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Introdu˝ion

Quantum Foundations and Quantum Computation

The main goal is to develop an understanding of Quantum Theory and its underlying mathematical
models, particularly as it applies to quantum computation.

In Quantum Mechanics (i.e. Quantum Theory in general), we consider properties such as position
and momentum which take an infinite set of values. This is modelled mathematically by considering
infinite dimensional Hilbert spaces and linear operators on such spaces. This leads to many (interesting
and difficult) functional analysis issues.

In Quantum Theory for quantum computing we need only consider finite dimensional Hilbert
Spaces, usually the n-dimensional inner product spaces Cn.1 The functional analysis difficulties are
not present.

However, all the quantum weirdness is present in this setting. This includes superposition and en-
tanglement, which imply the no-cloning theorem, superdense coding, teleportation, and non-locality of
quantum effects (including the famous double-slit experiment, the Einstein–Podolsky–Rosen paradox,
and the results of John Bell showing quantum theory cannot be explained by additional information
in the classical sense). We will see all this fairly soon!

In quantum computation, quantum “weirdness” is the essential resource utilised and exploited.
We will see how this is done.

To reiterate, quantum theory in the finite dimensional setting is the optimal way to develop an
intuition for quantum theory in general.

Mathematics

To understand quantum computing, you absolutely must become fluent in the mathematical
model. Michael Nielsen [MN19, First Lesson, preceding “Part I: The state of a qubit”]

... it is impossible to explain honestly the beauties of the laws of nature in a way that people
can feel, without their having some deep understanding of mathematics. I am sorry, but
this seems to be the case. Richard Feynman [Fey, pp 39,40]

Switching from Newton’s mechanics to Einstein’s, for a mathematician, must to some
extent be like switching from a good old provincial dialect to the latest Parisian slang.
In contrast, switching to quantum mechanics, I imagine, is like switching from French to
Chinese. Alexandre Grothendieck, Rëcoltes et Semailles (1986) (tr. from French)

DON’T PANIC Douglas Adams. The Hitchhiker’s Guide to the Galaxy.

1Cn is the vector space of n-tuples a = (a1, . . . , an) with inner product a · b = a∗1b1 + · · · + a∗nbn (where a∗i is the
complex conjugate of ai). Note that the inner product is conjugate linear in the first argument and linear in the second.
This convention is very useful when we later use the Dirac “bra-ket” notation, see Appendix D.
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The background necessary to follow these notes is some fairly basic linear algebra regarding finite
dimensional complex vector spaces, and basic properties of unitary and hermitian operators. This is
provided in Appendix B. Other mathematics is developed in the appendices and referred to as needed.
This way you will get to very interesting quantum material very quickly!

Structure of the Notes

In the first chapter we discuss the fundamental ideas of quantum theory, the mathematical models
used, and their highly nonintuitive consequences. The discussion is fairly informal – if something is
unclear it will hopefully be clarified in subsequent chapters.

In Chapter 2 we begin anew and discuss the four quantum theory postulates for closed systems,
the relevant mathematical framework, and from there derive the nonintuitive consequences discussed
in Chapter 1.

In Chapter 3 we discuss examples of entanglement, non-cloning, superdense coding, Bell’s and the
CHSH inequalities and some “philosophical” considerations.

In Chapters 4 we discuss quantum computation, quantum circuits, teleportation, algorithms for
quantum computers.

In Chapter 5 we discuss composite systems and some of the mathematicals tools used in their
analysis.

I use a significant number of footnotes. They provide additional information or more precise
comments on definitions and discussions.

The Future for Quantum Computation

[dW19] is an insightful essay concerning the potential impact of quantum computers.
[Pre18] discusses quantum computing in the near future.

Socrates on Physical Reality v. Quantum Space

And now, let me show in a figure how far our nature is enlightened or unenlightened:
Behold! human beings living in a underground den [aka: physical reality], which has a
mouth open towards the light and reaching all along the den; here they have been from
their childhood, and have their legs and necks chained so that they cannot move, and can
only see before them, being prevented by the chains from turning round their heads.

Above and behind them a fire is blazing at a distance[aka: quantum state space], and
between the fire and the prisoners there is a raised way; and you will see, if you look, a low
wall built along the way, like the screen which marionette players have in front of them,
over which they show the puppets.

Socrates (Plato, The Republic, Book VII (Benjamin Jowett, Tr.) [Pla0])

Figure 1: The Allegory of the Cave. (from Wiki Commons)

2



Contents

1 Overview 6
1.1 Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Bits and Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 State Space, Physical Reality and Measuring Qubits . . . . . . . . . . . . . . . 7
1.1.3 Superposition and Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.4 The private world of qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Young’s Two-Slit Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Experimental Set-Up and Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 The State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Entangled Pairs of Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Quantum states for pairs of qubits . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 Separable qubits and entangled qubits . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 The Bell state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 The EPR Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.1 What does it mean for quantum theory to be complete? . . . . . . . . . . . . . 16
1.4.2 The EPR Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.3 Quantum theory is complete . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Quantum Postulates for Closed Systems 19
2.1 State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 State Space Postulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.2 Three Physical Realisations of Qubits . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1 Measurement Postulate (Orthonormal Basis Version) . . . . . . . . . . . . . . . 24
2.2.2 Measuring Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Distinguishing Relative Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.4 Hermitian Operators and Measurements . . . . . . . . . . . . . . . . . . . . . . 26
2.2.5 Measurement Postulate (Hermitian Operator Version) . . . . . . . . . . . . . . 27
2.2.6 Pauli Matrices and Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Qubits and Spin 1/2 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Spin-Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Stern-Gerlach Experimental Set-Up . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.3 Multiple Particles with the same Spin-Orientation . . . . . . . . . . . . . . . . 31
2.3.4 Spin-Orientation and Qubit Correspondence: Bloch Sphere Map . . . . . . . . 32
2.3.5 Spin-Orientation and Qubit Correspondence: Physical Justification . . . . . . . 32

2.4 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.1 Evolution Postulate (Discrete Version) . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 Examples of Unitary Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.3 Evolution Postulate (Continuous Version) . . . . . . . . . . . . . . . . . . . . . 34
2.4.4 Solution of Schrödinger’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.5 Hamiltonian Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Composite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.1 Pairs of Qubits and Bipartite States . . . . . . . . . . . . . . . . . . . . . . . . 36

3



2.5.2 Composite System Postulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.3 N -Qubit Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.4 Inner Product for Composite Systems . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.5 Entangled Qubit Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.6 Bell States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Entanglement: Conundrum or Resource? 40
3.1 No-Cloning Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Disentangling Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Invariance Properties of the Bell States . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 CNOT Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.3 Preparing Bell States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.4 Interim States in Quantum Circuits . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.5 Tensor Product of Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.6 Measuring Entangled States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.7 Measurement in the Bell Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.8 Local Description for each Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Superdense Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Teleportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 Bell & CHSH Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.2 CHSH Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.3 Preliminary Discussion of the Results . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.4 Classical Analysis; Physical Realism, Locality, Random Choice . . . . . . . . . 57
3.5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.6 Quantum Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 GHZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Quantum Circuits 61
4.1 Quantum Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Deutsch-Jozsa Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Shor’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Composite Systems 62
5.1 Ensembles and Density Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 The Bloch Ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Subsystems and the Reduced Density Operator . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Schmidt Decomposition and Purification . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A Visualising Higher Dimensions 63

B Hermitian and Unitary Operators 65
B.1 Inner Product Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.1.1 Inner Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
B.1.2 Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
B.1.3 Norms and Inner Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
B.1.4 Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
B.1.5 Orthogonal Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

B.2 Definitions in Terms of a “Good” Orthonormal Basis . . . . . . . . . . . . . . 67
B.2.1 Hermitian Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
B.2.2 Unitary Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
B.2.3 Normal Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B.3 Definitions in Terms of Adjoint Operator . . . . . . . . . . . . . . . . . . . . . . 69
B.3.1 Adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4



B.3.2 Hermitian Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.3.3 Unitary Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
B.3.4 Normal Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B.4 2× 2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
B.5 Polar Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
B.6 Another Characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

C Determinant and Trace 72
C.1 Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
C.2 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

D Dirac Bra-Ket Notation 74
D.1 Kets and Bras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
D.2 More on Inner Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
D.3 Outer Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

D.3.1 Definition and Matrix Representation . . . . . . . . . . . . . . . . . . . . . . . 75
D.3.2 Orthogonal Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
D.3.3 Operator as a Sum of Dyads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

D.4 Computing with Dirac Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

E Pauli Matrices 77
E.1 Definitions, Basic properties, Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . 77
E.2 As Basis Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
E.3 Pauli Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

E.3.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
E.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

F The Bloch Sphere 80
F.1 Coordinate Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
F.2 Pairs of antipodal points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

F.2.1 Orthonormal Bases & Antipodal Points . . . . . . . . . . . . . . . . . . . . . . 81
F.2.2 Important Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

F.3 Projection Mapping Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
F.4 Angle Doubling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

G Functions of Normal Operators 85
G.1 Examples of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
G.2 Power Series Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
G.3 Definition for Normal Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
G.4 Matrices for the Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

H Tensor Products 87
H.1 Informal Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

H.1.1 Bilinear Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
H.1.2 Basis and Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
H.1.3 Entangled and Product Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 88
H.1.4 Other Bilinear Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
H.1.5 Inner Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
H.1.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

H.2 Basis Dependent Definition of Tensor Products . . . . . . . . . . . . . . . . . . . . . . 89
H.3 Tensor Product of Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography 90

5



Chapter 1

Overview

Contents

1.1 Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Bits and Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2 State Space, Physical Reality and Measuring Qubits . . . . . . . . . . . . . . . 7

1.1.3 Superposition and Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.4 The private world of qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Young’s Two-Slit Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Experimental Set-Up and Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 The State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Entangled Pairs of Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Quantum states for pairs of qubits . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.2 Separable qubits and entangled qubits . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.3 The Bell state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 The EPR Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 What does it mean for quantum theory to be complete? . . . . . . . . . . . . . 16

1.4.2 The EPR Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.3 Quantum theory is complete . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1 Qubits

1.1.1 Bits and Qubits

Bits: physical representations, states & mathematical model

A (classical) bit1 is the basic unit of information in computing, information theory, digital communi-
cations. A bit can take one of two values, typically 0 or 1 as in computing, but also true/false, yes/no,
+/−, etc. These values are also called the possible states of the bit.

A bit has various physical realisations such as a bit in computer hardware or software, the presence
or absence of a hole in punched computer cards of old, a switch being on or off, an electric current
having one of two distinct voltages (high or low), etc.

Mathematically, a bit is modelled by the set {0, 1} containing two distinct elements, and the state
of the bit is then either 0 or 1. Often we abuse language and
• refer to the “bit 0” or the “bit 1”, rather than the state of the bit being 0 or 1,
• use the word “bit” both for the mathematical model and for various physical realisations.

1“Bit” is a contraction of “binary information digit”.
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Qubits: states, mathematical model & physical realisations

A quantum bit or qubit2 is the basic unit in quantum computing. It is the quantum generalisation of
a (classical binary) bit. It can take as its value/state any linear superposition of the form

|ψ〉 = α|0〉+ β|1〉 ∈ C2, where |α|2 + |β|2 = 1, α, β ∈ C, (1.1)

where |0〉 =

[
1
0

]
and |1〉 =

[
0
1

]
. Note that {|0〉, |1〉} is the standard/computational (orthonormal)

basis for C2. We can think of |0〉 and |1〉 as the two values 0 and 1 of a classical bit.3

The coefficients α and β are called amplitudes.
The notation |ψ〉 is due to Dirac. Dirac notation is discussed in Appendix D
Thus a qubit is a linear superposition of classical bits and is mathematically modelled by points

on the unit sphere in C2.4

To gain an intuitive understanding it is sometimes sufficient to take α, β ∈ R in (1.1). In this case
−1 ≤ α, β ≤ 1 with α2 + β2 = 1.

Treating qubits in a mathematical/abstract manner enables us to develop quantum theory in a
manner independent of any particular physical realisation

Every two-state physical quantum system is a qubit. We will discuss three such realisations: the
two lowest energy levels of an electron, linear polarisation of photons, and spin 1/2 particles. Quantum
computers are/will be built from these and other physical realisations!

As previously for bits, we abuse language and
• refer to the “qubit |ψ〉”, rather than the state of the qubit being |ψ〉,
• use the word “qubit” both for the mathematical model and for various physical realisations.

1.1.2 State Space, Physical Reality and Measuring Qubits

Quantum Theory is truly weird, at least to our “classical” way of thinking.

1. Quantum states are “real”. For any unit vector |ψ〉 ∈ C2 (state space for qubits) we can prepare
multiple qubits in the state |ψ〉. Moreover, we can physically manipulate/transform these qubits
into other qubits in a manner which corresponds to applying a prescribed unitary operator in C2.

2. Given a classical bit, we can read/observe its state. This happens in a (classical) computer.

But for qubits this is not the case, the situation is completely different.

A measurement process for qubits corresponds to an orthonormal basis in C2, also known as the
measurement basis.5

(a) If this measurement basis is {|0〉, |1〉} and we measure one of the prepared qubits in the
state |ψ〉 = α|0〉+ β|1〉, then it will give the value 0 with probability |α|2 and the value 1
with probability |β|2. Moreover, after measurement the state will change/“collapse” to the
state |0〉 in the first case and the state |1〉 in the second case.

(b) In particular from (a), if the state after measurement is |0〉 then repeated applications of
the same measurement of the qubit will continue (with probability 1) to give the state |0〉.
Similarly for |1〉.

(c) The qubit “decides” whether its value is 0 or 1 at the instant of measurement, and not
prior to measurement.6

2“Qubit” — pronounced “q(ueue)bit” — is a contraction of “quantum bit”.
3This is consistent with the ket notation, where |v〉 is a vector with label v.
4This is not quite correct. Two vectors |φ〉 and |ψ〉 on the unit sphere are said to be equivalent if |φ〉 = eiθ|ψ〉 for

some θ ∈ R. Qubits correspond to equivalence classes of points on the unit sphere. In particular, |φ〉 and −|φ〉 denote
the same qubit. We also sometimes refer to a non-zero vector |v〉 ∈ C2 as a qubit. In this case we intend the normalised

vector |v〉
‖|v〉‖ .

5This is not quite correct, there are more general measurement processes, but for present purposes this will suffice.
6With two or more entangled qubits the situation is more complex, as we discuss in Section 1.3.
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(d) More generally, suppose the measurement corresponds to the orthonormal basis {|u1〉, |u2〉}.
After this measurement the state will change/collapse7 to one of these basis vectors, the
“value” obtained will be the “label” u1 or u2 for this basis vector, and if |ψ〉 = α1|u1〉+α2|u2〉
the respective probabilities will be |α1|2 or |α2|2. The obvious analogues of (a), (b) and (c)
also hold.

In summary, orthonormal bases of qubit states are naturally associated with measurement pro-
cesses, and conversely.

1.1.3 Superposition and Ensembles

Later we consider ensembles, probabilistic weightings of qubits such as E = {(|0〉 , p), (|1〉 , q)}, where
0 ≤ p ≤ 1, 0 ≤ q ≤ 1 and p2 + q2 = 1. In this example the qubit is in the state |0〉 with probability p
and in the state |1〉 with probability q.

Figure 1.1: A section of C2. (from [Vaz12])

The qubit |ψ〉 = α |0〉 + β |1〉 is not the same as the ensemble E = {(|0〉 , |α|2), (|1〉 , |β|2)}. For
example, let α = β = 1/

√
2. Define8

|+〉 :=
1√
2
|0〉+

1√
2
|1〉 , |−〉 :=

1√
2
|0〉 − 1√

2
|1〉 . (1.2)

See Figure 1.2. Note |ψ〉 = |+〉. Also see (2.2).
Measurements9 of |ψ〉 and E in the {|0〉 , |1〉} basis both give |0〉 or |1〉 with probability 1/2. But

measurement of |ψ〉 in the {|+〉 , |−〉} basis gives |+〉 with certainty and |−〉 with probability 0. On
the other hand, for the ensemble E measurement in the {|+〉 , |−〉} basis gives |+〉 and |−〉 each with
probability 1/2. Exercise

In the case of the ensemble E , the state is either in state |0〉 or the state |1〉. We just do not know
which. In the case of |ψ〉 the state is definitely not in either state |0〉 or |1〉. It is in a superposition
of |0〉 and |1〉. It is also in a superposition of the states |u1〉 and |u2〉 for any orthonormal basis
{|u1〉 , |u2〉}. You will gain an intuition for this as we proceed.

1.1.4 The private world of qubits

A quantum state (or qubit) does not correspond to a physical state in the classical sense.
Qubits live in their own private C2 state space/world. This is a much “richer” world than the

physical world it represents. The coefficients α1 and α2 in |ψ〉 = α1|u1〉+ α2|u2〉 contain information

7I think “collapse” can be misleading terminology. Every state can serve as one of the possible outcome states for
some measurement. But on the other hand, there is only a restricted (for us — finite) set of possible outcomes for each
given measurement.

8These are important qubits.
9See the preceding discussion of measurement by projection. In the case of E just treat each possibility |0〉 and |1〉

separately and weight with the appropriate probabilities, here 1/2.
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about the outcomes of measurement in the orthonormal basis {|u1〉, |u2〉}, as we saw in (d) above. But
because, after measurement, the state of the qubit collapses to one of these basis vectors, the original
state can no longer be “examined” by looking at that particular qubit.

But if someone sends us a large supply of identically prepared qubits α|0〉 + β|1〉, then we can
obtain good estimates for |α| and |β|. How? In fact we can do considerably more than this, as we
will later discuss.10

10If α = r1e
iθ1 , β = r2e

iθ2 in polar form, then we estimate r1 = |α|2 and r2|β|2 by a simple frequency analysis on
the outcomes of measurements in the {|0〉, |1〉} basis. Although we cannot estimate θ1 and θ2, we can estimate the
relative phase θ1 − θ2 (mod 2π) by using measurements corresponding to orthonormal bases other than the standard
basis. Physically, this is all that is relevant. We discuss this later.
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1.2 Young’s Two-Slit Experiment

(Optional) Bonus Material!

Young’s experiment is the classic quantum experiment, so a brief discussion seems mandatory.

According to Richard Feynman:

. . . it contains the only mystery [in quantum theory]. We cannot make the mystery go
away by “explaining” how it works. We will just tell you how it works. In telling you how
it works we will have told you about the basic peculiarities of all quantum mechanics.

The essential element in the “telling” is the superposition principle. However, we will need to move
a little beyond qubits to a different state space.

1.2.1 Experimental Set-Up and Outcomes

Figure 1.2: Double-slit experiment with photons/electrons or bullets. I1 is the result if slit 2 is
covered, I2 is the result if slit 1 is covered. I1 + I2 is the result if both slits open and bullets are used,
I1,2 if photons/electrons are used ([GHW09, p 177]). The diagram on the right shows 16, 64, 256, 1024
photons strikes respectively ([SW10, p 9])

In Diagram a in Figure 1.2, photons/electrons or bullets are fired at a panel with two narrow
slits of vertical width appropriate to the particles used. If slit 2 is covered those particles which are
not absorbed by the panel, and so pass through slit 1, will concentrate on a screen behind the panel
with an intensity in the vertical direction according to the approximately normal distribution I1. The
dispersion is caused by interaction with the edges of the slit. Similarly, if slit 1 is blocked the intensity
is given by I2.

With photons or electrons, however, the situation is quite different. If both slits are open the
intensity is given by I1,2 as in Diagram b. This is similar to the interference pattern obained if a
steady water wave pattern is sent towards the panel, as in Figure 1.3. The peaks of the circular waves
interfere constructively, as do the troughs, to give maximum intensity (squared amplitude) along the
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red lines. (The intensity peaks decrease as one moves away from the point on the screen opposite
midway between the two slits.) In between peaks and troughs one obtains destructive interference.

Moreover, with photons or electrons one obtains the same interference pattern even if the pho-
tons/electrons are fired one at a time. Each electron/photon is exhibiting a wave pattern of self
interference. This is very weird!

Figure 1.3: Water waves. Peaks of the circular waves (in blue) interfere additively along the red
lines and destructively in between. (from https://www.tf.uni-kiel.de/matwis/amat/iss/kap_4/

illustr/s4_2_2.html

1.2.2 The State Space

To simplify matters, imagine the screen is divided into many small regions Rx, each of which is denoted
by some point x = (x, y) ∈ Rx. See Figure 1.4.

Figure 1.4: Screen as in Figure 1.2. (The dotted red lines are just to indicate that they are directly
behind the two slits on the front panel.)

The possible outcomes of a particle striking the screen are given by the N possible values of x.11

11So N = 8× 15 = 120 here!

11

https://www.tf.uni-kiel.de/matwis/amat/iss/kap_4/illustr/s4_2_2.html
https://www.tf.uni-kiel.de/matwis/amat/iss/kap_4/illustr/s4_2_2.html


Striking the screen is the measurement process. The outcomes are mutually exclusive and regarded as
exhaustive in our set-up. For these reasons we take the state space model for a particle just prior to
striking the screen to be an N -dimensional complex inner product space, not C2 as for qubits, with
an orthonormal basis consisting of vectors |x〉. Without loss of generality we can use CN with the
standard basis vectors.

Just as an arbitrary qubit can be written α |0〉+ β |1〉, here the state of an arbitrary particle just
prior to impacting the screen will be a superposition

|ψ〉 :=
∑
x

α(x) |x〉 ,
∑
x

|α(x)|2 = 1. (1.3)

In particular, for a particle (electron or photon) which we know passed through slit j (for example,
if the other slit was closed), the state will be a unit vector |ψj〉 ∈ CN which we write as

|ψj〉 :=
∑
x

αj(x) |x〉 , αj(x) = |αj(x)| eiφj(x) with
∑
x

|αj(x)|2 = 1. (1.4)

The probability pj(x) that such a particle will arrive in Rx can be measured by repeated such
experiments. It is given by pj(x) = |αj(x)|2 according to the analogue of the discussion in Section 1.1.2,
and thus |αj(x)| can be estimated in this manner. The phase of the particle just prior to arriving
at Rx is denoted by φj(x). Writing x = (x, y) in cartesian coordinates, where y = 0 is the vertical
height corresponding to midway between the slits, pj

(
x = (x, y)

)
is a discrete approximation to a

distribution which is a product of a normal distribution in y centred at height corresponding to slit j,
and a constant distribution in the x (horizontal) direction for an interval rougly the length of each slit.
See I1, I2 in Figure 1.2, showing the y dependence. The distributions I1, I2 are displaced vertically
from each other by the distance between the two slits.

Supose we fire electrons or photons at the panel and consider only those that are not blocked by
the panel but pass through the slits and register in some way on the screen to the right in Figure 1.2.
(Note that I said pass through the slits, not “pass through one of the slits”!!) Provided there was
no measurement which would have enabled us to know if the particle passed through slit 1 (and
equivalently in this case no measurement that would have enabled us to know if the particle passed
through slit 2), the state space at any time after the particle has passed through the slits allows for
both possibilities. One should not think: “the particle actually passed through one or the other slit
but we just do not know which”.

Let s be the distance between the two slits, L the distance between the panel and the screen, and
λ the wave length of the particle. The state of the particle in these circumstances just prior to striking
the screen, for L� s, is approximately the equal superposition12

|ψ〉 =
1√
2

(
|ψ1〉+ |ψ2〉

)
. (1.5)

12This is not surprising, but to argue it more carefully requires considering a larger state space involving the slits.
This is done, for example, in [FLS65, Vol III, Chapter 2, §§3-1,3-2]. Alternatively, it is an example of a general principle
for superposition of amplitudes in such situations, see for example [GHW09, p 176].

Finally, it may seem surprising that 1/
√

2 is the correct normalisation factor to ensure ‖ |ψ〉 ‖ = 1. But note 〈ψ|ψ〉 =
1 + 〈ψ1|ψ2〉 and 〈ψ1|ψ2〉 ≈ 0 due to the highly oscillatory behaviour of cos(φ1−φ2). To pursue this point a little further,

〈ψ1|ψ2〉 =
∑
x

r1(x) r2(x) cos
(
φ1(x)− φ2(x)

)
≈
∫
r1(y) r2(y) cos

(
φ1(y)− φ2(y)

)
dy where x = (x, y) and ignoring “constant” x dependence of everything

≈
∫
r1(y) r2(y) cos

( sy
λL

)
dy from (1.8)

= −λL
s

(∫
d

dy

(
r1(y) r2(y)

)
sin
( sy
λL

)
dy + boundary terms

)
.

Since λ� s, this last term is, in effect, bounded in absolute value by constant× λ.
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Fixing x and writing αj(x) = rje
iφj in polar coordinates, the coefficient/amplitude of |x〉 in |ψ〉 is

1√
2

(
α1(x) + α2(x)

)
=

1√
2

(
r1e

iφ1 + r2e
iφ2
)
, (1.6)

and so the probability of the particle landing at x is

1

2

∣∣∣r1e
iφ1 + r2e

iφ2
∣∣∣2 =

1

2

(
r1e

iφ1 + r2e
iφ2
)(

r1e
−iφ1 + r2e

−iφ2
)

=
1

2

(
r2

1 + r2
2

)
+ r1r2 cos(φ1 − φ2)

(1.7)

The term 1
2

(
r2

1 + r2
2

)
is the probability of arriving in Rx for the mixed state corresponding to equal

probabilities of passing through slit 1 and slit 2. The second term r1r2 cos(φ1−φ2) is the interference
term which has a magnitude comparable to the first term but may be additive or subtractive.

It is not difficult to show13 that, for s, y � L, the distance between stripes in Figure 1.2 is
approximately λL/s and

φ1(x)− φ2(x) ≈ 2π
sy

λL
, (1.8)

This can also be used to estimate the wave length of the particles.

Remark The fact that for the superposition of mutually exclusive events (in this case: passing
through slit 1 and passing through slit 2) amplitudes add but probabilities do not, is critical to the
weirdness of quantum events.

13The distance from the bottom/top slit to the point on the screen at height y, for s, y � L, is(
L2 +

(
y +

s

2

)2)1/2

≈ L+
1

2
L−1

(
y ± s

2

)2
,

and so the difference is ≈ sy/L. The waves radiating out from the two slits are in phase at y = 0 and the next values of
y for which the two waves will be in phase are given by sy/L = ±λ, i.e. y = ±Lλ/s. Also see [BS14, p 43, §2.3.4].

Thus the distance between bands on the right of Figure 1.2 is ≈ Lλ/s, and so φ1(x)− φ2(x) ≈ 2π
sy

λL
.
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1.3 Entangled Pairs of Qubits

1.3.1 Quantum states for pairs of qubits

We have seen how the quantum analogue of a bit with values in {0, 1} is a qubit whose state can be
any linear combination, i.e. superposition, of the orthonormal vectors |0〉 and |1〉 in (the unit sphere
for) C2.

Similarly, we can consider a pair of bits and the quantum analogue of a pair of qubits. For classical
bits the 4 possible values of a pair of bits are {00, 01, 10, 11}14. In quantum mechanics these values
correspond to the following orthonormal unit vectors in (the unit sphere for) C4.

{00} → |00〉 :=


1
0
0
0

 , {01} → |01〉 :=


0
1
0
0

 , {10} → |10〉 :=


0
0
1
0

 , {11} → 0|11〉 :=


0
0
0
1

 . (1.9)

Mathematically, the set of all possible unit length superpositions of the four basis vectors in (1.9)
is the set of all vectors/states on the unit sphere in C4 which are of the form

|ψ〉 := a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉 ∈ C4, where aij ∈ C,
∑
|aij |2 = 1. (1.10)

It is physically possible to produce pairs of qubits corresponding to any such state! This has very
counterintuitive consequences.

A typical measurement basis for states in C4 uses the standard basis {|00〉, |01〉, |10〉, |11〉}. This
measurement is physically achieved by separate measurements on the first and second qubits, although
as noted above the two qubits may be in highly separated locations.15 The squared moduli of the
coefficients in (1.10) give the probabilities of the possible experimental outcomes, in a way analogous
to what happens for a single qubit as discussed in Section 1.1.2. The way we read off this information
is straightforward but the consequences are very weird indeed. We will discuss this for the example
of the Bell state (1.12).

1.3.2 Separable qubits and entangled qubits

We can easily produce pairs of qubits of the form α|0〉 + β|1〉 and α′|0〉 + β′|1〉 respectively, which
leads naturally to pairs of qubits which can be written in the product form(

α|0〉+ β|1〉
)(
α′|0〉+ β′|1〉

)
= αα′|00〉+ αβ′|01〉+ βα′|10〉+ ββ′|11〉 ∈ C4. (1.11)

However, not every pair of qubits in the form (1.10) can be written in the form (1.11).
If a state can be factorised as in (1.11) it is said to be separable, if not it is said to be entangled.

1.3.3 The Bell state

A particularly instructive example of an entangled pair of qubits is the Bell state

|Φ+〉 :=
1√
2
|00〉+

1√
2
|11〉 ∈ C4. (1.12)

Exercise: Show the Bell state is entangled.
It is possible to physically produce many examples of the Bell state, for example where the pair

of qubits is a pair of entangled polarised photons. Even though the two qubits in the Bell state (1.12)
are entangled, it is possible to physically separate them by over 1,200 km, and in principle by any
distance. See Section 1.4.

14It is conventional to list values in increasing binary order.
15Not all measurements can be achieved this way. The issue is whether or not the measurement is factorisable in the

tensor sense, as we discuss in subsequent chapters.
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The 1√
2

coefficient in the Bell state for the |00〉 component and the implicit 0 coefficient for |01〉
together imply that when the first qubit is measured in the standard basis {|0〉, |1〉} the result is 0 with
probability (1/

√
2)2 + 02 = 1/2, and in this case the first qubit moves into the state |0〉. Similarly, the

measurement result is 1 with probability16 1/2, and in this case the first qubit moves into the state
|1〉.

Suppose the measurement outcome for the first qubit is 0. The most astounding consequence is
that the qubit pair instantaneously moves/collapses to the state |00〉, and as a consequence the second
qubit instantaneously moves into the state |0〉.17 In effect, this conclusion is obtained by scratching
out the |11〉 term in (1.12) (since it begins with 1 but the first qubit is actually in the state |0〉) and
then normalising

16By “probability” we just mean what occurs over many experiments in a frequency analysis.
17As we discuss later, using tensor notation |Φ+〉 = 1√

2

(
|0〉⊗|0〉+ |1〉⊗|1〉

)
∈ C2⊗C2 = C4, and orthogonal projection

onto span{|0〉} ⊗ C2 gives |00〉 after normalisation. That is, just scratch out any terms beginning with |1〉 and then
normalise.
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1.4 The EPR Paradox

1.4.1 What does it mean for quantum theory to be complete?

Einstein, Podolsky and Rosen in [EPR35] argued that quantum theory is not a complete theory. They
accepted that in most quantum experiments conducted up to that time the results predicted were
probabilistic, perhaps due to some random interaction with the measuring apparatus or for some
other reason. This was not the situation they were addressing.

On the other hand, they pointed out that in certain experiments which involve entanglement (at
that time thought experiments, i.e. “Gedankenexperiment”, but subsequently experimentally realised
in [ADR82]), the outcome was determined before the measurement was conducted but quantum
theory did not include this information. It was in this sense that they claimed quantum theory was
not complete.

I describe the [EPR35] argument in the context of entangled qubits in the Bell state (1.12) and the
2017 Micius experiment [YCL+17] illustrated in Figure 1.5 (and named after the Chinese philosopher
Micius or Mozi: https://en.wikipedia.org/wiki/Mozi).

1.4.2 The EPR Experiment

Figure 1.5: Experimental set-up of satellite-based entanglement distribution. (Arxiv version of
[YCL+17])

Figure 1.6: Schematic representation of EPR set-up (from [RP11]). Alice and Bob are spacelike
separated at measurement time. Alice and Bob are traditionally responsible for the measurements in
such experiments. (From the list of authors and affiliations in [YCL+17] it seems unlikely either was
present on this occasion.)

A pair of qubits realized as linearly polarized photons have their polarizations entangled on the
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satellite into the Bell state 1√
2
|00〉+ 1√

2
|11〉.18 After entanglement the first qubit is sent to Lijiang and

the second to Delingha Lijiang. Suppose each qubit is measured in the {|0〉, |1〉} basis immediately
upon arrival.19 In the diagram, this means the Lijiang qubit before the Delingha qubit.

Suppose for sake of discussion that the first qubit arrives in Lijiang and is measured before the
second qubit arrives in Delingha and is measured, but the second qubit arrives and is measured before
there is time for any message (at the speed of light) to reach it regarding the measurement outcome
of the first qubit. Each evening pass of the satellite produces about 300 such events.

From the previous discussion concerning the Bell state the probability of the first qubit being
measured as 0 is 1/2, of the second qubit being measured as 0 is 1/2, and of the pair being measured
as 00 is 1/2. So the measurement results of the individual qubits are not independent, since if they
were then the probability of the pair being measured as 00 would be 1/4, and the state of the qubit
pair would be the product state 1

2 |00〉 + 1
2 |01〉 + 1

2 |10〉 + 1
2 |11〉 ∈ C4, not the Bell state. In fact

the measurement outcomes of the two qubits are perfectly correlated, both outcomes being 0 or both
being 1.

How is this perfect correlation “enforced”? Quantum theory implies the first qubit measures as 0
with probability 1/2, as 1 with probability 1/2, but the “decision” as to which of these two outcomes
is the case is made at the time of measurement. For sake of argument suppose the first qubit measure
as 0 — how does the second qubit know that it must also measure as 0 if it is to be consistent with
the quantum theory prediction of equality of outcome?

Logically there are two possibilities:
(a) either there is an interaction between the two qubits faster than the speed of light (what Einstein

called “spooky action at a distance”), such that the second qubit “knows” the measurement
outcome for the first qubit,

(b) or there was no such interaction. In this case information about which one of the two shared/common
outcomes will occur for an entangled pair must have been available to each particle in the pair at
the time of entanglement (the last possible time for slower than speed of light interaction before
measurement).

In the case of (b) this additional information is not present in the Bell state, and so quantum
theory would not be a complete theory according to [EPR35].

By way of background we remark that there is indeed a simple classical model to completely
explain the outcome of the version of the EPR experiment as discussed here. All that is needed is
that at the time of entanglement both qubits are produced in the state |0〉 or both in the state |1〉,
with probability 1/2 for each possibility, and this choice is independent between pairs of qubits.

The difference between this model and the Bell state model shows up if we measure the individual
qubits in other than the orthonormal base {|0〉, |1〉}, as we will discuss in a later section. This was
done in the Micius and earlier experiments.

1.4.3 Quantum theory is complete

[EPR35] considered (a) to not be possible, and so came to the conclusion that (b) is true and quantum
theory is not complete. Einstein spent much of the remaining 20 years of his life looking for such a
complete theory.

However, John Bell in [Bel64] designed an experiment to decide between (a) and (b). A small
modification was proposed in [CHSH69] and carried out in [ADR82], with the most recent experiment
being the Micius experiment [YCL+17]. This has shown convincingly that quantum theory is com-
plete, any probabilistic or deterministic extension which includes other information (known as “hidden
variables”) implies correlations which are experimentally incorrect, and “spooky action at a distance”
is indeed what happens.

18In the actual experiment the Bell state 1√
2
|01〉− 1√

2
|10〉 was used. This does not alter the discussion in any significant

manner.
19A more complicated experiment was conducted with additional orthonormal bases. We return to this in later

discussions.
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The idea that an event can be influenced by an event outside its past light cone certainly goes
against our classical intuition. It is worth remarking, however, that no classical information is trans-
mitted faster that the speed of light in these cases! We will return to this later in these notes.
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In this chapter we begin anew. The material in Chapter 1 may be considered as motivation for the
more careful treatment here and we refer back to it occasionally.

The quantum postulates provide the framework for all of Quantum Theory. They are essentially
due to Paul Dirac (1930) [Dir58] and John Von Neumann (1932) [vN18].

We mainly discuss the case of finite dimensional state spaces. This is what is needed for quantum
computation. In addition, all the counterintuitive quantum weirdness is already present in this setting.

In this chapter we only deal with closed systems, or more precisely, systems that can be approxi-
mated by closed systems. See Remark 2 in Section 2.1.1.

The goal is to obtain an understanding of the postulates and how to apply them.

You should now read Appendiices F.1 and F.2 on the Bloch sphere as they are used in the discussion
of qubit measurement in Section 2.2 and provide a nice way of representing and thinking about qubits.

Throughout these notes, bases are always orthonormal unless otherwise clear.

2.1 State Space

2.1.1 State Space Postulate

Postulate 1. Associated to any closed physical system is a complete separable1 complex inner product
space V (that is, a Hilbert space) known as the state space of the system. The system at each time is
completely described by its state vector at that time, which is a unit vector in the system’s state space.

Examples

In particular, C2 is the state space for qubits. See Section 1.1.1 for some context concerning bits and
qubits.

The state of a qubit is given by a unit vector in the state space C2. Sometimes a qubit state is
taken to be the equivalence class of unit vectors which are equal up to multiplication by an arbitrary
global phase factor eiζ . See Remark 3 below.

Often we say “the qubit |0〉” rather than the “the qubit with state/value |0〉”, just as we say “the
bit 0” rather than ”the bit with value/state 0”, etc.

Important examples of qubits are2 the basis vectors

|0〉 :=

[
1
0

]
, |1〉 :=

[
0
1

]
, (2.1)

and

|+〉 :=
1√
2
|0〉+

1√
2
|1〉 , |−〉 :=

1√
2
|0〉 − 1√

2
|1〉 ,

|i〉 :=
1√
2
|0〉+ i

1√
2
|1〉 , |−i〉 :=

1√
2
|0〉 − i 1√

2
|1〉 .

(2.2)

Each of these three pairs is an orthonormal basis for C2. Exercise.

A 3-level quantum system is represented by C3. State vectors in C3 are the standard basis vectors,
usually denoted |0〉, |1〉, |2〉, and more generally are unit vectors:

|ψ〉 = α|0〉+ β|1〉+ γ |2〉 ∈ C3, where |α|2 + |β|2 + |γ|2 = 1, α, β, γ ∈ C. (2.3)

Similarly one uses Cn for n-level systems.

1finite dimensional spaces are always complete and separable
2“:=” means “by definition is equal to”.
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Remarks

1. We only consider finite dimensional state spaces V , usually Cn for some n ≥ 2. This is sufficient
both for quantum computation and quantum information purposes (and for understanding all
the notions of “quantum weirdness”).3

2. An isolated or closed system is one which does not exchange any information, matter or energy
with any other environment. This is an idealisation and there are no closed systems, except
possibly for the universe itself.4

3. There is no physically observable difference between the physical system described by |ψ〉 and
that by eiζ |ψ〉, see Section 2.2.5 We call eiζ a global phase factor. The two vectors |ψ〉 and
eiζ |ψ〉 are said to be equivalent. To be more precise we should say that:

a state is given by an equivalence class of unit vectors.
We later discuss relative phase, which is different and is physically significant. See Section 2.2.3.

4. Unit vectors in the state space are usually written in the ket form |ψ〉 using the Dirac notation,
see Appendix D. It is usually convenient to think of ψ itself as a name or symbol representing
the actual vector |ψ〉, as in the case |0〉 and |1〉.

5. As we discussed in Chapter 1, a state space in quantum theory describes physical reality in
a very different manner than a state space in classical physics describes physical reality. See
Section 2.2.

6. We will see in Section 2.2 that mutually exclusive outcomes of a measurement correspond to
orthonormal vectors in state space. Mutually exclusive and exhaustive outcomes correspond to
an orthonormal basis.

2.1.2 Three Physical Realisations of Qubits

Please look at Appendiices F.1 and F.2 for the Bloch Sphere representation of qubits.

Every qubit |ψ〉 ∈ C2, up to multiplication by a physically irrelevant phase factor eiζ , can be
written in the form

|ψ〉 = cos
θ

2
|0〉+ sin

θ

2
eiφ |1〉 , 0 ≤ θ ≤ π, 0 ≤ φ < 2π, (2.4)

and this corresponds to a unique point on the Bloch sphere, the unit sphere S2 ⊂ R3 with spherical
coordinates (θ, φ).

Every two-level quantum system corresponds to a qubit. Here are three examples that are useful
to keep in mind when dealing more abstractly with qubits. In [NC10, p. 278, Fig. 7.1] the authors
list eight possible realisations of quantum bits for quantum computing, but as they note these are all
variants of three fundamentally different examples: charge/energy, photon/polarisation and spin.

As with any quantum state, the energy level/polarisation/spin is not determined prior to measure-
ment and until then the value measured/observed after measurement is only predicted probabilistically
from the prior state and the particular measurement used.6

We give a more detailed discussion of the physical interpretation of qubit states |ψ〉 = α |0〉+β |1〉
and their measurement outcomes in the case of spin 1/2 in Section 2.3.

3In quantum mechanics we generally need a separable infinite dimensional Hilbert space. In this case the analogue of
the state vector, such as for the position of a particle in physical space R3, is a complex valued (“wave”) function defined
over R3 and typically “peaking” at some point in R3. Informally, the wave function is a complex superposition of Dirac
measures, one at each point in R3.

4And what is the universe? Quantum entanglement implies we need to consider events that will not come into our
past light cone until some time in our future.

5Thus the state space is really a complex projective space, but this is usually not the most convenient/intuitive way
to think about it.

6If the measurement is with respect to that same state as discussed in Section 2.2 then the probability is 1 and so we
do have an outcome with certainty.
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For further information on the physical realisation of qubits, their evolution, measurement and en-
tanglement, directed more to mathematicians rather than physicists and experimentalists, see [CCEZ03]
and particularly [ZCDH09].

The following diagrams are, of course, schematic only.

Energy levels of an electron in an atom

Figure 2.1: Electron energy levels of an electron in an atom. ([NC10, p14 Fig 1.2], [Vaz12, Notes Ch 1])

It is often possible to effectively limit an electron in an atom to its two lowest energy levels and to
produce electrons in any (complex) superposition of these levels. The quantum model is thus qubit
state space C2. The lowest energy level state is denoted by |0〉 and the next level by |1〉.

By shining light on the atom with the appropriate energy and for the appropriate length of time,
it is possible to move the electron from the |0〉 state to the |1〉 state and vice versa. By reducing the
time we shine the light, an electron initially in the state |0〉 can be moved halfway into the |+〉 state.

See [NC10, p280 Box 7.1] for details of how this is physically achieved.

Polarised photon

Figure 2.2: Horizontal and vertical polarisation of light. ([Vaz12, Lecture Notes Chapter 1])

Individual photons have a polarisation modelled by qubit state space C2. The qubits |0〉 and |1〉
are conventionally assigned to horizontal and vertical linear polarisation in the plane orthogonal to
the direction of propagation. See Figure 2.2.

By means of a horizontally polarised filter it is possible to produce a large supply of horizontally
polarized photons which are conventionally assigned the qubit state |0〉. Similarly for |1〉. To achieve
other states one passes the photons through a mixture of mirrors, phase shifters and beamsplitters.
A phase shifter is a transparent slab which shifts the phase by an amount depending on the thickness
and transparency of the slab.
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Figure 2.3: Schematic representation of spin 1/2 particle. Spin up = |0〉 = |↑〉, Spin down = |1〉 =
|↓〉. (http://www.sussex.ac.uk/physics/iqt/research/researchers/simulation.html)

Spin 1/2 particle

All protons, neutrons, electrons, neutrinos, quarks, and certain atoms such as hydrogen and silver,
have a property called spin 1/2 7 which, after measurement in any direction in R3 , takes one of
two values, typically denoted by 1/2 and −1/2,8 or by ↑ (spin up, i.e. “right hand thumb rule in the
direction of the measuring device”) and ↓ (spin down, i.e. “right hand thumb rule in the opposite
direction from the measuring device”). See Figure 2.3.

In this case each possible state of the qubit corresponds to a unit vector giving the “alignment” of
the spin in R3. We discuss this in some detail in Sections 2.3 and 2.3.5.

7This is 2-state spin, which is the most common, but n states for any larger integer n are allowed in principle.
8The particular values ±1/2 are chosen essentially because they should sum to 0 from total spin conservation require-

ments, and they should differ by 1 in an appropriate system of units.
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2.2 Measurement

2.2.1 Measurement Postulate (Orthonormal Basis Version)

Recall that we are only considering finite dimensional state spaces.

Postulate 2 (Preliminary version). Each orthonormal basis {|v1〉 , . . . , |vn〉} for the state space V
describes a measurement/observation as follows. If the state before measurement is

|ψ〉 = α1 |v1〉+ · · ·+ αn |vn〉

then the state after measurement is |vj〉 with probability |αj |2 = | 〈vj |ψ〉 |2. In this case we say the
outcome is (the label) vj or (the state) |vj〉.

Remarks

1. Notation: See Appendix D.1. In particular, 〈vj |ψ〉 is the inner product of |vj〉 with |ψ〉.

2. The projection of |ψ〉 onto Span |vj〉 is αj |vj〉. When normalised to have norm 1 this gives
αj
|αj | |vj〉. Note that |vj〉 and

αj
|αj | |vj〉 represent the same state since they agree up to the global

phase factor
αj
|αj | .

It is often more convenient to think of the state after measurement in this way, that is, as the
normalised state after projection onto the subspace Span |vj〉. See Appendices B.1.5 and D.3.2
for a discussion of orthogonal projections. In particular, it is then clear that changing any or
some of the basis vectors |vj〉 by a phase factor eiζj (which of course includes −1) does not
change the probabilities or the possible final states.

3. Since eiθ |ψ〉 =
∑

i(e
iθαi) |vi〉 it follows from Postulate 2 that the probability of each outcome,

and the state after this outcome, are invariant under multiplication of |ψ〉 by the global phase
factor eiθ.

4. You might like to think of the outcome as a mark vj on a screen, or a number that shows on a
dial, there being only a finite number n of possibilities in the situations we are considering. We
typically observe the outcome vj rather than the state |vj〉. But sometimes we will be loose in
our language and refer to the outcome |vj〉.

5. If the orthonormal basis {|v1〉 , . . . , |vn〉} ⊂ Cn is the standard/computational basis {e1, . . . , en},
which is usually written {|0〉 , · · · , |n− 1〉}, then we refer to measurement in the computational
basis or measurement in the standard basis.

6. In C2 for example, measuring |ψ〉 = α |0〉+ β |1〉 in the computational basis gives

(a) outcome 0, and |0〉 as the state after measurement, with probability |α|2,
(b) outcome 1, and |1〉 as the state after measurement, with probability |β|2.

7. In the previous example, if the outcome was 0, then all subsequent measurements in the com-
putational basis will give |0〉.9 Why?

8. Each orthonormal basis in the state space corresponds to a particular measurement in physical
space which gives mutually exclusive and exhaustive outcomes, one outcome for each basis vector.

For example, with qubits interpreted as elements of state space for spin 1/2 particles, the or-
thonormal basis {|0〉 , |1〉} corresponds to measurement of spin in the z-direction typically by
means of a Stern-Gerlach apparatus as in Section 2.3, with outcomes spin 1/2 (i.e. spin ↑, i.e.
new state |0〉) or spin -1/2 (i.e. spin ↓, i.e. new state |1〉).

9To be precise, this assumes the particle was not disturbed by the measurement process. Typically this would mean
a detector, such as a screen of some sort, was set up to register if the outcome was |1〉. Any particle not detected will be
in the state |0〉.
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Similarly, as we will see later, all measurements for spin 1/2 particles correspond to measuring
spin in some direction in R3, and the two mutually exhaustive and exclusive outcomes for each
such measurement correspond to an orthonormal basis in C2.10

For the two-slit experiment in Section 1.2, the set of orthonormal basis vectors |x〉 corresponds
to striking the screen in the various regions Rx.

It may be the case that there are technological problems in realising the measurement process
corresponding to a particular basis, but in principle there is no restriction. In the case of qubits,
all possible measurements can in fact be realised, for example, with spin 1/2 particles and a
suitably oriented Stern-Gerlach apparatus.

9. Conversely to the previous remark, mutually exclusive outcomes of a measurement correspond
to orthonormal vectors in state space. Mutually exclusive and exhaustive outcomes correspond
to an orthonormal basis.

2.2.2 Measuring Qubits

We say a measurement is with respect to (or is measured by) the ket |v〉 ∈ C2 if the outcome of
measuring an arbitrary |ψ〉 is the state |v〉 with probability | 〈v|ψ〉 |2 = cos2 θ, and so is the state |v〉⊥
with probability 1−| 〈v|ψ〉 |2 = sin2 θ, where θ is the angle in C2 between |v〉 and |ψ〉. (See Figure 2.4)

By the preliminary version of Postulate 2 this is the same as measurement w.r.t.11 the (ordered)
orthonormal basis {|v〉 , |v〉⊥}. Thus w.l.o.g.12 we can consider measurements given by a single ket.
Of course, this equivalence is only true in C2.

Figure 2.4: A section of C2. |ψ〉 is measured w.r.t. |v〉 — the outcome is |v〉 with probability cos2(θ).

2.2.3 Distinguishing Relative Phase

We noted in Section 2.2.1 Remark 3 that measurements do not distinguish between global phase
factors. However, they can distinguish relative phase factors such as eiφ in

|ψ〉 = cos
θ

2
|0〉+ sin

θ

2
eiφ |1〉 . (2.5)

To see this, suppose we have a large number of similarly prepared copies of |ψ〉. This may be done
in the case of spin by passing a large number of spin 1/2 particles through a Stern-Gerlach apparatus
pointing in the R3 direction with spherical coordinates (θ, φ) and blocking those particles which come
out of the apparatus with spin down. Of course, if we set up the Stern-Gerlach apparatus ourselves
we know (θ, φ) and hence the state |ψ〉. But suppose someone else set up the apparatus and sent the

10If the measurement direction has spherical coordinates (θ, φ) in R3, then the orthonormal basis in C2 is{
cos

θ

2
|0〉+ sin

θ

2
eiφ |1〉 , cos

π − θ
2
|0〉+ sin

π − θ
2

ei(φ+π) |1〉 = sin
θ

2
|0〉 − cos

θ

2
eiφ |1〉

}
,

corresponding to the antipodal points in R3 with spherical coordinates (θ, φ) and (π − θ, φ+ π).
11“w.r.t.” is an abbreviation for “with respect to”
12“w.l.o.g.” is an abbreviation for “without loss of generality”.
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identically prepared qubits on to us. Suppose we are told all the particles are in the same state, but
we are not told what is the state.

Step 1. If we measure such qubits in the computational basis {|0〉 , |1〉}, the probability that after
measurement the qubit will be in the state |0〉 is cos2 θ

2 . So we do a frequency count of what happens to
a sufficiently large number of such similarly prepared qubits |ψ〉. This will give a good approximation
to cos2 θ

2 and hence to θ.13

Step 2 Such measurements in the computational basis gave no information about φ, only about θ.
But suppose we also measure a large number of other copies of |ψ〉 in the {|+〉 , |−〉} basis.14 From (2.2)

|0〉 =
1√
2
|+〉+

1√
2
|−〉 , |1〉 =

1√
2
|+〉 − 1√

2
|−〉 . (2.6)

So from (2.5) and (2.6)

|ψ〉 =
1√
2

(
cos

θ

2
+ sin

θ

2
eiφ
)
|+〉 +

1√
2

(
cos

θ

2
− sin

θ

2
eiφ
)
|−〉 =: α′ |+〉+ β′ |−〉 . (2.7)

Therefore

|α′|2 =
1

2

(
cos

θ

2
+ sin

θ

2
eiφ
)(

cos
θ

2
+ sin

θ

2
e−iφ

)
=

1

2
(1 + sin θ cosφ),

|β′|2 =
1

2
(1− sin θ cosφ).

So given information about θ from Step 1, we can estimate the relative phase φ by measuring a large
number of similarly produced qubits |ψ〉 in the {|+〉 , |−〉} basis.

2.2.4 Hermitian Operators and Measurements

Every orthonormal basis {v1, . . . , vn} in an n-dimensional state space V determines the eigenvectors
of an hermitian operator H : V → V , but not the eigenvalues. See Appendix B.2.1. The eigenvalues
are essentially labels, and do not normally have a canonical physical interpretation in our setting.15

Conversely, suppose H : V → V is hermitian with distinct eigenvalues λ1, . . . , λk (k ≤ n), cor-
responding orthogonal eigenspaces E1, . . . , Ek, and orthogonal projection operators Pi : V → Ei.
Then

V = E1 ⊕ · · · ⊕ Ek, H =
∑
i

λiPi, I =
∑
i

Pi, (2.8)

where I : V → V is the identity operator and V = E1 ⊕ · · · ⊕ Ek just says the Ei are mutually
orthogonal and every v ∈ V has a unique decomposition v = v1 + · · ·+ vk with vi ∈ Ei.

See Figure 2.7, in which case E1 is one-dimensional and spanned by |2〉, while E2 is two-dimensional
and spanned by |0〉 and |1〉.

The other important properties of the Pi are

Pi = P ∗i , P 2
i = Pi, PiPj = O if i 6= j, (2.9)

where O is the zero operator sending all vectors to the zero vector.
Choosing a set of orthonormal basis vectors for each Ei and taking the union gives a basis for V .

H =

λ1 0 0
0 λ2 0
0 0 λ2

.

13Remember that 0 ≤ θ ≤ π and so in particular cos θ
2

is ≥ 0.
14Not copies we have already measured in the computational basis, of course!! Those qubits will be in the |0〉 or |1〉

state, and so of no use for our purpose.
15However, in physics, where the state space is infinite dimensional, the eigenvectors may represent position or mo-

mentum for example, and the eigenvalues take on physical meaning. See Footnote 3. In the finite dimensional setting
the eigenvalues could give the energy, after normalisation, of the corresponding eigenstate.
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Figure 2.5: V = C3 = E1 ⊕ E2 with basis {v1, v2, v3} = {|0〉 , |1〉 , |2〉}, see (2.8).
|ψ〉 = P1 |ψ〉+ P2 |ψ〉, ‖ |ψ〉 ‖2 = ‖P1 |ψ〉 ‖2 + ‖P2 |ψ〉 ‖2.

1-dimensional complex subspaces Span |0〉, Span |0〉 and Span |0〉 each represented by a real line.

2.2.5 Measurement Postulate (Hermitian Operator Version)

The following version of Postulate 2 is an extension of the preliminary version in Section 2.2.1, as we
note subsequently in Remark 3.

Postulate 2. Suppose H : V → V is hermitian with decomposition as in (2.8). Then H describes
a measurement/observation as follows. If the state before measurement is |ψ〉 then the state after
measurement is Pi |ψ〉 /‖Pi |ψ〉 ‖ with probability ‖Pi |ψ〉 ‖2. In this case we say the outcome is λi.

Remarks

1. It is NOT normally the case that the state after measurement by H of the state |ψ〉 is H |ψ〉.
2. The denominator ‖Pi |ψ〉 ‖ in Pi |ψ〉 /‖Pi |ψ〉 ‖ is needed for normalisation purposes.
3. Since

|ψ〉 = P1 |ψ〉+ · · ·+ Pk |ψ〉 by (2.8)

= ‖P1 |ψ〉 ‖
P1 |ψ〉
‖P1 |ψ〉 ‖

+ · · ·+ ‖Pk |ψ〉 ‖
Pk |ψ〉
‖Pk |ψ〉 ‖

,
(2.10)

it is clear by taking k = n that Postulate 2 is a generalisation of the previous preliminary version.
4. Let p|ψ〉(λi) be the probability that the outcome of the measurement H is λi if the initial state

is |ψ〉.
Since Pi is a projection operator

P ∗i = Pi, P 2
i = Pi. (2.11)

Hence16

p|ψ〉(λi) := ‖Pi |ψ〉 ‖2 = (Pi |ψ〉)∗Pi |ψ〉 = 〈ψ|P ∗i Pi|ψ〉 = 〈ψ|Pi|ψ〉 . (2.12)

Summarising, the important point is that

p|ψ〉(λi) := ‖Pi |ψ〉 ‖2 = 〈ψ|Pi|ψ〉. (2.13)

16See Appendix D.4 for the third “=”.
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5. A related and important point is that the expected outcome E|ψ〉(H) of the measurement H
applied to the state ψ is 〈ψ|H|ψ〉.
This follows from (2.13) since

E|ψ〉(H) =
∑
i

λi p|ψ〉(λi) =
〈
ψ
∣∣∣∑

i

λiPi

∣∣∣ψ〉= 〈ψ|H|ψ〉.

This can be useful in computing the probabilities if there are just two possible outcomes.
6. Note

∑
i p|ψ〉(λi) = 1. We can see this two ways:

• Either, from (2.13) and (2.10),
∑

i p|ψ〉(λi) =
∑

i ‖Pi |ψ〉 ‖2 = 〈ψ|ψ〉 = 1,

• or, from (2.13) and (2.8),
∑

i p|ψ〉(λi) =
∑

i 〈ψ|Pi|ψ〉 = 〈ψ|
∑

i Pi|ψ〉 = 〈ψ|I|ψ〉 = 1.

7. The type of measurements we have been discussing are known as projective measurements or von
Neumann measurements. In quantum computing it is sometimes convenient to deal with more
general procedures known as generalised measurements. However, it is also possible to realise
such measurements by means of projective measurements, but sometimes not so conveniently.

Distinction between the Orthonormal Basis and Hermitian Operator Approaches

The essential aspect of both approaches is the set of eigenspaces, the eigenvalues essentially just being
labels.

In the orthonormal basis approach the eigenspaces are all one dimensional. In the hermitian
operator approach we allow higher dimensional eigenspaces.

In addition, it is often technically more convenient to deal with an hermitian operator rather than
an orthonormal basis.

2.2.6 Pauli Matrices and Measurement

Each of the Pauli matrices (see Appendix E) gives an important example of an hermitian operator on
qubits.

The matrix σ3 corresponds to measurement in the computational basis {|0〉 , |1〉}, with correspond-
ing outcomes labelled 1 and −1 respectively.

The matrix σ1 corresponds to measurement in the basis {|+〉 , |−〉}, see (2.2), with corresponding
outcomes 1 and −1 respectively.

The matrix σ2 corresponds to measurement in the basis {|i〉 , |−i〉}, see (2.2), again with corre-
sponding outcomes 1 and −1 respectively.

Finally, the most general Pauli matrix n̂ ·~σ corresponds to measurement in an arbitrary (orthonor-
mal) basis.

Denoting eigenspaces by Ej and the corresponding eigenvectors and projection operators by λj
and Pj , we have the following.

Pauli σ3

If in (2.8) H = σ3 =

[
1 0
0 −1

]
= P1 − P2, then

E1 = span |0〉 , P1 =

[
1 0
0 0

]
, λ1 = 1; E2 = span |1〉 , P2 =

[
0 0
0 1

]
, λ2 = −1. (2.14)

The physical realisation of this for spin is measurement of spin in the Φ(|0〉) = Z direction in R3. See
Sections 2.3 and 2.3.5, and equation (F.6).
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Pauli σ1

If in (2.8) H = σ1 =

[
0 1
1 0

]
then only the algebra is a little more complicated. In this case (see (2.2))

E1 = span |+〉 , P1 =
1

2

[
1 1
1 1

]
, λ1 = 1; E2 = span |−〉 , P2 =

1

2

[
1 −1
−1 1

]
, λ2 = −1. (2.15)

See Appendix E for the eigenvectors and values of σ1. The matrices P1 and P2 are the operators
|+〉〈+| and |−〉〈−| (see Appendix D.3.2) and may be calculated from this. See Appendix D.3.1:

P1 = |+〉〈+| = 1

2

(
|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|

)
=

1

2

[
1 1
1 1

]
,

P2 = |−〉〈−| = 1

2

(
|0〉〈0| − |0〉〈1| − |1〉〈0|+ |1〉〈1|

)
=

1

2

[
1 −1
−1 1

]
.

So indeed σ1 = P1 − P2.
The physical realisation of this for spin is measurement of spin in the Φ(|+〉) = X direction in R3.

See Section 2.3 and (F.6).

Pauli σ2

Similarly, if H = σ2 =

[
0 −i
i 0

]
, then

E1 = span |i〉 , P1 =
1

2

[
1 −i
i 1

]
, λ1 = 1; E2 = span |−i〉 , P2 =

1

2

[
1 i
−i 1

]
, λ2 = −1. (2.16)

See Appendix E for the eigenvectors and values of σ2. The projection operators are

P1 = |i〉〈i| = 1

2

(
|0〉〈0| − i |0〉〈1|+ i |1〉〈0|+ |1〉〈1|

)
=

1

2

[
1 −i
i 1

]
,

P2 = |−i〉〈−i| = 1

2

(
|0〉〈0|+ i |0〉〈1| − i |1〉〈0|+ |1〉〈1|

)
=

1

2

[
1 i
−i 1

]
.

So σ2 = P1 − P2.
The physical realisation of this for spin is measurement of spin in the Φ(|i〉) = Y direction in R3.

See Section 2.3 and (F.6).

Pauli n̂ · ~σ

The most general Pauli matrix is H = n̂ · ~σ := n1σ1 + n2σ2 + n3σ3 =

[
n3 n1 − in2

n1 + in2 −n3

]
, where

n̂ = (n1, n2, n3) ∈ R3, see Appendix E.3. From Appendix E.3.2 the unit eigenvectors are, for n3 6= ±1,

|v1〉 =
1√

2(1 + n3)

[
1 + n3

n1 + in2

]
with eigenvalue + 1,

|v−1〉 =
1√

2(1− n3)

[
1− n3

−(n1 + in2)

]
with eigenvalue − 1.

(2.17)

If n3 = ±1 then n̂ · ~σ = ±σ3; the unit eigenvectors are |v1〉 =

[
1
0

]
with eigenvalue +1 and |v−1〉 =

[
0
1

]
with eigenvalue −1.

The eigenspaces, projection operators and eigenvalues are then

E1 = span |v1〉 P1 =
1

2

[
1 + n3 n1 − in2

n1 + in2 1− n3

]
λ1 = 1

E2 = span |v−1〉 P2 =
1

2

[
1− n3 −n1 + in2

−n1 − in2 1 + n3

]
λ2 = −1

(2.18)

See Appendix E.3.2 equation (E.9) and the subsequent remarks there for the projection operators.
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2.3 Qubits and Spin 1/2 Particles

For spin 1/2 particles there is a particularly nice physical interpretation of qubit states and of the
measurement process, as we now discuss.

Initially we will speak of a spin 1/2 particle which corresponds to a qubit |ψ〉, and of the outcome
probability of various measurements. Later we make these correspondences and probabilities “concrete”
on the basis of experimental results and certain frequency counts.

A key point will be that one can produce multiple spin 1/2 particles, all spin-oriented in the same
direction, see Sections 2.3.1 and 2.3.3.

2.3.1 Spin-Orientation

In the following a particle (or a qubit) is referred to as having “spin-orientation in the direction n̂”,
or just “spin-orientation n̂”, where n̂ ∈ R3 is a unit vector. This is also referred to as spin up, spin ↑
or spin +1/2, in the direction n̂. Spin orientation in the direction −n̂, as well as being referred to as
spin ↑ or spin 1/2 in the direction −n̂, may also be referred to as spin down, spin ↓ or spin −1/2 in
the direction n̂.

It is important to realise that a particle with “spin-orientation in the direction n̂” does not possess
a definite property of “spin-orientation in the n̂-direction” which can be discovered by means of some
appropriate measurement.

To the extent such a particle with “spin-orientation n̂” has a “definite” property it is of the following
probabilistic form. (See Section 2.3.2 for Stern-Gerlach apparatus and Section 2.3.3 for preparing a
large sample of particles with the same spin-orientation.)

Experimental Observation Suppose spin 1/2 particles with the same spin-orientation n̂ are mea-
sured by a Stern-Gerlach apparatus oriented in direction k̂, and η ∈ [0, π] is the angle between n̂ and
k̂. Then after measurement the spin-orientation is k̂ with probability cos2 η

2 and is −k̂ with probability
1− cos2 η

2 . See Figure 2.6.

These probabilities have been observed repeatedly and extremely accurately.
Note that if n̂ = k̂ (n̂ = −k̂) then the first (second) probability is 1 and so in these cases, and only

these cases, the outcome is definite.

Figure 2.6: Particles with spin-orientation n̂ are measured by a Stern-Gerlach apparatus oriented
in direction k̂, with angle η between n̂ and k̂. After measurement the spin-orientation is k̂ with
probability cos2 η

2 and −k̂ with probability 1− cos2 η
2 .

2.3.2 Stern-Gerlach Experimental Set-Up

A Stern-Gerlach apparatus generates a non homogeneous magnetic field in some direction in R3, as
in Figure 2.7 where the field is in the vertical or z-direction.
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Figure 2.7: Spin 1/2 particle measured by a Stern-Gerlach apparatus. The apparatus has magnetic
field, from − to +, oriented in the z (vertical) direction, or more generally in an arbitrary k̂ direction
([Lvo18, p203 Fig 4.7]).

When a spin 1/2 particle is passed horizontally through this magnetic field the particle is either
deflected up or down. More accurately, after passing through the field the state of the particle is
in a superposition of spin up ↑ and spin down ↓ in the z direction in R3, with the spin amplitudes
unchanged from before passing through the field. But there is now correlation with spatial position
in a larger Hilbert space — spin up is correlated with being vertically higher and spin down being
vertically lower.

When the particle arrives at the screen it has to, in effect, “make a decision” whether to be spin
up in the z-direction, i.e. have spin-orientation z, or to be spin down in the z-direction, i.e. have spin-
orientation −z, and this will be indicated by which of the two possible spots on the screen register as
being “hit”.

More generally, replacing z by a unit vector k̂, suppose the Stern-Gerlach apparatus has magnetic
field oriented in the k̂ direction. Suppose the particle is passed through the magnetic field in a direction
orthogonal to k̂. Then the particle after measurement will have spin-orientation in either the k̂ or −k̂
direction.

The probability for each of the two possible outcomes ±k̂, assuming the initial spin-orientation
n̂ is known, is given by the Experimental Observation in Section 2.3.1. Note that the two possible
outcomes, as opposed to their probabilities, are independent of the particles initial spin-orientation
direction. (Except that only one outcome is possible if n̂ = ±k̂.)

2.3.3 Multiple Particles with the same Spin-Orientation

From Section 2.3.2, by passing spin 1/2 particles through a Stern-Gerlach apparatus oriented in the
direction k̂, we can prepare particles spin-oriented in either the k̂ direction or −k̂ direction.

However, once the particle hits the detection screen it is destroyed. But if we remove the upper
half of the screen in Figure 2.7 then only those particles which “decide” at the time of measurement
to have spin-orientation −k̂ are destroyed, and the upper “path” gives a stream of particles with
spin-orientation k̂.17

If these particles with spin-orientation k̂ are passed through another Stern-Gerlach apparatus
oriented in the direction k̂ 18 (or the direction −k̂) they will remain with spin-orientation k̂.

Moreover, if these particles are passed through yet another Stern-Gerlach apparatus oriented in the
k̂′ direction then they will be observed to have spin-orientation ±k̂′ with probabilities in accordance
with the Experimental Observation in Section 2.3.1.

17A critical point concerning quantum theory is that quantum particles do not “make a decision” re physical space
until required to do so. Thus the state of the qubit is a superposition of up and down, albeit with different spatial
correlations in each case, until measurement time arrives.

18You may object that after the previous (slight) deflection (in the direction of k̂) the path of the particle is no longer
orthogonal to the direction k̂. However, it is possible to apply an intermediate magnetic field to correct for this.
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2.3.4 Spin-Orientation and Qubit Correspondence: Bloch Sphere Map

In Appendix F we discuss from a mathematical perspective the Bloch sphere one-one correspondence
Φ between qubits |ψ〉 ∈ C2 and unit vectors n̂ ∈ R3. This correspondence can be given directly
via spherical coordinates as in equatons (F.1)–(F.3) or via the projection map |ψ〉〈ψ| as in (F.7)
and (F.11).

For our purposes we use the projection map correspondence. From (F.7)

Φ |ψ〉 = (n1, n2, n3) where |ψ〉〈ψ| = 1

2
(I + n1σ1 + n2σ2 + n3σ3) =:

1

2
(I + n̂ · ~σ), (2.19)

with n̂ = (n1, n2, n3) ∈ S2 ⊂ R3 being uniquely determined by |ψ〉, and the qubit |ψ〉 (up to a global
being uniquely determined by n̂. Recall also that the correspondence between qubits and projection
maps |ψ〉〈ψ| is one-one, see the first paragraph of Appendix F.3.

So after we fix an orthonormal frame in space to correspond to the unit vectors (1, 0, 0), (0, 1, 0),
(0, 0, 1) ∈ R3 we also regard the Bloch Sphere map Φ as a correspondence between qubits in C2 and
directions in space.

2.3.5 Spin-Orientation and Qubit Correspondence: Physical Justification

So finally we come to the key idea.

All spin measurements are essentially of the Stern-Gerlach type. By the Experimental Observation
in Section 2.3.1, for a fixed measurement direction, the observable consequences (which as we have
emphasised are probabilistic) are precisely determined by the measurement direction and the spin-
orientation of the particle being measured.

For this reason we want to identify qubit states with spin-orientations, i.e. with unit vectors
in R3, or equivalently with directions in physical space after choosing an orthonormal frame. One
candidate for such an identification is the Bloch Sphere map. The intention here is to justify on
physical/experimental grounds that this must be the correct identification.

Consider two unit directions in physical space, n̂ and k̂, and let η ∈ [0, π] be the angle between
them.

Let |n̂〉 and |k̂〉 be the qubits in C2 such that Φ |n̂〉 = n̂ and Φ|k̂〉 = k̂. Then the angle between |n̂〉
and |k̂〉 is η/2 from the angle doubling proposition in Appendix F.4.

From Section 2.3.1 recall:
Experimental Observation. If spin 1/2 particles are prepared with spin-orientation n̂ and are

measured by a Stern-Gerlach apparatus oriented in the direction k̂, then the spin-orientation after
measurement is k̂ with probability cos2 η

2 and is −k̂ with probability 1− cos2 η
2 . See Figure 2.6.

From the version of the measurement postulate at the end of Section 2.2.1 under the heading
“Measuring Qubits” we have, since the angle between |n〉 and |k〉 is η/2:

Measurement Postulate Prediction. If |n̂〉 is measured by (i.e. is measured w.r.t.) |k̂〉, then the
state after measurement is |k̂〉 with probability cos2 η

2 and is −|k̂〉 with probability 1− cos2 η
2 .

Conclusion: Through the Bloch sphere mapping |n̂〉 ↔ n̂ = Φ |n̂〉, all experimental observations
(for probabilities via frequency counts) agree with the measurement postulate prediction for the cor-
responding qubits. Since the predicted results of measurements are essentially all we can know about
state space, the Bloch sphere map is the correct and unique identification between state space for qubits
and spin orientations in physical space.
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2.4 Evolution

2.4.1 Evolution Postulate (Discrete Version)

Postulate 3. The time evolution of a closed system is described by a unitary transformation U
operating on its state space V . That is, if |ψ〉 is the state of the system at time t1 then U |ψ〉 is the
state at time t2. The operator U depends on t1 and t2 but not on the state |ψ〉.

Remarks

The requirement that U be unitary is a natural one. In particular, evolution should preserve super-
position of states and map state vectors to state vectors. That is

U(α |v〉+ β |w〉) = αU |v〉+ β U |w〉 , ‖U |v〉 ‖ = 1. (2.20)

These conditions imply U is a unitary transformation. See Appendix B.6.

2.4.2 Examples of Unitary Gates

Please read the first few paragraphs of Appendix E for basic information about the Pauli matrices.
In these examples we introduce the notation for quantum circuits, which is continued in Sec-

tions 3.2.2–3.2.4 and used extensively in Chapter 4.

We discuss three important examples of unitary matrices, each acting on the state space V = C2.
It is easy to see they are unitary, for example the two columns in each case are of unit length and
orthogonal to one another. (They are also hermitian, trace free and real, but these properties, do no
hold for all unitary maps!)

Possible confusion to avoid : The following NOT (σ1 = X) and phase flip (σ3 = Z) gates are given
by the same matrices as those which give measurement operators corresponding to the orthonormal
bases {|+〉 , |−〉} and {|0〉 , |1〉} respectively, see the beginning of Section 2.2.6.

1. The quantum NOT gate is the Pauli matrix σ1 = X =

[
0 1
1 0

]
. It is also called the bit flip

matrix/gate since it takes |0〉 to |1〉 and |1〉 to |0〉.
As part of a quantum circuit it is represented as

or X where α |0〉+ β |1〉 X β |0〉+ α |1〉 , (2.21)

with the input and output indicated in the last case.

As for all quantum circuits, this should be interpreted as change in time, moving from left to
right, rather than something necessarily moving along a wire.

2. The phase flip gate is the Pauli matrix σ3 = Z =

[
1 0
0 −1

]
. It leaves |0〉 unchanged and changes

|1〉 to − |1〉, with the factor −1 = e−iπ being the phase factor change.

As part of a quantum circuit it is represented as

Z where α |0〉+ β |1〉 Z α |0〉 − β |1〉 . (2.22)

3. The Hadamard gate is given by the matrix H =
1√
2

[
1 1
1 −1

]
. It is represented by

H . Note |0〉 H |+〉 , |1〉 H |−〉 . (2.23)

The operator H is unitary, trace free hermitian. Check this. In particular H ∈ H0 and H =
1√
2
(X + Z). See also Appendix E equation (E.4).

33



2.4.3 Evolution Postulate (Continuous Version)

Often we require a version of this postulate concerning evolution in continuous time.

Postulate 3. The time evolution of a closed system is described by the Schrödinger equation

d

dt
|ψ(t)〉 = −iH |ψ(t)〉 , (2.24)

where |ψ(t)〉 is the state of the system at time t. H is a time-independent hermitian operator known
as the Hamiltonian of the system.

2.4.4 Solution of Schrödinger’s Equation

Since the Hamiltonian H in (2.24) is time-independent, in terms of an orthonormal basis of eigenvectors
for H we can write

|ψ〉 = |ψ(t)〉 =

ψ1(t)
...

ψn(t)

 , H =

λ1

. . .

λn

 . (2.25)

It follows that (2.24) is equivalent to the following simple system of independent ordinary differential
equations:

d

dt
ψj(t) = −iλjψj(t), j = 1, . . . , n. (2.26)

This has the solution
ψj(t) = e−iλjtψj(0). (2.27)

That is, the solution |ψ(t)〉 of Schrödinger’s equation at time t, with initial state |ψ(0)〉, is

|ψ(t)〉 = U(t) |ψ(0)〉 , where U(t) := e−itH =

e
−iλ1t

. . .

e−iλnt

 . (2.28)

Note that U(t) is indeed unitary. See Section G.4.

In physical realisations of quantum computing systems, the Hamiltonians, and hence the unitary
gates, are obtained by applying lasers, magnetic fields, etc., appropriately oriented and turned on or
off for various time intervals, typically picoseconds19. Of course, this means the quantum system under
consideration is not closed. However, by taking it as part of a larger system which is then itself treated
as closed, one can usually find a time dependent hermitian operator acting on the original quantum
system under consideration, with parameters that can be varied as required, and which when used in
Schrödinger’s equation gives a good approximation to what happens in the original system.

2.4.5 Hamiltonian Example

As a prototypical example consider the Hamiltonian

H = −ω
2
σ3 =

[
−ω

2 0
0 ω

2

]
. (2.29)

Here σ3 is the Pauli matrix discussed briefly in Section 2.4.1 Example 2.
Since H is already in diagonal form, from (2.28),

U(t) = e−itH =

[
ei
ω
2
t 0

0 e−i
ω
2
t

]
= ei

ω
2
t

[
1 0
0 e−iωt

]
. (2.30)

The phase factor ei
ω
2
t is physically irrelevant when U(t) is applied to an initial state |ψ(0)〉.

Setting t = πω−1, U(πω−1) = σ3 (up to an irrelevant global phase factor ei
ω
2
t).

So Z = σ3 can be physically realised by applying the Hamiltonian H = −ω
2σ3 as an appropriate

laser or magnetic field for a time interval of length πω−1.

19A picosecond is 10−12 of a second.
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Remarks

1. The Hamiltonian H is not the Hadamard matrix/gate H !
2. In (2.28) we noted the operator U(t) is unitary for all t. This is consistent with the discrete time

version in Section 2.4.1.
3. It is also clear from the matrix representation (G.3) that every unitary matrix U can be written

in the form U = exp(−iH) for some Hamiltonian H. So there is a one-one correspondence
between the discrete and continuous time descriptions. In understanding the theory of quantum
computation, as opposed to its experimental set-up, one is usually concerned with the discrete
time formulation.

4. The Schrödinger equation is usually written in the form i~ d
dt |ψ〉 = H |ψ〉 where ~ is Planck’s

constant. We normally choose units such that ~ = 1.
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2.5 Composite Systems

In this section we also introduce and motivate the notion of tensor product. But we only use the nota-
tion and what is contained in the following discussion.20 In Section 3.2 there is further development
of the tensor product of spaces and of operators as needed to study entanglement. A more complete
mathematical development is in Appendix H.

2.5.1 Pairs of Qubits and Bipartite States

Consider first a pair of classical bits, which we refer to as the first and second bit. Their possible
values are 00, 01, 10 and 11. For example, 10 is the case in which the first bit has value 1 and the
second has value 0.

Guided by the State Space Postulate in Section 2.1.1, and Remarks 8 and 9 in Section 2.2.1, we
hope to model the quantum situation for a pair of qubits by considering C4 with basis vectors

|00〉 :=


1
0
0
0

 , |01〉 :=


0
1
0
0

 , |10〉 :=


0
0
1
0

 , |11〉 :=


0
0
0
1

 , (2.31)

The state of a qubit pair, called a bipartite state, would be given by

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 =


α00

α01

α10

α11

 , αjk ∈ C,
∑
|αjk|2 = 1. (2.32)

Moreover, |ψ〉 and eiφ |ψ〉 should be physically indistinguishable and so represent the same qubit.

All states of the form (2.32) are physically realisable. This leads to entanglement, which is central
to quantum theory. The consequences and predictions are very counterintuitive, but have been borne
out in innumerable experiments.

2.5.2 Composite System Postulate

Postulate 4. Suppose we have N physical systems with state spaces V1, . . . , VN respectively. Then the
state space V of the composite physical system is given by the tensor product V = V1⊗· · ·⊗VN . If the
ith system is in the state |ψi〉 for i = 1. . . . , N then the state of the composite system is |ψ1〉⊗· · ·⊗|ψN 〉.

Tensor Products The vector space V = V1 ⊗ V2 is the tensor product of V1 and V2. The state
|ψ1〉 ⊗ |ψ2〉 is the tensor product of |ψ1〉 ∈ V1 and |ψ2〉 ∈ V2. We give the simple examples we need in
Section 2.5.3.

Just think of |ψ1〉⊗ |ψ2〉 as the state of two qubits where the first is in the state |ψ1〉 ∈ V1 and the
second is in the state |ψ2〉 ∈ V2.

We often write |ψ1〉|ψ2〉 or |ψ1ψ2〉 for |ψ1〉 ⊗ |ψ2〉.
Similarly for |ψ1 . . . ψN 〉 = |ψ1〉 · · · |ψN 〉 = |ψ1〉 ⊗ · · · ⊗ |ψN 〉.

2.5.3 N-Qubit Space

In quantum computing we will mostly be concerned with N -qubit space

C2N =
1

C2 ⊗ · · ·⊗
N

C2 . (2.33)

Note how the dimension 2N grows exponentially in N .

20Unfortunately, many courses on general relativity present tensors in an unnecessarily unpleasant and unintuitive
manner.
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The canonical basis for
1

C2 ⊗ · · ·⊗
N

C2 is in one-one correspondence with the set of all 2N possible
classical N -bits,

(0, . . . , 0, 0, 0), (0, . . . , 0, 0, 1}, (0, . . . , 0, 1, 0}, . . . , (1, . . . , 1, 1, 1), (2.34)

here ordered lexicographically. We write the corresponding 2N basis vectors as

|0 . . . 000〉 , |0 . . . 001〉 , |0 . . . 010〉 , . . . , |1 . . . 111〉 . (2.35)

Thus for a single qubit we have canonical basis vectors {|0〉 , |1〉} ⊂ C2. For a pair of qubits the
canonical basis vectors in C4 are

|00〉 , |01〉 , |10〉 , |11〉} ⊂ C4. (2.36)

For a triplet of qubits the canonical basis vectors in C8 are

|000〉 , |001〉 , |010〉 , |011〉 , |100〉 , |101〉 , |110〉 , |111〉 , (2.37)

etc.

2.5.4 Inner Product for Composite Systems

Importance of Inner Product

Recall from Remarks 8 and 9 on page 24 that if V is the state space for a physical system then
orthonormal vectors correspond to mutually exclusive outcomes of an experiment, and an orthonormal
basis corresponds to a set of mutually exclusive and exhaustive outcomes. Moreover, the probabilities
of various outcomes are determined by the absolute values of amplitudes, which are in turn obtained
from the inner product of the state being measured and the outcome state.

Hence the importance of the inner product in the state space.

Inner Product in C2 ⊗ C2

See footnote 1 on page 1 for the inner product in Cn.
The vectors in (2.36) (similarly for (2.37) and (2.35)) are a renaming of the canonical basis vec-

tors (2.34), and so form an orthonormal basis with respect to this inner product. The fact they form an
orthonormal basis is also consistent with the fact they correspond to a set of mutually exclusive and
exhaustive outcomes for the experiment in which each of the two qubits is measured independently in
the {|0〉, |1〉} basis.

The inner product of vectors |φ〉 , |φ′〉 ∈ Cn is often written as 〈φ | φ′〉. See Appendix D.1. So with
|φ〉 = α0 |0〉+ α1 |1〉 ∈ C2 and |φ′〉 = α′0 |0〉+ α′1 |1〉 ∈ C2,

〈φ | φ′〉 = ( |φ〉 , |φ′〉) = α∗0α
′
0 + α∗1α

′
1. (2.38)

Moreover, with |ψ〉 = β0 |0〉 + β1 |1〉 and |ψ′〉 = β′0 |0〉 + β′1 |1〉, it is straightforward to check21 for
the inner product in C2 ⊗ C2 that(

|φ〉 ⊗ |ψ〉 , |φ′〉 ⊗ |ψ′〉
)

= 〈φ | φ′〉 × 〈ψ | ψ′〉. (2.39)
21We have(

|φ〉 ⊗ |ψ〉 , |φ′〉 ⊗ |ψ′〉
)

=
(
α0β0 |00〉+ α0β1 |01〉+ α1β0 |10〉+ α1β1 |11〉 , α′0β′0 |00〉+ α′0β

′
1 |01〉+ α′1β

′
0 |10〉+ α′1β

′
1 |11〉

)
= α∗0β

∗
0α
′
0β
′
0 + α∗0β

∗
1α
′
0β
′
1 + α∗1β

∗
0α
′
1β
′
0 + α∗1β

∗
1α
′
1β
′
1

=
(
α∗0α

′
0 + α∗1α

′
1

) (
β∗0β

′
0 + β∗1β

′
1

)
= 〈φ | φ′〉 × 〈ψ | ψ′〉.
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Inner Product in V ⊗W

In general, if V and W are inner product spaces, we use the extension of (2.39) to define the inner
product on V ⊗W by

(v1 ⊗ w1, v2 ⊗ w2) = (v1, v2)× (w1, w2), (2.40)

and extend by linearity to all of V ⊗W . See Appendix H.1.5.
This is consisent with what we just noted about the standard orthonormal basis for C2 ⊗ C2 and

more generally
1

C2 ⊗ · · ·⊗
N

C2. For example, using (2.40),(
|ij〉 , |kl〉

)
=
(
|i〉 ⊗ |j〉 , |k〉 ⊗ |l〉

)
= 〈i|k〉 × 〈j|l〉

=

{
1 if i = k, j = l

0 otherwise

(2.41)

2.5.5 Entangled Qubit Pairs

The general bipartite state for a pair of qubits is a superposition of the 4 basis states (2.36):

α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 ,
∑
j,k

|αjk|2 = 1. (2.42)

Similarly, if {v, v⊥} is an orthonormal basis for the first C2 in C2 ⊗ C2, and {w,w⊥} for the
second C2, then an orthonormal basis for C2 ⊗ C2 is {|vw〉 , |vw⊥〉, |v⊥w〉, |v⊥w⊥〉}, by (2.40) and as
in (2.41). Using this basis, the general qubit state is

a |vw〉+ b |vw⊥〉+ c |v⊥w〉+ d |v⊥w⊥〉
= a |v〉 ⊗ |w〉+ b |v〉 ⊗ |w⊥〉+ c |v⊥〉 ⊗ |w〉+ d |v⊥〉 ⊗ |w⊥〉, where |a|2+|b|2+|c|2+|d|2 =1.

(2.43)

If the first qubit is prepared in the state |φ〉 = α0 |0〉 + α1 |1〉 and the second in the state |ψ〉 =
β0 |0〉+ β1 |1〉 then the state of the pair of qubits is

|φ〉 ⊗ |ψ〉 = (α0 |0〉+ α1 |1〉)(β0 |0〉+ β1 |1〉) = α0β0 |00〉+ α0β1 |01〉+ α1β0 |10〉+ α1β1 |11〉 . (2.44)

This is a product state — we can act on and measure the two qubits independently and nothing
particularly new will occur.

But not every state of the form (2.42) is a product state. If it is not a product it is said to be
entangled.

Proposition. A pair of qubits in the state

α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉

is entangled if and only

det

[
α00 α01

α10 α11

]
= 0.

Proof. This is easy to see since factorisation of (2.42) as in (2.44) is possible if and only if the two
rows of the matrix in the proposition are linearly dependent.

The analogous result similarly holds for qubits in the state (2.43).

Alice and Bob When considering a pair of qubits it is often convenient to refer to the first as Alice’s
qubit and the second as Bob’s qubit. In (2.44), |φ〉 refers to Alice’s qubit and |ψ〉 refers to Bob’s qubit.
In (2.43), |v〉 and |v⊥〉 refer to Alice’s qubit, while |w〉 and |w⊥〉 refer to Bob’s qubit.

Alice and Bob may be separated by a large distance, in principle even in different galaxies. The
qubits have typically been previously brought together for the entanglement process (or perhaps they
were individually entangled with a previously entangled system). Alice can only measure her own
qubit, unless she also has access to Bob’s qubit, and similarly for Bob.

See Section 3.2.6 for measuring entangled states.
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2.5.6 Bell States

Definitions Particularly important examples of entangled pairs of qubits are given by the Bell
States: ∣∣Φ+

〉
=

1√
2

(
|00〉+ |11〉

) ∣∣Φ−〉 =
1√
2

(
|00〉 − |11〉

)
∣∣Ψ+

〉
=

1√
2

(
|01〉+ |10〉

) ∣∣Ψ−〉 =
1√
2

(
|01〉 − |10〉

) (2.45)

These are entangled states by the previous proposition. It is routine to entangle pairs of qubits into
Bell states and other states on a quantum computer.

Orthonormal Basis As noted in Section 2.5.4 the states {|00〉 , |01〉 , |10〉 , |11〉} form an orthonormal
basis for C2 ⊗ C2. From this it is easy to check that the Bell states also form an orthonormal basis.
For example, with simple cancellations,〈

Φ+
∣∣Ψ−〉 =

1

2

(
〈00|+ 〈11|

)(
|01〉 − |10〉

)
=

1

2

(
〈00|01〉 − 〈00|10〉+ 〈11|01〉 − 〈11|10〉

)
=

1

2
(0− 0 + 0− 0) = 0.

Separating Entangled Qubits After entanglement the two qubits in a Bell state may be sent to
different locations and remain entangled. In the EPR experiment discussed in Section 1.4 entangled
photons were separated by over 1200km and remained entangled. In principle, particles could be
entangled and remain entangled after one of them is sent off to a different galaxy.

Further properties of the Bell states are discussed in Section 3.2.
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Chapter 3

Entanglement
Conundrum or Re‘ource ?
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3.1 No-Cloning Theorem

The no-cloning theorem has fundamental implications for quantum computing. Although it does not
involve entanglement as stated here, it has an extension to the no-broadcasting theorem for “mixed”
states, which we discuss in a later section and which does involve entanglement.

Copying/cloning classical bits is standard, as occurs for example when files are backed up.
But copying an unkown qubit is not possible. This was originally thought to be a problem for the

realisation of quantum computing, but the issue is now largely resolved by means of quantum error
correction codes, see [NC10, Chapter 10].

On the other hand, the no-cloning result is essential in establishing secure quantum cryptographic
transmission. A quantum system cannot be intercepted and copied in transit between the sender
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and the receiver without disturbing it in some way. This disturbance can then be used to enable the
intended receiver to detect the interception.

Suppose we have a quantum computer with two input slots and two output slots. An unknown
state |ψ〉 and a fixed state |φ〉 are fed into the two slots. The requirement is that a copy of |ψ〉 come
out of each of the two output slots. See Figure 3.1.

The following shows this is not achievable by means of a unitary transformation. More general
results show that applying measurement operators does not help, essentially because this leads to loss
of information.

The following argument can also be easily modified to rule out the possibility of three input slots
for |ψ〉 (unknown) |φ〉 and |χ〉 (both fixed) and three output slots delivering |ψ〉, |ψ〉 and |ζ〉 (“junk”
or “scratch work”) (Exercise).

Figure 3.1: There is no unitary U with inputs arbitrary |ψ〉 and fixed |φ〉, and outputs |ψ〉 and |ψ〉.

Proposition. Suppose V is an inner product space. Then there does not exist a unitary U : V ⊗V →
V ⊗ V and a vector s ∈ V such that for every unit norm vector v ∈ V , U(v ⊗ s) = v ⊗ v.

Proof. Assume such U and s do exist. Then for any v ∈ V and w ∈ V ,

U : v ⊗ s 7→ v ⊗ v, U : w ⊗ s 7→ w ⊗ w. (3.1)

Since U preserves inner products, from (2.39) or more generally (2.40),

〈v ⊗ s, w ⊗ s〉 = 〈v ⊗ v, w ⊗ w〉,
i.e. 〈v, w〉 〈s, s〉 = 〈v, w〉2.

Setting v = w implies 〈s, s〉 = 1 6= 0. Hence 〈v, w〉 = 0 or 1 for all unit v and w.
This contradiction establishes the proposition.

(Essentially all that is being asserted here is that a general quadratic map v 7→ v⊗v is not a linear
map, in particular is not v 7→ U(v ⊗ s) for some s.)
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3.2 Disentangling Entanglement

In this section we look at some of the basic tools for analysing, understanding and utilising entangle-
ment.

Although much of the discussion concerns the |Φ+〉 Bell state for a pair of entangled qubits, the
ideas readily extend and are fundamental for all of quantum theory.

3.2.1 Invariance Properties of the Bell States

Here again are the Bell states briefly discussed in (2.45). See also Section 1.3.3.∣∣Φ+
〉

=
1√
2

(
|00〉+ |11〉

) ∣∣Φ−〉 =
1√
2

(
|00〉 − |11〉

)
∣∣Ψ+

〉
=

1√
2

(
|01〉+ |10〉

) ∣∣Ψ−〉 =
1√
2

(
|01〉 − |10〉

) (3.2)

Bell states are the key to superdense coding (Section 3.3), teleportation (Section 3.4) and the CHSH
inequalities (Section 3.5).

They also have some very useful invariance properties.
For this purpose define the unitary matrix U to be a real rotation of C2 if its matrix has real

entries, see (B.7). That is, U =

[
α −β
β α

]
with α, β ∈ R, α2 + β2 = 1. Note U−1 = U∗ =

[
α β
−β α

]
.

Proposition. Let c|v〉 = U |0〉 and
∣∣v⊥〉 = U |1〉 be the orthonormal basis of C2 obtained by a real

rotation U of the standard basis. Then∣∣Φ+
〉

=
1√
2

(
|00〉+ |11〉

)
=

1√
2

(
|vv〉+ |v⊥v⊥〉

)
. (3.3)

Proof. Let U =

[
α −β
β α

]
. Then |v〉 = α |0〉+ β |1〉 and

∣∣v⊥〉 = −β |0〉+ α |1〉. Hence

1√
2

(
|vv〉+ |v⊥v⊥〉

)
=

1√
2

((
α |0〉+ β |1〉

)(
α |0〉+ β |1〉

)
+
(
− β |0〉+ α |1〉

)(
− β |0〉+ α |1〉

))
=

1√
2

(
(α2 + β2) |00〉+ (α2 + β2) |11〉

)
=
∣∣Φ+

〉
.

Example Let U = 1√
2

[
1 −1
1 1

]
. Then |v〉 = U |0〉 = |+〉 and

∣∣v⊥〉 = U |1〉 = − |−〉. So |vv〉 = |++〉

and also1 |v⊥v⊥〉 = |−−〉.
It follows from the proposition that |Φ+〉 = 1√

2

(
|00〉+ |11〉

)
= 1√

2

(
|++〉+ |−−〉

)
.

It is straightforward to check that (3.3) does not hold for an arbitrary orthonormal basis {|v〉 , |v⊥〉}.2
However, although we do not need it, for completeness we note the following for another Bell state:

1For example, it follows from (2.44) that (a |φ〉)⊗ (b |ψ〉) = (ab) |φ〉 ⊗ |ψ〉.
2Using (B.7) one can write

|0〉 = a |v〉 − eiζb∗|v⊥〉, |1〉 = b |v〉+ eiζa∗|v⊥〉, where |a|2 + |b|2 = 1

Hence

1√
2

(
|00〉+ |11〉

)
=

1√
2

((
a |v〉 − eiζb∗|v⊥〉

)
⊗
(
a |v〉 − eiζb∗|v⊥〉

)
+
(
b |v〉+ eiζa∗|v⊥〉

)
⊗
(
b |v〉+ eiζa∗|v⊥〉

))
=

1√
2

(
(a2 + b2) |v〉 |v〉+ (a∗b− ab∗)eiζ |v〉 |v⊥〉+ (a∗b− ab∗)eiζ |v⊥〉 |v〉+

(
(a∗)2 + (b∗)2

)
e2iζ |v⊥〉|v⊥〉

)
,

after some cancellation. This does not in general equal 1√
2

(
|vv〉+ |v⊥v⊥〉

)
unless a, b ∈ R and ζ = 0.
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Proposition. Let {|v〉 , |v⊥〉} be any orthonormal basis of C2. Then

∣∣Ψ−〉 =
1√
2

(
|01〉 − |10〉

)
=

1√
2

(
|vv⊥〉 − |v⊥v〉

)
, (3.4)

where the second equality is up to some global phase factor. Hence both terms represent the same state.

Proof. For some unitary U =

[
α β
γ δ

]
, |v〉 = U |0〉 = α |0〉+ β |1〉, |v⊥〉 = U |0〉 = α |0〉+ β |1〉. Then

1√
2

(
|vv⊥〉 − |v⊥v〉

)
=

1√
2

(
(α |0〉+ β |1〉)(γ |0〉+ δ |1〉)− (γ |0〉+ δ |1〉)(α |0〉+ β |1〉)

)
=

1√
2

(αδ − βγ)
(
|01〉 − |10〉

)
.

But αδ − βγ = detU = eiζ for some ζ ∈ R, since U is unitary and so |detU | = 1.3

3.2.2 CNOT Gate

First review the single qubit gates discussed in Section 2.4.1, namely X , Z and H .

Universality The controlled not or CNOT gate is applied to a pair of qubits, and is the key gate for
producing entanglement. Its significance is that every unitary operation on n qubits is a composition
of single qubit gates and the CNOT gate. Thus these gates are universal for quantum computation.
See [NC10, Section 4.5].

Both qubits need to be physically present in order to apply the CNOT gate.
For the physical realisation of CNOT gates see [ZCDH09, Section 2.4, page 19], [NC10, Chapter 7]

and [CCEZ03].

Representations The CNOT gate is representated by
•

or
•

. In the first representation

the top qubit is the control and the bottom qubit is the target (and conversely in the second). The
control qubit is unchanged after the CNOT gate is applied. If the control is |0〉 then the target is
also unchanged. But if the control is |1〉 then the target is flipped, as for the NOT gate (2.21).
Diagramatically,

|00〉 7→ |00〉 |01〉 7→ |01〉 |10〉 7→ |11〉 |11〉 7→ |10〉
|0〉 • |0〉
|0〉 |0〉

|0〉 • |0〉
|1〉 |1〉

|1〉 • |1〉
|0〉 |1〉

|1〉 • |1〉
|1〉 |0〉

(3.5)

With respect to the standard basis {|00〉 , |01〉 , |10〉 , |11〉}, CNOT has matrix
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (3.6)

Note that CNOT is unitary, as are all quantum gates.

Producing Entanglement Consider the input product pair

|+〉 |0〉 =
1√
2

(|0〉+ |1〉) |0〉 =
1√
2

(|00〉+ |10〉). (3.7)

3If U is unitary then UU∗ = I implies detU detU∗ = det I = 1. But detU∗ = (detU)∗ since detA is a sum of
products of the matrix entries of A for any square matrix A. Hence | detU |2 = 1 and so |detU | = 1.
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Then by (3.5) and linearity,
1√
2
(|0〉+ |1〉) •

|0〉

|Φ+〉 = 1√
2
(|00〉+ |11〉)

(3.8)

The output is the entangled Bell pair |Φ+〉. To see this consider the input |00〉 + |10〉 (from the actual
input 1√

2
(|0〉 + |1〉) ⊗ |0〉 = 1√

2
(|00〉 + |10〉 before normalisation) and note from the properties of the

CNOT gate that the first qubit from each of the two kets is unchanged (being the controls), the second
0 in |00〉 is also unchanged, but the 0 in |10〉 is flipped.

One could also see this by applying the CNOT matrix to the column vector 1√
2
[1010]t which

corresponds to the input (3.7), but this is not the best way to gain intuition.

3.2.3 Preparing Bell States

Bell states can physically be prepared from certain atomic reactions.
The quantum circuit way is to use the CNOT gate as in the previous section, but now beginning

with states |0〉 and/or |1〉 followed by a Hadamard gate as in (2.23) and then a CNOT gate. See (3.9).

|0〉 H •

|0〉

 |Φ+〉
|0〉 H •

|1〉

 |Ψ+〉

|1〉 H •

|0〉

 |Φ−〉 |1〉 H •

|1〉

 |Ψ−〉
(3.9)

The first example in (3.9) is essentially (3.8), with the Hadamard gate used to send |0〉 to |+〉 =
1√
2
(|0〉+ |1〉), which is then the control for the CNOT gate, as in (3.8).

For the second example the Hadamard gate again sends |0〉 to 1√
2
(|0〉 + |1〉) which is again the

control. But the target is now |1〉 so the output is 1√
2
(|01〉+ |10〉) = |Ψ+〉.

For the third example the control is H |1〉 = 1√
2
(|0〉 − |1〉) and the target is |0〉, so the output is

1√
2
(|00〉 − |11〉) = |Φ−〉.
For the fourth example the control is H |1〉 = 1√

2
(|0〉 − |1〉) and the target is |1〉, so the output is

1√
2
(|01〉 − |10〉) = |Ψ−〉.

3.2.4 Interim States in Quantum Circuits

Both here and later, it is often helpful to have a record of the state before and after each gate is
applied. For the second example in 3.9 this could be written as

|0〉 H •

|1〉

 |Ψ+〉

↑ ↑ ↑
|ψ0〉 |ψ1〉 |ψ2〉

(3.10)

where

|ψ0〉 = |01〉 , |ψ1〉 =
1√
2

(|01〉+ |11〉), |ψ2〉 =
1√
2

(|01〉+ |10〉), (3.11)

3.2.5 Tensor Product of Operators

Here we consider tensor products

S ⊗ T : C2 ⊗ C2 → C2 ⊗ C2, (3.12)

since this is what is needed for the immediate applications to Bell pairs. But the key ideas are all here
in this setting, so we are basically just simplifying notation.
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Example

The Hadamard gate H in (3.10) is applied to the first qubit and the second qubit is unaltered. We
can think of the action on the second qubit as an application of the identity map I. If we regard the
two qubits together as a single system, then the action on the pair of qubits is denoted by H ⊗ I,
which we call the tensor product of H and I.

Then using (3.11) we have

(H ⊗ I) |ψ0〉 = (H ⊗ I)(|0〉 ⊗ |1〉) = H |0〉 ⊗ I |1〉

=
1√
2

(|0〉+ |1〉)⊗ |1〉 =
1√
2

(|01〉+ |11〉) = |ψ1〉 .
(3.13)

Definition

More generally, suppose S : C2 → C2 (think of S as being applied to the first qubit) and T : C2 → C2

(think of T a being applied to the second qubit) are linear operators (usually both hermitian or both
unitary). Then the linear operator S ⊗ T : C2 ⊗ C2 → C2 ⊗ C2 is defined in the natural way on the
computational basis vectors

(S ⊗ T ) |00〉 = S |0〉 ⊗ T |0〉 , (S ⊗ T ) |01〉 = S |0〉 ⊗ T |1〉 , etc., (3.14)

and extended by linearity

(S ⊗ T )
(
α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉

)
= α00S |0〉 ⊗ T |0〉+ α01S |0〉 ⊗ T |1〉+ α10S |1〉 ⊗ T |0〉+ α11S |1〉 ⊗ T |1〉 .

(3.15)

Moreover, it is easy to check4 that

(S ⊗ T )(|ψ1〉 ⊗ |ψ2〉) = S |ψ1〉 ⊗ T |ψ2〉 . (3.16)

So for unitary operators (gates) in a quantum circuit both qubits are just operated on indepen-
dently:

|ψ1〉 S S |ψ1〉

|ψ2〉 T T |ψ2〉

(3.17)

Finally, we remark that the definition of S⊗T in (3.15) relied on the choice of basis (the canonical
basis here). But in Appendix H.3 we see that the definition does not actually depend on the choice
of basis. In fact for the general definition we use (3.16) for |ψ1〉 ∈ V1 and |ψ2〉 ∈ V2 as part of the
definition of S ⊗ T and show it can be extended uniquely by linearity to all of V1 ⊗ V2.

Matrix Representation

Suppose S, T : C2 → C2 have matrices with respect to the standard basis {|0〉 , |1〉} as follows:

S =

[
S11 S12

S21 S22

]
, T =

[
T11 T12

T21 T22

]
. (3.18)

4Let |ψ1〉 = α1 |0〉+ β1 |1〉, |ψ2〉 = α2 |0〉+ β2 |1〉. Then

(S ⊗ T )(|ψ1〉 ⊗ |ψ2〉) = (S ⊗ T )
(
α1α2 |00〉+ α1β2 |01〉+ β1α2 |10〉+ β1β2 |11〉

)
= α1α2S |0〉 ⊗ T |0〉+ α1β2S |0〉 ⊗ T |1〉+ β1α2S |1〉 ⊗ T |0〉+ β1β2S |1〉 ⊗ T |1〉
=
(
α1S |0〉+ β1S |1〉

)
⊗
(
α2T |0〉+ β2T |1〉

)
= S |ψ1〉 ⊗ T |ψ2〉 .
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Then it follows from (3.14) that

(S ⊗ T ) |00〉 = S |0〉 ⊗ T |0〉
=
(
S11 |0〉+ S21 |1〉

)
⊗
(
T11 |0〉+ T21 |1〉

)
= S11T11 |00〉+ S11T21 |01〉+ S21T11 |10〉+ S21T21 |11〉 ,

etc. Using the standard lexicograpic basis ordering {|00〉 , |01〉 , |10〉 , |11〉} for C4 it follows that the
matrix of S ⊗ T is

S ⊗ T =


S11T11 S11T12 S12T11 S12T12

S11T21 S11T22 S12T21 S12T22

S21T11 S21T12 S22T11 S22T12

S21T21 S21T22 S22T21 S22T22

 =

[
S11T S12T
S21T S22T

]
. (3.19)

That is, multiply each entry in the matrix for S by the matrix for T, thereby obtaining the block
matrix on the right.

CNOT is Not a Tensor Product

This is clear from the matrix representations in (3.19) and (3.6).
Moreover, from (3.16) it is clear that a tensor product of operators cannot produce entanglement,

unlike CNOT as seen from (3.8) and the discussion which follows it.

Tensoring Preserves Hermitian and Unitary Properties

Suppose S is hermitian with orthonormal basis of eigenvectors {|v1〉 , |v2〉} and corresponding matrix[
s1 0
0 s2

]
, where s1 and s2 are real. Similarly suppose T is hermitian with eigenvectors {|w1〉 , |w2〉}

and matrix

[
t1 0
0 t2

]
, where t1 and t2 are real.

Then with respect to the orthonormal (from (2.39)) basis {|v1w1〉 , |v1w2〉 , |v2, w1〉 , |v2, w2〉}, S⊗T

has matrix


s1t1

s1t2
s2t1

s2t2

, from (3.19). Hence S ⊗ T is hermitian from Appendix B.2.

S ⊗ T is hermitian with eigenstates |v1w1〉, |v1w2〉, |v2, w1〉, |v2, w2〉,
and with eigenvalues s1t1, s1t2, s2t1, s2t2 respectively

(3.20)

Suppose S is unitary with orthonormal basis of eigenvectors {|v1〉 , |v2〉} and corresponding ma-

trix

[
eiζ1 0
0 eiζ2

]
, where ζ1 and ζ2 are real. Suppose T is unitary with eigenvectors {|w1〉 , |w2〉} and

corresponding matrix

[
eiη1 0
0 eiη2

]
, where η1 and η2 are real.

Then S⊗T has matrix


ei(ζ1+η1)

ei(ζ1+η2)

ei(ζ2+η1)

ei(ζ2+η2)

 with respect to the orthonormal

basis {|v1w1〉 , |v1w2〉 , |v2, w1〉 , |v2, w2〉}. Hence S ⊗ T is unitary from Appendix B.2.

S ⊗ T is unitary with eigenstates |v1w1〉, |v1w2〉, |v2, w1〉, |v2, w2〉,
and with eigenvalues ei(ζ1+η1), ei(ζ1+η2), ei(ζ2+η1), ei(ζ2+η2) respectively

(3.21)

3.2.6 Measuring Entangled States

In this section we give a “hands on” approach.
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Measuring a Single Unentangled Qubit

Recall that if a single qubit in the state α |v〉+β|v⊥〉 is measured with respect to the basis {|v〉 , |v⊥〉}
then the state after measurement is |v〉 with probability |α|2 and is |v⊥〉 with probability |β|2. That
is, if the outcome is |v〉 we “cross out” the incompatible (orthonormal) state |v⊥〉, obtaining α |v〉 +
///////β|v⊥〉, and then renormalise to get α

|α| |v〉 or equivalently |v〉. Similarly if the outcome is |v⊥〉.

Measuring the First Qubit in an Entangled Pair

It is possible to measure just the first qubit of an entangled pair and consider the instantaneous effect
on the entangled pair as a system, even though the individual qubits may be spatially separated by a
large distance (say, in principle, in different galaxies). But we cannot measure the combined state of
the entangled qubits unless they are both physically present. We return to this later in this section.

Consider the general entangled qubit state for C2 ⊗ C2, see (2.43), expressed in terms of the
orthonormal bases {v, v⊥} and {w,w⊥}:

a |vw〉+ b |vw⊥〉+ c |v⊥w〉+ d |v⊥w⊥〉
= a |v〉 ⊗ |w〉+ b |v〉 ⊗ |w⊥〉+ c |v⊥〉 ⊗ |w〉+ d |v⊥〉 ⊗ |w⊥〉
= |v〉 ⊗

(
a |w〉+ b |w⊥〉

)
+ |v⊥〉 ⊗

(
c |w〉+ d |w⊥〉

)
.

(3.22)

Suppose the first qubit is measured with respect to the basis {v, v⊥}. By analogy with what
happens when measuring a single unentangled qubit, we expect (and it is the case) that there are two
possible outcomes obtained by crossing out incompatible states to get before normalising

|v〉 ⊗
(
a |w〉+ b |w⊥〉

)
+ ////////////////////////////|v⊥〉 ⊗

(
c |w〉+ d |w⊥〉

)
or ///////////////////////////|v〉 ⊗

(
a |w〉+ b |w⊥〉

)
+ |v⊥〉 ⊗

(
c |w〉+ d |w⊥〉

)
.

(3.23)

After normalising this gives

|v〉⊗

(
a√

|a|2 + |b|2
|w〉+

b√
|a|2 + |b|2

|w⊥〉

)
with probability |a|2 + |b|2,

|v⊥〉⊗

(
c√

|c|2 + |d|2
|w〉+

d√
|c|2 + |d|2

|w⊥〉

)
with probability |c|2 + |d|2.

(3.24)

This process is also called the Partial Measurement Rule

Note that after measurement of the first qubit the system in this case is no longer entangled.
Note also that measuring just one qubit projects the original state onto one of two half-spaces.

This is true more generally if we measure one qubit from a state in C2 ⊗C2 ⊗ · · · ⊗C2. But of course
in this case the resulting state may still be entangled.

Measuring the Second Qubit

Subsequent measurement and normalisation of the second qubit gives

|v〉 ⊗ |w〉 with probability
(
|a|2 + |b|2

) |a|2

|a|2 + |b|2
= |a|2

|v〉 ⊗ |w⊥〉 with probability
(
|a|2 + |b|2

) |b|2

|a|2 + |b|2
= |b|2

|v⊥〉 ⊗ |w〉 with probability
(
|c|2 + |d|2

) |c|2

|c|2 + |d|2
= |c|2

|v⊥〉 ⊗ |w⊥〉 with probability
(
|c|2 + |d|2

) |d|2

|c|2 + |d|2
= |d|2

(3.25)
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Moreover, if the measurements of the first and second qubits were done in the reverse temporal order
the possible outcome states and their probabilities are the same.

Note that the four possible states after measurement, and their probabilities, are consistent with
Postulate 2 in Section 2.2 or Section 2.2.5. In the latter case the hermitian operator H is given by (2.8)
where the projection operators P1, . . . , P4 are orthogonal projection onto |vw〉, |vw⊥〉, |v⊥w〉, |v⊥w⊥〉
respectively and the four eigenvalues just need to be distict.

Measurement in the Computational Basis

The previous two measurements together give measurement in the basis {|vw〉, |vw⊥〉, |v⊥w〉, |v⊥w⊥〉}.

In particular, measurement for a pair of qubits in the computational basis |00〉, |01〉, |10〉, |11〉 can
be performed in this manner. A tensor matrix representation of this measurement is

T =


λ00 0 0 0
0 λ01 0 0
0 0 λ10 0
0 0 0 λ11

 , (3.26)

provided {λ00, λ01, λ10, λ11} are all distinct.

Measuring a Bell Pair For example, consider (see Section 3.2.1)∣∣Φ+
〉

=
1√
2

(
|00〉+ |11〉

)
=

1√
2

(|0〉 ⊗ |0〉) +
1√
2

(|1〉 ⊗ |1〉). (3.27)

From (3.25), measurement in the computational basis gives outcome |00〉 with probability 1/2 and
outcome |11〉 with probability 1/2.

One strange consequence of this is that if Alice obtains |0〉 (respectively |1〉) from measuring her
qubit on Earth, instantaneously it becomes the situation that Bob will definitely obtain |0〉 (respec-
tively |1〉) even if he measures his entangled qubit on Mars.

3.2.7 Measurement in the Bell Basis

In principle, any hermitian operator T on state space should correspond to a physically realisable
measurement. However, some measurements are more difficult to perform than others.

For simplicity, suppose the eigenvalues of T are all distinct, in which case T corresponds to measure-
ment in the orthonormal basis given by the eigenspaces of T . One procedure to realise measurement
with respect to T is to apply a unitary operator to the system which converts this basis into the
standard computational basis, and then measure in the computational basis. Since unitary operations
preserve inner products and hence preserve probabilities, this is essentially equivalent to measuring
with T .

From Section 2.5.6 the Bell states form an orthonormal basis, and in some applications such as
superdense coding, it is necessary to perform a measurement in this basis. See Section 3.3.

From Section 3.2.3, the computational basis {|00〉 , |01〉 , |10〉 , |11〉} is transformed into the Bell
basis {|Φ+〉 , |Ψ+〉 , |Φ−〉 , |Ψ−〉} by the unitary operation CNOT ◦ (H ⊗ I). The inverse operation is
unitary and transforms the Bell basis into the computational basis. But the inverse of CNOT◦(H⊗I)
is just (H ⊗ I) ◦ CNOT 5, which is given by application of two standard quantum gates.

So measurement in the Bell basis is physically realisable by first applying (H ⊗ I) ◦ CNOT and
then measuring in the computational basis.

5The inverse of CNOT is CNOT, and of H ⊗ I is H ⊗ I. This is clear by a simple calculation. But better to note
that since both are unitary their inverse is their adjoint, and since each is real the adjoint is the transpose, which in both
cases is the original matrix.
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The following shows the action of (H ⊗ I) ◦ CNOT on the Bell basis vectors in quantum circuit
notation.

• H |0〉
|Φ+〉

|0〉

 • H |0〉
|Ψ+〉

|1〉


• H |1〉

|Φ−〉
|0〉

 • H |1〉
|Ψ−〉

|1〉


(3.28)

3.2.8 Local Description for each Qubit

We know the state of the entangled pair is |Φ+〉, but is there some description of Alice’s qubit which
is local to Alice? (and similarly for Bob?) There is — but it is not obvious, yet elegant and simple.

*** (more to come)***
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3.3 Superdense Coding

Background

Suppose Alice and Bob have access to a quantum communication channel over which they can send
qubits. For example, an optical fibre over which they can send polarised photons, or a cable over
which they can send spin 1/2 particles. etc.

If Alice wants to send Bob a single classical bit of information, either 0 or 1, then she can do the
following. Send Bob a qubit in the state |0〉 (e.g. a spin 1/2 particle spin-oriented in the z direction)
if she wants to send the bit 0, and send a qubit in the state |1〉 (e.g. a spin 1/2 particle spin-oriented
in the −z direction) if she wants to send the bit 1.

Bob then measures the qubit in the computational basis, (e.g. in the z direction in the case of spin
1/2 particles), and with probability 1 he will in effect obtain the correct bit of information.

This is not very interesting. But it would seem that one cannot do better, since measuring a
qubit only gives one bit of information, after which there is no further pre-measurement information
obtainable from the qubit.

Outline

Suppose again that Alice and Bob are at distant locations and can access a quantum communication
channel as above, but now share a pair of previously prepared qubits in the (entangled) Bell state∣∣Φ+

〉
=

1√
2

(|00〉+ |11〉) =
1√
2

(
|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉

)
,

with Alice holding the first qubit (say) and Bob the second. The entangled pair |Φ+〉 can be prepared
ahead of time by a third party, and does not contain any information from Alice.

We refer to the shared Bell state as a shared resource.

It is now possible for Alice to send Bob one qubit which enables him to extract two classical bits
of information: 00, 01, 10 or 11.

The idea is as follows.
• Depending on which of the four possible values (for the two bits) that Alice wants to send Bob,

Alice performs one of four operations on her qubit from their shared state |Φ+〉. This changes
the shared state into one of the four possible Bell states |Φ+〉, |Φ−〉, |Ψ+〉, |Ψ+〉.
• Alice sends her (single) qubit to Bob, who now has both qubits.
• Bob measures the transformed state in the Bell basis, and from the result recovers the original

two bits of information.

Summary

1 (shared) ebit + 1 qubit
quantum−−−−−→
channel

2 bits (3.29)

The sender needs one entangled bit shared with the receiver, and to send one qubit, in order to send
two bits of information.

Details

For example, if Alice wants to send the bits 01 to Bob then she applies σ3 to her qubit. This transforms
the shared Bell state via σ3⊗ I into |Φ−〉. (See (3.13) and the discussion for H ⊗ I. See (2.22) for the
unitary operator σ3.)
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Figure 3.2: Depending on the pair of bits she wants to “send” to Bob, Alice tranforms her qubit
from the Bell pair |Φ+〉 as indicated, and then sends her qubit to Bob.

In detail, since σ3 |0〉 = |0〉 and σ3 |1〉 = − |1〉, i.e. σ3 is the “phase-flip”,

(σ3 ⊗ I)
1√
2

(
|00〉+ |11〉

)
=

1√
2

(σ3 ⊗ I)
(
|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉

)
=

1√
2

(
|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉

)
=

1√
2

(
|00〉 − |11〉

)
=
∣∣Φ−〉 .

With a little practice one can easily do this without writing down any calculations:

for 00 apply I ⊗ I to
1√
2

(|00〉+ |11〉) to get
1√
2

(|00〉+ |11〉) =
∣∣Φ+

〉
for 01 apply σ3 ⊗ I to get

1√
2

(|00〉 − |11〉) =
∣∣Φ−〉

for 10 apply σ1 ⊗ I to get
1√
2

(|10〉+ |01〉) =
∣∣Ψ+

〉
for 11 apply iσ2 ⊗ I to get

1√
2

(− |10〉+ |01〉) =
∣∣Ψ−〉

Note that iσ2 =

[
0 1
−1 0

]
, and in particular is real. Also note that Alice only acts on her own qubit.

Alice then sends her qubit to Bob so that he has both qubits in the entangled pair.

Bob now performs a measurement in the orthonormal Bell basis for C2 ⊗ C2 as described in
Section 3.2.7. This gives one of four outcomes with certainty, corresponding to the 4 Bell basis vectors
and in this case to the 4 classical bit pairs.
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3.4 Teleportation

Outline

Alice has a qubit in an unknown state |ψ〉 = α |0〉+β |1〉. She wants to send the state to Bob, but she
only has a classical communication channel such as a telephone, and only time or resources to send a
few bits of classical information. In particular, Alice cannot send the physical qubit to Bob.

But suppose Alice and Bob also share a pair of previously prepared qubits in the (entangled) Bell
state ∣∣Φ+

〉
=

1√
2

(|00〉+ |11〉) =
1√
2

(
|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉

)
,

There are three qubits to consider. The first qubit is the qubit with the unknown state held by
Alice and whose state she wants to send to Bob. The second qubit is also held by Alice and is the
first qubit in the entangled Bell pair. The third qubit is the one held by Bob, and is the second qubit
in the entangled bell pair.

Alice can send the state |ψ〉 = α |0〉+ β |1〉 of her first qubit to Bob as follows:
• Alice measures her two qubits in the Bell Basis, which in particular first involves entangling her

two qubits, and hence all three qubits.
• There are 4 possible measurement results for Alice, |Φ+〉, |Φ−〉, |Ψ+〉, |Ψ+〉 (which can hence be

labelled by two bits of information).
• As a consequence of Alice’s measurement, Bob’s qubit is disentangled from the first two qubits.

Moreover, it’s state will be one of 4 possibilities α |0〉 ± β |1〉 or −α |0〉 ± β |1〉, corresponding to
Alice’s 4 possible outcomes.
• Alice sends Bob the two bit message stating which Bell state was her outcome. From this

information Bob can apply the appropriate unitary transformation to reconstruct from his qubit
the original state of Alice’s qubit.

Amazing!!

Summary

1 (shared) ebit + 2 bits
classical−−−−−→
channel

1 qubit (3.30)

The sender needs one entangled bit shared with the receiver, and to send two (classical) bits of
information, in order to teleport one (unknown) qubit.

Details

Figure 3.3: Teleportation circuit. |β00〉 = |Φ+〉, X = σ1, Z = σ3. See Footnote 6 for an explanation.

Following Figure 3.3, the top qubit begins in the unknown state |ψ〉 = α |0〉+ β |1〉 and belongs to
Alice.

The qubits in the second and third lines begin in the entangled state |Φ+〉 = 1√
2
(|00〉+ |11〉), with

the qubit on the second line belonging to Alice and that on the third belonging to Bob.

52



So in Figure 3.3,
|ψ0〉 = |ψ〉 ⊗

∣∣Φ+
〉

=
(
α |0〉+ β |1〉

) 1√
2

(
|00〉+ |11〉

)
=

1√
2

(
α |000〉+ α |011〉+ β |100〉+ β |111〉

)
.

(3.31)

Looking from |ψ0〉 to |ψ3〉 in Figure 3.3 we see from (3.28) that Alice will be measuring her pair
of qubits in the Bell basis. For this reason it will be useful to rewrite the state of Alice’s qubits as a
superposition of the Bell basis vectors. For this note from (3.2) that

|00〉 =
1√
2

(∣∣Φ+
〉

+
∣∣Φ−〉) |01〉 =

1√
2

(∣∣Ψ+
〉

+
∣∣Ψ−〉)

|10〉 =
1√
2

(∣∣Ψ+
〉
−
∣∣Ψ−〉) |11〉 =

1√
2

(∣∣Φ+
〉
−
∣∣Φ−〉). (3.32)

If follows from (3.31) that

|ψ0〉 =
1

2

(
α
(∣∣Φ+

〉
+
∣∣Φ−〉) |0〉+ α

(∣∣Ψ+
〉

+
∣∣Ψ−〉) |1〉

+ β
(∣∣Ψ+

〉
−
∣∣Ψ−〉) |0〉+ β

(∣∣Φ+
〉
−
∣∣Φ−〉) |1〉)

=
1

2

( ∣∣Φ+
〉 (
α |0〉+ β |1〉

)
+
∣∣Φ−〉 (α |0〉 − β |1〉 )

+
∣∣Ψ+

〉 (
β |0〉+ α |1〉

)
+
∣∣Ψ−〉 (− β |0〉+ α |1〉

))
.

(3.33)

It follows as in (3.2.6) (crossing out incompatible states) that measurement of Alice’s pair of qubits
in the Bell basis6 results in the system state |Φ+〉

(
α |0〉+ β |1〉

)
with probability 1

4

(
|α|2 + |β|2

)
= 1

4 .
In this case the state of Bob’s qubit will be α |0〉+ β |1〉.

Similarly, if the outcome for Alice is |Φ−〉, |Ψ+〉 or |Ψ−〉, each of which also occurs with probabil-
ity 1

4 , then the respective outcomes for Bob’s state are α |0〉 − β |1〉, β |0〉 + α |1〉 and −β |0〉 + α |1〉
respectively. They are similar to, and in fact unitary images of, the state to be teleported.

If Alice now sends Bob the information as to which state she observed, and this information requires
just two bits, then by appropriate choice of unitary gate Bob can transform his qubit into the state
to be teleported.

More precisely,
• if Alice’s result is |Φ+〉 then Bob’s qubit is already in the desired state.

• If Alice’s result is |Φ−〉 then Bob applies the phase flip gate σ3 =

[
1 0
0 −1

]
.

• If Alice’s result is |Ψ+〉 then Bob applies the bit flip gate σ1 =

[
0 1
1 0

]
.

• And finally, if Alice’s result is |Ψ−〉 then Bob applies the gate σ3σ1 = iσ2 =

[
0 1
−1 0

]
.

Note that Alice’s original qubit has now become part of one of a Bell state, and its original state
is lost. So there is no cloning involved in teleportation, nor can there be by the No-Cloning result in
Section 3.1.

6The measurement in the Bell basis includes all steps in going from |ψ0〉 to |ψ3〉 in Figure 3.3. This first involves
entanglement of Alice’s 2 qubits via CNOT, then Hadamard on the first qubit, then measurements in the standard
computational basis on each of Alice’s 2 qubits. The outcome for each qubit is a classical bit with value 0 or 1.

Figure 3.3 follows the standard convention of a single wire for qubits, a double wire for classical bits, for a

single qubit measurement in the computational basis and a superscript for the measurement label outcome.
If the outcome of the second qubit measurement by Alice is 0 then Bob will first apply X0 = σ0

1 := I to his qubit, and
if the outcome of the second qubit measurement by Alice is 1 then Bob will first apply X1 = σ1

1 = σ1 to his qubit.
If the outcome of the first qubit measurement by Alice is 0 then Bob will next apply Z0 = σ0

3 := I to his qubit, and if
the outcome of the first qubit measurement by Alice is 1 then Bob will next apply Z1 = σ1

3 = σ3 to his qubit.
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3.5 Bell & CHSH Inequalities

3.5.1 History

We discussed in Section 1.4 how Einstein, Podolsky and Rosen argued that quantum theory was not
complete. More precisely, in the context of the EPR type experiment discussed there, they would
argue that 50% of the qubit pairs prepared in the Bell state |Φ+〉 = 1√

2
(|00〉 + |11〉) must have been

entangled in such a way that on being measured in the basis {|0〉 , |1〉} they would both give the
outcome |0〉, and the other 50% of the qubit pairs would both give the outcome |1〉. This would
explain the perfect correlation. Since quantum theory does not include such information, they argued
quantum theory was incomplete. However, they were unsuccessful in finding a satisfactory way to
extend/complete quantum theory. Neils Bohr argued that quantum theory was indeed complete and
Nature operated in the precisely nondeterministic way that the theory predicted.

In 1964 John Bell [Bel64] proposed an experiment that could determine which alternative was
correct. He showed that under certain circumstances the correlations predicted by quantum mechan-
ics/theory are stronger than could be accounted for by any classical explanation. In 1969 Clauser,
Horne, Shimony and Holt [CHSH69] proposed a variation of Bell’s experiment and it was carried
out by Aspect, Dalibard and Gérard in 1982 [ADR82], with many subsequent refinements closing
any possible loopholes in the experiments, the latest being by Juan Yin et al. [YCL+17]. Quantum
theory is indeed complete. For most quantum experiments there is no classical explanation for the
experimentally observed correlations which are, however, predicted by quantum theory.

3.5.2 CHSH Experimental Setup

Entangled Qubits Used Many pairs of qubits are prepared in the entangled Bell state∣∣Φ+
〉

=
1√
2

(|00〉+ |11〉) =
1√
2

(
|++〉+ |−−〉

)
, (3.34)

see (3.3). Think of 10,000 samples.
In each case the first qubit is sent to Alice and the second to Bob, with a long distance between

them, see Figure 1.5.

Correlated Qubits If Alice tests her qubit w.r.t. |0〉 then the result is either |0〉 or |1〉 each with
equal probability. Moreover, according to quantum theory as discussed in Section 3.2.6, the result-
ing joint state of the pair after measurement is |00〉 or |11〉 respectively, each with probability 1/2.
These are product (no longer entangled) states and in particular the state of Bob’s qubit is then
instantaneously either |0〉 or |1〉 respectively.

Similarly, if Alice tests her qubit w.r.t. |+〉 then the result is |+〉 or |−〉 each with equal proba-
bility. the resulting joint state of the pair after measurement is |++〉 or |−−〉 respectively, each with
probability 1/2. The state of Bob’s qubit is then instantaneously also either |+〉 or |−〉 respectively.

So if Alice measures w.r.t. |0〉 and Bob also measures w.r.t. |0〉 then the outcomes for each exper-
imenter will be the same, namely |0〉 or |1〉. Similarly if each experimenter measures w.r.t. |+〉.

Measurements Used Alice randomly and independently, and independent of any choices made by
Bob, with probability 1/2 in each case:7(see Figure 3.4)
• Measures her qubit with respect to either |0〉 or |+〉, see Section 2.2.2.
• On the Bloch sphere S2 ⊂ R3 this corresponds to the z and x axes respectively.8

• In the case of spin 1/2 particles, this corresponds to measuring spin in the z and x directions
respectively. See Section 2.3.
• We denote the two possible measurements available to Alice by Q̂ and R̂ respectively.

7By means of a random number generator, or perhaps by exercising her free will!
8Note that the angle between |0〉 and |+〉 in C2 is π/4 since

(
|0〉 , |+〉

)
=
(
|0〉 , 1√

2
(|0〉+ |1〉)

)
= 1√

2
= cos π

4
, while

the angle between the z and x directions in R3 is (of course) π/2.
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Figure 3.4: CHSH measurements, Alice red and Bob green. The left side is a section through the
unit sphere S3 ⊂ C2, the right side a section through the Bloch sphere S2 ⊂ R3. Alice’s two possible
measurements are each w.r.t. one of the two red qubits on the left or equivalently the corresponding
directions on the right. Bob’s possible measurements are similarly given in green.

Bob similarly, randomly and independently in each experiment, and independent of any choices
made by Alice, with probability 1/2 in each case: (see Figure 3.4)
• Measures his qubit with respect to either |π/8〉 or |−π/8〉, obtained by rotating the |0〉 axis by
±π/8 in the real section of C2 containing |0〉 and |+〉 (and |1〉). So |±π/8〉 = 1√

2
(|0〉 ± |+〉).

• On the Bloch sphere S2 ⊂ R3 this corresponds to the 1√
2
(z ± x) directions respectively, see

Figure 3.4.
• In the case of spin 1/2 particles this corresponds to measuring spin in the 1√

2
(z ± x) directions

respectively.
• We denote the two possible measurements available to Bob by Ŝ and T̂ respectively.

It follows there are four possible (double) experiments that could be performed on each qubit pair,
denoted by Q̂Ŝ, Q̂T̂ , R̂Ŝ, R̂T̂ in an obvious manner, but with one and only one such experiment
performed for each such qubit pair.9 See Table 3.1.

Q̂Ŝ Q̂T̂ R̂Ŝ R̂T̂

Alice Q̂ = |0〉 , z Q̂ = |0〉 , z R̂ = |+〉 , x R̂ = |+〉 , x
Bob Ŝ =

∣∣π
8

〉
, 1√

2
(z + x) T̂ =

∣∣−π
8

〉
, 1√

2
(z − x) Ŝ =

∣∣π
8

〉
, 1√

2
(z + x) T̂ =

∣∣−π
8

〉
, 1√

2
(z − x)

Table 3.1: Possible Measurement Pairs. There are four measurement pairs used for measuring
a pair of entangled qubits. For example, R̂T̂ corresponds to measuring Alice’s qubit with respect to
|+〉 in C2, or equivalently w.r.t. the x direction in the Bloch sphere; and measuring Bob’s qubit w.r.t.∣∣−π

8

〉
or equivalently 1√

2
(z − x).

Spatial Separation For each entangled pair of qubits, the measurement of the first qubit by Alice
and of the second qubit by Bob are spatially separated. That is, there is no time (at the speed of
light) for classical information regarding the choice of measurement direction by Bob, or regarding
the outcome of that measurement, to reach Alice’s qubit before it is measured. Similarly, analogous
information regarding Alice’s measurement and the outcome cannot reach Bob’s qubit before it is
measured.

This enforces the requirement that Alice’s choice of measurement is independent of Bob’s choice,
and conversely.

9Since the qubit is changed by the measurement process, and subsequent measurement would give no further infor-
mation about the qubit prior to the first measurement.
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Multiple Experiments The experiment is repeated many times, say 10,000, with a different pair
each time, but every pair is entangled in the same state |Φ+〉.

Record of the Experiments See Table 3.2. In order to agree with standard conventions, the
outcome of each measurement is denoted by +1 if the outcome is the same as the measurement
state/measurement direction and by −1 if the outcome is the orthogonal state/opposite direction.

Alice and Bob keep a record in each of the 10,000 experiments of the measurement they performed
(Q̂ or R̂ for Alice, R̂ or Ŝ for Bob) and of the numerical outcome (±1). It is convenient to denote the
numerical outcome for Alice by Q or R, and that for Bob by S or T , depending in each case on the
measurement performed.

After the 10,000 experiments have all been completed, Alice and Bob get together and compare
records, and in particular for each (double) experiment they obtain a number ±1 by multiplying
together their individual numerical outcomes for that experiment. This number is denoted by Q · S,
Q · T , R · S or R · T . For example, the record for the 10,000 experiments might be as in Table 3.2.

Experiment 1 2 3 4 5 6

Alice Q = +1 R = −1 R = −1 R = +1 Q = −1 Q = 1

Bob S = +1 S = −1 S = +1 T = −1 S = −1 T = −1

Product Q · S = +1 R · S = +1 R · S = −1 R · T = −1 Q · S = +1 Q · T = −1

. . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9,998 9,999 10,000

R = +1 Q = −1 R = −1

T = −1 S = −1 S = −1

R · T = −1 Q · S = +1 R · S = +1

Table 3.2: Record of CHSH Experiments. For each experiment the table shows the measurement
choices made by Alice and by Bob, the outcomes after measuring their individual qubits, and the
product of the two outcomes.

3.5.3 Preliminary Discussion of the Results

We find from the results of the 10,000 experiments that there is a correlation between the outcomes Q
& S, Q & T and R & S, in the sense that the product of the two values in each case is more frequently
+1 than −1. On the other hand there is anticorrelation between the values of R and T in the sense
that the product of the two values in this case is more often −1 that +1.

This is not surprising! In Figure 3.4 we see that Q̂ is near Ŝ, Q̂ is near T̂ , R̂ is near Ŝ, but R̂ is
near T̂⊥ = |3π/8〉 (i.e. 1√

2
(x− z) on the Bloch Sphere).

In fact, both experimentally and from quantum theory (Section 3.5.6) we find the following precise
average/expected values:

E(Q · S) = E(Q · T ) = E(R · S) = −E(R · T ) =

√
2

2
≈ .71 . (3.35)

If there were no correlations then the expected values would be 0 in each case.
Is it possible to explain these experimentally observed correlations from a classical perspective,

e.g. by Newtonian physics? We show from (3.37) and (3.38) this is not possible. But let’s make an
attempt in order to see where the problems occur.

Suppose that at the time of entanglement each pair contained some information such as

Q = +1, R = +1;S = +1, T = −1 or Q = −1, R = +1;S = −1, T = −1, etc.

(there are 24 = 16 possibilities), but that this information is not available to us because we do
not have sufficiently refined scientic instruments or knowledge or whatever. If the information for a
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particular entangled pair is (for example) the second case above, and if Alice performs experiment R̂
and Bob performs measurement T̂ , then the information is interpreted as implying the outcome will
be R · T = (+1)× (−1) = −1.

But we will see by a simple but ingenious algebraic argument in Section 3.5.4 that it is not possible
by classical means to explain the correlations observed experimentally in (3.35).

We will also see in Section 3.5.6 that these correlations are predicted precisely by quantum theory.

3.5.4 Classical Analysis; Physical Realism, Locality, Random Choice

In the classical analysis of the CHSH experiment we assume
• physical realism,
• locality,
• the ability to make random choices concerning which of two available experiments will be per-

formed (either by a stochastic random number generator or by exercising our free will) but
in accordance with the probabilistic requirements imposed on Bob’s and Alice’s experimental
choices.

Physical Realism For each entangled pair of qubits Alice and Bob each performed a single mea-
surement, together giving one of the four possibilities Q̂Ŝ, Q̂T̂ , R̂Ŝ or R̂T̂

Although outcomes for the other three possibilities were not measured,10 from a classical point of
view there is some value that would have been obtained if Alice and Bob had performed another pair
of measurements instead of the one that was performed. So we make the assumption that, even though
measurement may (and here does) interfere with the particle being measured, Q, R, S and T represent
real physical properties of the qubits that could have been measured. This is sometimes called the
assumption of physical realism and was essentially universal throughout science before quantum theory
emerged.

A Simple Calculation Now consider for each entangled qubit pair

Q · S +Q · T +R · S −R · T = (Q+R) · S + (Q−R) · T = ±2 ≤ 2. (3.36)

To see the last equality note that Q,R = ±1 and so either Q+R = 0 or Q−R = 0. Since S, T = ±1
the result follows.

In particular, taking the expected (i.e. average) value over many such entangled qubits, e.g. over
the 10,000 experiments previously discussed,

E
(
Q · S +Q · T +R · S −R · T ) = E(Q · S) + E(Q · T ) + E(R · S)− E(R · T ) ≤ 2. (3.37)

We are not claiming that the outcomes Q and S are independent. Indeed, at the time of entanglement
it may have been arranged for 90% of pairs of qubits that the outcome for experiment Q̂ is 1 and for
experiment Ŝ is 1, while for the other 10% of qubit pairs the outcomes are 1 for Q̂ and −1 for Ŝ. So
there may be a high degree of correlation on classical grounds.

Locality / No Faster than Light Signalling As well as physical realism, we make the assumption
for example, that the outcome for Ŝ (one of the possible two measurements made by Bob) does not
depend on the choice of measurement performed by Alice. Alice and Bob are performing spatially
separated experiments. Assuming there cannot be faster than light communication, Bob’s qubit cannot
know which measurement direction (Q̂ or R̂) was chosen by Alice.11

This is what allows us to factorise in (3.36). For example, it is the same value of S in Q · S and
R · S. The assumption is that whether Alice had measured in the Q̂ or the R̂ direction, the result of
Bob’s measurement in the Ŝ direction would be the same.

10Nor can one do so, as we know that after measuring no further information can be obtained regarding the original
qubit.

11We are however allowing for the possibility that Bob’s qubit knows what the outcome for Alice’s qubit would be if
direction Q̂ was chosen by Alice and what the outcome would be if direction R̂ were chosen by Alice. This information
could potentially have been available to both qubits used in experiment 1 from the time of their entanglement.
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This is usually called the assumption of locality, or in this case no faster than light signalling. Events
cannot be affected by other events outside their past light cone, they cannot be affected by something
for which there is not sufficient time for a signal (e.g. by photons) to arrive. This assumption, like
physical realism, was also essentially universal throughout science before quantum theory emerged.12

Random Choice The third assumption we make implicitly in our classical analysis concerns the
random choice of Q̂ or R̂ available to Alice and the random choice of Ŝ or T̂ available to Bob. We
assume for example that in the approximately 2,500 experiments (1/4 of the 10,000 experiments)
where Alice chooses axperiment Q̂ and Bob chooses Ŝ, the average value of Q · S is the same as the
average value of Q · S over all 10,000 experiments (remember that by physical realism we are already
assuming Q and S exist for all 10,000 experiments, even though we did not measure them in about
7,500 cases). We use this assumption for the equality assertion in (3.37), from which it follows that
all five expectations (average values) can be taken over all 10,000 experiments.

3.5.5 Experimental Results

Repeated experiments show, to 12 or more decimal places, that

E(Q · S) + E(Q · T ) + E(R · S)− E(R · T ) = 2
√

2, (3.38)

which contradicts (3.36).

3.5.6 Quantum Analysis

We obtain the quantum predictions as in Section 3.2.6. It is convenient to assume that Alice makes
her observations just prior to Bob (but not allowing enough time for signalling in either direction at
the speed of light). But exactly the same prediction and analogous argument is made if Bob is first.
Quantum theory does not require that one set of measurements precedes the other.13

There are four possibilities for the combined choices of Alice and Bob, Q̂Ŝ, Q̂T̂ , R̂Ŝ or R̂T̂ . See
Figure 3.4.

In the first three cases the measurement directions differ by π/8 (or π/4 on the Bloch sphere). In
the fourth case the difference is 3π/8 (or 3π/4 on the Bloch sphere). Recall that the entangled qubits
being measured were all prepared in the state |Φ+〉, see (3.34).

In the first two cases, if Alice measures first then the outcome is +1 or −1 and the new state is |00〉
or |11〉 respectively. Since Bob’s frame is just rotated by ±π/8 from Alice’s frame, with probability 14

cos2 π

8
=

1

2

(
1 + cos

π

4

)
=

2 +
√

2

4
≈ .86,

the outcome will be the same +1 or −1. But in the fourth case, the outcomes will be the same
with probability cos2(3π/8) = sin2(π/2− 3π/8) = 1− cos2(π/8), and hence different with probability
cos2(π/8).

So with probability 2+
√

2
4 ≈ .86 we have correlation in the first 3 cases and anti-correlation in the

fourth case. The same applies if Bob measures first.
It follows that

E(Q · S) =
2 +
√

2

4
× 1 +

2−
√

2

4
× (−1) =

√
2

2
.

Similarly,

E(Q · T ) =

√
2

2
, E(R · S) =

√
2

2
, E(R · T ) = −

√
2

2
.

12Prior to the theory of relativity, one might have said informally that what is being ruled out is almost instantaneous
signalling from distant galaxies!

13Not could it if it were to be consistent (which it is) with special relativity for spatially separated events.
14This follows from (3.3) and the corresponding discussion with |v〉 there replaced by |0〉 in the first two cases and

by |+〉 in the third and fourth cases. Then apply the discussion in Section 2.2.2 or the “Experimental Observation” in
Section 2.3.1.
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Hence
E(Q · S) + E(Q · T ) + E(R · S)− E(R · T ) = 2

√
2, (3.39)

in perfect agreement with experiment as noted in (3.35).
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Appendix A

Visualising Higher Dimensions

Sometimes it is convenient to try and visualise Rn for n ≥ 4 and Cn for n ≥ 2.

Figure A.1: 3 mutually orthogonal lines in R3, 4 in R4, n in Rn.

Exercise: Explain to your 2-D friend living in the 2-D plane of the paper, why the 3 lines (segments)
in the first diagram are projections into R2 of 3 mutually orthogonal lines in R3.

In a similar manner, explain to your 3-D friend in this room, why the 4 lines in the second diagram
are actually the projections into R3 (and then projected onto R2, but forget that part) of 4 mutually
orthogonal lines in R4.

Similarly, explain why the n ≥ 6 lines in the third diagram are actually the projections into R3 of
n mutually orthogonal lines in Rn.
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Figure A.2: 2 orthogonal 2-D real subspaces of R4, or 2 orthogonal 1-D complex lines in C2.

Exercise: Explain to someone why the above diagram represents (after “extending both rectangles
to infinity in all directions”) two 2-D real orthogonal subspaces of R4, whose only point of intersection
is the origin.

Then explain why the diagram also represents (after again extending each rectangle) two orthogonal
“complex lines”1 (which of course are each of real dimension 2) in C2.

1A complex line in Cn consists of all vectors of the form αv for some fixed non-zero v ∈ Cn and all α ∈ C.
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I summarise the main results for linear operators T : Cn → Cn ( T : Rn → Rn) which are related
to the inner product on Cn (Rn).

Often I confuse the operator and the matrix of the operator with respect to some basis (the basis
being understood from context).

If the proofs are not relatively straightforward I will indicate this.
I also discuss normal operators, but we will not use them in this set of notes.

B.1 Inner Product Space

Here we are interested in real or complex finite dimensional spaces V , often Rn or Cn.

B.1.1 Inner Product

An inner product space is a real or complex vector space together with an associated inner product
〈 , 〉. The inner product is a map into R or C with the properties

• 〈u, v〉 = 〈v, u〉 (symmetry)
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• 〈αu, v〉 = α〈u, v〉 (mathematics) or 〈u, αv〉 = α〈u, v〉 (physics, computer science) (linearity in
one of the arguments and hence conjugate linearity in the other)

• 〈u, u〉 ≥ 0, and = 0 iff u = 0

The standard inner products on Rn and Cn are

• 〈u, v〉 = u1v1 + · · ·+ unvn

• 〈u, v〉 = u1v1 + · · ·+ unvn (maths) or 〈u, v〉 = u1v1 + · · ·+ unvn (physics, comp sci)

B.1.2 Norm

The norm of u is ‖u‖ = 〈u, u〉1/2, the distance between u and v is ‖u− v‖. The distance is a metric.
The Cauchy-Schwarz inequality is |〈u, v〉| ≤ ‖u‖ ‖v‖.

B.1.3 Norms and Inner Products

The inner product can be defined from its norm (so norm preserving maps are inner product preserv-
ing).

• real case: 〈u, v〉 = 1
4

(
‖u+ v‖2 − ‖u− v‖2

)
• complex case: 〈u, v〉 = 1

4

(
‖u+ v‖2 + i‖u+ iv‖2 − ‖u− v‖2 − i‖u− iv‖2

)
Warning : Not every norm actually defines an inner product in this way. The necessary and sufficient
condition is that the norm satisfies the parallelogram identity : 2‖u‖2 + 2‖v‖2 = ‖u+ v‖2 + ‖u− v‖2.

B.1.4 Angle

The angle θ between u and v in a real inner product space is defined by cos θ =
〈u, v〉
‖u‖ ‖v‖

with θ ∈ [0, π],

and hence by cos θ = 〈u, v〉 if u and v are unit vectors.

Figure B.1: u, v ∈ Rn are unit vectors, 〈u, v〉 = θ ∈ [0, π] is the angle between them.

For complex inner product spaces the angle between u and v is defined by cos θ =
|〈u, v〉|
‖u‖ ‖v‖

with

θ ∈ [0, π/2], and in particular by cos θ = |〈u, v〉| if u and v are unit vectors.
The definition of θ is invariant under replacing u by αu and v by βv for any α, β ∈ C. In

particular, the definition is invariant under “phase changes”, i.e. multiplication by eiη and eiη
′

for
u and v respectively. In fact the angle θ is the minimum angle between unit vectors in the two
dimensional real subspaces Spanu,Span v ⊂ R4 1, and can be regarded as the angle between the real
planes Spanu and Span v.

1Consider the natural correspondence between Cn and R2n given by

Cn 3 u = (x1 + iy1, . . . , xn + iyn)←→ (x1, y1, . . . , xn, yn) =: ũ ∈ R2n. (B.1)
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B.1.5 Orthogonal Projections

For any subspace W ⊂ V , W⊥ is the set of all vectors in V that are orthogonal to every vector in V .
Then W⊥ is closed under addition and scalar multiplication (Exercise) and so is also a subspace of V .

Every vector v ∈ V can be written uniquely in the form v = w+w⊥ where w ∈W and w⊥ ∈W⊥.
We write V = W ⊕W⊥. Moreover, w is the unique minimiser of {‖v−w′‖ : w′ ∈W}. See Figure B.2
and just about any book on linear algebra.

Figure B.2: C2 = W ⊕W⊥, v = w + w⊥, w ∈W , w⊥ ∈W⊥.
The (one-dimensional complex) subspace W⊥ is represented by a real one-dimensional line.

The orthogonal projection map P given by P (v) = w is a linear map from V onto W . See
Appendix D.3.2 for a useful expression for P in terms of any (orthonormal) basis for W .

B.2 Definitions in Terms of a “Good” Orthonormal Basis

B.2.1 Hermitian Operator

The operator T is hermitian (Cn case), symmetric (Rn case) and self-adjoint (either case) iff it
corresponds to a (real) scaling in n orthogonal directions (Cn and Rn case). Note that in the Cn

Then it is easy to check that

‖u‖ = ‖ũ‖R =: ‖u‖R and Re〈u, v〉 = 〈ũ, ṽ〉R =: 〈u, v〉R, (B.2)

where Re〈u, v〉 is the real part of 〈u, v〉, the vectors ũ, ṽ ∈ R2n correspond to u, v ∈ Cn respectively, ‖u‖R := ‖ũ‖R is the
R2n (real) norm, and 〈u, v〉R := 〈ũ, ṽ〉R is the R2n (real) inner product.

Proposition. Let u and v be unit vectors in Cn and let cos θ = |〈u, v〉| where θ ∈ [0, π/2]. Then

|〈u, v〉| = max
η,ζ
〈eiηu, eiζv〉R, cos θ = 〈u′, v′〉R,

where the maximum is realised at u′ = eiηu and v′ = eiζv. That is, θ is the least angle ζ ∈ [0, π/2] such that cos ζ =
〈u′, v′〉R for unit vectors u′ ∈ Spanu and v′ ∈ Span v.

Proof. Just as |z| = supη Re(eiηz) for z ∈ C, in the same manner

|〈u, v〉| = sup
η,η′

Re〈eiηu, eiη
′
v〉 = max

η,η′
Re〈eiηu, eiη

′
v〉 = max

η,η′
〈eiηu, eiη

′
v〉R. (B.3)

The first max is achieved, since Re〈eiηu, eiη
′
v〉 is continuous and (η, η′) can be restricted to the compact set [0, 2π]×[0, 2π].

The last equality is from (B.2).

Assuming the max is achieved at η and η′, let u′ = eiηu and v′ = eiη
′
v, and define θ ∈ [0, π] by cos θ = 〈u′, v′〉R. Note

〈u′, v′〉R ≥ 0 (why? ) and so in fact θ ∈ [0, π/2].
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case, a “direction” corresponds to a 1-complex-dimensional subspace and hence to a 2-real-dimensional
subspace. A scaling corresponds to multiplying by a real number in each of these n complex subspaces.

More precisely, T is self-adjoint iff there is an orthonormal basis {v1, . . . , vn} w.r.t. which T is a
real diagonal matrix.

T =

λ1

. . .

λn

 (B.4)

(We allow negative λi.) Think of the unit ball at the origin being stretched into an ellipsoid.

Figure B.3: Hermitian operator T and unitary operator U on C2, v1 ∈ span |0〉, v2 ∈ span |1〉.

Figure B.3 shows the action of T =

[
λ1 0
0 λ2

]
and U =

[
eiθ1 0
0 eiθ2

]
(see Section B.2.2) on vectors

v1 ∈ span |0〉 and v2 ∈ span |1〉. In particular, Tv1 is obtained by scaling v1 with the real factor λ1 and
Uv1 is obtained by rotating v1 in the complex line span |0〉 (a 2 real-dimensional plane) anticlockwise2

through the angle θ1.

B.2.2 Unitary Operator

U is unitary (C case) iff it corresponds to a rotation (multiplication by eiθ1 , . . . , eiθn) in n orthogonal
directions v1, . . . , vn.

More precisely, U is unitary iff there is an orthonormal basis w.r.t. which U is a diagonal matrix
with all diagonal entries having absolute value 1.

U =

e
iθ1

. . .

eiθn


The corresponding notion for orthonormal matrices (R case) is not so clean. We say that O is

orthonormal if there is an orthonormal basis such that O fixes some basis vectors, reflects other basis
vectors, and rotates in orthogonal planes determined by pairs of the remaining basis vectors.

More precisely, O is orthonormal iff there is an orthonormal basis with respect to which O has

2Note that there is an orientation on span |0〉 given by complex multiplication.
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matrix

O =



1
. . .

1
−1

. . .

−1
cos θ1 − sin θ1

sin θ1 cos θ1

. . .

cos θk − sin θk
sin θk cos θk


In particular, in R3 every orthonormal operator is a rotation around some vector followed perhaps

by a reflection in the plane orthogonal to this vector!
Think of the unit ball at the origin being rotated into itself (perhaps there is also a reflection, thus

reversing the orientation)

B.2.3 Normal Operator

T (C case) is normal iff it corresponds to multiplication by complex numbers in each of n orthogonal
directions. That is, corresponds to a stretch followed by a rotation in each of the corresponding n real
2-dimensional subspaces.

More precisely, T is normal iff there is an orthonormal basis with respect to which T is diagonal
(with complex, not necessarily real, entries). That is, T has matrix

T =

λ1e
iθ1

. . .

λne
iθn

 (B.5)

So hermitian and unitary operators are particular cases of normal operators.

B.3 Definitions in Terms of Adjoint Operator

B.3.1 Adjoint

The adjoint T ∗ of the operator T is defined by 〈T ∗u, v〉 = 〈u, Tv〉 for all u, v ∈ Cn (Rn).
With respect to any orthonormal basis, the matrix of T ∗ is the conjugate (not relevant of course

in the R case) of the transpose of T , i.e. T ∗ij = Tji = T ∗ji, where Tji = T ∗ji is the complex conjugate of
Tji.

Note (AB)∗ = B∗A∗.

B.3.2 Hermitian Operator

T is hermitian iff T = T ∗.
The =⇒ case is easy but the converse requires work. It follows from the more general result for

normal operators below. But in this special case it is easier to show the existence of an orthonormal
basis of eigenvectors.

As noted in Section B.2.1, one often says T is Hermitian in the C case and symmetric in the R
case.
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B.3.3 Unitary Operator

U is unitary (O is orthonormal) iff UU∗ = U∗U = I (OO∗ = O∗O = I).
As for hermitian/self-adjoint operators, =⇒ is easy, the converse requires work, but follows from

the more general result for normal operators.
For arbitrary matrices, being unitary is equivalent to the columns being orthonormal (norm one

and inner products of different columns equalling zero) and also equivalent to the rows having the
same property.

B.3.4 Normal Operator

T is normal iff TT ∗ = T ∗T . (=⇒ is clear from the definition. The converse requires work. The point
is to show the existence of an orthonormal basis of eigenvectors. This is sketched in [NC10, p72].

B.4 2× 2 Classification

Hermitian The general expression for a 2× 2 hermitian matrix is clearly

H =

[
a c
c∗ b

]
where a, b ∈ R. (B.6)

Unitary The general expression for a 2× 2 unitary matrix is

U =

[
a b

−eiθb∗ eiθa∗

]
where |a|2 + |b|2 = 1. (B.7)

Proof. If U is in the given form then

UU∗ =

[
a b

−eiθb∗ eiθa∗

] [
a∗ −e−iθb
b∗ e−iθa

]
=

[
1 0
0 1

]
= I. (B.8)

Coversely, suppose U =

[
a b
c d

]
is unitary. Then

|a|2 + |b|2 = 1, |c|2 + |d|2 = 1, a∗c+ b∗d = 0,

since the rows form an orthonormal basis.
If a 6= 0 and d 6= 0, then from the third equality c/d = −b∗/a∗, and so c = −zb∗ and d = za∗ for

some z. Using the second and the first equalities, 1 = |c|2 + |d|2 = |z|2(|a|2 + |b|2) = |z|2. Now let
z = eiθ. This puts U in the required form.

If a = 0 then |b| = 1 from the first equality, and so d = 0 from the third, and so |c| = 1 from the
second. Hence

U =

[
0 eiζ

eiχ 0

]
=

[
0 eiζ

−ei(ζ+χ−π)e−iζ 0

]
,

which is in the required form.
If d = 0 then a = 0 in a similar manner, and so again the result follows.

B.5 Polar Decomposition

Every linear operator T (C case) can be written in the form T = UH where U is unitary and H
is Hermitian (i.e. self-adjoint) with nonnegative e-values. That is, real nonnegative stretching in
orthogonal complex directions followed by rotations in another set of orthogonal complex directions.

If the rotations are in the same complex directions as the stretches, then the matrix is clearly
normal.

In the R case, T = OS where O is orthonormal and S is symmetric with nonnegative e-values. That
is, T is again a nonnegative stretch in orthogonal directions and then apply orthogonal transformation.
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Think of taking the unit ball sitting at the origin, stretching it to an ellipsoid, and then rotating.
Similarly (C case), T = H ′U where U is unitary and H ′ is self-adjoint with nonnegative e-values.

Just take same U as before, and take H ′ = UHU∗.
Similarly for the R case.

B.6 Another Characterisation

Suppose T : Cn → Cn. Then

1. T is hermitian iff 〈Tu, u〉 is real for all u.
2. T is unitary (orthonormal) iff ‖Tu‖ = ‖u‖ for all u iff 〈Tu, Tv〉 = 〈u, v〉 for all u, v.
3. T is normal iff ‖Tu‖ = ‖T ∗u‖ for all u.

For ⇐= in 1, suppose 〈Tu, u〉 is real for all u. Then

〈Tu, u〉 = 〈Tu, u〉∗ = 〈u, T ∗u〉∗ = 〈T ∗u, u〉.

So 〈(T − T ∗)u, u〉 = 0 for all u. But if 〈Au, u〉 = 0 for all u then for all u, v

0 = 〈A(u+ v), u+ v〉 = 〈Au, v〉+ 〈Av, u〉.

Replacing v by iv and dividing through by i,

0 = 〈Au, v〉 − 〈Av, u〉.

Adding, 〈Au, v〉 = 0 for all u, v and so A = 0. So T = T ∗.

(Note: If A : Rn → Rn then 〈Au, u〉 = 0 for all u does not imply A = 0. Consider rotation by π/2
in R2.)
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Appendix C

Determinant and Trace

Contents

C.1 Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

C.2 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

The following applies to both real and complex spaces, provided “vol” is defined in the same way
in both cases and is allowed to be complex if necessary.

C.1 Determinant

If A is a square n× n matrix then the determinant detA can be defined1, for example, by

detA =
∑

π∈Π{1,...,n}

(−1)πA1π(1) · . . . ·Anπ(n), (C.1)

where Π{1, . . . , n} is the set of permutations of {1, . . . , n} and (−1)π is +1 or −1 according as π is
even or odd.

Important properties are

det(I) = 1, det(AB) = det(A) det(B) (C.2)

where I is the identity matrix and A,B are square matrices of the same size.
It follows that det(S−1AS) = detA, and so det(A) is independent of choice of basis.

In particular, if A has eigenvalues λ1, . . . , λn counted with multiplicities, then

det(A) = λ1 · . . . · λn. (C.3)

Moreover, if A : V → V where V is a finite dimensional vector space and A is a linear operator,
we have shown there is a well defined notion of det(A) independent of any choice of basis.

Geometrically, and this is what footnote 1 says, det(A) is the volume change factor given by

vol[Av1, . . . , Avn] = det(A)× vol[v1, . . . , vn], (C.4)

where [w1, . . . , wn] is the parallelopiped spanned by w1, . . . , wn and “vol” is the oriented volume.

1The most natural, coordinate-free and geometric way is to use exterior algebra and define detA for an operator
A : V → V to be the unique constant such that Av1 ∧ · · · ∧Avn = det(A) v1 ∧ · · · ∧ vn for any basis {v1, . . . , vn} of V .
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C.2 Trace

The trace tr(A) of the square matrix A is the sum of its diagonal elements:

tr(A) =
∑
i

Aii. (C.5)

It is straightforward to check
tr(I) = n, tr(AB) = tr(BA). (C.6)

Here A and B need not be square; A is m × n and B is n ×m is the general situation. In general,
assuming both A and B are square of the same size so that the following three traces are all defined,

tr(AB) 6= tr(A) tr(B). (C.7)

However, since tr(S−1AS) = tr(AS−1S = tr(A), tr(A) is independent of choice of basis.

Thus if A : V → V where V is a finite dimensional vector space and A is a linear operator, then
there is a well defined notion of tr(A) independent of any choice of basis.

In particular, if A has eigenvalues λ1, . . . , λn counted with multiplicities, then

tr(A) = λ1 + . . .+ λn. (C.8)

Moreover, if A : V → V where V is a finite dimensional vector space and A is a linear operator,
we have shown there is a well defined notion of tr(A) independent of any choice of basis.

For a geometric interpretation of tr(A) suppose A has e-values λ1, . . . , λn (with multiplicities).
Then the e-values of I + tA are 1 + tλ1, . . . , 1 + tλn, and so for small t,

det(I + tA) = (1 + tλ1) · . . . · (1 + tλn) = 1 + t tr(A) +O(t2). (C.9)

Hence
d

dt

∣∣∣∣
t=0

det(I + tA) = tr(A). (C.10)

Noting (C.4), tr(A) is the rate of change of volume at t = 0 of a parallelopiped perturbed by tA.2

2By taking the matrix for A in the basis {v1, . . . , vn} as in (C.4), we see this rate of change of volume only depends
on changes in each edge of the parallelopiped in the direction of that edge.
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Appendix D

Dirac Bra-Ket Notation
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This notation is particularly useful in quantum theory where we are working with vectors, dual
vectors and hermitian operators. The terminology “bra-ket” is a play on words from the bracketed
expression 〈v|w〉, in which 〈v| is a bra vector and |w〉 is a ket vector, see below.

Let V be an inner product space which we usually take to be finite dimensional and usually Cn
for some n.

D.1 Kets and Bras

An element of V is called a ket vector, written |v〉 for some appropriate symbol v, and pronounced
“ket v”. With respect to some orthonormal basis (understood from context, and often the standard

basis in the case of Cn) we have the column vector notation |v〉 =

v1
...
vn

, |w〉 =

w1
...
wn

, etc.

Examples in C2 are

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
, |+〉 :=

1√
2

(
|0〉+|1〉

)
=

1√
2

[
1
1

]
, |−〉 :=

1√
2

(
|0〉−|1〉

)
=

1√
2

[
1
−1

]
. (D.1)

The dual vector in the dual space V ∗ which corresponds to |v〉 is written 〈v| and pronounced
“bra v”. That is, interpreting 〈v| as an operator acting on |w〉 ∈ V in the first expression below,

〈v|(|w〉) :=
(
|v〉, |w〉

)
= v∗1w1 + · · ·+ v∗nwn =

[
v1
∗ · · · vn∗

] w1
...
wn

 = 〈v| |w〉 = 〈v|w〉 (D.2)

where in the second expression ( , ) is the inner product, the third expression is just the definition of
the inner product, the fourth expression is rewriting the third as matrix multiplication, the fifth is also
matrix multiplication where 〈v| is interpreted as the row vector

[
v1
∗ · · · vn∗

]
, and the sixth expression

is the standard abbreviation of the fifth in the Dirac notation.
In particular, 〈v|w〉 is the inner product of |v〉 with |w〉. Also, 〈v| = |v〉∗ =

[
v1
∗ · · · vn∗

]
as a row

vector or 1× n matrix.
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D.2 More on Inner Products

Let A : Cn → Cn be a linear operator. We often consider expressions of the form 〈v|A|w〉. In terms of
matrix multiplication this is just (from left to right) the product of the row vector

[
v1
∗ · · · vn∗

]
with

the n× n matrix A and the column vector |w〉 =

w1
...
wn

.

As an example of working with the Dirac notation, in the (associative) product of the three matrices
〈v|A|w〉 we can bracket the second and third terms:

〈v|A|w〉 = 〈v| (A |w〉) = |v〉∗(A |w〉), (D.3)

so that 〈v|A|w〉 is the inner product of the ket vector |v〉 with the ket vector A|w〉.
On the other hand, bracketing the first and second terms,

〈v|A|w〉 = (〈v|A)) |w〉 = (A∗ |v〉)∗ |w〉, (D.4)

so 〈v|A|w〉 is also the inner product of the ket vector A∗|v〉 with the ket vector |w〉.
If A is hermitian then A = A∗, so 〈v|A|w〉 is both the inner product of |v〉 with A|w〉 and the inner

product of A|v〉 with |w〉.

D.3 Outer Products

Check that you can show all assertions in the following.

D.3.1 Definition and Matrix Representation

For |v〉 , |w〉 ∈ V define the outer product, a linear map |v〉〈w| : V → V , by

|v〉〈w| (|ψ〉) = |v〉 〈w|ψ〉 = 〈w|ψ〉 |v〉 , for |ψ〉 ∈ V. (D.5)

So |v〉〈w| has range |v〉 and kernel equal to the orthogonal complement of |w〉.
The operator |v〉〈w| is called a dyad.

In terms of matrices,

|v〉〈w| =

v1
...
vn

 [w1
∗ · · ·wn∗

]
=

v1w
∗
1 . . . v1w

∗
n

...
. . .

...
vnw

∗
1 . . . vnw

∗
n

 . (D.6)

In particular, if e1, . . . , en is an orthonormal basis for V then |ei〉〈ej | has matrix whose ij entry is 1
and every other entry is 0.

D.3.2 Orthogonal Projections

See also Appendix B.1.5 for information on orthogonal projections.

If |v〉 is a unit vector then
|v〉〈v| (D.7)

is orthogonal projection onto (the space spanned by) |v〉.
If W is a subspace of V with orthonormal basis {|v1〉 , . . . , |vk〉} then

k∑
i=1

|vi〉〈vi| (D.8)
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is orthogonal projection onto W .1

Othogonal projections are hermitian, since there exists an orthonormal base of eigenvectors and
the eigenvalues are either 0 or 1.

D.3.3 Operator as a Sum of Dyads

If {|v1〉 , . . . , |vn〉} is an orthonormal basis for V then the identity map I satisfies

I =

n∑
i=1

|vi〉〈vi| . (D.9)

If M has matrix elements Mij w.r.t. the computational basis then

M =
∑
i,j

Mij |i〉〈j| , Mij = 〈i|M |j〉 . (D.10)

If H is hermitian with (necessarily real) eigenvalues λj and corresponding orthonormal eigenvectors
|vj〉 (forming a basis for V ) then

H =
∑
j

λj |vj〉〈vj | . (D.11)

Similarly, if U is unitary with eigenvalues eiθj and corresponding orthonormal eigenvectors |vj〉
(forming a basis for V ) then

U =
∑
i

eiθj |vj〉〈vj | . (D.12)

D.4 Computing with Dirac Notation

In computing with the bra-ket notation one is usually dealing with expressions such as 〈v|A|w〉 or
|v〉 〈w|ψ〉 etc., and often much more complicated expressions, which can be treated as a product of
matrices.

Consequence and points to note are:
• bracketing is allowed in any order consistent with the associative rule for multiplying matrices,
• expressions such as 〈w|ψ〉 are an abbreviation for the product 〈w||ψ〉,
• scalar quantities such as 〈w|ψ〉 can be moved through the expression,
• adjoints of a product are the product of the adjoints multiplied in the reverse order,
• adjoints of matrices are conjugate transposes, so adjoints of scalars are their complex conjugates,

of hermitian matrices A are again A, of unitary matrices U are U−1, of bras 〈v| are kets |v〉, and
of kets |v〉 are bras 〈v|.

There will be many examples in these notes.2

1∑k
i=1 |vi〉〈vi| is independent of choice of orthonormal basis for W . To see this, note we can write w ∈ V uniquely in

the form w1 + w2 where w1 ∈ W and w2 ∈ W⊥. Now check
(∑k

i=1 |vi〉〈vi|
)
w = w1 by expressing w1 and w2 in terms

of an orthonormal basis for V which extends {|v1〉 , . . . , |vk〉}.
2See (2.12), (D.3), (D.4), (F.9), (F.12), . . .
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Appendix E

Pauli Matrices

Exercise: Verify all statements in the following.

E.1 Definitions, Basic properties, Eigenvalues and Eigenvectors

The Pauli matrices are ubiquitous in the theory of quantum computation. Here they are with their
standard notations.

σ0 = I =

[
1 0
0 1

]
, σ1 = X =

[
0 1
1 0

]
,

σ2 = Y =

[
0 −i
i 0

]
, σ3 = Z =

[
1 0
0 −1

]
.

(E.1)

Usually σ0 is omitted from the list. It should be clear from context when this is not the case.

They are hermitian. Clearly σi = σ∗i .
They are unitary. It is easy to check that σiσ

∗
i = I.

They are trace free, i.e. tr(σi) = 0, and det(σi) = −1. It follows that they each have eigenvalues ±1.

They satisfy the following identities.1

σ2
i = I, σiσj = −σjσi if i 6= j,

σ1σ2 = iσ3, σ2σ3 = iσ1, σ3σ1 = iσ2.
(E.2)

Using the notation of (2.2)
• σ3 has eigenvectors |0〉 and |1〉 with eigenvalues +1 and −1 respectively,
• σ1 has eigenvectors |+〉 and |−〉 with eigenvalues +1 and −1 respectively,
• σ2 has eigenvectors |i〉 and |−i〉 with eigenvalues +1 and −1 respectively.

E.2 As Basis Vectors

Every hermitian matrix H in C2 can be uniquely represented as follows with (n0, n1, n2, n3) ∈ R4:2

H =

[
n0 + n3 n1 − in2

n1 + in2 n0 − n3

]
= n0I + n1σ1 + n2σ2 + n3σ3. (E.3)

The set of all such matrices is a real vector space H with basis vectors σ0, σ1, σ2, σ3.3

The trace free hermitian matrices form a subspace H0 ⊂ H. Every H0 ∈ H0 can be written
uniquely in the form

H0 =

[
n3 n1 − in2

n1 + in2 −n3

]
= n1σ1 + n2σ2 + n3σ3 (E.4)

1Note the cyclic ordering in the second line. Clearly if follows σ1σ3 = −iσ2, σ2σ1 = −iσ3, σ3σ2 = −iσ1.
2The off diagonal entries are arbitrary complex conjugates, the main diagonal entries H11 and H22 are arbitrary reals

— let n0 = 1
2
(H11 +H22), n3 = 1

2
(H11 −H22).

3In fact an inner product space with Hilbert Schmidt inner product (A,B) := 1
2

trA∗B = 1
2

trAB.
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for some (n1, n2, n3) ∈ R3. This gives a vector space isomorphism4 between H0 and R3, which will be
particularly useful in terms of the Bloch sphere map.

E.3 Pauli Vector

E.3.1 Definitions and Examples

Although one can interpret ~σ = (σ1, σ2, σ3) as a vector of Pauli matrices called the Pauli vector, we
just need the expression n̂ · ~σ as an abbreviation:

n̂ · ~σ := n1σ1 + n2σ2 + n3σ3 =

[
n3 n1 − in2

n1 + in2 −n3

]
, where n̂ = (n1, n2, n3) ∈ R3. (E.5)

Unless otherwise clear from context, we assume

n̂ = (n1, n2, n3) is a unit vector .

Examples are n̂ = (1, 0, 0) so n̂ · ~σ = σ1; similarly for σ2 and σ3; and n̂ = 1√
2
(1, 0, 1) which gives

the Hadamard operator H = 1√
2
(σ1 + σ3) = 1√

2

[
1 1
1 −1

]
.

E.3.2 Properties

Proposition.

(n̂ · ~σ)2 = I, tr n̂ · ~σ = 0, (E.6)

det n̂ · ~σ = −1, the eigenvalues of n̂ · ~σ are ±1. (E.7)

Proof. Using (E.2) it follows (n̂ · ~σ)2 = I. Since trσi = 0 for each i, tr n̂ · ~σ = 0.
Since tr n̂ · ~σ = 0, the eigenvalues of n̂ · ~σ are −λ and λ for some λ > 0. (The eigenvalues are real

since n̂ · ~σ is hermitian.) Hence det n̂ · ~σ = −λ2 < 0.
But 1 = det I = det(n̂ · ~σ)2 = (det n̂ · ~σ)2. Hence det n̂ · ~σ = −1 (not +1) and the eigenvalues

are ±1.

In the following we find the eigenvectors of n̂ · ~σ (without doing any matrix calculations! ).

Proposition. The unit eigenvectors of n̂ · ~σ are, for n3 6= ±1,

1√
2(1 + n3)

[
1 + n3

n1 + in2

]
with eigenvalue + 1,

1√
2(1− n3)

[
1− n3

−(n1 + in2)

]
with eigenvalue − 1.

(E.8)

If n3 = ±1 then n̂ ·~σ = ±σ3; the eigenvectors are

[
1
0

]
with eigenvalue +1 and

[
0
1

]
with eigenvalue −1.

Proof. The case n̂ · ~σ = ±σ3 is immediate and already noted in Section E.1. So assume n3 6= ±1.

Since n̂ · ~σ has eigenvalues {+1, −1} respectively,

1

2
(I + n̂ · ~σ) =

1

2

[
1 + n3 n1 − in2

n1 + in2 1− n3

]
(E.9)

has eigenvalues {1, 0} respectively with the same respective eigenvectors (why? ).
But this matrix is then an orthogonal projection operator, so either column spans the range, and

so either column is an eigenvector with eigenvalue 1. We choose the first column just because the
“leading” entry is real and positive.

4In fact, an inner product space isomorphism.
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The squared norm of

[
1 + n3

n1 + in2

]
is (1 + n3)2 + n2

1 + n2
2 = 2(1 + n3), and this then gives the first

eigenvector in (E.8).

Similarly, by considering 1
2(I − n̂ · ~σ) we get the second eigenvector.
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Appendix F

The Bloch Sphere

Contents
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This is a very useful way of representing qubits as points on the unit 2-dimensional sphere S2 ⊂ R3.
Recall that a qubit is just an equivalence class of points on the unit (3 real dimensional) sphere S3 ⊂ C2,
where two qubits are equivalent if they agree up to a global phase factor eiζ for some ζ ∈ R.

In fact, this map S3 → S2, where the inverse of any point x ∈ S3 is a great circle S1 ⊂ S3, is the
famous Hopf fibration. See, for example, [MD01, §§1,2].

F.1 Coordinate Approach

Any qubit |ψ〉 = α |0〉+ β |1〉 ∈ S3, after using polar coordinates for α and β and multiplying through
by a (irrelevant) global phase factor, can be written in the form |ψ〉 = r1 |0〉 + r2e

iφ |1〉 where 0 ≤
r1, 0 ≤ r2, r

2
1 + r2

2 = 1, 0 ≤ φ < 2π. Hence |ψ〉 can be written in the form

|ψ〉 = cos
θ

2
|0〉+ sin

θ

2
eiφ |1〉 , 0 ≤ θ ≤ π, 0 ≤ φ < 2π. (F.1)

This representation is unique unless θ = 0 or θ = π.
By using (θ, φ) as spherical coordinates we obtain a unique correspondence between qubits (re-

member that qubits correspond to equivalence classes of points on the unit sphere in C2) and points
on the unit sphere in R3. See Figure F.1. (We need cos θ2 with 0 ≤ θ ≤ π rather than cos θ with
0 ≤ θ ≤ π/2 for this.)

If |ψ〉 is a qubit then the corresponding point on the Bloch sphere is denoted by

Φ(|ψ〉). (F.2)

In cartesian coordinates,

Φ(|ψ〉) = (sin θ cosφ, sin θ sinφ, cos θ) = (sin θ eiφ, cos θ), (F.3)

where on the right side we have identified the x–y plane with the complex plane. This is often
convenient for calculations.
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Figure F.1: Bloch Sphere. See (F.6) for notation. ([Vaz12, Notes Chapter 10, Fig. 10.1]).

F.2 Pairs of antipodal points

F.2.1 Orthonormal Bases & Antipodal Points

An arbitrary orthonormal basis1

|ψ〉 = cos
θ

2
|0〉+ sin

θ

2
eiφ |1〉 ,∣∣ψ′〉 = sin

θ

2
|0〉 − cos

θ

2
eiφ |1〉 = cos

π − θ
2
|0〉+ sin

π − θ
2

ei(π+φ) |1〉 ,
(F.4)

for C2 corresponds to a pair of antipodal points (θ, φ) and (π − θ, π + φ) on the Bloch sphere, and
conversely.

F.2.2 Important Examples

On the Bloch sphere the north pole corresponds to |0〉 (also written |z〉) since the spherical coordinates
are (0, φ), and the south pole corresponds to |1〉 (also written |−z〉 ) since the spherical coordinates
are (π, φ).

In cartesian coordinates, let

z =

0
0
1

 , x =

1
0
0

 , y =

0
1
0

 ∈ R3. (F.5)

1Why can every orthonormal basis be written this way, up to a global phase factor for each basis vector?
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Figure F.2: A 2(real)-dim slice of C2 and the Bloch sphere S2 ⊂ R3.

Using the notation of (2.2),

|ψ〉 = = cos
θ

2
|0〉+ sin

θ

2
eiφ |1〉 , (θ, φ)

|0〉 = |z〉 = = cos 0 |0〉+ sin 0 ei0 |1〉 , (θ, φ) = (0, 0)

|1〉 = |−z〉 = = cos
(π

2

)
|0〉+ sin

(π
2

)
ei0 |1〉 , (θ, φ) = (π, 0)

|+〉 = |x〉 =
1√
2
|0〉+

1√
2
|1〉 = cos

(π
4

)
|0〉+ sin

(π
4

)
ei0 |1〉 = |x〉 , (θ, φ) =

(π
2
, 0
)

|−〉 = |−x〉 =
1√
2
|0〉 − 1√

2
|1〉 = cos

(π
4

)
|0〉+ sin

(π
4

)
eiπ |1〉 = |−x〉 , (θ, φ) =

(π
2
, π
)

|i〉 = |y〉 =
1√
2
|0〉+ i

1√
2
|1〉 = cos

(π
4

)
|0〉+ sin

(π
4

)
eiπ/2 |1〉 = |y〉 , (θ, φ) =

(π
2
,
π

2

)
|−i〉 = |−y〉 =

1√
2
|0〉 − i 1√

2
|1〉 = cos

(π
4

)
|0〉+ sin

(π
4

)
ei3π/2 |1〉 = |−y〉 , (θ, φ) =

(π
2
,
3π

2

)

(F.6)

F.3 Projection Mapping Approach

For each qubit |ψ〉 the mapping |ψ〉〈ψ| is orthogonal projection onto the one dimensional subspace of
C2 spanned by |ψ〉 (see Section D.3.2). Moreover, this projection map depends only on the equivalence
class for |ψ〉.2

For |ψ〉 = cos θ2 |0〉 + sin θ
2 e

iφ |1〉, we defined the Bloch sphere representation Φ |ψ〉 ∈ S2 ⊂ R3

to be (θ, φ) in spherical coordinates and hence (sin θ cosφ, sin θ sinφ, cos θ) in cartesian coordinates.
See (F.3). However, a frequently more convenient approach is to write the hermitian matrix |ψ〉〈ψ|
in terms of the hermitian basis matrices I, σ1, σ2, σ3 and to read off the cofficients, as in the following
proposition.

Proposition. Let |ψ〉 be a qubit. Since the projection map |ψ〉〈ψ| is hermitian it has a unique expan-
sion

|ψ〉〈ψ| = 1

2
(I + n1σ1 + n2σ2 + n3σ3) =

1

2

[
1 + n3 n1 − in2

n1 + in2 1− n3

]
. (F.7)

Then Φ |ψ〉 = n̂ = (n1, n2, n3) is the Bloch sphere representation of |ψ〉 in cartesian coordinates.

Proof. That the projection map |ψ〉〈ψ| is hermitian was noted in Section D.3.2, and the unique expan-
sion of any hermitian matrix in terms of the Pauli matrices was noted in Appendix E equation (E.3).

2Let |ψ′〉 = eiφ |ψ〉. Then 〈ψ′| = e−iφ 〈ψ| and so |ψ′〉〈ψ′| = |ψ〉〈ψ|. See Section D.4.
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Setting |ψ〉 = cos θ2 |0〉+ sin θ
2 e

iφ |1〉, using some basic trigonometric identities3 and (E.3)

|ψ〉〈ψ| =
[

cos θ2
sin θ

2 e
iφ

] [
cos θ2 sin θ

2 e
−iφ]

=

[
cos2 θ

2 cos θ2 sin θ
2 e
−iφ

cos θ2 sin θ
2 e

iφ sin2 θ
2

]
=

1

2

[
1 + cos θ sin θ e−iφ

sin θ e−iφ 1− cos θ

]
=

1

2

(
I + sin θ cosφσ1 + sin θ sinφσ2 + cos θ σ3

)
. (F.8)

This gives (F.7) with (n1, n2, n3) = (sin θ cosφ, sin θ sinφ, cos θ), which from (F.3) is the Bloch sphere
representation of |ψ〉 in cartesian coordinates.

Remark The fact the coefficient of I in F.7 is 1
2 can be seen directly. First note that

tr |ψ〉〈ψ| = tr 〈ψ|ψ〉 = 〈ψ|ψ〉 = 1. (F.9)

The first equality is by the cyclic property of trace and the second equality because the trace of a
scalar is the scalar itself. Since also

tr I = 2, trσ1 = trσ2 = trσ3 = 0,

the result follows.

Remark The fact |n̂| = 1 can also be seen directly from (F.7). As in the proof of (F.13),

1 = (〈ψ|ψ〉)2 = tr(〈ψ|ψ〉)2 = tr (|ψ〉〈ψ| |ψ〉〈ψ|) =
1

2

(
1 + |n̂|2

)
.

Hence |n̂| = 1.

Example Find Φ |ψ〉 if |ψ〉 = 1
2 |0〉+

√
3

2 i |1〉.
Compute

|ψ〉〈ψ| =

[
1
2√
3i
2

] [
1
2 −

√
3i
2

]
=

[
1
4 −

√
3i
4√

3i
4

3
4

]

=
1

2
I +

[
−1

4 −
√

3i
4√

3i
4

1
4

]
=

1

2

(
I +

√
3

2
σ2 −

1

2
σ3

)

Hence Φ |ψ〉 =
(

0,
√

3
2 ,−

1
2

)
in cartesian coordinates.

From the Bloch Sphere back to the Qubit Given a unit vector (n1, n2, n3) ∈ S2 ⊂ R3 we can
readily find the coordinates of the ket |ψ〉 which is represented by (n1, n2, n3) as follows.

From (F.7) and (E.1) we have

|ψ〉〈ψ| = 1

2

[
1 + n3 n1 − in2

n1 + in2 1− n3

]
. (F.10)

We can read off the coordinates of |ψ〉〈ψ| directly as follows.
Since |ψ〉〈ψ| is a projection operator it has rank 1. Hence the two columns in its matrix must be

linearly dependent and the image of |ψ〉〈ψ|, which is |ψ〉, is spanned by either column:

Span |ψ〉 = Span

[
1 + n3

n1 + in2

]
= Span

[
n1 − in2

1− n3

]
.

3There is not much to remember, just sin 2θ = 2 sin θ cos θ, cos 2θ = 2 cos2 θ − 1.
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Using the first column vector since it gives a real positive coefficient for |0〉, and since its norm squared
is (1 + n3)2 + |n1 + in2|2 = 2(1 + n3), up to an arbitrary phase factor and assuming n3 6= −1,

|ψ〉 =

√
1 + n3√

2
|0〉+

n1 + in2√
2(1 + n3)

|1〉 . (F.11)

If n3 = −1 then |ψ〉 = |1〉 up to a phase factor.

F.4 Angle Doubling

Let

|ψ〉 = cos
θ

2
|0〉+ sin

θ

2
eiφ |1〉 , 0 ≤ θ ≤ π, 0 ≤ φ < 2π,

as in (F.1). Since |〈0|ψ〉| = 〈0|ψ〉 = cos θ2 , the angle between |0〉 and |ψ〉 is θ
2 . See Appendix B.1.4.

On the other hand, from (F.3), Φ |ψ〉 = (sin θ cosφ, sin θ sinφ, cos θ) =: k̂ and Φ |0〉 = (0, 0, 1) :=
z, so 〈z, k̂〉 = cos θ and the angle between Φ |0〉 and Φ |ψ〉 is θ.

Thus there is angle doubling in passing from S3 ⊂ C2 to S2 ⊂ R3. We will see in the following
proposition that this is always true. To prove this from the coordinate representation of qubits is very
messy and not recommended.

The following proof uses a couple of important properties of trace, see Appendix C.2.

Proposition. Suppose Φ |ψ〉 = n̂ and Φ |φ〉 = k̂. Let | 〈ψ|φ〉 | = cos ζ with ζ ∈ [0, π/2], and let
〈n̂, k̂〉 = cos θ with θ ∈ [0, π]. Then ζ = θ/2, i.e. θ = 2ζ.

Proof. First note that

cos2 ζ = | 〈ψ|φ〉 |2 = 〈ψ|φ〉 〈φ|ψ〉 = tr
(
〈ψ|φ〉 〈φ|ψ〉

)
= tr (|ψ〉〈ψ| |φ〉〈φ|) . (F.12)

The third equality is just because the trace of a scalar is the scalar. The fourth is by (C.6), noting
〈ψ|φ〉 = 〈ψ||φ〉 and 〈φ|ψ〉 = 〈φ||ψ〉.

From (F.7), with n̂ = (n1, n2, n3) and k̂ = (k1, k2, k3),

tr (|ψ〉〈ψ| |φ〉〈φ|) =
1

4
tr

[
1 + n3 n1 − in2

n1 + in2 1− n3

] [
1 + k3 k1 − ik2

k1 + ik2 1− k3

]
=

1

4
tr

[
(1 + n3)(1 + k3) + (n1 − in2)(k1 + ik2) ?

? (n1 + in2)(k1 − ik2) + (1− n3)(1− k3)

]
= (1 + n3 + k3 + n3k3) + (n1k1 + in1k2 − in2k1 + n2k2)

+ (n1k1 − in1k2 + in2k1 + n2k2) + (1− n3 − k3 + n3k3)

=
1

2

(
1 + 〈n̂, k̂〉

)
=

1

2
(1 + cos θ) = cos2 θ

2
. (F.13)

The proposition now follows from (F.12) and (F.13).

Alternative Proof This is essentially just a notational change which avoids referring to matrices.
In the proof of (F.13)

tr (|ψ〉〈ψ| |φ〉〈φ|) =
1

4
tr
(
I + n̂ · ~σ

)(
I + k̂ · ~σ

)
from (F.7) and (E.5)

=
1

4
tr
(
I + n̂ · ~σ + k̂ · ~σ + 〈n̂, k̂〉I

)
from (E.2)

=
1

2
+

1

2
〈n̂, k̂〉 =

1

2
(1 + cos θ) = cos2 θ

2
.
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Appendix G

Functions of Normal Operators

Contents
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G.3 Definition for Normal Operators . . . . . . . . . . . . . . . . . . . . . . . . 85

G.4 Matrices for the Schrödinger Equation . . . . . . . . . . . . . . . . . . . . 86

G.1 Examples of Interest

Let V be a finite dimensional complex inner product space. For us it will be a state space. You can
think of V = Cn.

Let T : V → V be a normal operator. Recall from Appendix B.2.3 that this means T has an
orthonormal basis of eigenvectors. We are interested in the case T is hermitian or unitary, but the
more general case is just as straightforward.

Let f : C→ C be some function. Then can we make sense of f(T ) in some useful way?
We will be particularly concerned with

cos(H), sin(H), exp(iθH), (G.1)

where exp(u) = eu is the exponential function and H is hermitian.

G.2 Power Series Definition

If f is the squaring function, i.e. f(z) = z2, then we define f(T ) = T 2. Similarly if f(z) = zk for some
positive integer k we define f(T ) = T k. We can also define T−1 to be the inverse of T , provided T is
invertible.

If f(z) = a0 + a1z + a2z
2 + · · · converges for |z| < R (i.e. f is analytic) then we can define

f(T ) = a0 + a1T + a2T
2 + · · · . This will converge if all entries in the standard matrix representation

are ≤ R′ for some R′ depending on R. In particular, for the functions cos(z), sin z and eaz for any
constant a, the series converges for all T . However, this is not the approach we take here. It is
mentioned just for comparison with the literature.

G.3 Definition for Normal Operators

For normal matrices we have the following more natural and convenient approach. In particular, there
are no differentiability requirements on f , and the definition of f(T ) depends only on the values of f
for the eigenvalues of T .1

1This approach works for diagonalisable matrices in general. But it is not as stable under convergence of matrices as
in the case of normal matrices where we are restricting to orthonormal bases. See [HJ91, §6.2.37 Theorem, p 433].
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With respect to any orthonormal basis of eigenvectors we have

T =

α1

. . .

αn

 =⇒ f(T ) :=

f(α1)
. . .

f(α1)

 . (G.2)

Note this is not a coordinate dependent definition! We are using an orthonormal basis of eigenvectors
for T . Any allowable change of basis vectors for T (e.g. reordering or phase changes) will have the
same effect on f(T ), i.e. no change on the actual operator.

G.4 Matrices for the Schrödinger Equation

If H is hermitian as in (B.4) with matrix below for some orthonormal basis of eigenvectors {E1, . . . , En}
corresponding to eigenvalues λ1, . . . , λn, then U(t) := e−itH has the matrix shown for the same or-
thonormal basis of eigenvectors (now also for e−itH).

H =

λ1

. . .

λn

 , U(t) := e−itH =

e
−itλ1

. . .

e−itλn

 . (G.3)

It follows immediately that U(t) is unitary.
It is also clear from its matrix representation that for any unitary operator U there is a unique

hermitian operator H such that U = exp(−iH).

If t is interpreted as time then U acts on the H eigenspace Ei for λi by rotation with velocity λi,
and in the clockwise direction if λi > 0.

In Figure G.1 let H =

[
λ1 0
0 λ2

]
and U =

[
e−itλ1 0

0 e−itλ2

]
= exp(−itH).

Figure G.1: Schematic representation for the 2 orthogonal eigenspaces E1, E2 ⊂ C2 and for the unitary
operator U = exp(−itH) as it rotates vectors in these eigenspaces. The direction of rotation is shown
in case λ1, λ2 > 0.

See also the Schrödinger Equation 2.24
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Appendix H

Tensor Products
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H.1 Informal Presentation

H.1.1 Bilinear Requirements

Consider two finite dimensional complex1 inner product spaces V and W , with orthonormal bases
e1, . . . , em and ε1, . . . , εn respectively. If v ∈ V and w ∈W let

v = v1e1 + · · ·+ vmem, w = w1ε1 + · · ·+ wnεn. (H.1)

We want to form a new “tensor product”2 vector space V ⊗W which consists of all linear combi-
nations of elements of the form v ⊗w where v ∈ V and w ∈W . We call v ⊗w the “tensor product of
v and w” or just “v tensor w”. We similarly say the “tensor product of V and W” or just “V tensor
W” for the vector space V ⊗W .

We want V ⊗W to “preserve” the linear vector space structure of V and of W . For example, we
require

(2v + 3v′)⊗ (w − 3w′) = 2
(
v ⊗ (w − 3w′)

)
+ 3
(
v′ ⊗ (w − 3w′)

)
= 2(v ⊗ w)− 6(v ⊗ w′) + 3(v′ ⊗ w)− 9(v′ ⊗ w′)
= 2v ⊗ w − 6v ⊗ w′ + 3v′ ⊗ w − 9v′ ⊗ w′, etc.

In particular we unambiguously write 2v ⊗ w since we will require (2v)⊗ w = 2(v ⊗ w).

More precisely, we allow repeated applications of the following rules:

(αv + α′v′)⊗ w = α v ⊗ w + α′v′ ⊗ w
v ⊗ (βw + β′w′) = β v ⊗ w + β′v′ ⊗ w

(H.2)

These rules say that the map from V ×W into V ⊗W given by (v, w) 7→ v ⊗ w is linear in v and is
linear in w. In other words, the map from V ×W into V ⊗W is bilinear.

1Essentially everything we do also applies in the real case.
2Tensor products can be defined for any two vector spaces, not necessarily complex, or finite dimensional or with an

inner product.
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H.1.2 Basis and Dimension

When we calculate v ⊗ w in this way, with v and w as in (H.1), we obtain

v ⊗ w = (v1e1 + · · ·+ vmem)⊗ (w1ε1 + · · ·+ wnεn)

= v1w1 e1 ⊗ ε1 + v1w2 e1 ⊗ ε2 + · · ·+ v1wn e1 ⊗ εn
+ v2w1 e2 ⊗ ε1 + · · ·+ v2wn e2 ⊗ εn + · · ·+ vmwn em ⊗ εn.

(H.3)

Thus we can write v⊗w as a linear combination of the elements ej⊗εk. Moreover, using the rules (H.2),
v ⊗ w + v′ ⊗ w′ and α(v ⊗ w) will also be a linear combination of the ej ⊗ εk.

This implies V ⊗W should be a vector space spanned by {ej ⊗ εk : 1 ≤ j ≤ m, 1 ≤ k ≤ m}.
Moreover, we will require that the ej ⊗ εk be linearly independent, so that they actually form a basis
for V ⊗W , and V ⊗W is mn-dimensional. In particular,∑

j,k

αjk ej ⊗ εk =
∑
j,k

βjk ej ⊗ εk implies αjk = βjk for all j and k. (H.4)

H.1.3 Entangled and Product Elements

The map from V ×W into V ⊗W is not onto. Because V ⊗W is a vector space we can add its
members, for example e1 ⊗ ε1 + e2 ⊗ ε2 ∈ V ⊗W .

But do there exist v and w such that e1 ⊗ ε1 + e2 ⊗ ε2 = v⊗w? The answer is NO. To see this let
v and w be as in (H.1). Then from (H.3) and (H.4),

v1w1 = 1, v1w2 = 0, v2w1 = 0, v2w2 = 1.

Since v1w2 = 0, either v1 = 0 or w2 = 0. If v1 = 0 this contradicts v1w1 = 1 and if w2 = 0 this
contradicts v2w2 = 1.

We say that e1 ⊗ ε1 + e2 ⊗ ε2 is entangled. On the other hand,

e1 ⊗ ε1 + e1 ⊗ ε2 + e2 ⊗ ε1 + e2 ⊗ ε2 = (e1 + e2)⊗ (ε1 + ε2),

We say e1 ⊗ ε1 + e1 ⊗ ε2 + e2 ⊗ ε1 + e2 ⊗ ε2 is a product.

In the quantum setting, we refer to entangled and product states.

H.1.4 Other Bilinear Products

The requirements in (H.2) are the only restrictions on forming the tensor product of vectors from V
and W . Another way of expressing this is through the linear independence of the ej ⊗ εk as in (H.4).

To clarify this, consider (in the real case) the cross product map from R3 × R3 into R3. This is
bilinear. But e1 × e1 = 0 and e1 × e2 + e2 × e1 = 0, whereas e1 ⊗ e1 6= 0 and e1 ⊗ e2 + e2 ⊗ e1 6= 0.
So the cross product is not a tensor product. Moreover, the tensor product space R3 ⊗ R3 is in fact
9-dimensional, and as we see later is unique up to an appropriate isomorphism.

H.1.5 Inner Product

H.1.6 Examples

The basis for C2⊗C2 constructed from the canonical basis {|0〉 , |1〉} for C2 consists of the four elements

|0〉 ⊗ |0〉 , |0〉 ⊗ |1〉 , |1〉 ⊗ |0〉 , |1〉 ⊗ |1〉 .

In standard abbreviated form these are written as

|0〉 |0〉 , |0〉 |1〉 , |1〉 |0〉 , |1〉 |1〉 ; or |00〉 , |01〉 , |10〉 , |11〉 .

The basis for C2 ⊗ C2 ⊗ C2 consists of the 8 elements

|000〉 , |001〉 , |010〉 , |011〉 , |100〉 , |101〉 , |110〉 , |111〉 .
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H.2 Basis Dependent Definition of Tensor Products

Definition. With V and W as above, the tensor product V ⊗W is the mn dimensional inner product
space consisting of all formal linear combinations of the form

∑
j,k αjkej ⊗ εk, with vector addition,

scalar multiplications and inner product defined componentwise. In particular,(∑
j,k

αjkej ⊗ εk,
∑
j,k

βjkej ⊗ εk
)

:=
∑
j,k

αjkβjk

and so the ej ⊗ εk form an orthonormal basis of V ⊗W .
Define

⊗̂ : V ×W → V ⊗W, ⊗̂(v, w) = v ⊗ w =
∑
j,k

vjwk ej ⊗ εk.

Note that ⊗̂(·, ·) is bilinear, i.e. linear in each slot. But ⊗̂ is typically not onto.

Remarks Although the definition of V ⊗W involves the choice of bases e1, . . . , em and ε1, . . . , εn,
we will soon see that the tensor product is a basis independent notion. It is also possible to give a
basis free definition, but it is less “concrete” than the “pedestrian” approach above.

Note that here we are just identifying V ⊗W with the inner product space Cmn, modulo a choice
of orthonormal basis vectors e1, . . . , em and ε1, . . . , εn and a choice of identifying the ej ⊗ εk with the
standard basis vectors in Cmn.

Proposition. If B : V ×W → E is a bilinear map into a vector space E then there is a unique linear
map L : V ⊗W → E such that B(v, w) = L(v ⊗ w). Conversely, B can be recovered from L.

V ×W V ⊗W

E

B

⊗̂

L

Proof. Define L(ej ⊗ εk) = B(ej , εk) and extend to L : V ⊗W → E by linearity. It follows

B(v, w) =
∑
j.k

vjwkB(ej , εk) =
∑
j.k

vjwkL(ej ⊗ εk) = L

(∑
j.k

vjwk ej ⊗ εk
)

= L(v ⊗ w).

The existence and uniqueness of L are now immediate, and clearly B can be recovered from L.

Remark The point is that any bilinear map B : V ×W → E corresponds to a unique linear map
L : V ⊗W → E. We say

(
⊗̂, V ⊗W

)
satisfies the universality property for V and W .

We can also think of ⊗̂ : V ×W → V ⊗W as the “freest” bilinear map on V ×W in that the only
conditions imposed are the ones of bilinearity. In particular, the bilinear maps given by scalar product
and vector product on R3 × R3 are not free in this sense. For example, e1 · e2 = 0 but e1 ⊗ e2 6= 0,
e1 × e1 = 0 but e1 ⊗ e1 6= 0.

This leads to the following definition and proposition, which show that

Definition. Let C : V ×W → Z be a bilinear map into the vector space Z. Then (C,Z) satisfies the
universality property for V and W if for any vector space E and bilinear map B : V ×W → E there
exists a unique linear map LB : Z → E such that the following diagram commutes:

V ×W Z

E

B

C

LB
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