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Abstract. We give a finite element procedure for the Dirichlet
Problem corresponding to surfaces of prescribed mean curvature
and prove an optimal convergence estimate in the H1-norm.

1. H-Harmonic Maps

The numerical solution of the classical H-Plateau Problem consists
of approximating disc-like surfaces with prescribed boundary curve and
prescribed mean curvature H. For a detailed discussion of the algo-
rithms and theory see [6] for the case of zero mean curvature, and [7]
for the constant mean curvature case. In this paper we consider the
associated H-Dirichlet problem.

Estimates for finite element approximations to solutions of general
nonlinear elliptic systems are obtained in [4], using a continuity method
involving L∞ estimates for the discrete problem. Here we give a much
shorter proof of the H1 estimate, avoiding the need for L∞ estimates
and only assuming the discrete and smooth data are close in the H1

sense. Our techniques apply to a wide class of nonlinear systems. We
treat the case of a non-polygonal and non-convex boundary and give
the explicit dependence on the non-degeneracy constant of the smooth
solution being approximated. The arguments are prototypes of those
used in [7] for treating the more difficult case of the (free boundary)
H-Plateau Problem. The main tool for avoiding L∞ norms in the
present “borderline” case is the isoperimetric inequality due to Rado,
see Remark 3.1.

This work was partially supported by the Australian Research Coun-
cil.

Throughout, Ω (⊂ R2) is a bounded domain with C2 boundary.
Function spaces will consist of functions defined over Ω with values
in R3 unless otherwise clear from context. Constants will depend on Ω
and other quantities as indicated.
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By | · |H1 is meant the H1 seminorm, and by ‖ · ‖H1 the full norm.
Note that by Poincaré’s inequality, | · |H1(Ω) is a norm on H1

0 (Ω).
For vectors a, b, c ∈ R3, the triple product is defined by

[a, b, c] = a · b× c.
This is invariant under cyclic permutations of a, b and c, and anti-
symmetric with respect to interchanging any two. It is the volume of
the parallelopiped spanned by a, b and c.

Definition 1.1. SupposeH is a real number. A function u ∈ H2(Ω;R3)
is H-harmonic with boundary data u0 ∈ H2(Ω;R3) if

4u = 2Hux × uy a.e. in Ω(1.1)

u = u0 on ∂Ω(1.2)

Example 1.1. Let D be the closed unit disc in R2. Let

u0(x, y) = (x, y, 0) : D → R3

with 0 < H < 1. There are two solutions of (1.1) and (1.2) obtained by
mapping the unit disc D conformally, i.e. stereographically projecting
from a suitable point, onto the lower spherical caps obtained from each
of the two spheres of radius 1/H (mean curvature H) which contain
the image of u0|∂Ω. These solutions are called small or large depending
on whether their images do not, or do, contain a hemisphere. (We use
this example for test computations, see Tables 1 and 2.) If −1 < H <
0 then one similarly obtains two solutions from the upper spherical
caps. If H = 0 then there is exactly one solution, the map u(x, y) =
(x, y, 0) : D → R3. If H = 1 then one obtains a solution by mapping
onto the lower hemisphere of a sphere of radius 1, and onto the upper
hemisphere if H = −1.

Equation (1.1) is the Euler-Lagrange system associated to the H-
Dirichlet integral

DH(u) = DH(u; Ω) =
1

2

∫
Ω
|∇u|2 + 2HV (u),(1.3)

where

V (u) = V (u; Ω) :=
1

3

∫
Ω

[u, ux, uy](1.4)

can be thought of as the signed volume of the cone over the origin ob-
tained from the image of u. In fact, direct computation and integration
by parts easily gives

〈DH
′(u), ϕ〉 = 〈DH

′(u; Ω), ϕ〉 :=
d

dt

∣∣∣∣∣
t=0

DH(u+ tϕ)

=
∫

Ω
∇u∇ϕ+ 2H

∫
Ω

[ϕ, ux, uy]

(1.5)
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for u ∈ C2(Ω̄;R3) and ϕ ∈ C2
0(Ω̄;R3), and hence for u ∈ H1∩L∞(Ω;R3)

and ϕ ∈ H1
0 ∩ L∞(Ω;R3) by a limit argument, for example see [10,

Remark III.1.1]. If u ∈ H1 ∩ L∞ is stationary for DH , i.e.∫
Ω
∇u∇ϕ+ 2H

∫
Ω

[ϕ, ux, uy] = 0(1.6)

for all ϕ ∈ H1
0 ∩ L∞, then u is said to be a weak solution of (1.1).

Example 1.1 is fairly typical. Arguing heuristically, the energy func-
tional DH(u) is cubic in u and thus one expects (generically) either two
or no stationary points. In the former case one expects the “smaller”
solution to be a local minimum and the “larger” solution to be unstable.

Indeed, one has the following result due to the combined work of
Heinz, Werner, Hildebrandt, Jäger, Wente, Brezis–Coron, Struwe and
Steffen. For detailed references see Struwe [10, 11].

Theorem 1.1. Assume u0 ∈ H1 ∩ L∞(Ω;R3) and H ∈ R satisfy

‖u0‖L∞ |H| ≤ 1.

Then there exists u ∈ u0 +H1
0 ∩ L∞ such that

DH(u) = min
{
DH(v) : v ∈ u0 +H1

0 , ‖v‖L∞|H| ≤ 1
}
.

Moreover,

‖u‖L∞ ≤ ‖u0‖L∞ (∗)
and u is a weak solution to (1.1) and (1.2).

If furthermore

‖u0‖L∞|H| < 1 (∗∗)
then u is the unique local minimum of DH in u0 +H1

0 ∩L∞. Moreover,
u is the unique weak solution of (1.1) and (1.2) which satisfies (∗).
The function u is called the small solution of (1.1) and (1.2).

Under the same assumption (∗∗) if H 6= 0 and u0 is not constant,
there is also a second weak solution ū to (1.1) and (1.2) which satisfies

‖ū‖L∞ > ‖u0‖L∞ .
Any such solution is called a large solution to (1.1) and (1.2).

If u0 ∈ H2(Ω,R3) then any weak solution to (1.1) and (1.2) belongs
to H2(Ω,R3).

Remark 1.1.

1. The large solution need not be unique, although one would expect
that this is the generic situation. An example of Wente, [11,
Example IV.3.7], gives a continuum of solutions for Ω the unit
disc and boundary data u0(x, y) = (x, 0, 0). See Fig. 1 for the
image of the trivial small solution and of one of the large solutions
on a relatively coarse grid. Rotation of u(Ω) around the u1-axis
gives a continuum of solutions.
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Figure 1. Wente’s example (discrete approximations);
small and one of a continuum of large solutions

2. The existence of a large solution is obtained by a mountain pass
type argument, see [2] and [11, Theorem III.4.8]

Remark 1.2 (Nondegeneracy). We will be interested in approximating
functions u ∈ H2(Ω;R3) which are H-harmonic and nondegenerate in
the sense that the second variation DH

′′(u) has no zero eigenvalues.
This is always true for small solutions, see [11, Lemma III.4.7].

More precisely, for u ∈ H2(Ω;R3) and ϕ, ψ ∈ H2
0 (Ω;R3) one first

easily checks by direct computation and integration by parts that

DH
′′(u)(ϕ, ψ) = DH

′′(u; Ω)(ϕ, ψ) :=
∂2

∂s ∂t

∣∣∣∣∣
s=t=0

DH(u+ tϕ+ sψ)

=
∫

Ω
∇ϕ∇ψ + 2H

∫
Ω

[u, ϕx, ψy] + [u, ψx, ϕy](1.7)

=
∫

Ω
∇ϕ∇ψ + 2H

∫
Ω

[ψ, ux, ϕy] + [ψ, ϕx, uy],(1.8)

see [10, Remark III.1.1] and the paragraph following (3.2). From (1.8)
DH

′′(u) extends to a bounded symmetric bilinear functional on H1
0 ,

since ∫
Ω
|∇u| |ϕ| |∇ϕ| ≤ ‖∇u‖L4‖ϕ‖L4‖∇ϕ‖L2 ≤ c‖u‖H2‖∇ϕ‖2

L2

It follows that the inner product | · |H1 induces a bounded self-adjoint
linear operator ∇2DH(u) : H1

0 → H1
0 . The eigenvalues of ∇2DH(u)

are real, bounded below by −λ0 (say) and have no accumulation point.
Moreover, λ0 = λ0(Ω, H, ‖u‖H2), as follows from using (1.8) to estimate
the Raleigh-Ritz quotient.

The nondegeneracy constant λ of DH
′′(u) is defined by

λ = min
{
|γ| : γ is an eigenvalue of ∇2DH(u)

}
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Then ∇2DH(u) is one-one and onto iff λ > 0. Let

ϕ = ϕ+ + ϕ−(1.9)

denote the | · |H1 orthogonal decomposition of ϕ ∈ H1
0 into members

of the positive and negative spaces H+ and H− corresponding to the
eigenvalues and eigenfunctions of ∇2DH(u). Then

DH
′′(u)(ϕ, ϕ+ − ϕ−) ≥ λ|ϕ|2H1(1.10)

for all such ϕ and λ is the largest such real.
¿From the eigenfunction equation, c.f. (1.8), together with the esti-

mate for λ0, one obtains ϕ− ∈ H2 and

‖ϕ−‖H2 ≤ ν|ϕ−|H1(1.11)

where ν = ν(Ω, H, ‖u‖H2 , d) with d the dimension of H−.

2. Discrete H-Harmonic Maps

For h > 0 let Th be a triangulation of Ω by triangles T whose side
lengths are bounded above by ch for some c independent of h and
whose interior angles are bounded away from zero uniformly and inde-
pendently of h. The intersection of any two different triangles is either
empty, a common vertex, or a common edge.

Let

Ωh =
⋃
T∈Th

T.

Let

Xh =
{
uh ∈ C0(Ωh;R3) : uh|T ∈ P1(T ) ∀T ∈ Th

}
,

Xh0 = {ϕh ∈ Xh : ϕh|∂Ωh = 0 } ,

where P1(T ) is the set of polynomials over T of degree at most one.
For some δ > 0 and all sufficiently small h,

Ω′ := {x ∈ R2 : d(x,Ω) < δ } ⊃ Ωh ∪ Ω.

If u ∈ H2(Ω) then by the C2 regularity of Ω there exists an extension
of u to Ω′, also denoted by u, such that

‖u‖H2(Ω′) ≤ c‖u‖H2(Ω).(2.1)

Definition 2.1. The discrete H-Dirichlet integral is defined by

DH(uh; Ωh) =
1

2

∫
Ωh

|∇uh|2 + 2HV (uh; Ωh)

for uh ∈ Xh.



6 GERHARD DZIUK AND JOHN E. HUTCHINSON

It follows from (1.5) and (1.7) with Ω replaced by Ωh and a limit
argument, or by direct computation and noting that boundary integrals
on internal edges cancel, that

〈D′H(uh; Ωh), ϕh〉 =
∫

Ωh

∇uh∇ϕh + 2H
∫

Ωh

[ϕh, uhx, uhy],(2.2)

DH
′′(uh; Ωh)(ϕh, ψh) =∫

Ωh

∇ϕh∇ψh + 2H
∫

Ωh

[uh, ϕhx, ψhy] + [uh, ψhx, ϕhy],(2.3)

for uh ∈ Xh and ϕh, ψh ∈ Xh0.
Motivated by (1.6), one has

Definition 2.2. A function uh ∈ Xh is discrete H-harmonic if∫
Ωh

∇uh∇ϕh + 2H
∫

Ωh

[uhx, uhy, ϕh] = 0,(2.4)

for all ϕh ∈ Xh0.

We will prove the following.

Theorem 2.1. Let u ∈ H2(Ω;R3) be H-harmonic and u = u0 on ∂Ω
where u0 ∈ H2(Ω;R3). Assume u is nondegenerate with nondegeneracy
constant λ.

Let u0
h ∈ Xh and assume ‖u0 − u0

h‖H1(Ωh) ≤ αh.
Then there exist constants h0 = h0(‖u‖H2 , ‖u0‖H2 , α,Ω, d,H, λ), ε0 =

ε0(H, λ), and c0 = c0(‖u‖H2 , ‖u0‖H2 , α,H) such that if 0 < h ≤ h0

then:

1. There exists a unique discrete H-harmonic function uh such that
uh = u0

h on ∂Ωh and

‖u− uh‖H1(Ωh) ≤ ε0;

2. Moreover,

‖u− uh‖H1(Ωh) ≤ c0λ
−1h.

3. Proof of Main Theorem

With u, u0 and u0
h as in the main theorem define

Jhu = u0
h + Ih(u− u0) ∈ u0

h +Xh0,(3.1)

where Ih is the standard nodal interpolation operator.
The proof of the main theorem will use the following quantitative

version of the Inverse Function Theorem with X = u0
h+Xh0, X = Xh0,

Y = X∗h0 (the dual space of Xh0), x0 = Jhu, f = D′H(· ; Ωh). The proof
of the lemma follows from that in [1] pp 113–114.

Lemma 3.1. Let X be an affine Banach space with Banach space X
as tangent space, and let Y be a Banach space. Suppose x0 ∈ X and
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f ∈ C1(X , Y ). Assume there are positive constants α, β, δ and ε such
that

‖f(x0)‖Y ≤ δ,

‖f ′(x0)−1‖L(Y,X) ≤ α−1,

‖f ′(x)− f ′(x0)‖L(X,Y ) ≤ β for all x ∈ B̄ε(x0),

where

β < α, δ ≤ (α− β)ε.

Then there exists a unique x∗ ∈ B̄ε(x0) such that f(x∗) = 0.

Remark 3.1 (The Volume Functional). A fundamental result which is
due to Wente [12] states that for any u0 ∈ H1 ∩ L∞(Ω;R3) the func-
tional V (and hence DH) extends to an analytic functional on the affine
space u0 + H1

0 (Ω;R3). This is perhaps surprising, since from (1.5)
and (1.7) one might expect bounds for the relevant integrals to also
involve ‖ϕ‖L∞ and ‖u‖L∞ respectively.

More generally, one has the following.
For u, v, w ∈ H1 ∩ L∞(Ω;R3) define the trilinear functional

V (u, v, w) = V (u, v, w; Ω) =
1

6

∫
Ω

[u, vx, wy] + [u,wx, vy].(3.2)

Note that V (u) = V (u, u, u).
Assume now that at least one of u, v, w also belongs to H1

0 (Ω;R3).
Then V is invariant under cyclic permutations of its arguments, as
follows from integration by parts in the C2 case and in general by a
limit argument, see [10, Remark III.1.1.iii]. Since V is invariant under
permutation of its first two arguments, it then follows it is invariant
under any permutation of its arguments. Moreover under the same
assumptions, from an argument similar to that in [10, proof of Theo-
rem III.2.3] which uses an isoperimetric inequality due to Radó [8], one
also has

V (u, v, w) ≤ c|u|H1(Ω)|v|H1(Ω)|w|H1(Ω).(3.3)

Similar remarks and estimates apply if Ω is everywhere replaced by Ωh.
Assume now u, v ∈ H1 ∩ L∞(Ω;R3) and ϕ ∈ H1

0 ∩ L∞(Ω;R3). It
follows that

〈V ′(u), ϕ〉 = 3V (u, u, ϕ) ≤ c|u|2H1(Ω)|ϕ|H1(Ω),(3.4)

V ′′(u)(v, ϕ) = 6V (u, v, ϕ) ≤ c|u|H1(Ω)|v|H1(Ω)|ϕ|H1(Ω),(3.5)

V ′′′(·)(u, v, ϕ) = 6V (u, v, ϕ) ≤ c|u|H1(Ω)|v|H1(Ω)|ϕ|H1(Ω).(3.6)

(In particular, if u ∈ H1∩L∞(Ω;R3) these estimates allow one to define
the integrals in (1.5) and (1.7) for arbitrary ϕ, ψ ∈ H1

0 (Ω;R3).) Similar
results also hold if Ω is replaced by Ωh.
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For the remainder of this section, u is as in the Main Theorem.
Extend u to Ω′ as in (2.1) and restrict to Ωh as necessary. Both the
extension and restriction will also be denoted by u.

Lemma 3.2.

‖u− Jhu‖H1(Ωh) ≤ c1h

where c1 = c1(‖u‖H2(Ω), ‖u0‖H2(Ω), α).

Proof.

‖u− Jhu‖H1(Ω∩Ωh) =
∥∥∥(u0 − u0

h)− (Ih(u− u0)− (u− u0))
∥∥∥
H1(Ω∩Ωh)

≤ ‖u0 − u0
h‖H1(Ω∩Ωh) + ch|u− u0|H2(Ω)

≤ ch,

where c = c(‖u‖H2 , ‖u0‖H2 , α). Since

‖u‖H1(ΩhrΩ) ≤ ch‖u‖H2(ΩhrΩ) ≤ ch‖u‖H2(Ω)

by elementary estimates and (2.1), the result follows.

Lemma 3.3. If ϕh ∈ Xh0 then

|〈D′H(Jhu; Ωh), ϕh〉| ≤ c2h|ϕh|H1(Ωh),

where c2 = c2(‖u‖H2(Ω), ‖u0‖H2(Ω), α,H).

Proof.

〈D′H(Jhu; Ωh), ϕh〉
=
(
〈D′H(Jhu; Ωh), ϕh〉 − 〈D′H(u; Ωh), ϕh〉

)
+ 〈D′H(u; Ωh), ϕh〉

=: A+B

From the Taylor series expansion for V ′(· ; Ωh) and Remark 3.1

|A| =
∣∣∣∣∫

Ωh

∇(Jhu− u)∇ϕh + 2H〈V ′(Jhu; Ωh), ϕh〉 − 〈V ′(u; Ωh), ϕh〉
∣∣∣∣

≤ |Jhu− u|H1(Ωh)|ϕh|H1(Ωh) + 2|H||V ′′(u; Ωh)(Jhu− u, ϕh)|
+ |H||V ′′′(u; Ωh)(Jhu− u, Jhu− u, ϕh)|
≤ |Jhu− u|H1(Ωh)|ϕh|H1(Ωh)

+ c|H||u|H1(Ωh)|Jhu− u|H1(Ωh)|ϕh|H1(Ωh)

+ c|H||Jhu− u|2H1(Ωh)|ϕh|H1(Ωh)

≤ ch|ϕh|H1(Ωh),

from Lemma 3.2 and (2.1), where c = c(‖u‖H2(Ω), ‖u0‖H2(Ω), α,H).
Also,

B =
∣∣∣∣∫

Ωh

∇u∇ϕh + 2H
∫

Ωh

[ϕh, ux, uy]
∣∣∣∣ =

∣∣∣∣∫
Ωh

(−4u+ 2Hux × uy) · ϕh
∣∣∣∣

=
∣∣∣∣∫

ΩhrΩ
(−4u+ 2Hux × uy) · ϕh

∣∣∣∣ ≤ c‖ϕh‖L2(ΩhrΩ) ≤ ch‖ϕh‖H1(Ωh)

where c = c(‖u‖H2 , H), as follows from (2.1), a Sobolev imbedding
theorem, and elementary calculus.

The required result follows.
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Remark 3.2 (A “Discrete Eigenspace” Decomposition). If ϕh ∈ Xh0 let
ϕh also denote the zero extension to Ω ∪ Ωh. Note that ϕh /∈ H1

0 (Ω)
unless Ω is convex. For this reason define P : Xh0 → H1

0 (Ω) to be the
| · |H1 projection, i.e. ∫

Ω
∇(Pϕh)∇ϕ =

∫
Ω
∇ϕh∇ϕ

for all ϕ ∈ H1
0 (Ω).

One has

|ϕh|H1(ΩhrΩ) ≤ ch1/2|ϕh|H1(Ωh)(3.7)

|Pϕh|H1(Ω) ≤ |ϕh|H1(Ωh)(3.8)

|ϕh − Pϕh|H1(Ω) ≤ ch1/2|ϕh|H1(Ωh)(3.9)

To see (3.7) note that ∇ϕh is constant on any triangle T ∈ Th and
that |T ∩ (Ωhr Ω)| ≤ ch|T |. Inequality (3.8) is immediate, since P is
just | · |H1 orthogonal projection onto H1

0 (Ω). For (3.9) first note that
|ϕh − Pϕh|H1(Ω) ≤ |ϕh − ϕ|H1(Ω) for any ϕ ∈ H1

0 (Ω), by orthogonality.
Now choose ϕ by suitably deforming ϕh in a boundary strip.

Let (Pϕh)
+, (Pϕh)

− ∈ H1
0 (Ω) be the components of Pϕh as in (1.9).

Note that (Pϕh)
− is smooth, and in particular

‖(Pϕh)−‖H2(Ω) ≤ ν|ϕh|H1(Ωh)(3.10)

since

‖(Pϕh)−‖H2(Ω) ≤ ν|(Pϕh)−|H1(Ω) ≤ ν|Pϕh|H1(Ω) ≤ ν|ϕh|H1(Ωh)

from (1.11), (1.9) and the | · |H1-orthogonality of (Pϕh)
+ and (Pϕh)

−,
and (3.8).

Define a discrete analogue of (1.9) by

ϕ
(−)
h = Ih(Pϕh)

− ∈ Xh0, ϕ
(+)
h = ϕh − ϕ(−)

h ,

ϕh = ϕ
(+)
h + ϕ

(−)
h .

(3.11)

Taking the zero extension of (Pϕh)
− and (Pϕh)

+ to Ωh, and of ϕ(−)

and ϕ(+) to Ω, we claim

|(Pϕh)− − ϕ(−)
h |H1(Ω∪Ωh) ≤ ch|ϕh|H1(Ωh),

|(Pϕh)+ − ϕ(+)
h |H1(Ω∪Ωh) ≤ ch1/2|ϕh|H1(Ωh),

(3.12)

where c = c(ν)

Proof of claim.

|(Pϕh)− − ϕ(−)
h |H1(Ωh) ≤ ch|(Pϕh)−|H2(Ω) ≤ chν|ϕh|H1(Ωh)

from (3.10). Also

|(Pϕh)−|H1(ΩrΩh) ≤ ch|(Pϕh)−|H2(Ω) ≤ chν|ϕh|H1(Ωh).

This gives the first result.
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For the second,

|(Pϕh)+ − ϕ(+)
h |H1(Ωh)

≤ |Pϕh − ϕh|H1(Ωh) + |(Pϕh)− − ϕ(−)
h |H1(Ωh)

≤ c(h1/2 + hν)|ϕh|H1(Ωh)

from the first result and (3.9). On Ω r Ωh, ϕh = ϕ
(+)
h = 0 and so the

required estimate now follows from (3.9). ¤

We also have

|ϕ(−)
h |H1(Ωh) ≤ (1 + ch)|ϕh|H1(Ωh)

|ϕ(+)
h |H1(Ωh) ≤ (1 + ch1/2)|ϕh|H1(Ωh)

(3.13)

from (3.12), the orthogonal decomposition Pϕh = (Pϕh)
− + (Pϕh)

+

and (3.8).
Thus (3.11) is an “almost orthogonal” decomposition for small h.

Lemma 3.4. If ϕh ∈ Xh0 then

D′′H(Jhu; Ωh)(ϕh, ϕ
(+)
h − ϕ(−)

h ) ≥ 3λ

4
|ϕh|2H1(Ωh)

provided h ≤ h1 where h1 = h1(‖u‖H2(Ω), ‖u0‖H2(Ω), α,Ω, d,H, λ).

Proof. Since V (· ; Ωh) is cubic, from (2.3)

D′′H(Jhu; Ωh)(ϕh, ϕ
(+)
h − ϕ(−)

h )

= DH
′′(u; Ωh)(ϕh, ϕ

(+)
h − ϕ(−)

h ) + 2HV ′′′(u; Ωh)(Jhu− u, ϕh, ϕ(+)
h − ϕ(−)

h ).

But∣∣∣2HV ′′′(u; Ωh)(Jhu− u, ϕh, ϕ(+)
h − ϕ(−)

h )
∣∣∣

≤ c|Jhu− u|H1(Ωh)|ϕh|H1(Ωh)|ϕ(+)
h − ϕ(−)

h |H1(Ωh) ≤ ch|ϕh|2H1(Ωh)

where c = c(‖u‖H2(Ω), ‖u0‖H2(Ω), α, ν,H), from Remark 3.1, and also
from Lemma 3.2 and (3.13).

Now

DH
′′(u; Ωh)(ϕh, ϕ

(+)
h − ϕ(−)

h ) = DH
′′(u; Ω)(ϕh, ϕ

(+)
h − ϕ(−)

h ) + E1

where

|E1| ≤ c(1 + ‖u‖L∞)|ϕh|H1(ΩhrΩ)|ϕ(+)
h − ϕ(−)

h |H1(ΩhrΩ) ≤ ch|ϕh|2H1(Ωh)

with c = c(‖u‖H2(Ω), ν,H), from (3.7) and (3.12), since (Pϕh)
+ =

(Pϕh)
− = 0 in Ωhr Ω.
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Also

DH
′′(u; Ω)(ϕh, ϕ

(+)
h − ϕ(−)

h )

= DH
′′(u; Ω)(Pϕh, (Pϕh)

+ − (Pϕh)
−)

+DH
′′(u; Ω)(ϕh − Pϕh, (Pϕh)+ − (Pϕh)

−)

+DH
′′(u; Ω)(ϕh, (ϕ

(+)
h − (Pϕh)

+)− (ϕ
(−)
h − (Pϕh)

−))

≥ λ|Pϕh|2H1(Ω) + E2 + E3

from (1.10). But

|E2|, |E3| ≤ c(1 + ‖u‖L∞)h1/2|ϕh|2H1(Ωh)

from (3.9) and (3.8), and (3.12) respectively.
It follows that

D′′H(Jhu; Ωh)(ϕh, ϕ
(+)
h − ϕ(−)

h ) ≥ λ|Pϕh|2H1(Ω) − ch1/2|ϕh|2H1(Ωh)

≥ 3λ

4
|ϕh|2H1(Ωh)

from (3.9), for h ≤ h1 = h1(‖u‖H2(Ω), ‖u0‖H2(Ω), α,Ω, d,H, λ).

Lemma 3.5. If vh ∈ u0
h +Xh0 and ϕh, ψh ∈ Xh0 then

|D′′H(vh; Ωh)(ϕh, ψh)−D′′H(Jhu; Ωh)(ϕh, ψh)| ≤
λ

4
|ϕh|H1(Ωh)|ψh|H1(Ωh)

provided |vh − Jhu|H1(Ωh) ≤ ε1 where ε1 = ε1(H, λ).

Proof. This follows from

D′′H(vh; Ωh)(ϕh, ψh)−D′′H(Jhu; Ωh)(ϕh, ψh)

= 2HV ′′′h (Jhu; Ωh)(vh − Jhu, ϕh, ψh),
(3.6) and Lemma 3.2.

Completion of proof of Main Theorem. We use Lemma 3.1 with X =
u0
h +Xh0, X = Xh0, Y = X∗h0, x0 = Jhu, f = D′H(· ; Ωh). The norm on
Xh0 is | · |H1(Ωh) and on X∗h0 is the corresponding dual norm. Note that

D′H(· ; Ωh) : u0
h +Xh0 → X∗h0

with derivative

D′′H(· ; Ωh) : u0
h +Xh0 → L(Xh0, X

∗
h0)

using standard identifications.
From Lemma 3.3

‖D′H(Jhu; Ωh)‖ ≤ c2h.(3.14)

From Lemma 3.4, D′′H(Jhu; Ωh) is invertible and∥∥∥[D′′H(Jhu; Ωh)]
−1
∥∥∥ ≤ (3λ

4
|ϕh|H1(Ωh)

/
|ϕ(+)
h − ϕ(−)

h |H1(Ωh)

)−1
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provided h ≤ h1. But

|ϕ(+)
h − ϕ(−)

h |H1(Ωh) ≤ |(Pϕh)+ − (Pϕh)
−|H1(Ωh) + |ϕ(+)

h − (Pϕh)
+|H1(Ωh)

+ |ϕ(−)
h − (Pϕh)

−|H1(Ωh)

≤ (1 + ch1/2)|ϕh|H1(Ωh)

where c = c(ν), from (3.8) and (3.12). Hence

∥∥∥[D′′H(Jhu; Ωh)]
−1
∥∥∥ ≤ (λ

2

)−1

(3.15)

if h ≤ h3 where h3 = h3(‖u‖H2(Ω), ‖u0‖H2(Ω), α,Ω, d,H, λ).
Finally, from Lemma 3.5

‖D′′H(vh; Ωh)−D′′H(Jhu; Ωh)‖ ≤
λ

4
(3.16)

if |vh − Jhu|H1(Ωh) ≤ ε1 where ε1 = ε1(H, λ).
Take δ = c2h, α = λ/2, β = λ/4 and ε = ε1. Then from (3.14)–(3.16)

the hypotheses of Lemma 3.1 are satisfied provided h ≤ h3, c2h ≤
λ
4
ε1. This establishes the first (uniqueness) part of the main theorem

with ε0 = ε1 and h0 = h0(h3, ε1, λ, c2) = h0(‖u‖H2 , ‖u0‖H2 , α, ν,H, λ).
Taking δ = c2h, α = λ/2, β = λ/4 and ε = λ−1c0h the hy-

potheses of Lemma 3.1 are again satisfied from (3.14)–(3.16) provided
h ≤ h3, c2h ≤ 1

4
c0h. This establishes the second (O(h) convergence)

part of the main theorem with h0 = h3 and c0 = 4c2. ¤

4. Numerical Results

In Tables 1 and 2 we present the results of test computations for
the explicitly known spherical solutions described in Example 1.1 with
H = 0.5 and Ω = B1(0). Denote by eh the error between the contin-
uous solution and the discrete solution in the chosen norm. For two
successive grids with grid sizes h1 and h2 the experimental order of
convergence is

eoc = ln
eh1

eh2

/
ln
h1

h2

.

The test computations confirm the order 1 for the H1(Ω)-norm and
additionally show the order 2 for the L2(Ω)-norm.

Figures 2 and 3 show computational results with Ω = B1(0), H =
0.5 and boundary values u(eiφ) = (cos(φ), sin(φ), (2 +

√
3) cos(2φ) −

0.5 cos(6φ)) on a grid with 8192 triangles. For better visibility the
resulting surfaces are scaled, but the boundaries of the solution surfaces
are the same.

Figure 4 shows a solution for the annular domain Ω = { x | 1 < |x| <
2 } and boundary data which give knotted boundary curves.
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nodes level h L2-error L2-eoc H1-error H1-eoc

9 2 1.0000 1.0020e-1 - 0.2607 -
25 4 0.7368 3.9040e-2 3.09 0.1822 1.17
81 6 0.4203 1.0682e-2 2.31 9.6455e-2 1.13

289 8 0.2219 2.6916e-3 2.16 4.8223e-2 1.09
1089 10 0.1137 6.6871e-4 2.08 2.3909e-2 1.05
4225 12 0.05736 1.6621e-4 2.04 1.1876e-2 1.03

16641 14 0.02893 4.1401e-5 2.02 5.9160e-3 1.01

Table 1. Small solution, H = 0.5

nodes level h L2-error L2-eoc H1-error H1-eoc

81 6 0.4203 1.2292 - 6.1915 -
289 8 0.2219 0.4677 1.51 2.9080 1.18

1089 10 0.1137 0.1610 1.60 1.3131 1.19
4225 12 0.05736 0.04707 1.81 0.5870 1.18

16641 14 0.02893 0.01239 1.94 0.2772 1.09

Table 2. Large solution, H = 0.5

Figure 2. Small solution, H = 0.5
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