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Introduction

• In the following we survey the main results in the theory of measure
and integration. The main references I have used are [EG], [S] and [R],
in that order.

• Proofs are usually only sketched, but I have attempted to provide a
reasonable amount of motivation of both proofs and results.

• We will often consider general measures µ on an arbitrary set X. But
you should first think of the most important case — Lebesgue measure
in IRn. To fix ideas, take n = 2.

• There are a considerable number of footnotes. I have done this so as
not to distract from the main ideas. I suggest you avoid the footnotes
on first reading and when reviewing the material
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1 Lebesgue and Other Measures

1.1 Motivation

1. Lebesgue measure1 is a way of assigning to arbitrary subsets of IRn a
number which corresponds to the “size” of the set. Think of an infinite
mass uniformly distributed over IRn such that the mass in any unit
n-cube is one; the Lebesgue measure L(A) of a set A is the “amount
of matter in A”. In particular, 0 ≤ L(A) ≤ ∞.

Lebesgue measure is the most important example of a measure; you
should usually think of this case in the general theory which follows.

2. Radon measures form a very important class of measures. Lebesgue
measure is a Radon measure. A Radon measure µ corresponds to a mass
distribution in IRn, where the amount of matter in any bounded set is
finite. The measure µ(A) of A ⊂ IRn is again the “amount of matter
in A”. For example, µ may correspond to α units of mass concentrated
at a point P ∈ IRn. Then µ(A) = α if P ∈ A and µ(A) = 0 otherwise.
If µ corresponds to β units of mass uniformly distributed along a curve
C of length one, then µ(A) = β × (length of C in A).

3. Borel regular measures are the most general measures one usually con-
siders in IRn. Examples include the Radon measures. Other examples
are k-dimensional Hausdorff measure Hk, where 0 ≤ k ≤ n. H0 is
“counting measure” and gives the cardinality of a set; H1 is “length”;
H2 is “area”, . . . , Hn is the same as Lebesgue measure in IRn.2 Hk is
always Borel regular, but is not a Radon measure if k < n.3

1.2 Lebesgue Measure

1.2.1 Introduction

If R ⊂ IRn is a “rectangle”, i.e.

R = [a1, b1]× · · · × [an, bn],

then we define
m(R) = (b1 − a1) · . . . · (bn − an).

For general A ⊂ IRn the definition of L(A), the Lebesgue measure of A, is
motivated by the idea of covering A as “efficiently” as possible by rectangles.

1What we call a measure is often called an outer measure.
2One can also define Hausdorff measure Hk for non-integer k. This is useful for

analysing “Cantor-type” sets.
3Why do we expect this?
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Definition If A ⊂ IRn then the Lebesgue measure of A is defined by

Ln(A) = L(A) = inf
A⊂
⋃∞
i=1

Ri

∑
m(Ri),

where the Ri are rectangles.4

One can show that if R is a rectangle, then

L(R) = m(R).

Note that “≤” is immediate; “≥” is basically a combinatorial argument.

1.2.2 Elementary Properties

The following properties of L are used to define the notion of a general
measure. See Section 1.3.1.

1. L(∅) = 0,

2. A ⊂ ⋃∞i=1 Ai ⇒ L(A) ≤ ∑∞i=1 L(Ai).

Proof: Exercise.

Exercises

1. Any singleton, and hence any countable set, has (Lebesgue) measure
zero.

2. Any line segment in IR2 has measure zero.

4(a) One can consider “closed” rectangles, or half-open rectangles, etc., without chang-
ing the value of L(A). Why?
(b) Finite covers are allowed; just take Ri = ∅ for i ≥ N , say.
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Countable Additivity It seems reasonable to expect from our intuitive
idea of Lebesgue measure that if A =

⋃∞
i=1 Ai and the Ai are mutually disjoint,

then L(A) =
∑∞
i=1 L(Ai). Unfortunately this is not true, but it is true for the

so-called (Lebesgue) measurable sets. Essentially any set we come across in
Analysis is (Lebesgue) measurable, as we will discuss later. See Sections 1.3.2
and 1.4.3.

1.2.3 Sets of Measure Zero

A set is null if it has measure zero.

We noted in Section 1.2.2 that any countable set is null. The Cantor set
C is an example of an uncountable null set.

One constructs C as follows:

C0 = [0, 1]

C1 = [0, 1/3] ∪ [2/3, 1]

C2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1]
...

C =
∞⋂
i=0

Ci.

Thus Ci consists of 2i closed intervals of length 3−i; and Ci+1 is obtained
from Ci by removing the middle (open) third of each interval in Ci.

By the definition of L,

L(C) ≤ 2i × 3−i

for all i. Hence
L(C) = 0.

The Cantor set C is uncountable5 since there is a one-one correspondence6

between elements of C and those reals in [0, 1] which have a ternary expansion
containing only the numerals 0 and 2. By replacing 2 by 1 and considering
binary expansions, we obtain a map from the set of such reals onto [0, 1].7

5C does not consist only of endpoints of the intervals Ci.
6What is it?
7The map is not one-one, because of the non-uniqueness of the binary expansion of a

real number.
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1.3 General Measures

It is now convenient to generalise our previous considerations. In the follow-
ing think of the case X = IR2.

1.3.1 Introduction

The following definition is motivated by the two properties for Lebesgue
measure noted in Section 1.2.2.

Definition A measure µ on a set X is a function which assigns to every
A ⊂ X a number µ(A) ∈ [0,∞] such that8

µ(∅) = 0,

A ⊂ ⋃∞i=1 Ai ⇒ µ(A) ≤ ∑∞i=1 µ(Ai).

Thus Lebesgue measure is a measure on IRn from Section 1.2.2.

Definition If A ⊂ X then the measure µ restricted to A is the measure
µbA on X defined by

µbA (B) = µ(A ∩B).

It is straightforward to check that µbA is a measure on X (not on A). If
we think of µ as corresponding to a mass distribution, then µbA is the mass
distribution obtained by removing any matter outside A.9

1.3.2 Measurable Sets

If µ is a measure then we define the class of µ-measurable sets in such a way
that µ is “countably additive” on this class. The following definition is due
to Caratheodory. It is not immediately clear where it comes from; it’s virtue
is that it “works”.10

Definition A set A is (µ-)measurable if for any set B,

µ(B) = µ(B ∩ A) + µ(B ∩ Ac).11 (1)

8(a) It follows that if A ⊂ A1 ∪ · · · ∪AN then µ(A) ≤ µ(A1) + · · ·+ µ(AN ). Just take
Ai = ∅ if i > N in the Definition.
(b) In particular, if A ⊂ B then µ(A) ≤ µ(B).

9One could also define a measure µ|A on A, rather than X, by µ|A(B) = µ(B) for all
B ⊂ A.

10The idea is that A fails to be measurable if it is so badly intertwined with its comple-
ment that (1) fails to be true for some B.

11(a) Bc = X \B is the complement of B.
(b) Thus A is measurable iff it splits every set additively.
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Note that “≤” is true from the first Definition in Section 1.3.1.

It is immediate that

1. ∅ and X are measurable, and

2. any set of measure zero is measurable.

For a general measure, only X and ∅ need be measurable.12 We will see later
that any set we are likely to encounter in Analysis is Lebesgue measurable,
c.f. Section 1.4.3.

The class of µ-measurable sets forms a σ-algebra, i.e. is closed under com-
plements, countable intersections and countable unions. Moreover, µ has
precisely the properties on this class that we might expect from our intuition
about a “measure”.

Proposition Let A and A1, A2, . . . be measurable. Then

1. Ac,
⋃∞
i=1 Ai and

⋂∞
i=1 Ai are measurable;

2. if Ai are disjoint then

µ

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai);

3. if A1 ⊂ A2 ⊂ · · · then

µ(Ai) ↑ µ

( ∞⋃
i=1

Ai

)
;

4. if A1 ⊃ A2 ⊃ · · · and µ(A1) <∞13 then

µ(Ai) ↓ µ

( ∞⋂
i=1

Ai

)
.

The proof is elementary, but not trivial.

Exercise If Ir is the set of irrationals then Ir is Lebesgue measurable and
L(Ir) =∞.

(c) If A is not measurable, then (1) will in fact fail with some “nice” set B; e.g. some
rectangle B in the case of Lebesgue measure.

12Consider the measure µ(∅) = 0 and µ(A) = 1 otherwise.
13This condition is necessary; let Ai = [i,∞).
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Almost Everwhere If µ is a measure on X we say that a property P
holds almost everywhere if it holds except on a set of (µ-)measure zero. We
write “P holds µ a.e.”, or “P holds a.e.” if µ is understood from context.14

Sets of measure zero (null sets) can usually be ignored in measure theory.

1.4 Measures on IRn

To fix ideas, think of L on IR2.

1.4.1 Borel Regular Measures

Definition A measure µ on IRn is Borel regular if

1. every Borel15 set is µ-measurable,

2. for every set A there is a Borel set B ⊃ A such that µ(B) = µ(A).16

Proposition Lebesgue measure is a Borel regular measure.

Proof: One uses Caratheodory’s criterion, which says it is sufficient to
prove L(A ∪ B) = L(A) + L(B) whenever the distance between A and B is
> 0. This equality is fairly straightforward to prove.

The following is a characterisation of the Lebesgue measurable sets.

Proposition A set A is Lebesgue measurable ⇐⇒ A = B \ N for some
Borel set B and null set N ⇐⇒ A = B ∪N for some Borel set B and null
set N .

Proof: Exercise (use the previous Proposition).

1.4.2 Radon Measures

Definition A Radon measure is a Borel regular measure such that every
compact set has finite measure.

14In probability theory, one says P holds almost surely and writes “P holds a.s.”.
15Recall that the class of Borel sets (c.f. Section 1.3.2) is the smallest σ-algebra con-

taining the open sets. In particular, closed sets are Borel.
16B is called a Borel cover of A. Thus the set A can be “approximated from above” by

a Borel set. If the second condition is also true with “⊃” replaced by “⊂”, then it follows
A is measurable. Exercise.
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See Section 1.1 for examples and non-examples. In particular, Lebesgue
measure is a Radon measure. If a ∈ IRn then the Radon measure correspond-
ing to a unit mass at a is called the Dirac measure concentrated at a and is
denoted by δa. Thus

δa(E) = 1 if a ∈ E, δa(E) = 0 if a 6∈ E.

Remark If µ is a Borel regular measure on IRn, A is µ-measurable and
µ(A) <∞, then µbA is a Radon measure. This is straightforward to check.

An example is H1 measure on IR2 restricted to a curve of finite length.

1.4.3 Lebesgue Measurable v. Non-Measurable Sets

The existence of Lebesgue non-measurable sets is proved using the uncount-
able axiom of choice. In fact it was proved by Solovay that one actually
requires the uncountable axiom of choice in the construction. More precisely,
it is consistent with the usual axioms of set theory, including the countable
axiom of choice, that all subsets of IRn are Lebesgue measurable.

Moreover, we have seen that the Borel sets are Lebesgue measurable,
and any sets constructed from the Borel sets by any finite or countable set
theoretic operation are also Lebesgue measurable. If a set is constructed from
measurable sets by some sort of limiting operation which is not countable,
one can often use the density of the rationals to give another “countable”
construction of the set, and thus deduce its measurability.

The moral of all this is that you need not worry about non-measurable
sets, at least when working with Lebesgue measure, or more generally with
Borel regular measures.17

1.5 Approximation Results

Theorem Suppose µ is a Radon measure. Then

1. for each A ⊂ IRn

µ(A) = inf{µ(U) : A ⊂ U, U open};

2. for each µ-measurable A ⊂ IRn

µ(A) = sup{µ(K) : K ⊂ A, K compact}.
17In probability theory, and particularly in the theory of stochastic processes, it is

natural to identify the measurable sets with the class of events which are observable in
some sense. In this case, non-measurable sets can be quite important.
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Thus A can be approximated from the outside by open sets and (if it is
measurable) from the inside by compact sets.18

Proof: The proof proceeds in steps.

1. Let

F = {A : A is measurable, and for each ε > 0 there exists

a closed set C ⊂ A such that µ(A \ C) < ε}
G = {A ∈ F : Ac ∈ F}.

Then one checks that

(a) F contains all closed sets

(b) F is closed under countable intersections

(c) F is closed under countable unions

(d) F contains all open sets

(e) G is closed under complements and countable unions

(f) G contains the open sets and hence all Borel sets.

In particular, each Borel set B contains a closed set C such that
µ(B \ C) < ε

2. For each Borel B there is an open U ⊃ B such that µ(U \B) < ε (this
follows by applying the previous result to BN(0) \B for large N)19.

3. The first claim of the Theorem is next established for Borel sets, and
hence for arbitrary sets using Borel regularity.

4. The final result follows from the previous step, essentially by taking
complements, but there are a few technical points.

18(a) One cannot approximate from the inside by open sets; let A be the set of irra-
tionals. The only open subset is ∅. Similarly, one cannot approximate from the outside
by compact sets, even if A is bounded; let A be the set of rationals in [0, 1].
(b) Measurability is needed in 2 of the Theorem; in fact equality holds iff A is measurable.
(c) It does not follow that for each ε > 0 there is an open set U ⊃ A such that µ(U \A) < ε.
But this is true if A is measurable.
(d) It also follows that if A is measurable then there is a closed C ⊂ A such that
µ(A \ C) < ε. This is not true for compact C; take A = IRn.

19BN (0) := {x ∈ IRn : |x| < N}.
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2 Measurable Functions and Integration

In this Section, µ is a measure on the set X.

Think of the case X = IRn, µ = L (and Y = IR).

2.1 Measurable Functions

2.1.1 Introduction

Essentially any function f : IRn → IR which arises in Analysis will be mea-
surable with respect to a given Borel regular measure. Moreover, the class
of measurable functions is closed under finite and countable operations.

Definition Let µ be a measure on a set X, Y be a topological space, and
f : X → Y . Then f is µ-measurable if for any open set U ⊂ Y , f−1[U ] is
µ-measurable.

It follows (Exercise) that f−1[B] is µ-measurable for any closed set B,
and more generally for any Borel set B.

In case Y = IR, f is µ-measurable iff (Exercise)

f−1(−∞, a] := {x : f(x) ≤ a} is µ-measurable for all real numbers a . (2)

Similarly, one can instead consider intervals of the form (−∞, a), or (a, b),
or (a, b], etc.

Remark It is often convenient to consider functions f : X → [−∞, +∞].
Such a function is said to be measurable if (2) holds and if both of the sets
{x : f(x) = −∞} and {x : f(x) = +∞} are measurable.

2.1.2 Elementary Properties

Proposition Suppose f, g, f1, f2, . . . : X → [−∞, +∞] are real-valued µ-
measurable functions, and α is a real number. Then the following are µ-
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measurable:20 21

αf, f + g, fg, f/g, |f |, min{f, g}, max{f, g},
infi fi, supi fi, lim infi→∞ fi, lim supi→∞ fi, limi→∞ fi.

The proof is routine, using (2).

2.1.3 Littlewood’s Three Principles

For Lebesgue measure (or more generally, Borel regular measures) one has22

• Every (measurable) set is nearly open;

• Every (measurable) function is nearly continuous;

• Every pointwise convergent sequence of (measurable) functions is nearly
uniformly convergent.

We have seen a version of the first principle in the Theorem in Section 1.5.
For the second and third principle see Lusin’s Theorem in Section 2.1.4 and
Egoroff’s Theorem in Section 2.1.5 respectively.

It is frequently the case that if a result is true for open sets, continu-
ous functions, or uniform convergence respectively, then some version of the
corresponding principle enables one to establish the result in general.

2.1.4 Lusin’s Theorem

Theorem Suppose µ is a Radon measure on IRn and f : IRn → IR is µ-
measurable. Then for each ε > 0 there is a continuous function g :IRn → IR
such that f = g except on a set of µ-measure less than ε.

Proof: First assume µ(IRn) <∞.

20Of course, the relevant expressions must be defined. Thus we need to either define
∞−∞ and 0/0, or to consider only those f and g where this does not happen. We also
assume that the final limit exists.

21If (ai)∞i=1 is a sequence of real numbers then

lim inf
i→∞

ai := lim
k→∞

inf
i≥k

ai.

Equivalently, a = lim infi→∞ ai iff a is the least extended real number, possibly −∞, for
which there is a subsequence ai′ → a. Similarly for lim sup. Also(

lim inf
i→∞

fi

)
(x) := lim inf

i→∞
fi(x).

22c.f. Littlewood, Lectures on the Theory of Functions, Oxford, 1944, p. 26.
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1. For each integer i find a partition of IRn into measurable sets such that
f varies by at most 1/i on each member of the partition.

2. Approximate members of the partition by disjoint compact subsets to
within a total µ-measure error ε/2i, using the Theorem in Section 1.5.

3. On these compact sets approximate f by a function fi which is constant
on each compact set.

4. The fi converge uniformly on their common domain D to a function g∗

which is continuous on D and agrees with f on D.

5. By Tietze’s Extension Theorem, extend g∗ to a continuous function g
defined on all of IRn.

The case µ(IRn) =∞ follows by considering µbBR and letting R→∞.

2.1.5 Egoroff’s Theorem

Theorem Suppose µ is a measure on IRn and fi :IR
n → IR are µ-measurable

functions. Suppose A ⊂ IRn is µ-measurable, µ(A) < ∞ and fi → f a.e.
on A.23 Then for each ε > 0 there is a µ-measurable set B ⊂ A such that
µ(A \B) < ε and fi → f uniformly on B.

Proof: This is a general result holding for arbitrary measures; and the proof
is fairly straightforward

1. First show that for each δ > 0 and ε > 0 there exists an integer N
and a set Aδ,ε ⊂ A with µ(A \ Aδ,ε) < ε such that |f(x)− fi(x)| < δ if
x ∈ Aδ,ε and i ≥ N .

2. Let B =
⋃∞
i=1 A1/i, ε/2i .

The condition µ(A) <∞ is necessary. Let fi(x) = x/i for x ∈ IR, A = IR
and µ = L.

2.2 Integration

2.2.1 Introduction

The idea is that if f :IRn → [−∞,∞] then
∫

f dLn is the signed Ln+1 measure
of the volume under the graph, taking the region below the IRn plane with
a negative sign.

23That is, fi(x)→ f(x) for x ∈ A \N , where µ(N) = 0.
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However, this approach requires Ln+1 measure in order to define inte-
gration with respect to Ln (and the “product measure” µ × L1 to define
integration with respect to µ).

Instead, we first define the integral of positive simple functions, then
of arbitrary positive (measurable) functions, then of arbitrary (measurable)
functions.

Definition Suppose µ is a measure on the set X and f :X → [−∞,∞] is
measurable.

1. If f =
∑N
i=1 αiχEi

24 where αi ≥ 0 and the Ei are disjoint measurable
sets25, then f is said to be a positive simple function and∫

f dµ = α1µ(E1) + · · ·+ αNµ(EN).

2. If f ≥ 0 then∫
f dµ = sup

{∫
u dµ : u ≤ f, u is positive simple

}
.

3. For arbitrary measurable f ,∫
f dµ =

∫
f+ dµ−

∫
f− dµ, 26

provided it is not the case that both terms on the right are +∞.

The function f is integrable if
∫

f dµ is well-defined.27 The function f is
summable if

∫
f dµ exists and is finite.28

24χE is the characteristic function of E and equals one on E and zero otherwise.
25We could drop the positivity and disjointedness conditions, but these are the only

cases we need for the rest of the definition.
26Where the positive and negative parts of f are defined by

f+ := max{f, 0}, f− := −min{f, 0}.

.
27Thus the only way a measurable function can fail to be integrable is if both the positive

and negative parts have integral equal to ∞.
28Equivalently,

∫
|f | dµ <∞. Many texts use “integrable” for what we call “summable”.
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If E is µ-measurable, then we define the integral of f over E by∫
E

f dµ =
∫

fχE dµ.

The function f is locally summable if
∫
E |f | dµ <∞ for all compact E.29

30

Remarks

1. One can show that the definition is consistent, in that a positive simple
function has the same integral by any of the three definitions and a
positive function has the same value by either of the last two definitions.

2. If f ≥ 0 takes the value∞ on a set of positive measure, then
∫

f =∞.

3. If f = g a.e. then f is integrable iff g is integrable, and in this case∫
f =

∫
g. In particular, if f = 0 except on a set of measure 0, then∫

f = 0.

Riemann Integration It is not difficult to show that if f : [a, b] → IR
is Riemann integrable, then the Lebesgue integral

∫
[a,b] f exists and has the

same value.

It is interesting to note that the Riemann integral of f is defined by
partitioning the domain of f into intervals and passing to a limit. On the
other hand, the Lebesgue integral is essentially defined by dividing the range
of f into intervals, considering the corresponding pre-image sets in IRn, and
passing to an appropriate limit.

2.2.2 Elementary Properties

One has ∫
αf = α

∫
f (α ∈ IR)∫

f + g =
∫

f +
∫

g

f ≤ g ⇒
∫

f ≤
∫

g∫
E

f +
∫
F

f =
∫
E∪F

f (E and F disjoint).

More precisely, it is assumed that f and g are integrable, and in the second
case that the sum on the right is defined. Also E and F are measurable.

29Thus the constant function one is locally summable but not summable with respect
to Lebesgue measure. The function 1/x defined on IR is not even locally summable.

30See also Section 4.2.
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In future, all sets and functions are assumed measurable with respect to
the relevant measure. All integrals are assumed to be well-defined.

2.3 Limit Theorems

2.3.1 Discussion

Much of the importance of Lebesgue integration is a consequence of the fact
that under “reasonable” conditions,

fi → f (a.e.) ⇒
∫

fi →
∫

f. (3)

Note that if such a result is true for “everywhere” convergence, then it is also
true for “a.e.” convergence.31

The following three examples show the type of behaviour we need to
avoid and show the necessity of the various hypotheses in the subsequent
three theorems. Rougly speaking, if we can eliminate the following problems
then (3) will hold.

Example 1 Let

fn(x) =

{
n 0 < x ≤ 1/n
0 otherwise

f(x) = 0 all x

Then fn → f everywhere, but
∫

fn dL = 1 and
∫

f dL = 0.

Example 2 Let

fn(x) =

{
1 n ≤ x ≤ n + 1
0 otherwise

f(x) = 0 all x

Then fn → f everywhere, but
∫

fn dL = 1 and
∫

f dL = 0.

Example 3 Let

fn(x) = −1/n all x
f(x) = 0 all x

Then fn ↑ f everywhere, but
∫

fn dL = −∞ and
∫

f dL = 0.

31By redefining the fi on a set of measure zero, one obtains covergence everywhere, but
does not change the value of any of the integrals involved.
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2.3.2 Fatou’s Lemma

Theorem Suppose fi :X → [−∞,∞] are µ-measurable for i = 1, 2, . . . and
fi ≥ g for some µ-summable function g. Then∫

lim inf
i→∞

fi dµ ≤ lim inf
i→∞

∫
fi dµ.

Remark The most commonly used form is

0 ≤ fi → f ⇒
∫

f dµ ≤ lim inf
i→∞

∫
fi dµ.

Example 3 in Section 2.3.1 shows the need for the bound from below in the
hypotheses; Example 1 shows that one can only expect “≤” in the conclusion.

Proof: By subtracting g from the fi we assume fi ≥ 0.

Let
f = lim inf

i→∞
fi

(think of the case where limi→∞ fi exists).

Fix ε > 0. Choose

u =
m∑
r=1

arχAr ≥ 0, Ar disjoint,
∫

u ≥
∫

f − ε.

Fix 0 < t < 1 (think of t as near 1). Let

Br,k = {x ∈ Ar : fj(x) ≥ tar ∀j ≥ k} .

Then
Br,k ↑ Ar and so µ(Br,k) ↑ µ(Ar), as k →∞.
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Hence for each k, ∫
fk ≥

∑
r

∫
Ar

fk

≥
∑
r

∫
Br,k

fk

≥
∑
r

∫
Br,k

tar

= t
∑
r

arµ(Br,k).

Letting k →∞,

lim inf
k→∞

∫
fk ≥ t

∑
r

arµ(Ar) = t
∫

u.

Since t can be taken arbitrarily close to 1,

lim inf
k→∞

∫
fk ≥

∫
u.

Since ε can be taken arbitrarily close to 0,

lim inf
k→∞

∫
fk ≥

∫
f.

2.3.3 Monotone Convergence Theorem

Theorem Suppose fi :X → [−∞,∞] are µ-measurable for i = 1, 2, . . . and
fi ↑ f a.e. Then ∫

fi dµ ↑
∫

f dµ.

Proof: Clearly
∫

fi ↑, lim
∫

fi exists (possibly +∞), and lim
∫

fi ≤
∫

f .
The reverse inequality follows from Fatou’s lemma.

Simple Application

∫
[0,1]

xαdx =

{
1

α+1
α > −1

∞ α ≤ −1

Proof: Note that xα is unbounded and so not Riemann Integrable. But if

fn(x) =

{
xα 1

n
≤ x ≤ 1

0 0 ≤ x < 1
n

,
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then ∫
[0,1]

fn =
∫

[1/n,1]
fn =


1

α+1

(
1−

(
1
n

)α+1
)

α 6= 1

− log
(

1
n

)
α = −1

(using standard rules for Riemann integration).

Since fn ↑ xα, the result follows from the monotone convergence theorem.

Rule of Thumb Integrals like the preceding cause no problems. Just use
your commonsense in evaluating them.

2.3.4 Dominated Convergence Theorem

Theorem Suppose fi :X → [−∞,∞] are µ-measurable for i = 1, 2, . . . and
|fi| ≤ g for some µ-summable function g. Suppose fi → f a.e. Then∫

fi dµ→
∫

f dµ.

Proof: From Fatou’s lemma,∫
f ≤ lim inf

∫
fi

and ∫
−f ≤ lim inf

∫
−fi.

The last inequality implies ∫
f ≥ lim sup

∫
fi.

This gives the result.
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3 Some Important Theorems

We consider some of the major results of measure theory. They will be used
both here and in the other lecture series.

3.1 Product Measures

Think of the case µ = ν = L1, X = Y = IR. In this case one can show
µ× ν = L2 on IR2.

The diagram in Section 1.2.1 is relevant to the following definition. Note
that unlike in Section 1.2.1, even if X = Y = IR, the sets Ai and Bi need
not be intervals.

Definition Let µ be a measure on X and ν be a measure on Y . Then the
product measure µ× ν on X × Y is defined by

(µ×ν)(S) = inf

{ ∞∑
i=1

µ(Ai)ν(Bi) : S ⊂
∞⋃
i=1

(Ai ×Bi), Ai and Bi measurable

}
.

The following Theorem is not surprising. See [EG] for the (fairly straight-
forward, but long) proof.

Fubini’s Theorem Let µ be a σ-finite measure32 on X and ν be a σ-finite
measure on Y .

1. If A ⊂ X and B ⊂ Y are measurable, then A × B is measurable and
(µ× ν)(A×B) = µ(A)× ν(B).

2. If µ and ν are Radon measures on IRm and IRn respectively, then µ×ν
is a Radon measure on IRm+n ∼= IRm × IRn.

3. If S ⊂ X × Y is µ× ν measurable then
Sx := {y : (x, y) ∈ S} is measurable for a.e. x,
Sy := {x : (x, y) ∈ S} is measurable for a.e. y,
(µ× ν)(S) =

∫
ν(Sx)dµ(x) =

∫
µ(Sy)dν(y).

32 A measure µ on X is σ-finite if there exist sets (Ei)∞i=1 such that µ(Ei) < ∞ and
X =

⋃∞
i=1Ei. In particular, any Radon measure on IRn is σ-finite.



f = +1/(area of square) on

f = -1/(area of square) on

f = 0 otherwise

∫f(x,y) dx = 0, all y
∫f(x,y) dy = 0, all x
∫∫ f(x,y) does not exist
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4. If f is µ× ν-integrable33 then∫
f(x, y) dν(y) exists for a.e. x and is (measurable and) integrable∫
f(x, y) dµ(x) exists for a.e. y and is (measurable and) integrable,∫
X×Y f(x, y) =

∫
(
∫

f(x, y) dy) dx =
∫

(
∫

f(x, y) dx) dy.

Remark The main point to Fubini’s Theorem is that one can evaluate a
“double” integral by evaluating two “single” integrals.

The two main hypotheses to verify are (i) the measurability of f and (ii)
the existence of

∫
f d(µ × ν). The first hypothesis is essentially always true

in practice, as discusssed in Section 2.1.1.

The second hypothesis is true if f ≥ 0 a.e. Alternatively, since Fubini’s
Theorem always applies to |f | (being positive, and assuming as usual that
f is measurable), one can often use Fubini to show that

∫ |f | d(µ× ν) <∞.
But then

∫
f d(µ × ν) exists (and is finite), and hence Fubini can also be

applied to f .

It is possible to find examples where both single integrals in 4 of Fubini’s
Theorem exist, but the double integral does not:

3.2 Change of Variable Formula

Definition Suppose φ :IRn → IRn is C1. The Jacobian of φ at x is defined
by

Jφ(x) = absolute value of det[Dφ(x)]

= absolute value of det


∂φ1

∂x1
· · · ∂φ1

∂xn
...

. . .
...

∂φn
∂x1

· · · ∂φn
∂xn



Geometrically, Jφ(x) is the “volume expansion factor” for φ near x.
This makes the following result geometrically plausible.

33Recall that this means the integral exists, possibly equal to ±∞.
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Theorem Suppose φ :Ω→ IRn is one-one and C1 for some open Ω ⊂ IRn.
Suppose f :φ[Ω]→ IR and f ∈ ÃL1(φ[Ω]). Then∫

φ[Ω]
f(y) dy =

∫
Ω

f(φ(x))Jφ(x) dx.

In particular, the integral on the right exists and is finite.

Proof: See [EG; Section 3.3.3]; the result is a consequence of the “Area
Formula”.34 The proof is essentially done by first reducing to the case that f
is a characteristic function and then splitting the domain into sets on which
φ is “almost a polynomial of degree one”. If φ is exactly a polynomial of
degree one, the result is essentially linear algebra.

The result is easy to remember, just formally replace y by φ(x), so in
particular dy = J(φ(x)) dx.

3.3 Lebesgue Decomposition Theorem

Suppose µ and ν are Radon measures on IRn.

Definition We say µ is absolutely continuous with respect to ν, and write

µ¿ ν,

if ν(E) = 0 implies µ(E) = 0 for all E ⊂ IRn.

We say µ and ν are mutually singular and write

µ ⊥ ν,

if there exists a Borel set B such that

µ(B) = ν(Bc) = 0.

Note that two measures are mutually singular if they are “concentrated”
on disjoint sets.

We will be most interested in these notions when ν = L.
34The result in [EG] is more general. The current result follows by replacing f and u in

[EG] by φ and f ◦ φ respectively.
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Examples The “point mass” and “curve mass” examples in IR2 from Sec-
tion 1.1 are mutually singular to L2 and to each other.

If f : IRn → IR is locally summable (see Section 2.2.1) and f ≥ 0 then
fbL is the Radon measure defined by

(fbL)(E) =
∫
E

f dL. (4)

Think of fbL as “Lebesgue measure weighted by the function f”. Note that
fbL ¿ L, why?

The next theorem shows that any Radon measure on IRn can be decom-
posed into an absolutely continuous part and a singular part with respect to
Lebesgue measure. The decomposition is essentially unique, the absolutely
continuous part can be written as in (4), and the function f can be found
“explicitly”.

Theorem Let µ be a Radon measure on IRn. Then there exist unique
Radon measures µac and µs such that

µ = µac + µs, µac ¿ L, µs ⊥ L.

Moreover,

µac =
dµ

dLbL,

where
dµ

dL(x) = lim
r→0

µ(Br(x))

ωnrn
35 for L a.e. x (5)

is called the Radon-Nikodym derivative of µ with respect to L, and is locally
summable with respect to L.

Proof: The proof is via the Vitali Covering Theorem, which we do not have
time to present. But see the lectures by Marty Ross.

Generalisations There is an analogous result if L is replaced by an arbi-
trary Radon measure ν. The proof then requires the so-called Besicovitch
Covering Theorem.

For more general measures on an arbitrary set, provided the measures are
σ-finite,36 an analogous theorem still holds. The major difference is that the
existence of the Radon Nikodym derivative is obtained by a more abstract
argument, and the concrete representation in (5) is no longer valid.

35By definition, ωn = L(B1(0)), and so ωnrn = L(Br(x)) from the scaling and transla-
tion properties of Lebesgue measure.

36See footnote 32.
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3.4 Lebesgue Points

Theorem If f :IRn → IR is locally summable then

lim
r→0
−
∫
Br(x)

f = f(x) (6)

for a.e. x.

We say x is a Lebesgue point of f if (6) holds.

If f = χA is the characteristic function of the (measurable) set A, the
theorem says that a.e. x ∈ A is a point of density one and a.e. x 6∈ A is a
point of density zero. Question: What is the density of A at x where A is a
square domain in IR2, for various points x? (Answer: 0, 1/4, 1/2 or 1.)

Proof: The theorem is essentially just the Theorem of Section 3.3 applied
to the measure fbL.

Important Example If A ⊂ IRn is measurable then

lim
r→0

L(Br(x) ∩ A)

L(Br(x))
=

{
1 a.e. x ∈ A
0 a.e. x 6∈ A

Definition Assume f : IRn → IR is locally summable. Then the precise
representative of f is defined by

f∗(x) =

{
limr→0−

∫
Br(x) f if the limit exists

0 otherwise

Thus f∗ = f a.e. If f is continuous at x, clearly f ∗(x) = f(x).

3.5 Riesz Representation Theorem

If µ is a Radon measure on IRn then µ induces a positive37 linear map L on
Cc(IR

n) 38 defined by

L(φ) =
∫

φ dµ.

Moreover, the converse is true:

Theorem Assume L : Cc(IR
n) → IR is linear and positive. Then there

exists a Radon measure µ on IRn such that

L(φ) =
∫

φ dµ

for all φ ∈ Cc(IR
n).

37Positive means that φ ≥ 0 implies L(φ) ≥ 0.
38Cc(IRn) is the set of compactly supported continuous real valued functions defined

on IRn.
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Proof: The idea of the proof is to first define µ(U) for open U by

µ(U) = sup{L(φ) : φ ∈ Cc(IR
n), spt(φ) ⊂ U, 0 ≤ φ ≤ 1}.

Then define

µ(E) = inf{µ(U) : E ⊂ U, U open}.

A similar result holds if we drop the positivity requirement:

Theorem Assume L :Cc(IR
n)→ IR is linear and

sup{L(φ) : φ ∈ Cc(IR
n), spt(φ) ⊂ K, |φ| ≤ 1} <∞.

for each compact K ⊂ IRn. Then there exist mutually singular Radon mea-
sures µ+ and µ− such that

L(φ) =
∫

φ dµ+ −
∫

φ dµ−.

for all φ ∈ Cc(IR
n).



ν

ν

ν

Ω

4 SOME FUNCTION SPACES 24

4 Some Function Spaces

We work with Lebesgue measure in IRn, although many of the results gener-
alise. We assume that U ⊂ IRn is open.

4.1 Background Material

4.1.1 Integration by Parts

Suppose Ω is a bounded open subset of IRn with C1 boundary,39 ν is the
outward pointing unit normal and u :Ω→ IR is C1(Ω).40 Then

1.
∫

Ω Diu =
∫
∂Ω νiu,41

2.
∫

Ω u Div = − ∫Ω v Diu +
∫
∂Ω uνiv.

The first result is the Divergence Theorem or Gauss Green Theorem. The
second follows by replacing u by uv. Note that if u has compact support in
Ω, then the boundary terms disappear.

39More generally, a finite number of “corners” may be allowed; in fact the boundary
may be locally the graph of a Lipschitz function.

40C1(Ω) is defined to be the set of uniformly continuous functions in C(Ω). Since Ω is
bounded, this is equivalent to the set of continuous functions on the closure of Ω.

41Integration over the boundary has not been defined yet. This can be done by inte-
grating with respect to Hausdorff measure Hn−1 restricted to the boundary. Equivalently,
if the boundary is represented locally as the graph of a function φ : U (⊂ IRn−1) → IRn

and f :φ[U ] (⊂ ∂Ω)→ IR, then∫
φ[U ]

f =
∫
U

f(φ(x)) Jφ(x),

The Jacobian Jφ(x) is here the square root of the sum of the squares of the (n−1)×(n−1)
minors of the n×(n−1) matrix Dφ(x). Compare this with the Change of Variable Formula
in Section 3.2. Note that in the case of domains in IR2, Jφ(x) = |∇φ(x)|.
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4.1.2 Algebraic Inequalities

Cauchy’s Inequality If a, b ∈ IR then

ab ≤ a2

2
+

b2

2

More generally if ε > 0 then

ab ≤ εa2 +
b2

4ε
.

The point in the second inequality is that “one can dominate ab by a
little bit of a2 at the cost of a lot of b2”.

Young’s Inequality If a, b > 0, p > 1 and 1/p + 1/p′ = 1 then

ab ≤ ap

p
+

bp
′

p′
.

More generally, if also ε > 0 then

ab ≤ εap + c(ε)bp
′
.

In fact, c(ε) = (pε)−p
′/p/p′. Note that c(ε) ↑ ∞ as ε ↓ 0.

4.1.3 Integral Inequalities

Suppose E ⊂ IRn.42

Then (Hölder’s inequality)

∫
E
|fg| ≤

(∫
E
|f |p

)1/p (∫
E
|g|q

)1/q

for p, q > 1, 1/p + 1/q = 1.

In particular (Schwartz’s inequality)

∫
E
|fg| ≤

(∫
E
|f |2

)1/2 (∫
E
|g|2

)1/2

.

Also (Minkowski’s inequality)

(∫
E
|f + g|p

)1/p

≤
(∫

E
|f |p

)1/p

+
(∫

E
|g|p

)1/p

.

42As usual, all sets and functions are assumed measurable.
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4.2 Lp Spaces

4.2.1 Definitions

Recall U ⊂ IRn is open (although this is not necessary for much of what
follows).

We define43 44

‖f‖Lp(U) =
(∫

U
|f |pdµ

)1/p

1 ≤ p <∞,

‖f‖L∞(U) = ess supU |f |.
If we “identify” f1 and f2 whenever f1 = f2 a.e. (more precisely, take equiv-
alence classes) and for 1 ≤ p ≤ ∞ define

Lp = Lp(U) =
{
f :U → IR : ‖f‖Lp(U) <∞

}
,

then Lp(U) is a Banach space with norm ‖ · ‖Lp(U).
45 Moreover, L2(U) is a

Hilbert space46 with inner product (f, g)L2(U) =
∫
U fg.

We say
fi → f in Lp(U)

if ‖fi − f‖Lp(U) → 0 as i→∞.

Example Suppose E ⊂ IRn is bounded. Then 1/|x|α ∈ L1(E) iff α < n.
Hence 1/|x|α ∈ Lp(E) iff α < n/p.

Comparing Different Lp Spaces If |U | < ∞ 47 then (Exercise, using
Hölder’s inequality)(

−
∫
U
|u|p1

)1/p1

≤
(
−
∫
U
|u|p2

)1/p2

1 ≤ p1 ≤ p2 <∞,

where the integral average of f is defined by

−
∫

f =
1

|U |

∫
f.

It follows that if |U | <∞ and 1 ≤ p1 ≤ p2 ≤ ∞ then

Lp2(U) ⊂ Lp1(U).

43By definition, ess supU |f | is the least α such that |f | ≤ α a.e. in U . It is easy to show
that a least such α exists, possible +∞.

44Note that
∫
U
f :=

∫
fχU depends only on the values of f(x) for x ∈ U . Instead of

extending f to IRn and integrating χUf , we could equivalently integrate the “original” f
with respect to the measure µ on U defined by restricting L to subsets of U . Both ways
are easily checked to be equivalent.

45A Banach space is a normed space which is complete. The fact Lp(U) is a normed
space follows from Minkowski’s inequality. Completeness means that if (fi)∞i=1 is Cauchy
in the Lp norm then ‖fi − f‖Lp → 0 for some f ∈ Lp(U).

46Recall that a Hilbert space is just a Banach space whose norm is given by an inner
product.

47We often write |U | for L(U).
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Local Lp Spaces We say f ∈ Lp
loc(U) if f ∈ Lp(V ) for every open V ⊂⊂

U .48 By “loc” one means “locally”. Note that there is no control on f(x) as
x→ ∂U . Trivially, Lp(U) ⊂ Lp

loc(U).

The local spaces are not normed spaces. We say

fi → f in Lp
loc(U)

if ‖fi − f‖Lp(V ) → 0 as i→∞ for every open V ⊂⊂ U .

4.2.2 Dual Spaces

It follows from Hölder’s inequality that if 1 ≤ p ≤ ∞ and 1/p + 1/p′ = 1
then every f ∈ Lp′(U) defines a bounded linear operator F on Lp(U) given
by

F (g) =
∫
U

fg.

Moreover, ‖F‖ = ‖f‖Lp′ (U), where ‖F‖ is the operator norm49 of F . Proof :
“≤” follows from Hölder’s inequality and “≥” follows from choosing g =
|f |p/p′sign g.

If p 6= ∞ then all bounded linear operators on Lp are obtained in this
manner.

Riesz Representation Theorem If 1 ≤ p < ∞ then the above map
f 7→ F is an isomorphism from Lp′(U) onto the space of bounded linear
operators on Lp(U).

Proof: If F is a bounded linear operator on Lp(U) then one can apply the
second Theorem in Section 3.5 to represent F as a Radon measure µ. One
then shows µ is absolutely continuous with respect to Lebesgue measure and
so F = fbL for some f , c.f. the Radon-Nikodym Theorem in Section 3.3.
Finally, one uses Hölder’s inequality to deduce f ∈ Lp′(U).

In particular, L2 is isomorphic to its dual.

There are bounded linear maps on L∞(U) which do not correspond to
elements of L1(U). To see this, note that distinct f ∈ L1(U) induce distinct
bounded linear maps on C(U) ∩ L∞(U). Since C(U) ∩ L∞(U) is a closed
subspace of L∞(U), the result follows.

48V ⊂⊂ U means the closure of V is a compact subset of U .
49That is,

‖F‖ = sup{|F (g)| : ‖g‖Lp(U) ≤ 1}.
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4.2.3 Weak Convergence

Definition Suppose 1 ≤ p <∞. We say (fi)
∞
i=1 ⊂ Lp(U) converges weakly

in Lp(U) to f ∈ Lp(U), and write

fi ⇀ f in Lp(U),

if ∫
fig →

∫
fg

for all g ∈ Lp′(U).

Remarks

1. Since Lp′(U) is the dual of Lp(U) for 1 ≤ p < ∞, this is the usual
notion of weak convergence for Banach spaces.

2. It is equivalent that (i) ‖fi‖Lp(U) be uniformly bounded, and (ii)
∫

fig →∫
fg for all g in some dense subset S of Lp′(U). In particular, if 1 <

p <∞, one usually takes S to be Cc(U) or C∞c (U).

3. If fi → f in the usual (strong) sense (i.e. ‖fi − f‖Lp(U) → 0), then
fi ⇀ f in Lp(U), Exercise. But the converse is not true.

The idea for weak convergence is that fi ⇀ f if fi converges to f in a
sort of “average” sense. For example, let

U = (0, 1), fi(x) = sin(ix), f(x) = 0.

Then it follows from 2 that fi ⇀ f , but it is clearly not the case that
fi → f in Lp(U).

An extremely important fact is that under mild restrictions, if 1 < p <
∞, then a sequence of functions from Lp(U) will have a subsequence which
converges weakly in Lp(U).

Weak Compactness Theorem Suppose 1 < p < ∞. Suppose (fi)
∞
i=1 ⊂

Lp(U) and ‖fi‖Lp(U) ≤ M < ∞. Then there exists f ∈ Lp(U) and a subse-
quence fi′ such that

fi′ ⇀ f in Lp(U).

Proof: Since Lp(U) is reflexive50 for 1 < p <∞, this follows from the usual
compactness Theorem for the weak* topology.

50That is, Lp(U) is isomorphic to the dual of its dual.
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The result is not true for strong convergence, as the example in 3 above
indicates. Nor is it true if p = 1, as we see by taking

U = (−1, 1), fi(x) =

{
ix 0 ≤ x ≤ 1/i
0 otherwise.

(In fact, this sequence converges “weakly in the sense of measures” to the
Dirac measure δ0.)

4.3 Approximations by Smooth Functions

Define
Uε = {x ∈ U : d(x, ∂U)51 > ε}.

4.3.1 Mollifiers

Fix a C∞ function η :IRn → IR such that

1. η ≥ 0,

2. η(x) = 0 if |x| ≥ 1,

3.
∫

η(x) dx = 1.

51The distance from the point x to the set E is defined by

d(x,E) = inf{d(x, y) : y ∈ E}.
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Let

ηε(x) =
1

εn
η
(

x

ε

)
.

Note that ∫
ηε = 1, and ηε(x) = 0 if |x| ≥ ε.

The function ηε is called a mollifier.

For f ∈ L1
loc(U) the ε-approximation to f is defined for x ∈ Uε by

fε(x) =
∫

ηε(x− y)f(y) dy =
∫

ηε(y)f(x− y) dy.52 (7)

We interpret fε(x) as a weighted average (via ηε) of the values f(y) for y
near x.

Suppose f is uniformly continuous on U . Then f extends continuously
to IRn by the Tietze Extension Theorem. We often write fε for the ε-
approximation to some such extension of f . For x ∈ U \ Uε the value of
fε(x) will depend on the particular extension.

Suppose f ∈ Lp(U). Then the zero extension of f to IRn belongs to
Lp(IRn). Using this extension we define fε(x) for all x ∈ U .

4.3.2 Approximation Results

Theorem Suppose U ⊂ IRn is open and f ∈ L1
loc(U). Then

1. fε ∈ C∞(Uε).

2. If f ∈ C(U) then supUε |fε| ≤ supU |f | and fε → f uniformly on com-
pact subsets of U .

52The second equality follows from the change of variable formula.
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3. If f ∈ Lp
loc(U) for 1 ≤ p < ∞ then ‖fε‖Lp(Uε) ≤ ‖f‖Lp(U) and fε → f

in Lp
loc(U).

4. If f ∈ C(U) is uniformly continuous, then fε → f uniformly in U .

5. If f ∈ Lp(U) for 1 ≤ p <∞ then fε → f in Lp(U).

Proof: It follows formally by differentiating the first expression for fε in (7)
that

∂fε
∂xi

=
∫ ∂

∂xi
ηε(x− y) f(y) dy.

This is justified rigorously by taking difference quotients and using the dom-
inated convergence theorem.

One proceeds similarly for higher order derivatives.

The inequality in 2 is easy. To prove uniform convergence, we have by
the change of variable formula

fε(x) =
∫
B1(0)

η(y)f(x− εy) dy.

Then 2 and 4 follow, since

fε(x)− f(x) =
∫
B1(0)

η(y) (f(x− εy)− f(x)) dy.

The inequality in 3 can be established from Hölder’s inequality, Exercise.

For the remainder of 3 we use the fact that for each δ > 0 and open
V ⊂⊂ U , there exists a continuous g such that ‖g− f‖Lp(V ) < δ.53 It follows
from the inequality in 3 that for ε sufficiently small

‖gε − fε‖Lp(V ) ≤ ‖g − f‖Lp(U) < δ.

Using 2, select ε so
‖g − gε‖Lp(V ) ≤ δ.

Then 3 follows, and 5 is similar.

Remark Results 3 and 5 are not true if p = ∞. A uniform limit of
continuous functions is continuous. In particular, if f(x) = 0 for x < 0 and
f(x) = 1 for x ≥ 0, then f is not a limit in the L∞ norm of continuous
functions.

53This density result for continuous functions can be established, for example, using
Lusin’s theorem. Of course it is a weaker case of the result of the present theorem.
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4.4 Weak Derivatives

4.4.1 Motivation

In the study of Partial Differential Equations (PDE’s), and in the Finite
Element Method in Numerical Analysis, to name just two situations, it is
necessary to consider functions whose derivatives exist in the so-called weak
sense. Such functions are called Sobolev functions.

For example, it is often fairly easy to show that a (linear or quasilinear)
PDE has a Sobolev function as a solution in a certain (“weak”) sense. One
then attempts to show that such a solution is in fact smooth and is moreover
a solution in the classical sense. This can be quite difficult, and will be
considered in detail in John Urbas’s lectures.

In the finite element method it is necessary to work with continuous and
piecewise linear functions. Such functions do not have classical derivatives
everywhere, but they are Sobolev functions; see Steve Robert’s lecture.

Suppose f ∈ C1(U), where U ⊂ IRn is open. Then for all φ ∈ C1
c (U)∫

Dif φ = −
∫

f Diφ, i = 1, . . . , n.

Moreover, this uniquely determines Dif in the sense that if∫
gφ = −

∫
f Diφ

for all φ ∈ C1
c (U), then g = Dif a.e. Exercise.

4.4.2 Introduction

Motivated by the previous considerations, one makes the following definition.

Definition Suppose f ∈ L1
loc(U) and 1 ≤ i ≤ n. Then gi ∈ L1

loc(U) is said
to be the ith weak partial derivative of f in U if∫

giφ = −
∫

f Diφ

for all φ ∈ C1
c (U).

The function gi is unique (a.e.)54 and is written Dif or ∂f
∂xi

. We also write
Df = (D1f, . . . , Dnf).

Example 1 If f ∈ C1(U) then gi is the usual (classical) derivative of f .

54That is, any two such functions g agree a.e., Exercise.
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Example 2 Suppose
f(x) = |x|.

Then the weak derivative exists and is given by

Df(x) =

{
−1 x ≤ 0
1 x > 0

(8)

To see this, let g be defined by the right side of (8). Then using integration
by parts (c.f. Section 4.1.1) we obtain∫

f Diφ = −
∫ 0

−∞
x Diφ +

∫ ∞
0

x Diφ

=
∫ 0

−∞
Dix φ−

∫ ∞
0

Dix φ

= −
∫

gφ.

Thus g is indeed the weak derivative.55 Note in the previous calculation that
the boundary terms obtained in passing from the first line to the second line
were both zero (more typically, boundary terms will cancel one another).

Example 3 Suppose

f(x) =

{
−1 x ≤ 0
1 x > 0

Then the classical derivative exists for all x except x = 0, but the weak
derivative does not exist in the sense of the previous definition. We remark
that the weak derivative does exist in the distributional sense (which is an
extension of the present notion of weak derivative), see the lectures by Tony
Dooley.

To see this, computing as in the previous example,∫
f Diφ = −

∫ 0

−∞
Diφ +

∫ ∞
0

Diφ

= −2φ(0).

Note that if δ0 is the Dirac measure at zero (see Section 1.4.2), then it is easy
to check that ∫

φ dδ0 = φ(0)

for all φ ∈ Cc(U). Thus we can naturally identify the weak derivative of f
with 2δ0, but not with any L1

loc function.

55Of course, we could have taken g(0) = 1, or even have changed g on any set of measure
zero.
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Example 4 Suppose f is continuous, and C1 on the interior of each trian-
gle, in a triangulated domain as shown below.

Then it is straightforward to check that the two weak derivatives exist,
and equal the classical derivatives on the interior of each triangle. The main
point is that in performing the integration by parts as in Example 2, one ob-
tains boundary terms which cancel in pairs corresponding to pairs of adjacent
triangles.

4.4.3 W 1,p Spaces

Definition Let 1 ≤ p ≤ ∞. The corresponding Sobolev Space and local
Sobolev Space are defined by

W 1,p(U) = {f ∈ Lp(U) : Dif ∈ Lp(U), i = 1, . . . , n} ,

W 1,p
loc (U) = {f ∈ Lp

loc(U) : Dif ∈ Lp
loc(U), i = 1, . . . , n} ,

where the Dif is the weak derivatives. The W 1,p norm is defined by

‖f‖W 1,p(U) =

(∫
U
|f |p +

n∑
i=1

|Dif |p
)1/p

1 ≤ p <∞,

‖f‖W 1,∞(U) = ess supU

(
|f |+

n∑
i=1

|Dif |
)

.

Remark W 1,p(U) together with the norm ‖ · ‖W 1,p(U) is a Banach space.
Proof : The main point is that W 1,p(U) is a closed subspace of the n+ 1-fold
product Banach space Lp(U)× · · · × Lp(U).

We write
fi → f in W 1,p(U)

if ‖fi − f‖W 1,p(U) → 0, and

fi → f in W 1,p
loc (U)

if ‖fi − f‖W 1,p(V ) → 0 for each open V ⊂⊂ U .
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Theorem If the weak derivatives Dif of f exist, then

Di(fε) = (Dif)ε.

Moreover, if f ∈W 1,p
loc (U) for some 1 ≤ p <∞, then

fε → f in W 1,p
loc (U).

Proof: One computes

Di(fε) =
∫ ∂ηε

∂xi
(x− y)f(y) dy

= −
∫ ∂ηε

∂yi
(x− y)f(y) dy

=
∫

ηε(x− y)
∂f

∂yi
(y) dy

= (Dif)ε.

The convergence follows from the Theorem in Section 4.3.2.

For further important properties of Sobolev Spaces see [EG].
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