(a) = αdf(a),

d(f + g)(a) = df(a) + dg(a).

Proof. This is straightforward (exercise) from Proposition 18.4.4. �

The previous proposition corresponds to the fact that the partial derivatives for
f + g are the sum of the partial derivatives corresponding to f and g respectively.
Similarly for αf .

Higher Derivatives We say f ∈ Ck(D) iff f1, . . . , fm ∈ Ck(D).
It follows from the corresponding results for the component functions that

(1) f ∈ C1(D)⇒ f is differentiable in D;
(2) C0(D) ⊃ C1(D) ⊃ C2(D) ⊃ . . ..
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18.5. The Chain Rule

Motivation The chain rule for the composition of functions of one variable says
that

d

dx
g
(
f(x)

)
= g′

(
f(x)

)
f ′(x).

Or to use a more informal notation, if g = g(f) and f = f(x), then

dg

dx
=
dg

df

df

dx
.

This is generalised in the following theorem. The theorem says that the linear
approximation to g ◦ f (computed at x) is the composition of the linear approxi-
mation to f (computed at x) followed by the linear approximation to g (computed
at f(x)).

A Little Linear Algebra Suppose L :Rn → Rn is a linear map. Then we define
the norm of L by

||L|| = max{|L(x)| : |x| ≤ 1}6.
A simple result (exercise) is that

(214) |L(x)| ≤ ||L|| |x|

for any x ∈ Rn.
It is also easy to check (exercise) that || · || does define a norm on the vector

space of linear maps from Rn into Rn.

Theorem 18.5.1 (Chain Rule). Suppose f :D (⊂ Rn)→ Ω (⊂ Rn) and g :Ω (⊂
Rn) → Rr. Suppose f is differentiable at x and g is differentiable at f(x). Then
g ◦ f is differentiable at x and

d(g ◦ f)(x) = dg(f(x)) ◦ df(x).(215)

Schematically:
g◦f

D
−−−−−−−−−−−−−−−−−−−→
(⊂ Rn)

f−→ Ω (⊂ Rn)
g−→Rr

d(g◦f)(x) = dg(f(x)) ◦ df(x)

Rn
−−−−−−−−−−−−−−−−−−→
df(x)−→ Rn dg(f(x))−→ Rr

Example To see how all this corresponds to other formulations of the chain rule,
suppose we have the following:

R3 f−→ R2 g−→ R2

(x, y, z) (u, v) (p, q)

Thus coordinates in R3 are denoted by (x, y, z), coordinates in the first copy of
R2 are denoted by (u, v) and coordinates in the second copy of R2 are denoted by
(p, q).

The functions f and g can be written as follows:

f : u = u(x, y, z), v = v(x, y, z),

g : p = p(u, v), q = q(u, v).

Thus we think of u and v as functions of x, y and z; and p and q as functions of u
and v.

6 Here |x|, |L(x)| are the usual Euclidean norms on Rn and Rm. Thus ||L|| corresponds to the
maximum value taken by L on the unit ball. The maximum value is achieved, as L is continuous
and {x : |x| ≤ 1} is compact.
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We can also represent p and q as functions of x, y and z via

p = p
(
u(x, y, z), v(x, y, z)

)
, q = q

(
u(x, y, z), v(x, y, z)

)
.

The usual version of the chain rule in terms of partial derivatives is:

∂p

∂x
=

∂p

∂u

∂u

∂x
+
∂p

∂v

∂v

∂x
∂p

∂x
=

∂p

∂u

∂u

∂x
+
∂p

∂v

∂v

∂x
...

∂q

∂z
=

∂q

∂u

∂u

∂z
+
∂q

∂v

∂v

∂z
.

In the first equality, ∂p
∂x is evaluated at (x, y, z), ∂p

∂u and ∂p
∂v are evaluated at(

u(x, y, z), v(x, y, z)
)

, and ∂u
∂x and ∂v

∂x are evaluated at (x, y, z). Similarly for the

other equalities.
In terms of the matrices of partial derivatives:[

∂p
∂x

∂p
∂y

∂p
∂z

∂q
∂x

∂q
∂y

∂q
∂z

]
︸ ︷︷ ︸

d(g ◦ f)(x)

=

[
∂p
∂u

∂p
∂v

∂q
∂u

∂q
∂v

]
︸ ︷︷ ︸
dg(f(x))

[
∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

]
,︸ ︷︷ ︸

df(x)

where x = (x, y, z).

Proof of Chain Rule: We want to show

(216) (f ◦ g)(a + h) = (f ◦ g)(a) + L(h) + o(|h|),
where L = df(g(a)) ◦ dg(a).

Now

(f ◦ g)(a + h) = f
(
g(a + h)

)
= f

(
g(a) + g(a + h)− g(a)

)
= f

(
g(a)

)
+
〈
df
(
g(a)

)
, g(a + h)− g(a)

〉
+o
(
|g(a + h)− g(a)|

)
. . . by the differentiability of f

= f
(
g(a)

)
+
〈
df
(
g(a)

)
, 〈dg(a),h〉+ o(|h|)

〉
+o
(
|g(a + h)− g(a)|

)
. . . by the differentiability of g

= f
(
g(a)

)
+
〈
df
(
g(a)

)
, 〈dg(a),h〉

〉
+
〈
df
(
g(a)

)
, o(|h|)

〉
+ o
(
|g(a + h)− g(a)|

)
= A+B + C +D

But B =
〈
df
(
g(a)

)
◦ dg(a), h

〉
, by definition of the “composition” of two

maps. Also C = o(|h|) from (214) (exercise). Finally, for D we have∣∣∣g(a + h)− g(a)
∣∣∣ =

∣∣∣〈dg(a),h〉+ o(|h|)
∣∣∣ . . . by differentiability of g

≤ ||dg(a)|| |h|+ o(|h|) . . . from (214)

= O(|h|) . . . why?
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Substituting the above expressions into A+B + C +D, we get

(217) (f ◦ g)(a + h) = f
(
g(a)

)
+
〈
df
(
g(a))

)
◦ dg(a), h

〉
+ o(|h|).

If follows that f ◦ g is differentiable at a, and moreover the differential equals
df(g(a)) ◦ dg(a). This proves the theorem.



CHAPTER 19

The Inverse Function Theorem and its
Applications

19.1. Inverse Function Theorem

Motivation

(1) Suppose

f :Ω (⊂ Rn)→ Rn

and f is C1. Note that the dimension of the domain and the range are
the same. Suppose f(x0) = y0. Then a good approximation to f(x) for x
near x0 is gven by

(218) x 7→ f(x0) + 〈f ′(x0), x− x0〉.

See Figure 1.

Figure 1. The right curved grid is the image of the left grid by
the functionf . The right flat grid is the image of the left grid by
the linear linear approximation x 7→ f(x0) + 〈f ′(x0), x− x0〉 .

We expect that if f ′(x0) is a one-one and onto linear map, (which is
the same as det f ′(x0) 6= 0 and which implies the map in (218) is one-one
and onto), then f should be one-one and onto near x0. This is true, and
is called the Inverse Function Theorem.

(2) Consider the set of equations

f1(x1, . . . , xn) = y1

f2(x1, . . . , xn) = y2

...

fn(x1, . . . , xn) = yn,

where f1, . . . , fn are certain real-valued functions. Suppose that these
equations are satisfied if (x1, . . . , xn) = (x1

0, . . . , x
n
0 ) and (y1, . . . , yn) =

(y1
0 , . . . , y

n
0 ), and that det f ′(x0) 6= 0. Then it follows from the Inverse

Function Theorem that for all (y1, . . . , yn) in some ball centred at (y1
0 , . . . , y

n
0 )

the equations have a unique solution (x1, . . . , xn) in some ball centred at
(x1

0, . . . , x
n
0 ).

207



208 19. THE INVERSE FUNCTION THEOREM AND ITS APPLICATIONS

Theorem 19.1.1 (Inverse Function Theorem). Suppose f : Ω (⊂ Rn) → Rn is
C1 and Ω is open1. Suppose f ′(x0) is invertible2 for some x0 ∈ Ω.

Then there exists an open set U 3 x0 and an open set V 3 f(x0) such that

(1) f ′(x) is invertible at every x ∈ U ,
(2) f :U → V is one-one and onto, and hence has an inverse g :V → U ,
(3) g is C1 and g′(f(x)) = [f ′(x)]−1 for every x ∈ U .

Figure 2. Diagram for Theorem 19.1.1.

Proof. See Figure 3 for Steps 1 and 2, and Figure —4 for the latter part of
Step 2.

Step 1 Suppose

y∗ ∈ Bδ(f(x0)).

We will choose δ later. (We will take the set V in the theorem to be the open set
Bδ(f(x0)) )

For each such y, we want to prove the existence of x (= x∗, say) such that

(219) f(x) = y∗.

We write f(x) as a first order function plus an error term.

Figure 3. Diagram for Steps 1 and 2.

Look at Figure 3. Reformulating (219), we want to solve (for x)

(220) f(x0) + 〈f ′(x0), x− x0〉+R(x) = y∗,

1Note that the dimensions of the domain and range are equal.
2That is, the matrix f ′(x0) is one-one and onto, or equivalently, det f ′(x0) 6= 0.
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where

(221) R(x) := f(x)− f(x0)− 〈f ′(x0), x− x0〉.

In other words, we want to find x such that

〈f ′(x0), x− x0〉 = y∗ − f(x0)−R(x),

i.e. such that

(222) x = x0 +
〈
[f ′(x0)]−1, y∗ − f(x0)

〉
−
〈
[f ′(x0)]−1, R(x)

〉
(why?).

The right side of (222) is the sum of two terms. The first term, that is
x0 +

〈
[f ′(x0)]−1, y∗ − f(x0)

〉
, is the solution of the linear equation y∗ = f(x0) +

〈f ′(x0), x− x0〉. The second term is the error term −
〈
[f ′(x0)]−1, R(x)

〉
, which is

o(|x− x0|) because R(x) is o(|x− x0|) and [f ′(x0)]−1 is a fixed linear map.

Step 2 Because of (222) define

(223) Ay∗(x) := x0 +
〈
[f ′(x0)]−1, y∗ − f(x0)

〉
−
〈
[f ′(x0)]−1, R(x)

〉
.

Note that x is a fixed point of Ay∗ iff x satisfies (222) and hence solves (219).
We claim that

(224) Ay∗ : Bε(x0)→ Bε(x0),

and that Ay∗ is a contraction map, provided ε > 0 is sufficiently small (ε will depend
only on x0 and f) and provided y∗ ∈ Bδ(y0) (where δ > 0 also depends only on x0

and f).
To prove the claim, we compute

Ay∗(x1)−Ay∗(x2) =
〈
[f ′(x0)]−1, R(x2)−R(x1)

〉
,

and so

(225) |Ay∗(x1)−Ay∗(x2)| ≤ K |R(x1)−R(x2)|,

where

(226) K :=
∥∥[f ′(x0)]−1

∥∥ .

Figure 4. A few of the items in Step 2.

From (221), and perhaps looking at Figure 4,

R(x2)−R(x1) = f(x2)− f(x1)− 〈f ′(x0), x2 − x1〉 .
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We apply the mean value theorem (17.9.1) to each of the components of this equa-
tion to obtain∣∣Ri(x2)−Ri(x1)

∣∣ =
∣∣∣〈f i′(ξi), x2 − x1

〉
−
〈
f i
′
(x0), x2 − x1

〉∣∣∣
for i = 1, . . . , n and some ξi ∈ Rn between x1 and x2

=
∣∣∣〈f i′(ξi)− f i′(x0), x2 − x1

〉∣∣∣
≤

∣∣∣f i′(ξi)− f i′(x0)
∣∣∣ |x2 − x1|,

by Cauchy-Schwartz, treating f i
′

as a “row vector”.
By the continuity of the derivatives of f , it follows

(227) |R(x2)−R(x1)| ≤ 1

2K
|x2 − x1|,

provided x1, x2 ∈ Bε(x0) for some ε > 0 depending only on f and x0. Hence
from (225)

(228) |Ay∗(x1)−Ay∗(x2)| ≤ 1

2
|x1 − x2|.

This proves

Ay∗ : Bε(x0)→ Rn

is a contraction map, but we still need to prove (224).
For this we compute

|Ay∗(x)− x0| ≤
∣∣〈[f ′(x0)]−1, y∗ − f(x0)

〉∣∣+
∣∣〈[f ′(x0)]−1, R(x)

〉∣∣ from (223)

≤ K|y∗ − f(x0)|+K|R(x)|
= K|y∗ − f(x0)|+K|R(x)−R(x0)| as R(x0) = 0

≤ K|y∗ − f(x0)|+ 1

2
|x− x0| from (227)

< ε/2 + ε/2 = ε,

provided x ∈ Bε(x0) and y∗ ∈ Bδ(f(x0)) (if Kδ < ε). This establishes (224) and
completes the proof of the claim.

Step 3 We now know that for each y ∈ Bδ(f(x0)) there is a unique x ∈ Bε(x0)
such that f(x) = y. Denote this x by g(y). Thus

g :Bδ(f(x0))→ Bε(x0).

We claim that this inverse function g is continuous.
To see this let xi = g(yi) for i = 1, 2. That is, f(xi) = yi, or equivalently

xi = Ayi(xi) (recall the remark after (223) ). Then

|g(y1)− g(y2)| = |x1 − x2|
= |Ay1(x1)−Ay21(x2)|
≤

∣∣〈[f ′(x0)]−1, y1 − y2

〉∣∣+
∣∣〈[f ′(x0)]−1, R(x1)−R(x2)

〉∣∣ by (223)

≤ K |y1 − y2|+K |R(x1)−R(x2)| from (225)

≤ K |y1 − y2|+K
1

2K
|x1 − x2| from (227)

= K |y1 − y2|+
1

2
|g(y1)− g(y2)|.

Thus
1

2
|g(y1)− g(y2)| ≤ K |y1 − y2|,
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and so

(229) |g(y1)− g(y2)| ≤ 2K |y1 − y2|.

In particular, g is Lipschitz and hence continuous.

Step 4 Let

V = Bδ(f(x0)), U = g [Bδ(f(x0))] .

Since U = Bε(x0) ∩ f−1[V ] (why?), it follows U is open. We have thus proved
the second part of the theorem.

The first part of the theorem is easy. All we need do is first replace Ω by a
smaller open set containing x0 in which f ′(x) is invertible for all x. This is possible
as det f ′(x0) 6= 0 and the entries in the matrix f ′(x) are continuous.

Step 5 We claim g is C1 on V and

(230) g′(f(x)) = [f ′(x)]−1.

To see that g is differentiable at y ∈ V and (230) is true, suppose y, y ∈ V , and
let f(x) = y, f(x) = y where x, x ∈ U . Then∣∣g(y)− g(y)−

〈
[f ′(x)]−1, y − y

〉∣∣
|y − y|

=

∣∣x− x− 〈[f ′(x)]−1, f(x)− f(x)
〉∣∣

|y − y|

=

∣∣∣〈[f ′(x)]−1, 〈f ′(x), x− x〉 − f(x) + f(x)
〉∣∣∣

|y − y|

≤
∥∥[f ′(x)]−1

∥∥ |f(x)− f(x)− 〈f ′(x), x− x〉|
|x− x|

|x− x|
|y − y|

.

If we fix y and let y → y, then x is fixed and x→ x. Hence the last line in the
previous series of inequalities→ 0, since f is differentiable at x and |x−x|/|y−y| ≤
K/2 by (229). Hence g is differentiable at y and the derivative is given by (230).

The fact that g is C1 follows from (230) and the expression for the inverse of a
matrix. �

Remark We have

g′(y) = [f ′(g(y))]
−1

=
Ad [f ′(g(y))]

det[f ′(g(y))]
,(231)

where Ad [f ′(g(y))] is the matrix of cofactors of the matrix [f ′(g(y))].
If f is C2, then since we already know g is C1, it follows that the terms in the

matrix (231) are algebraic combinations of C1 functions and so are C1. Hence the
terms in the matrix g′ are C1 and so g is C2.

Similarly, if f is C3 then since g is C2 it follows the terms in the matrix (231)
are C2 and so g is C3.

By induction we have the following Corollary.

Corollary 19.1.2. If in the Inverse Function Theorem the function f is Ck

then the local inverse function g is also Ck.

Summary of Proof of Theorem
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(1) Write the equation f(x∗) = y as a perturbation of the first order equation
obtained by linearising around x0. See (220) and (221).

Write the solution x as the solution T (y∗) of the linear equation plus
an error term E(x),

x = T (y∗) + E(x) =: Ay∗(x)

See (222).
(2) Show Ay∗(x) is a contraction map on Bε(x0) (for ε sufficiently small and

y∗ near y0) and hence has a fixed point. It follows that for all y∗ near y0

there exists a unique x∗ near x0 such that f(x∗) = y∗. Write g(y∗) = x∗.
(3) The local inverse function g is close to the inverse T (y∗) of the linear

function. Use this to prove that g is Lipschitz continuous.
(4) Wrap up the proof of parts 1 and 2 of the theorem.
(5) Write out the difference quotient for the derivative of g and use this and

the differentiability of f to show g is differentiable.

19.2. Implicit Function Theorem

Motivation We can write the equations in the previous “Motivation” section as

f(x) = y,

where x = (x1, . . . , xn) and y = (y1, . . . , yn).
More generally we may have n equations

f(x, u) = y,

i.e.,

f1(x1, . . . , xn, u1, . . . , um) = y1

f2(x1, . . . , xn, u1, . . . , um) = y2

...

fn(x1, . . . , xn, u1, . . . , um) = yn,

where we regard the u = (u1, . . . , um) as parameters.
Write

det

[
∂f

∂x

]
:= det


∂f1

∂x1 · · · ∂f1

∂xn

...
...

∂fn

∂x1 · · · ∂fn

∂xn

 .
Thus det[∂f/∂x] is the determinant of the derivative of the map f(x1, . . . , xn),
where x1, . . . , xm are taken as the variables and the u1, . . . , um are taken to be
fixed .

Now suppose that

f(x0, u0) = y0, det

[
∂f

∂x

]
(x0,u0)

6= 0.

From the Inverse Function Theorem (still thinking of u1, . . . , um as fixed), for y
near y0 there exists a unique x near x0 such that

f(x, u0) = y.

The Implicit Function Theorem says more generally that for y near y0 and for u
near u0, there exists a unique x near x0 such that

f(x, u) = y.
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In applications we will usually take y = y0 = c(say) to be fixed. Thus we
consider an equation

(232) f(x, u) = c

where

f(x0, u0) = c, det

[
∂f

∂x

]
(x0,u0)

6= 0.

Hence for u near u0 there exists a unique x = x(u) near x0 such that

(233) f(x(u), u) = c.

In words, suppose we have n equations involving n unknowns x and certain pa-
rameters u. Suppose the equations are satisfied at (x0, u0) and suppose that the
determinant of the matrix of derivatives with respect to the x variables is non-zero
at (x0, u0). Then the equations can be solved for x = x(u) if u is near u0.

Moreover, differentiating the ith equation in (233) with respect to uj we obtain∑
k

∂f i

∂xk

∂xk

∂uj
+
∂f i

∂uj
= 0.

That is [
∂f

∂x

] [
∂x

∂u

]
+

[
∂f

∂u

]
= [0],

where the first three matrices are n × n, n ×m, and n ×m respectively, and the
last matrix is the n×m zero matrix. Since det [∂f/∂x](x0,u0) 6= 0, it follows

(234)

[
∂x

∂u

]
u0

= −
[
∂f

∂x

]−1

(x0,u0)

[
∂f

∂u

]
(x0,u0)

.

Example 1 Consider the circle in R2 described by

x2 + y2 = 1.

Write

(235) F (x, y) = 1.

Thus in (232), u is replaced by y and c is replaced by 1.

Figure 5. Diagram for Example 1.

Suppose F (x0, y0) = 1 and ∂F/∂x0|(x0,y0) 6= 0 (i.e. x0 6= 0). Then for y near

y0 there is a unique x near x0 satisfying (235). In fact x = ±
√

1− y2 according as
x0 > 0 or x0 < 0. See the diagram for two examples of such points (x0, y0).

Similarly, if ∂F/∂y0|(x0,y0) 6= 0, i.e. y0 6= 0, Then for x near x0 there is a unique

y near y0 satisfying (235).
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Figure 6. Diagram for Example 2.

Example 2 Suppose a “surface” in R3 is described by

(236) Φ(x, y, z) = 0.

Suppose Φ(x0, y0, z0) = 0 and ∂Φ/∂z (x0, y0, z0) 6= 0.
Then by the Implicit Function Theorem, for (x, y) near (x0, y0) there is a unique

z near z0 such that Φ(x, y, z) = 0. Thus the “surface” can locally3 be written as a
graph over the x-y plane

More generally, if ∇Φ(x0, y0, z0) 6= 0 then at least one of the derivatives
∂Φ/∂x (x0, y0, z0), ∂Φ/∂y (x0, y0, z0) or ∂Φ/∂z (x0, y0, z0) does not equal 0. The
corresponding variable x, y or z can then be solved for in terms of the other two
variables and the surface is locally a graph over the plane corresponding to these
two other variables.

Example 3 Suppose a “curve” in R3 is described by

Φ(x, y, z) = 0,

Ψ(x, y, z) = 0.

Figure 7. Diagram for Example 3.

Suppose (x0, y0, z0) lies on the curve, i.e. Φ(x0, y0, z0) = Ψ(x0, y0, z0) = 0.
Suppose moreover that the matrix[

∂Φ
∂x

∂Φ
∂y

∂Φ
∂z

∂Ψ
∂x

∂Ψ
∂y

∂Ψ
∂z

]
(x0,y0,z0)

3By “locally” we mean in some Br(a) for each point a in the surface.
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has rank 2. In other words, two of the three columns must be linearly independent.
Suppose it is the first two. Then

det

∣∣∣∣∣ ∂Φ
∂x

∂Φ
∂y

∂Ψ
∂x

∂Ψ
∂y

∣∣∣∣∣
(x0,y0,z0)

6= 0.

By the Implicit Function Theorem, we can solve for (x, y) near (x0, y0) in terms of
z near z0. In other words we can locally write the curve as a graph over the z axis.

Example 4 Consider the equations

f1(x1, x2, y1, y2, y3) = 2ex1 + x2y1 − 4y2 + 3

f2(x1, x2, y1, y2, y3) = x2 cosx1 − 6x1 + 2y1 − y3.

Consider the “three dimensional surface in R5 ” given by f1(x1, x2, y1, y2, y3) = 0,
f2(x1, x2, y1, y2, y3) = 0 4. We easily check that

f(0, 1, 3, 2, 7) = 0

and

f ′(0, 1, 3, 2, 7) =

[
2 3 1 −4 0
−6 1 2 0 −1

]
.

The first two columns are linearly independent and so we can solve for x1, x2 in
terms of y1, y2, y3 near (3, 2, 7).

Moreover, from (234) we have[
∂x1

∂y1
∂x1

∂y2
∂x1

∂y3
∂x2

∂y1
∂x2

∂y2
∂x2

∂y3

]
(3,2,7)

= −
[

2 3
−6 1

]−1 [
1 −4 0
2 0 −1

]

= − 1

20

[
1 −3
6 2

] [
1 −4 0
2 0 −1

]
=

[
1
4

1
5 − 3

20
− 1

2
6
5

1
10

]
It folows that for (y1, y2, y3) near (3, 2, 7) we have

x1 ≈ 0 +
1

4
(y1 − 3) +

1

5
(y2 − 2)− 3

20
(y3 − 7)

x2 ≈ 1− 1

2
(y1 − 3) +

6

5
(y2 − 2) +

1

10
(y3 − 7).

We now give a precise statement and proof of the Implicit Function Theorem.

Theorem 19.2.1 (Implicit function Theorem). Suppose f :D (⊂ Rn×Rk)→ Rn
is C1 and D is open. Suppose f(x0, u0) = y0 where x0 ∈ Rn and u0 ∈ Rm. Suppose
det [∂f/∂x] |(x0,u0) 6= 0.

Then there exist ε, δ > 0 such that for all y ∈ Bδ(y0) and all u ∈ Bδ(u0) there
is a unique x ∈ Bε(x0) such that

f(x, u) = y.

If we denote this x by g(u, y) then g is C1. Moreover,[
∂g

∂u

]
(u0,y0)

= −
[
∂f

∂x

]−1

(x0,u0)

[
∂f

∂u

]
(x0,u0)

.

4One constraint gives a four dimensional surface, two constraints give a three dimensional
surface, etc. Each further constraint reduces the dimension by one.
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Proof. Define

F :D → Rn × Rm

by

F (x, u) =
(
f(x, u), u

)
.

Then clearly5 F is C1 and

detF ′|(x0,u0) = det

[
∂f

∂x

]
(x0,u0)

.

Also

F (x0, u0) = (y0, u0).

From the Inverse Function Theorem, for all (y, u) near (y0, u0) there exists a
unique (x,w) near (x0, u0) such that

(237) F (x,w) = (y, u).

Moreover, x and w are C1 functions of (y, u). But from the definition of F it follows
that (237) holds iff w = u and f(x, u) = y. Hence for all (y, u) near (y0, u0) there
exists a unique x = g(u, y) near x0 such that

(238) f(x, u) = y.

Moreover, g is a C1 function of (u, y).

The expression for
[
∂g
∂u

]
(u0,y0)

follows from differentiating (238) precisely as in

the derivation of (234). �

19.3. Manifolds

Discussion Loosely speaking, M is a k-dimensional manifold in Rn if M locally6

looks like the graph of a function of k variables. Thus a 2-dimensional manifold is
a surface and a 1-dimensional manifold is a curve.

We will give three different ways to define a manifold and show that they are
equivalent.

We begin by considering manifolds of dimension n − 1 in Rn (e.g. a curve in
R2 or a surface in R3). Such a manifold is said to have codimension one.

Suppose

Φ:Rn → R
is C1. Let

M = {x : Φ(x) = 0}.
See Examples 1 and 2 in Section 19.2 (where Φ(x, y) = F (x, y)− 1 in Example 1).

If ∇Φ(a) 6= 0 for some a ∈ M , then as in Examples 1 and 2 we can write M
locally as the graph of a function of one of the variables xi in terms of the remaining
n− 1 variables.

This leads to the following definition.

5Since

F ′ =

[ [
∂f
∂x

] [
∂f
∂u

]
O I

]
,

where O is the m× n zero matrix and I is the m×m identity matrix.
6“Locally” means in some neighbourhood for each a ∈M .
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Definition 19.3.1. [Manifolds as Level Sets] Suppose M ⊂ Rn and for
each a ∈M there exists r > 0 and a C1 function Φ:Br(a)→ R such that

M ∩Br(a) = {x : Φ(x) = 0}.
Suppose also that ∇Φ(x) 6= 0 for each x ∈ Br(a).

Then M is an n− 1 dimensional manifold in Rn. We say M has codimension
one.

The one dimensional space spanned by ∇Φ(a) is called the normal space to M
at a and is denoted by NaM

7.

Figure 8. The manifold M is the level set {x : Φ(x) = 0}. The
equality in the diagram should read “∇Φ(a) 6= 0”.

Remarks

(1) Usually M is described by a single function Φ defined on Rn
(2) See Section 17.6 for a discussion of ∇Φ(a) which motivates the definition

of NaM .
(3) With the same proof as in Examples 1 and 2 from Section 19.2, we can

locally write M as the graph of a function

xi = f(x1, . . . , xi−1, xi+1, . . . , xn)

for some 1 ≤ i ≤ n.

Higher Codimension Manifolds Suppose more generally that

Φ:Rn → R`

is C1 and ` ≥ 1. See Example 3 in Section 19.2.
Now

M = M1 ∩ · · · ∩M `,

where
M i = {x : Φi(x) = 0}.

Note that each Φi is real-valued. Thus we expect that, under reasonable conditions,
M should have dimension n− ` in some sense. In fact, if

∇Φ1(x), . . . ,∇Φ`(x)

7The space NaM does not depend on the particular Φ used to describe M . We show this in
the next section.
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are linearly independent for each x ∈ M , then the same argument as for Example
3 in the previous section shows that M is locally the graph of a function of ` of the
variables x1, . . . , xn in terms of the other n− ` variables.

This leads to the following definition which generalises the previous one.

Definition 19.3.2. [Manifolds as Level Sets] Suppose M ⊂ Rn and for

each a ∈M there exists r > 0 and a C1 function Φ:Br(a)→ R` such that

M ∩Br(a) = {x : Φ(x) = 0}.

Suppose also that ∇Φ1(x), . . . ,∇Φ`(x) are linearly independent for each x ∈ Br(a).
Then M is an n − ` dimensional manifold in Rn. We say M has codimension

`.
The ` dimensional space spanned by ∇Φ1(a), . . . ,∇Φ`(a) is called the normal

space to M at a and is denoted by NaM
8.

Remarks With the same proof as in Examples 3 from the section on the Implicit
Function Theorem, we can locally write M as the graph of a function of ` of the
variables in terms of the remaining n− ` variables.

Equivalent Definitions There are two other ways to define a manifold. For
simplicity of notation we consider the case M has codimension one, but the more
general case is completely analogous.

Definition 19.3.3. [Manifolds as Graphs] Suppose M ⊂ Rn and that for
each a ∈ M there exist r > 0 and a C1 function f :Ω (⊂ Rn−1) → R such that for
some 1 ≤ i ≤ n

M ∩Br(a) = {x ∈ Br(a) : xi = f(x1, . . . , xi−1, xi+1, . . . , xn)}.

Then M is an n− 1 dimensional manifold in Rn.

Figure 9. In the diagram n = 2, the vertical axis corresponds to
x1 and the horizontal axis to x2. The curve M is the level set of
f : Ω ⊂ R2 → R and is a one-dimensional manifold. Note that M
can be written only locally as a graph, for example one part as a
function of x1 and two as functions of x2. Explain to someone.

8The space NaM does not depend on the particular Φ used to describe M . We show this in
the next section.
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Equivalence of the Level-Set and Graph Definitions Suppose M is a man-
ifold as in the Graph Definition. Let

Φ(x) = xi − f(x1, . . . , xi−1, xi+1, . . . , xn).

Then

∇Φ(x) =

(
− ∂f

∂x1
, . . . ,− ∂f

∂xi−1
, 1,− ∂f

∂xi+1
, . . . ,− ∂f

∂xn

)
In particular, ∇Φ(x) 6= 0 and so M is a manifold in the level-set sense.

Conversely, we have already seen (in the Remarks following Definitions 19.3.1
and 19.3.2) that if M is a manifold in the level-set sense then it is also a manifold
in the graphical sense.

As an example of the next definition, see the diagram preceding Proposi-
tion 18.3.2.

Definition 19.3.4. [Manifolds as Parametrised Sets] Suppose M ⊂ Rn
and that for each a ∈M there exists r > 0 and a C1 function

F :Ω (⊂ Rn−1)→ Rn

such that

M ∩Br(a) = F [Ω] ∩Br(a).

Suppose moreover that the vectors

∂F

∂u1
(u), . . . ,

∂F

∂un−1
(u)

are linearly independent for each u ∈ Ω.
Then M is an n − 1 dimensional manifold in Rn. We say that (F,Ω) is a

parametrisation of (part of) M .
The n − 1 dimensional space spanned by ∂F

∂u1
(u), . . . , ∂F

∂un−1
(u) is called the

tangent space to M at a = F (u) and is denoted by TaM
9.

Equivalence of the Graph and Parametrisation Definitions (See Figure 10.)
Suppose M is a manifold as in the Parametrisation Definition. We want to

show that M is locally the graph of a C1 function.
First note that the n × (n − 1) matrix

[
∂F
∂u (p)

]
has rank n − 1 and so n − 1

of the rows are linearly independent. Suppose the first n − 1 rows are linearly
independent.

It follows that the (n− 1)× (n− 1) matrix
[
∂F i

∂uj
(p)
]

1≤i,j≤n−1
is invertible and

hence by the Inverse Function Theorem there is locally a one-one correspondence
between u = (u1, . . . , un−1) and points of the form

(x1, . . . , xn−1) = (F 1(u), . . . , Fn−1(u)) ∈ Rn−1 ' Rn−1 × {0} (⊂ Rn),

with C1 inverse G (so u = G(x1, . . . , xn−1)).
Thus points in M can be written in the form(
F 1(u), . . . , Fn−1(u), Fn(u)

)
= (x1, . . . , xn−1, (F

n ◦G)(x1, . . . , xn−1)) .

Hence M is locally the graph of the C1 function Fn ◦G.

Conversely, suppose M is a manifold in the graph sense. Then locally, after
perhaps relabelling coordinates, for some C1 function f :Ω (⊂ Rn−1)→ R,

M = {(x1, . . . , xn) : xn = f(x1, . . . , xn−1)}.

9The space TaM does not depend on the particular Φ used to describe M . We show this in
the next section.
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Figure 10. Diagram for the discussion: Equivalence of the
Graph and Parametrisation Definitions.

It follows that M is also locally the image of the C1 function F :Ω (⊂ Rn−1)→ Rn
defined by

F (x1, . . . , xn−1) = (x1, . . . , xn−1, f(x1, . . . , xn−1)) .

Moreover,

∂F

∂xi
= ei +

∂f

∂xi
en

for i = 1, . . . , n− 1, and so these vectors are linearly independent.

In conclusion, we have established the following theorem.

Theorem 19.3.5. The level-set, graph and parametrisation definitions of a
manifold are equivalent.

Remark If M is parametrised locally by a function F : Ω (⊂ Rk) → Rn and also

given locally as the zero-level set of Φ:Rn → R` then it follows that

k + ` = n.

To see this, note that previous arguments show that M is locally the graph of a
function from Rk → Rn−k and also locally the graph of a function from Rn−` → R`.
This makes it very plausible that k = n− `. A strict proof requires a little topology
or measure theory.

19.4. Tangent and Normal vectors

If M is a manifold given as the zero-level set (locally) of Φ:Rn → R`, then we
defined the normal space NaM to be the space spanned by ∇Φ1(a), . . . ,∇Φ`(a). If

M is parametrised locally by F :Rk → Rn (where k + ` = n), then we defined the
tangent space TaM to be the space spanned by ∂F

∂u1
(u), . . . , ∂F

∂uk(u) , where F (u) = a.

We next give a definition of TaM which does not depend on the particular
representation of M . We then show that NaM is the orthogonal complement of
TaM , and so also NaM does not depend on the particular representation of M .
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Figure 11. Diagram for Definition 19.4.1.

Definition 19.4.1. Let M be a manifold in Rn and suppose a ∈M . Suppose
ψ : I → M is C1 where 0 ∈ I ⊂ R, I is an interval and ψ(0) = a. Any vector h of
the form

h = ψ′(0)

is said to be tangent to M at A. The set of all such vectors is denoted by TaM .

Theorem 19.4.2. The set TaM as defined above is indeed a vector space.
If M is given locally by the parametrisation F : Rk → Rn and F (u) = a then

TaM is spanned by
∂F

∂u1
(u), . . . ,

∂F

∂uk
(u).10

If M is given locally as the zero-level set of Φ : Rn → R` then TaM is the
orthogonal complement of the space spanned by

∇Φ1(a), . . . ,∇Φ`(a).

Proof. Step 1 : First suppose h = ψ′(0) as in the Definition. Then

Φi(ψ(t)) = 0

for i = 1, . . . , ` and for t near 0. By the chain rule
n∑
j=1

∂Φi

∂xj
(a)

dψj

dt
(0) for i = 1, . . . , `,

i.e.
∇Φi(a) ⊥ ψ′(0) for i = 1, . . . , `.

This shows that TaM (as in Definition 19.4.1) is orthogonal to the space
spanned by ∇Φ1(a), . . . ,∇Φ`(a), and so is a subset of a space of dimension n− `.
Step 2 : If M is parametrised by F :Rk → Rn with F (u) = a, then every vector

k∑
i=1

αi
∂F

∂ui
(u)

is a tangent vector as in Definition 19.4.1. To see this let

ψ(t) = F (u1 + tα1, . . . , un + tαn).

Then by the chain rule,

ψ′(0) =

k∑
i=1

αi
∂F

∂ui
(u).

10As in Definition 19.3.4, these vectors are assumed to be linearly independent.
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Hence TaM contains the space spanned by ∂F
∂u1

(u), . . . , ∂F∂uk
(u), and so contains

a space of dimension k(= n− `).
Step 3 : From the last line in Steps 1 and 2, it follows that TaM is a space of dimen-
sion n − `. It follows from Step 1 that TaM is in fact the orthogonal complement
of the space spanned by ∇Φ1(a), . . . ,∇Φ`(a), and from Step 2 that TaM is in fact
spanned by ∂F

∂u1
(u), . . . , ∂F∂uk

(u). �

19.5. Maximum, Minimum, and Critical Points

In this section suppose F :Ω (⊂ Rn)→ R, where Ω is open.

Definition 19.5.1. The point a ∈ Ω is a local minimum point for F if for some
r > 0

F (a) ≤ F (x)

for all x ∈ Br(a).
A similar definition applies for local maximum points.

Theorem 19.5.2. If F is C1 and a is a local minimum or maximum point for
F , then

∂F

∂x1
(a) = · · · = ∂F

∂xn
(a) = 0.

Equivalently, ∇F (a) = 0.

Proof. Fix 1 ≤ i ≤ n. Let

g(t) = F (a+ tei) = F (a1, . . . , ai−1, ai + t, ai+1, . . . , an).

Then g :R→ R and g has a local minimum (or maximum) at 0. Hence g′(0) = 0.
But

g′(0) =
∂F

∂xi
(a)

by the chain rule, and so the result follows. �

Definition 19.5.3. If ∇F (a) = 0 then a is a critical point for F .

Remark Every local maximum or minimum point is a critical point, but not
conversely. In particular, a may correspond to a “saddle point” of the graph of F .

For example, if F (x, y) = x2−y2, then (0, 0) is a critical point. See the diagram
before Definition 17.6.5.

19.6. Lagrange Multipliers

We are often interested in the problem of investigating the maximum and min-
imum points of a real-valued function F restricted to some manifold M in Rn.

Definition 19.6.1. Suppose M is a manifold in Rn. The function F :Rn → R
has a local minimum (maximum) at a ∈M when F is constrained to M if for some
r > 0,

F (a) ≤ (≥)F (x)

for all x ∈ Br(a).

If F has a local (constrained) minimum at a ∈ M then it is intuitively rea-
sonable that the rate of change of F in any direction h in TaM should be zero.
Since

DhF (a) = ∇F (a) · h,
this means ∇F (a) is orthogonal to any vector in TaM and hence belongs to NaM .
We make this precise in the following Theorem.
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Theorem 19.6.2 (Method of Lagrange Multipliers). Let M be a manifold in

Rn given locally as the zero-level set of Φ:Rn → R` 11.
Suppose

F :Rn → R
is C1 and F has a constrained minimum (maximum) at a ∈M . Then

∇F (a) =
∑̀
j=1

λj∇Φj(a)

for some λ1, . . . , λ` ∈ R called Lagrange Multipliers.
Equivalently, let H :Rn+` → R be defined by

H(x1, . . . , xn, σ1, . . . , σ`) = F (x1, . . . , xn)−σ1Φ1(x1, . . . , xn)−. . .−σ`Φ`(x1, . . . , xn).

Then H has a critical point at a1, . . . , an, λ1, . . . , λ` for some λ1, . . . , λ`

Proof. Suppose ψ :I →M where I is an open interval containing 0, ψ(0) = a
and ψ is C1.

Then F (ψ(t)) has a local minimum at t = 0 and so by the chain rule

0 =

n∑
i=1

∂F

∂xi
(a)

dψi

dt
(0),

i.e.
∇F (a) ⊥ ψ′(0).

Since ψ′(0) can be any vector in TaM , it follows ∇F (a) ∈ NaM . Hence

∇F (a) =
∑̀
j=1

λj∇Φj(a)

for some λ1, . . . , λ`. This proves the first claim.
For the second claim just note that

∂H

∂xi
=
∂F

∂xi
−
∑
j

σj
∂Φj

∂xi
,

∂H

∂σj
= −Φj .

Since Φj(a) = 0 it follows that H has a critical point at a1, . . . , an, λ1, . . . , λ` iff

∂F

∂xi
(a) =

∑̀
j=1

λj
∂Φj

∂xi
(a)

for i = 1, . . . , n. That is,

∇F (a) =
∑̀
j=1

λj∇Φj(a).

�

Example Find the maximum and minimum points of

F (x, y, z) = x+ y + 2z

on the ellipsoid
M = {(x, y, z) : x2 + y2 + 2z2 = 2}.

Solution: Let
Φ(x, y, z) = x2 + y2 + 2z2 − 2.

At a critical point there exists λ such that

∇F = λ∇Φ.

11Thus Φ is C1 and for each x ∈M the vectors ∇Φ1(x), . . . ,∇Φ`(x) are linearly independent.
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That is

1 = λ(2x)

1 = λ(2y)

2 = λ(4z).

Moreover
x2 + y2 + 2z2 = 2.

These four equations give

x =
1

2λ
, y =

1

2λ
, z =

1

2λ
,

1

λ
= ±
√

2.

Hence

(x, y, z) = ± 1√
2

(1, 1, 1).

Since F is continuous and M is compact, F must have a minimum and a
maximum point. Thus one of ±(1, 1, 1)/

√
2 must be the minimum point and the

other the maximum point. A calculation gives

F

(
1√
2

(1, 1, 1)

)
= 2

√
2

F

(
1

−
√

2
(1, 1, 1)

)
= −2

√
2.

Thus the minimum and maximum points are −(1, 1, 1)/
√

2 and +(1, 1, 1)/
√

2 re-
spectively.
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