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1 Introduction

We are interested in finding disc-like surfacesRihwith a given smooth,
embedded and possibly knotted boundary curyend mean curvature at
each pointu prescribed by a smooth functidti(«). The classical Plateau
problem is the casé = 0. Physical processes which can be modelled by
surfaces of prescribed mean curvature include hanging drops, soap films
and the limiting behaviour of phase transition interfaces in the Van der
Waals-Cahn-Hilliard theory.

We expect that the methods developed here can be extended to treat a
variety of geometric problems.

In order to explain our approach we introduce the following notation.
Let D C R? be the unit disc and let

S(I') = {u € H' N C°(D; IR?) | u|sp monotonely parametrises}. (1)
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SupposeR : IR? — IR? is aC? vector field and let di¥) = 3H. For
u € S(I) define the energy functional by

1 2
E(u) = 3 /D |Vul|? + g/DQ(u) Uy A Uy 2

If Q = au for some constant then H = « and the second (“volume”)
term is2« times the volume of the cone from the origin to the surface

If u is stationary for€ thenu conformally parametrises a surface span-
ning I" with mean curvature? (u). (For justification of this and the other
claims here and in the following paragraph see [St1] and [DHKW]J) If
has aC** monotone parametrisation for sorhe> 2 thenu is alsoC*,
The following Euler-Lagrange system of equations is satisfied:by

Au = 2H (u) ug A uy,

|ug| = |uy|, Uy -uy =0.

®3)

Moreover, ifu € S(I") satisfies the above system of equations thensta-
tionary for€. Notice the nonlinearity in the equations and also in the bound-
ary condition on members &(I"). Conversely, ifv € S(I") is a surface
spanningl” with mean curvaturd (v) then any conformal reparametrisa-
tion u of the surface given by will belong toS(I") and is stationary for

£. Thus an advantage of working with the functiogais that one obtains
conformalparametrisations of the prescribed mean curvature surfaces.

In this paper we give a method for finding finite element approximations
uy, to functionsu stationary forg, and prove the estimate

v = unll 1 (py < ch, (4)

wherec depends on.

In [DH3,DH4] we treated the cas# = 0. The methods there do not
extend to the present problem, as we discuss later, and so we develop a new
and more general framework. We note that for non-zErthere may not
even exist a minimiser &, but if there is one then there typically also exists
a corresponding unstable stationary point (corresponding in some sense to
the cubic nature of the second integrand)n

The difficulty of the problem arises through the nonlinearities of the
class of competing functions and of the Euler Lagrange equations, as re-
marked before. However, we can linearise the class of competing functions,
at the price of introducing further nonlinear (more precisely, non quadratic)
features into the energy functional.

For this purpose we le§' denote the unit circle ilR?, and consider a
fixed monotoneC*-* parametrisation

v: St (5)



Approximating Surfaces of Prescribed Mean Curvature 3

for suitablek > 2. It will be convenient to distinguish between the circle
S' and the boundarg D of the unit disc. Boundary mags: 0D — I" will
be written in the formy = v o s wheres : 9D — S'.

In the case) = 0 of minimal surfaces, stationary points férare
harmonic by (3). (We emphasise however that we reoeworking with
Dirichlet boundary conditions; the (free type) boundary condition 4s, :
0D — I' with u|sp monotone.) In this case it is permissible to look for
stationary solutions fof within the subclass of harmonic functions from
S(I'). The nonlinearity in this subclass due to the boundary condition was
removed in [DH3,DH4] by working with a suitable (affine) space of maps
s: 0D — S' (having winding number one) and by considering the unique
harmonic extensioh(yo s) of yos as well as its discrete analogue, c.f. (2).

The analogous approach here would be to constfidrarmonic func-
tions (i.e. solutions of the first equation in (3)) with boundary data s.

But such extensions may not exist, nor be unique if they do exist and the
extension operator is itself nonlinear and its first and second variations are
quite complicated. In [DH2] we did treat the case of finite element approx-
imations to solutions of the first equation in (3) willirichlet boundary
data. The analytic theory of such functions is treated in [St1].

In this paper we develop instead an idea from [St1, Section IV.4] and
linearise the class of competing surfaces by considering a suitable affine
space of pairgs, ¢) with s as before and witp : D — IR? satisfying
vlap = 0, and by taking the corresponding function

u==®P(yos)+ @ =:ug+p. (6)

Thuswu is decomposed into the sum of an harmonic function with the same
boundary data and a function with zero boundary data. Note thas isuf-
ficiently smooth and.|5, is one-one, them andy are uniquely determined
by u from

Yos=ulop, ¢=u—P(yos), ()
while v is clearly uniquely determined Ky, ¢). In [DH3,DH4] we in ef-
fect made the further restrictiop = 0, but of course that is not possible
here. Here we need to consider the clasalbkufficiently smooth func-
tionsu : D — R? for which u|sp is a (monotone) parametrisation bf
The precise class of functiors, o) is discussed in the following Section.

The energy functional is next defined by

1 2
Bls.0) =5 [ 190l 43 [ Q) nuy, ®

with u as in (6). The first and second variations are computed in (21) and
(22). One seeks solutions &f (s, ) = 0 and then the required prescribed
mean curvature surface is given byas in (6).
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Fig. 1. Solutions of the Plateau Problem for the same boundary curveA&ith 0 (left)
andH = 0.8 (right).

For numerical approximations we consider regular triangulationsf
D with grid sizeh and continuous piecewise linear finite eleméenis ¢y, ).
The ¢, are piecewise linear o), with zero boundary values. Thg, :
0D — S' are piecewise linear (oD notdD},) in the sense of arc length;
this choice of domain fog;, has the technical advantage that theform
a (affine) subspace of the However, the piecewise linear “interpolant”
I,(y o sp,) is defined ondD;, (not ondD) in the natural manner, agrees
with =y o s5, on the boundary nodes, and in particular maps boundary nodes
onto!.

In analogy with (6) we define the piecewise linear function

up = Pp(In(y 0 s1)) + @n, 9)

whered,, is the discrete harmonic extension operator defined for piecewise
linearg;, on 9D, by

vp = gn ONODy,

fgh Vo, Vip, =0, (10)

Du(gn) =vn & {

for all 4/, continuous and piecewise linear @éh, and zero ordD,.
The discrete energy functional is then defined by’ (s cross product)

1 2
Ep(sh, on) = —/ [Vup|* + —/ Q(un) - upz Nupy.  (11)
2 Jp, 3Jp,
Setting £}, to be the first variation of?;,, solutions ofEj} (sp, ¢n) =
0 can be found by standard Newton procedures. The existence of such a
(unigue) discrete solution in a sufficiently small neighbourhood of a smooth
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solution (s, ¢) of the original problem is proved by an inverse function
theorem argument which also leads to estimates of the form

|3_3h|H1/2(3D) SCha |()0_(ph|H1(D) SCha

and from which (4) then follows.

We remark that our method has the additional advantage of producing
particularly good triangulations of the resulting surfaces, namely a discrete
conformal mapping from the initial domain.

Acknowledgement: This research has been partially supported by the
Australian Research Council and the DFG Graduiertenkolleg “Nichtlineare
Differentialgleichungen: Modellierung, Theorie, Numerik, Visualisierung”
Freiburg. The program GRAPE was used for the graphical presentation.

2 The Variational Problem

In this and the following section we make precise the ideas from the Intro-
duction.

Throughout the papeF is an embedded curve i with monotoneC*
parametrisationy : S' — I". We assum€ is aC? vector field orR? and
the prescribed mean curvature functiéhis given bydivQ) = 3H. Less
regularity is required for many of the estimates, as we will indicate.

2.1 Function Spaces

The set# of functionss : 9D — S' natural for the problem as treated
here (see the Introduction) is given in (14). But it is convenient to first
describe the spacH of allowable variationg, see (12) and (13). Whereas
s:0D — S, itis natural to takg : D — R. In particular such variations
will form a vector space, unlike the set@ivhich form only an affine space.
With the natural notion of addition one hast ¢ € #; see also (14) and
the subsequent comments.

It is well known that there is a three parameter family of conformal
parametrisations from the unit disc to any sufficiently smooth disc-like
surface. A unique conformal representative is usually selected by specify-
ing u(p;) for fixed pointspy, ps, p3 € OD. Here it is required instead that
with u|gp = =y o s as in (7) thens should satisfy three integral conditions,
see (14) and also (12), (13). The justification for the existence and unique-
ness of a conformal reparametrisation of any givesatisfying these con-
ditions follows from a topological fixed point argument, see the appendix
to the preprint version of [DH1].
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Thus we first define

H= {g 0D — R | ¢ € H'/? and (13) is satisﬁe§| . (12

2w 2w 2w
£(0)dé =0, £(0) cos@db = 0, £(0)sinfdd =0. (13)
0 0 0

Note that the semi-norm- |;1,> and the norm| - || ;1,2 are equivalent on
H by the first condition in (13).

Here and elsewhere we identify poirtd € oD (or S') with 6 €
[0, 27], functions{ : 9D — R with 2z-periodic functions, and frequently
write @ for e,

The affine space of appropriates defined by

H={s5:0D—=S"|s=id+o, cc H} (14)

where id: D — S! is the “identity” map idf) = @ or equivalently,
id(e’?) = ¢%. The sum in the above definition is defined in the natural way
by s(ei) = ¢i®*+o(¢) and should be thought of as mapping the point on
0D with angled to the point onS* with anglef + o ().

2.2 Energy Functional and Variations

The energy functionakl is defined by

_1 2, 2 .
Bls.o) = [ VaP+3 [ @, @)
where
(s,0) € (HNC%)(OD; S") x (Hy N C°)(D; IR?), (16)
u=>0(yos)+¢=1ug+¢p, &:C°%0D;R? - C'D;R® (17)

and@ is the harmonic extension operator.
Variations of(s, ) are given by

(&,9) € (HNC)(0D;IR) x (Hy N C°)(D; IR?), (18)

and the corresponding first and second variations afe denoted by

V= %Lou(s +te o+ 1) =B(Er 0s) +p=tvg+4p,  (19)
dQ

= | uls+te 0+ 1) = B(E2" 0 5). (20)

w
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The first and second variations Bfcan then formally be computed to give
E'(5,0)(&,%) :/DVU'VU‘f'Q/DH(U)U'Uz/\Uy (21)

E"(s,0)(€,1)% = /D |Vo|? + /DVU -Vw + 2/DH'(u) SV Uy A Uy

+2/H(u)(w-ux/\uy+v-(vx/\uy—i-ux/\vy)). (22)
D

The first variation is obtained using an integration by parts. Some decou-
pling of terms occurs since

/Vu-Vv:/Vuo-Vvo+/V<p-V¢, (23)
D D D
/|W|2+vu-vu;:/ |w0|2+/ |w|2+/ Vug - Vw. (24)
D D D D

There are significant technical difficulties concerning the appropriate
spaces in which to work in order to establish existence and regularity results
for stationary solutions of the above variational problem. For example, if
H (u) is constant therE is continuous and bounded @i x H_} but C*
only on the smaller spacg{ N C°) x (H{ N CY), see [Stl] and [DH3,
DH4] (for H = 0). In the case of variablé/ (u) the situation is even more
complicated, see [St2, Section 4].

It is not difficult to show fore = ¢(||s||c2, ||¢|lc2) that

|E' (s, 0) (&) < el g + 9] ),
B (5, 0) (& 9)?] < c(l€lF/e + 1l7),

and hence thak' (s, ¢) andE” (s, ¢) can be considered as bounded linear
and bilinear functionals respectively dif x H} (c.f. [DH3, Proposition
3.9]; the additional terms in the current setting cause no extra difficulties).
Note thatH x H{ is an inner product space with norm

) [ = (€122 + [9120) Y2 (26)

Definition 1 We sayu = &(y o s) + ¢ is a (conformally parametrised)
surface spanning’ with prescribed mean curvatu if (s, p) € H x Hg
is stationary forF, i.e. if

(25)

E'(s,9)(&%) =0 (27)
forall (¢,4) € H x H}. We sayu is non-degenerate if
A= inf sup E"(s,¢)((& ), (n,x)) >0, (28)
(&%) (nx)

where(¢,4) € H x Hg, [€]3,,,, + |3, = 1, and similarly for(, x).
We will assume, s, ¢ are all C?.
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The existence of suci (which are monotone ofiD) is established for
constantHd in Struwe [St1] where the equivalence with the classical for-
mulation (3) is also shown. Struwe shows by Morse theory methods the
existence of both “small” and “large” solutions, and in particular of unsta-
ble solutions. See also [DH3, DH4] for further discussion and examples in
the minimal surface case. The existence of solutions for varidbie the
present setting is discussed in [St2, Section 4]. The regularity of solutions
is established in [St1], with a gap filled by [Imb], by reducing to the clas-
sical formulation and using earlier regularity results of Hildebrandt [Hil],
Nitsche [N1], diger [Ja] and Heinz [He]. A result sufficient for our pur-
poses is that ify is C*® andQ is C*+1: for k > 2, thens, ¢ areC** and
u € C**(D),

2.3 Positive and Negative Eigenspaces for the Second Variation

SinceE" (s, ) is symmetric, bounded and bilinear h x H} it induces
a bounded self-adjoint linear operator

V2E(s,¢): Hx Hy — H x H} (29)

whose eigenvalues are real, and this gives a splitting sff| into positive
and negative eigenspaces (the null space being trivial:ag)), denoted

Hx Hy = (H x H}))™ & (H x H})*,
&) = (&) +(&9)

The non-degeneracy condition (28) is equivalent to

EH(S’ @)((fa@b)’ (§7¢)+ - (f)q)b)*)
= E"(s,0)((&,9)")" - E"(s,0)((&,9)7)°  (3D)
> A(€f7/ + 1917)

forall (¢,+) € H x H. Itis also equivalent to the invertibility of” (s, ¢)
regarded as amald’ (s, ) : H x H} — (H x H})' (the dual space) , with

(30)

[(E"(s,0) ' <A (32)

Finally we assum¢H x H¢)~ is finite dimensional and that (£, ) €
(H x H{)~ then for some,

1€l gar2 + 1Pl 2 < w(Elgare + [l m2)- (33)

If the negative eigenspace is trivial, i.e. the stationary péinto) is
stable then non-degeneracy is usually caldct stability.
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The finite dimensionality of H x H})~ follows by standard argu-
ments from a Garding type inequality fé" (s, ¢), c.f. [Stl, Proposition
11.5.6]. Regularity follows as in [St1, Proposition 11.5.6] and [Imb], since
each member of H x H})~ is a finite sum of solutions of certain ellip-
tic partial differential equations. It is consistent with these results to take
v = vl e, lslloz, M. llgllez, (7)o, d) whered is the dimension
of (H x H})~.

3 The Discrete Variational Problem
3.1 Discrete Function Spaces

Let G;, be a quasi-uniform triangulation @ with grid size comparable to
h. Let

Dh=\J{GI1GeG}, oDy=|J{Bjl1<j< M}, (34)

By, = {61,...,0} (the set of boundary nodes)fy;+1 = 6;.

The projectiont: 0D — 0Dy, is defined forl0 <t < 1,1 <j < M by
r (D0 H1014)) = (1 )i 4 gt (35)

We define the discrete spaces:

Xp, = {up : Dy — IR® | w;, continuous and piecewise lingar
Xno ={%n € Xp | ¢bp =00n0Dy, }

H, ={¢&,: 0D — IR | &, continuous p.l., and satisfies (13)
Hp = {sp:0D — S'| s, =id + oy, for someoy, € Hy, } .

(36)

The domain of the discrete energy functional will be the affine space
Xhno, Which by extending members of,, to be zero onD \ D, is a
subspace of the domain df. The domain of the set of variations for
(sn,on) € Hp x Xpo is the vector spacél, x Xpo, which is a subspace
of the corresponding space of variations (18) in the smooth setting.

For f € C°0D;IR?) we define the twanterpolation functions;, f
andI,‘?Df, whose domains ai@D;, andd D respectively, by

Inf (1 = t)e% + teirr) = 197 f (100 +1;41))

where0 <t < 1,1 < j < M. Clearly,

37)

IPf =I,f o (38)
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Foru € C°(D;R?) define thepiecewise linear interpolation function
Iu € X, in the usual way.
Concerning maps : D — S' and¢ : 9D — R, we linearly interpo-
late and therd,? project ontoH),. The resulting linear operatopg preserve
the integral conditions (13) and still satisfy the usual estimates, see [DH4,
Proposition 5.2]. In particular, fgf € HNC% k = 1, 2,2, ands € #NC?,
1€ = Préll e < B2 1€ (39)
Is = paslcor < chllsllcz,  lprsllcor < cllsllco, (40)
Is = puslleo < ch®|lslle2, s = phslleo < chllsller

3.2 The Discrete Energy Functional and Its Variations

If f, : 0D, — IR? is continuous and piecewise linear, iscrete har-
monic extensio®;, f;, € X, is defined by

D, V(@hfh) . V?ﬂh =0 forall T/Jh S XhOa (41)

Qnfn=1[frn on ODy.

For (sn, ¢n) € Hp x Xpo, thediscrete energy functionas defined by

1 2

Ep(shyon) = 3 /D |V |* + 3/, Q(up) - Unz N upy,  (42)
h h

up = Ppdp(y o sp) + @n =t upg + @p. (43)

Note thatE}, is notthe restriction ofE to H;, x Xjg.
The first and second variations @f in the direction(&,, vy,) € Hy, X
X0 are easily computed to be

d
vh = %‘t:ouh(sh + t&h, on + thn) = PpIp(Eny 0 sp) + Pn

(44)
=: Upo + Uy,
dQ
Wh = W‘t:ouh(sh + &, on + thr) = OIL (&7 0 sp). (45)

Denoting differentiation along D), by the subscript, the first and second
variations ofE}, are readily computed to be

Ey(shyon)Ensthn) = | Vun-Vor +2 [ H(u)v - ug Auy
Dh Dh
2
—3 Q(un) - vh A Ung,
oDy,

(46)
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Ep (sh, @h)(fh,?ﬂh)? = / |Vvh|2 + Vuy, - Vwy,
Dh Dh

+ 2 H'(uh)-vh Up - Upg N Upy
Dy,

+2 H(uh) (wh “Upg N Uhy + vp - (Uh:B A Uhy + Upz A Uhy)) (47)
Dy,

2

—3 /aDh(QI(Uh)”h) Op A Upy

2
3 Q(up) - (wp AN upr +vp Avpy).
oDy,
The first variation is obtained from an integration by parts, but unlike the
smooth case one also obtains a boundary term. Note the splitting of terms

Vuy, - Vop, = Vupg - Voo + | Vep - Vi, (48)
Dy, Dy, Dy,
/ Vo |? + Vay, - Vay, = / [Vuno|? +/ ik
Dy, Dy, Dy
+ Vuho . th. (49)
Dy,

Definition 2 The functionu;, = @, 1 (yosp )+, is a discrete (conformally
parametrised) surface spannidgwith discrete prescribed mean curvature
given byH if (sp,¢n) € Hp x Xy is stationary forEy, i.e. if

B} (shyon)(Entbn) =0 forall (&,,¢n) € Hy x Xpo. (50)

We sayuy, is non-degenerate with non-degeneracy conskédrit

N= inf sup Ejy(sn,on) ((€n %), (Mhoxn)) >0, (51)
(&ns¥n) (Mhsxn)

where (&, ¥n) € Hp X Xno, [€nl%1/2 + 905 = 1, similarly for (s, xn)-

Note that we do not require monotonicity of the discrete boundary map.

3.3 Discrete Approximations to the Eigenspace Decomposition

For (&x,vn) € Hy x Xpo and(s, ) stationary and non-degenerate for
we define the projection of the decomposition (30):
(Eny ) ™) = pi(En,vbn)~ € Hy, x Xno,

(52)
(Ensn) ™D = pr(&n,vbn) ™ € Hy x Xpo.
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Thus

(Enstpn) = (Enston) ) + (En, o). (53)

Note that(éy,, 1, ) ™ and(&p,, 4,) T do not normally belong téf;, x X, in
particular the first is a pair of smooth functions. Howeve(Hf x H})~

trivial then (¢, ¥1) = (&nyn) T = (€, ¢p) D

The decomposition (53) is “almost orthogonal” since

|(£ha¢h)_ - (ghawh)(_)|H1/2xH1 < Ch|(€h7’l/}h)|H1/2><H1’

(54)
|(§ha¢h)+ - (§h7¢h)(+)|H1/2><H1 < Ch|(§h7¢h)|H1/2><H17

wherec has the same dependencies as in (33). To see this, note from (39)
and (33) that

|Ensthn) ™ = (Enaton) o = 1Ensn) ™ = PaEns ) |/

< ch|(€ny¥n) " lgerzw e < chl(Ensn) ™ (/2

This gives the first inequality and the second then follows since

Ens )t = (Enan) ™) = (Enaon) ) — (Enutpn) ™

It follows from (54) and the orthogonal decomposition (30) that

|€ns ) i < (14 )| (Ens ) Lo

< (1 +ch)|[(Ens¥n)l g (55)
1(€hyton) iz < (14 )| (Ens ) ye s

< (T4 ch)|(&ns¥n)| g1/ -

4 Estimates for Smooth and Discrete Functions and their Variations

In this section we estimate the difference between the funati@orre-
sponding to an arbitrary smooth pdi, ), and the discrete function,,
corresponding to the discrete interpolant gaijr, ¢, ). Estimates compar-
ing the first and second variationswtndu, are also obtained. Finally we
obtain estimates comparing variations at a discrete(pak+- ny,, ©n + ¥n)
near the interpolant paisy,, ¢p).
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4.1 Notation

For future reference we gather together notation for this and the next sec-
tion.
The domain for norms and semi-norms o¥&rD;, andoDy, will usu-
ally be indicated explicitly, while those ovéD will not. The main excep-
tion is that|+y| 1 ill be written for [y, | 1 (p,,)-
Fors € H it will be convenient to use the notation

sl =1+ [[o]] (56)

wheres = id + o, for various norms ow. Note that||s|| > 1.

Following (17), (43), (19), (20), (44) and (45), we define the follow-
ing interpolants and first and second variations. Motivation for considering
these particular quantities and for their estimates is given prior to the rele-
vant lemmas.

Sh=pnS, @n=Ipp,
=®(yos)+p=:uy+ ¢, (57)
up = Pplp(y o sp) + ©n =t upo + Pa-
= B(¢py 0 8) + P =: vo + P,
vn = PpIn(Eny' 0 sp) + n =: vho + Y,
= (¢4 0 5),
wy, = PpIL(E27" 0 s1),

(58)

up = PpIp(y o (sn+mn)) + (@n + Xn) = Uno + (pn + Xn)
Th = Puln(Eny' © (sn+1n)) + Yn = Tho + ¥n, (59)
Wy = Prln(Eh 7" © (sh + 1))

4.2 Preliminary Estimates

The following results for comparing harmonic and discrete harmonic ex-
tensions will be used often.

Proposition 31f f € H" (0D, IR") wherer = 1,3/2 then

B(f) — PuIn(f)| i, < ch™ 2| flar, (60)

Pn I ()| i () < 1 Lgie + k"= 2| flge, (61)

I1B(f) = Puln(F)llr2(p,) < k™2 flar +ellf = TP fllr2s (62)
(f)

1PnIn(F)2(pny < NFllz2 + ch” [ flar (63)
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Proof The first two inequalities were proved in [DH4, Proposition 3.4].
We prove (62). It is sufficient to take = 1. Let

u=®(f), up=PpIn(f)
In order to apply an Aubin-Nitsche type argument, defiren D;, by
Az=u—up,onD,, z=00ndDy,.

Denoting the pointwise interpolant efby 7}, z,

Jumwn ey = [ (u ) Az

Dy,
0z
= U —up) — — V(u—up)Vz
[, @=mg [ va-w
0z
:/ (u—up) — — V(u—up)V(z = Iyz)
oDy, v Dy,

<|lu—=wunllz200,) IV2ll2(8D,) + 1w — wnlmr(py) 12 = Inzl 1 (py)
< u = unllzzon,) 122 (0, + k™21 f e Bl2la (o,

< (Ilu = wnllzzopy + ™21l ) llu = wnll 2o, ),

by elliptic regularity on convex domains for the last inequality and by a
trace theorem, (60) and interpolation for the previous inequality.
Hence

lu = ullz2p,y < llu—unllz2@n,) + b2 flar.
But
lu = unllL2ap,) < clluom—upom|pe
<c(llu—uomlpz+ llu—upomlz) < ch?|flu + |If — TP fll 2

from (72), and since 0D one hasu, o 7w = I,f o = IV f.

This gives the result, noting thf| ;1 (sp) < |f|H3/2(3D) and using
Poincag’s inequality.

Then (63) follows from the triangle inequality as

12N 2,y S NP Ne2py < @2 oy < el fllr2;

now apply a standard interpolation inequality}|tb — I,‘?Df||L2.
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One can estimate the tequ—l,‘?DfHLz(aD) in (62) bych™| f|gr, butin
some applications it is important to estimate this term by a higher norm in
order to keep the coefficient”T1/2, c.f. the estimate fod in Lemma 4. On
the other hand, at the end of the proof of (63) we do estimhﬁtel,‘?DfHLa
in this manner, as (63) will be applied in conjunction with interpolation or
inverse estimates fof, in which case the termh”|f|g- has the natural
power ofh to balance the termif||;2, c.f. the estimate foB in Lemma 4
and in Lemma 6.

We will need the inverse estimates (see [DH4, Proposition 5.3]):
Iénllco < cllog hl'?|énl s if &4 € Ha,
nllco < c(llgnllzz + [log A"l m) — if 4 € X

We finally note some straightforward estimates from [DH4, Section 3].
If u: D — IR is harmonic then

(64)

lull2(p\Dy) < cbllullrzapy,  ula(p\Dy) < chlulgiapy.  (65)

If f,g:0D — IRthen

[f9l e < W fllcolgl e + [ aellglico, (66)
1 9llg1r2 < cllfllcoallgllgrse- (67)

If s; =id+ 0;: 0D — S' fori =1,2andg:S' — IR, then

lg o s1llmire < ellglierllsll g (68)
g 051 —gosalgye <cllgllez(sillcor +[ls1 = sallco)lls1 — sall /2
(69)

4.3 Estimates for, anduy,

We need to estimate the difference between the funati@orresponding
to a pair(s, ) and the discrete function;, corresponding to the nearby
interpolation pair(sy, ¢p)-

Lemma 4 Withw anduy, as in(57)andc = c(||vll o2, |8l 2, @]l c2),

lullgipy < ¢ MNunllmipy < e Nullgro\n,) < ch,

l|lu — uh||L2(Dh) + h|u — uh|H1(Dh) < ch?.

Proof The first and second estimates are immediate. The third follows from
(65):

lull 71 (p\Dy) < luollz (p\pyy + 1l 71 (D\ DY)
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< chl|y o s||gn + ch < ch.
For the fourth,
v = unllr2(p,y < N1P(y 0 8) = Puln(y o sn)lli2p,) + 1o — @nll2(p,)
<||[®(yos) = PIh(yos)|l2(py)
+ 1B In(y o s — v o su)llr2p,) + ch?
=: A+ B+ ch®
From (62) withr = 3/2,
A< ch?yos|yan +clyos —I2Pyos| 2 < ch?|lyos| g < ch?.
From (63) withr = 1,
B <cllyos—yosulr2+chllyos—yosulm
< clls — spllpz + chlls — spllm < ch?.

This proves thd.?(D},) estimate.
The proof of theH!(D),) estimate follows in a similar way from (60)
and (61), see [DH4, (77)].

We also need the following pointwise bounds.

Lemma SFor ¢ = ¢([lyllc2; lIslle2, lelle2),

lunllcop,y < ¢ lunllco(n,) < cllogh|'/2.
Proof Writing I, for the pointwise interpolant,
lunllcop,y < 1nullcop,) + 1hw — unllcop,)
< |lullco(py + cllog A" | Tyu — upllz1(p,) by (64)
< C(l + |10g h|1/2(||Ihu - U||H1(Dh) + ||U - UhHHl(Dh)))
< ¢(1 + [log h|'/?h) using Lemma 4
<ec.
Moreover,
|uh|COa1(Dh) < |Ihu|COa1(Dh) + | Tphu — uh|C’0a1(Dh)
< |ulco(py + ch™ | Thu — upllco(py)
< cllog h|'/2,

as for theC? estimate.
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4.4 Estimates for and vy,

The variation(&,, v,) € Hy x Xp is also a variation in the smooth set-
ting, see the remarks following (36). But when interpreted as variations of
discrete and smooth functions frofy, and D respectively intaR?, these
variations are no longer equal. We need to estimate the difference.

Lemma 6 For v andwvy, in (68)andc = c(||v|| o2, |||l c2),

lvollzr1(py < elénlprrzs  Nvnollar o,y < elénlgse,
vl 2\ pa) < €hlénlire,  vlaoyp,y < h2(€nl e,
v —vrllr2(p,) < chlénlge-

Proof For the first estimate, using (67),

lvoll i (py = 1PERY 0 )l a1 (py < cllény’ 0 sl sz < clénl e

For vy,

lonoll it (pyy = N1@nIn(EnY © su)llm(py,)
< &y o sl + ch'2(|épy o spll g from (62)
<l o sullcos (Ilénll gz + B2 €nllar) - from (67)
< clénl g2,
using an inverse estimate and notipg, || o1 < ||s]|co1 < e.
For the third estimate we have from (65)

1ollz2(0\Dy) = [Ivoll2(o7\py) < chllEny © snllre
< chllnllpe < chléplgye.

The fourth is similar, using an inverse estimate fréfhto H'/2.
Finally,

lv = vnllze(p,) = 19(EY 0 8) = Puln(€ny © sn)llz2(py)
<N @(Eny 0 5) = PIn(ERY © 8)llL2(py)

+ 1P In(En(Y 05 = o si))llz2(py)
= A+ B.

From (62) withs = 1,

A < gy o sl +cllény 0 s — PP (6hy 0 )| 12
< ch®?||&p)| g1 + ch?|€ny 0 8|52 (piecewiseH? semi-norm)
< B2\l + ch?|Enll e
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< ch®?|| &l asél = 0 pointwise
< chlénl e
From (63)
B < cllén(y o s =+ 0osp)llp2 4 chlén(y' 0 s = 0 sp)
<cly os =~ ospllcollénllre + chlly o s =" o spllco[|€nll
< clls = spllcollénllre + chlls — sullcor [[€nll
< ch?([|€nllz2 + nllmn)  from (40)
< ch3/2|fh|H1/2.

4.5 Estimates fow andwy,
We first note for any;, € Hy,:
167112 < elénlins 1Rz < cllog hY?[énl3 o,
€8 e < ch P log B 21l 5ses €0 m2 < ch™ 2 |n] e

The first follows from the Sobolev inequality¢, ||« < c|én|g1/2. The
second from (66) and (64). The third sing|| ;1 < ch™/2|&|;1/2. And
the fourth since¢?)” = (¢})? and so

1€ lli> < elénllfyra < ™ P llenllz < k™2 NEnl5 0,

where inverse estimates were used for the second and third inequalities.

(70)

Lemma 7 Withw andwy, as in(58), andc = c(||v||c1, ||s||c2),

||w||L2(D) < C|£h|§{1/2’ |w|H1(D) < C|10gh|1/2|fh|§{1/2,
|w = wnll12(p,) < Ch1/2|§h|§{1/27 |wn|g1(p,) < cllog h|1/2|§h|§{1/2,
||w||L2(D\Dh) < chl&nl g/
Proof Forw we have from (70),
[wll2py < €37 0 sl < elléillze < elénlyyes

[l (py < 1€ 0 sllgrire < ell&illz/e < cllog bl |Enl3s-

Forw — wy, we compute
lw = whll 2D,y < IDERAY" 0 8) — PrIn(€py" 0 sn)llL2(Dy)
PRI (ER (Y 05 = 7" 0 sn))L2(py)
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=: A+ B.
From (62)
A < B o sl g + ch?|€39" o s|g2  (piecewiseH? semi-norm)
< ch*2|E N g + ch® |16} N
< ch' (€| g2 from (70)

From (63)

B < [IE5(v" o5 =" o sp)lp2 + chléf (v 05 =" 0 sp)|
<" os=~"osp)llcolléillzz + chlly" o s — 4" o sp)llcon |ER]
< ch?||€2| . from (40)

< ch3/?|log h|'/?|&4[%,,,  from (70)

This completes the estimate far— wy,.
Next from (61),

whl i1 () < 160" © snl s + ch 2 |E04" 0 syl

< ||l yyse + ch?||€R] g from (69)

< cllog h|'|¢y %1, from (70)

Finally, from (65) and (70),

lwllz2(p\py) < ch||E5y" o spllz2 < chl|&hllr2 < Ch|§h|§{1/2-

4.6 Estimates near an Interpolant Pair

Again we consider a smooth pdi¢, ¢) and its interpolantsy, ¢, ). Con-
sider a (suitably small) discrete variatign,, x,) € H x H}. We need
to estimate the difference between the discrete functignandw;, corre-
sponding to the pair&s,, ) and(sy, + 1, ©n + xn) respectively. We also
need to estimate the difference between the first variatigradv,, atuy,
andwy, respectively in the same directi@gy,, v, ); similarly for the second
variationsw;, andwy,.

In the following Lemma, and in Proposition 11 where the Lemma is
applied, we impose the restrictidty,, x»)| g1z 1 < L/[log h|'/? for
some constanf.. Although not necessary, this simplifies the statements
and proofs of results, and is the natural restrictionfghin order to give
estimates which have at most linear growthp| ;1,. and also have the



20 Gerhard Dziuk, John E. Hutchinson

optimal power of|log | as a coefficient for smalk,|;1/2. In addition,

this is no restriction when these results are applied in Theorem 51, as they
are required there only fd{ny,, x1)|z1/2. 1 < ch in order to establish

the existence and convergence result for discrete stationary points, and for
|(Mh, X)) 1725 g < €0/|log h| in order to establish the uniqueness result.

Lemma 8 Supposd. > 0 and |ny,| ;1,2 |log h|*/? < L. Then for some con-
stantc = c([|vllcs, lIsllcz, llellc2, L),

[@nollr1(py) < e+ mnlgire)s  [luno — Tnollai(p,) < clnnlpe,
[Bhollz2(py) + Nlog bl ™2 @hol i (pyy < clénlgie,
o5 = vnllz2(p,) + Nog bl /2[@h — val 1 (p,) < clnnl g/ énl e
@l £2(Dyy + Nog k| ™2 (@ 1 (p,) < l€nl3a o
|Wh — wallL2(py,) + |log h| 2wy, — Wh| 1 (D) <
1/2

cllog h| |7lh|H1/2|§h|§{1/2-

If we also assumpyy |1 [log h|'/? < L, then|[@, || co(p,) < c.

Proof For thew;,, estimates one has from (63)

luno — Tnollz2(py)
<N@rIn(yo (sh+mm) —vosu)llL2(py)
<|lyo (sp+nn) —yoon|p2+chlyo (s, +nn) —yoon|mt
< c|nnllrz + chl|np |l g
< clnnlgye-

The estimate fofuno —Unol 51 (p,) is similar; using (61) instead of (63) (or
see the estimate fot; in [DH4, Proposition 5.2]) one first obtains

ltno — ol (pyy < (1 + [log Y2 |mn /) |nnl /e

This gives the result. The estimate ot ;71 (p, ) now follows from that
for [[unoll 1 (p,) implicit in Lemma 4.

If also |xp|g: < L/|logh|'/? then

@nllcon,) < llunllcop,) + lun = Tnllco(n,)
< ¢+ cllog h|"*||u, — @l g1 (p,) from Lemma 5 and (64)
< ¢+ cllog h)"?|(nn, xn) | g2 gn - DY the second estimate
< c¢ by assumption
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We next compute again from (63)

10h = vallz2(p,)
= 1PnIn(én (v © (sn 4+ 1m) =7 o 1))l L2 (o))
<N€n (" © (sn +mm) — 7" © 5n)ll 12
+ chlén(y o (sp 4+ nn) =7 o sn)lm
<" o (sn +mm) =" o snllallénll e
+ ch(l7 o (sn+1m) — 7" o snllcolénl
+ 17 o (sn+mm) =7 o snlg[[énllco)
< cllnmllpallénllza + ch(llmnllcolénl i + llnnll g I€nllco)
< clnnl gz |€nlgre + ch1/2|10g h|1/2|7]h|H1/2|§h|H1/2 from (70)
< clmmlgir2€nl e

The estimate fofvy, — vn|g1(p,) is again similar using (61) (or see the
estimates ford, in [DH4, Proposition 5.2]). One first obtains

Onl 1 oy < c([log BIY2 (1 + Innl gare) €nl grive + [Wonla),

which gives the result. The estimate fot, || ;1 (p, ) follows from Lemma 6.
We finally compute from (63),
|@h — whllL2(p,)
= [|DnIn (€5 (V" © (sh +mm) — 7" © sn)llz2(Dy)
< 1€h(v" o (s +mm) =" 0 sp)r2
+ chl&r (¥ o (sh +mn) =" 0 sp)
< cllénllzally" o (sh 4 mm) =" o snllco
+ Ch<||§1%||00|7” o (sn+1mm) =" 0 snlm
Bl o (sn + 1) — 2" 0 sull
< C|§h|§{1/2|nh|H1/2 |10gh|1/2 + Ch1/2|10g h|1/2|§h|§{1/2
< cllog h|"2|nn| /2 [€nl% 2

Again, the estimate fofw;, — ws|g1(p,) follows similarly from (61) (or
see the estimate fots in [DH4, Proposition 5.2]). One obtains

@ — whl 1 (pyy < cllog BI(1 + [og B2 (] o) 1l /2 [€n T3 e

which yields the result. Lemma 7 now gives the estimaté{toy| 1 (p,)-



22 Gerhard Dziuk, John E. Hutchinson

5 Proof of Main Theorem
5.1 Notation

We continue to use the notation of Section 5.1.
By Lemma 5 we choos®& = R(||v||cz, |Isllc2, [|¢llc2) so that

[ullco, lunllco < R

In Proposition 11 we assum@y,, x»)| g2 1 < L/|log h|'/?, and then
by Lemma 8 we choosB = R(||vl|c1, ||s]lc2, |¢llcz, L) so that also

[@nllco < R.
In either case, notingl is C?, we define

M = ‘S&%{IH(Z)I,IH'(Z)I,IH”(Z)I}-

5.2 First and Second Variation Estimates

We begin by showing that {fs, ¢) is stationary then the first variation of the
discrete functional at the interpolant p&i,, ¢p,) is O(h). We next estab-

lish non-degeneracy of the discrete energy functiondkgtyy,). Finally

we prove an estimate which then implies that the second variation at dis-
crete pairs neafisy,, ¢p,) (more precisely, within distanag | log h|~3/2)) is

also non-degenerate.

Note that the proof of the following proposition establishes a similar
estimate for

|E' (5,0)(Ens ) — By, (shy©n) (s n)| If (s, ) is not stationary.

Proposition 9 Supposés, ¢) is stationary forE. Then for(&,, ¢y,) € Hp x
Xpo ander = ci(|[vlles, [Isllc2s llellc2, M), one has

| B} (5hy 0n) (Enston) | < erh](Ens ) sz g -

Proof It follows from the stationarity of s, ), (23) and (48), that

E}, (shyon) (Ens thn) = i VUho-Vvho—/DVuO-Vvo
h

+ V@h'wﬂh—/ V- Vi
D

Dy,

+2 H (up)vp - upg A tny — H(w)v - ugp Ay
Dy,
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2
—2/ H(u)v-ux/\uy—i-—/ Q(up) - vy A upr
D\Dy, 3 Jop,

2
::A+B+2C—2D+§E.

One can show by a rearrangement of the termd,ihemmas 4 and 6,
and an integration by parts and some boundary estimates to handle the fact
that no power of. can be gained fromv — vo| g1 (p, ), that

|A| < Ch|£h|H1/27

wherec here and subsequently has the same dependencies as in the state-
ment of the proposition. See [DH4, Proposition 4.2] for details.

We now proceed to estimate the new terms arising from the presence of
the mean curvature term. By a standard interpolation result,

|B| < chlipn|pr.

By adding and subtracting terms we can estimi@lieby a sum of terms
of the formca;asazaq, where

a1 = |[H(up)|co(p,), 1H (u)llcopy) OF lun — ullz2(p,),
a2 = ||vnllz2(p,)s I0ll22(Dy) OF v — vnll 2Dy

az, a4 = ||[Vup| reo(p,), IVullcop,y O [[Vu — Vup|r2(p,),

and each such term contains exactly one factor which is a difference and at
most twoL? type factors. From Lemmas 4, 5 and 6, it follows

C1 < chléal e

From Lemma 6,

|D| < Ch|f|H1/2-
Finally, for E, consider the boundary edge; of dD), joining e'0i
to efi+1, Let hj = |0j — 9j+1| and SetSj = S(@j), Sj+1 = 8(9j+1),

& = &n(0;) andg;11 = £,(60541). By O(h®) denote any quantity which in
absolute value is bounded bya for somec as above.
Then at the point®i + t(eli+1 — %) € 9Dy, with0 <t < 1,

|Uh A UhT|

= [((1 = )& (s5) + t€j+17 (sj31)) A hi(')’(sjﬂ) —7(s5))|

J
= (1= DE7 () + 151 (7 (s5) + O(R)
A (5341 = 5307 (55) + O(42))

J
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< ch(|&;] + 1&5+1])s

sincey/(s;) A'(sj) = 0. In particular,

[vn A unrllz2op,) < chllénlle < chlénl g (71)
and so
|E| S Ch|§|H1/2.

This completes the proof.

Proposition 10 Supposer” (s, ) is non-degenerate with non-degeneracy
constantA > 0. ThenE} (s, ¢4) is non-degenerate with non-degeneracy
constant> 3A/4 forall h < hy = hi(|v|lc4, ISl o2, @l o2, M, v), withy

as in(33).

Proof Suppos€éy,, ) € Hy x Xpg. From (22), (24), (47) and (49),

(E"(s,%) = Ej,(sh,0n)) (€ns ¥n)?
= /|V’U0|2 /VUO Vw — / |Vvh0|2— Vuho-V'wh>
Dy,

+ 2/ H(u)(w - ug Ay 4+ v - (vg Auy + ugy Avy))
D\Dy

+ 2/ H'(u) - vv-ug Ay
D\Dy

+ 2 H(u)w - ug A uy — H(up)wp, - Ung A Uny
Dy,

+ 2 H(u)v - (v Aty + ug Avy)
Dy,

- 2 H(up)vp - (vhe A Uhy + Upgz N Uhy)
Dy,

+ 2 H'(u) - vv-uy Auy — H'(up) - vp 0p - Upg A Upy
Dy,
2
-3 Q(up) - (wp A upr + vp Avpyr)
oD,
2 /
-3 (Q'(un)vn) - vp A upr
oD,

2 2
::A+QB+20+2D+2E+2F—gG—gH,

where the subscript denotes differentiation alon@D;, and Q' (uy, )vy, is
interpreted as matrix-vector multiplication.
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In [DH4, Proposition 4.3] we showed that
A= —1|vo—vnolip(p,) + Ro, | Rol < ch'?|logh'|64] 52,

wherec = ¢(|[vl[cs, [|s]lc2).
From Lemmas 5, 6 and 7,
|B| < c(hllwllz2(p\p,) + 101 H1 o\ p,)) < ch®lnlhe-
Similarly,
C1 < ellolie o\, < b Il e
By adding and subtracting terms we can estimaxeby a sum of terms
of the formcaiasazas, where
a1 = [[H(u)l[co(p,), [I1H (un)llco(py) OF lun — ullz2(p,)s
az = [[wl[z2(pyys lwnllz2(py,y O |lw — wrll22(py)s

as,as = |[Vullcop,): IVunlpe(p,) O [Vu = Vuplz2(p,)

and each such term contains exactly one factor which is a difference and at
most twoL? type factors. From Lemmas 4 and 7 it follows that

|D| < Ch(|fh|§{1/2 + W}hﬁ{l)a

where here and until further notiee= c(||7y||c3, ||sl|c2, || ¢]l o2, M).
The difficulty in estimatingF is that we gain no power di from the
term|v — vp|g1(p,). Setting

E* = H(u)v - (vp Aty + Ug AUy — Vpg A Upy — Uy A Vpy),
Dy,
and adding and subtracting terms we have
|E| < cllu —unllappllvllize o) VU2 (py)

+cllv = vnllp2 o IVOll 200,y + [ E|

< cllu = unll g ppllvlFn p,)
+ cllv — vl 2o VUl L2(D,) + £

< chléplpye + 1B

For E*, integration by parts gives
fon :/ o - (H(u)v)a Ay + g A (H(w)v),)
Dy,

_ /D v, - ((H(u)v)m A Upy + Upg N (H(U)”)y)
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— H(u)v - vp A upr
oD,

(The integration by parts is valid for smooth functions, and hence for piece-
wise linear functions by approximation.) The difference of the first two in-
tegrals is bounded in absolute value diylog 1|'/2 (| [2,,,, + [4n]%1)-

This comes from adding and subtracting terms as usual and using Lemmas
4 and 6 and the inverse estimtg,||co(p, ) < [log h|'/2||vp || g1 (p,,)- From

(71) we have thatvy, A unrllr2(op,) < chlén|g1/2. On the other hand

10llr2(py) < cllvllirp,) < cllénl gz + [Pnlm),

and so the boundary integral is boundedch|§h|H1/2 + |4n|%1). Hence

|E*| < chllog h|"/* (|&nl31/2 + [vnl70)-
It follows that
|B| < chllog h|'" (é[3712 + l4nln).

The estimate forF’ follows in the usual way from Lemmas 4 and 6,

giving
|| < ch(lénl3p2 + [nlip)-

The estimate foi is by a similar idea to that foF in the previous
proposition. LetF; be the boundary edge 61D), joining 'l to e'fi+1, Let
hj = |93 — 9j.|_1| and SETSJ' = 8(93'), Sj+1 = 8( J-‘r—l) fj = fh( ) and
§j+1 = En(0j41). . .

At the pointe®s + t(e%i+1 — %) on the edgd?;,

wp N\ Upr + Op N\ vpr

= (1= DEY"(55) + 12017 (5341)) A -
J

(V(sg+0) = (s)
+ i,fjfmv'(%') A (851
- <(1 —t) 327”(33) + t53+1( ”(SJ) +0 h))>

(
Ahi]((sj+1 557 (s5) + 0(2))

+ —,fjgjﬂ(v'(sj) A (s = 357" (s5) + O(h*))

= SJ—H (£J£J+1 532 + tfjg - t532'+1)’71(8j) A ’Y”(Sj)

h;
+ O(h )(fj + fj+1)-
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Integrating with respect tbfrom 0 to 1, and noting|s;1 — s;|/h; <,
1G] < S hi (601 —&)2 + O)(E, +€D)
J

< ch®|énltn + OMénlZ> < chlénlF)e.
Finally, for H note that onF;, |vs| < ¢(¢;] + |€;+41]), hence
lvrllz2apy) < clliénllzzapy < clénlpise-
Together with (71) this implies
|H| < ch|§h|§{1/2.
Putting together the estimates BrH, it follows that
Ejy (sns0n) (€ns 90)* = E" (5, 0) (€ns ¥n)? + [0 = nl 1,y + B 72)
R < ch'log h'2(|&nl 512 + Wnl3p).

If (s,¢) is a strictly stable stationary point, this already implies the
stated result (with, independent of’).

For future reference we note from (72), (25) and Lemma 6, or it can be
checked directly, that

B3 (31, 00) (€, )| < c(I€n 312 + [Pnl7n)
| By (s 0n) (s ¥m)s (0> X)) | < (73)
c(€nl g + [nl ) (nnl e + Ixalm)-
If E”(s, ) has non-trivial negative eigenspace, then we compute
By (shyon) Ens n) (€ on) ) = (&ny o))
= B}, (sn, @h)((fh,l/fh)(H)Z — Ej (s, (Ph)((fhawh)(i))Q by (53)
> (B (5,0) ((6ny ) ) = B"(5,0) (€ ¥0)))?)
100 =01,y — e [log bV ((€nl31/2 + [l ) by (72)
—A-B-0C,
where
v =Ty 05), 00 =@, 1,7y 0 sp),
(&) = (&nr ).
But
A= B"(5,0) &) (€, ¥n) ™) = (Ens ) T) by (63)
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= EII(S7<p)(§ha¢h)((fh7¢h)+ - (§h7¢h)_)+
E" (s, ‘P)(fhﬂ/}h)((fhawh)(ﬂ — (Eny )T + (Enyypn) ) — (&ntn) )
> (A = ch) (|l 1o + [WnlFr)

from (31), (73) and (54), where now and for the remainder of the proof,
c=c(Illcs, sl llellcz, M, v).

Also,
B'? < ‘45(5,(1_)7' 05) = Buln(EY 0 9) | i,
+ 1@ (€67 (Y 05 =o' 0 51) |2y
<Pl o s)m e (Vo s =4 o s,
+ ch1/2|£,(1_)('y' os—7'0o sn)|,, from (60) and (61)
< bl
ey o5 = 0 sullos (1€ e +B21 7 m) by (67)
< ch' 26| 12 from (33) and sincdls — sp||cos < ch
< chY?(|n| sz + [9nln)  from (55)
It follows that

A
(s 0n) (Ens n) (s n) ) = (Evipn) ) > 3Z(|€h|§{1/2 + ) 3)

for b < hy=hi(I7llcs, Islcz, lello:, M, v). Finally,

|(£h71/}h)(+) - (ghawh)(_)ﬁ{lﬂle S (1 + Ch2)|(€ha¢h)|§_[1/2><H1a

from (54) and the orthogonal decomposition (30). Heft sy, ¢5) is
non-degenerate by (51), with non-degeneracy constadh /4, provided
h < hqy where

hi = hi(llvlles; [Islle2, llellez, M, v).

Proposition 11SupposeL > 0 and |(14, xu)| g2 < L/|log h|'/2.

Then for (&, ¢n) € H x Hy andey = callyll e, lIslle2s [l@lle2, L, M),
one has

(B8 onson) = Enon + s o+ x0) Ensn)?

< callog B2 [(ns x0) /2 e | (s ) 1o gy
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Proof From (47) and (49)
(B} (sh, n) — Ejl(sh + nnson + X)) (Enythn)?
= / |V1)h0|2 + Vupo - Vwy, — |V5h0|2 — Vuyo - Vwy,

Dy,

+ 2| H(up)wy - Upg A upy — H(Wp)Wp, - Upg A Uy
Dy,

+ 2| H(up)vn - (Vha A tny + g A vpy)
Dy,

-2 H(Tp)0p - (Uhe A Thy + Tha A Thy)
Dy,

+ 2 H'(uh)-vh Uh-uhx/\uhy—Hl(ﬂh)-ﬁh Up * Upg N Upy

Dy,

2
-3 Qun) - (wp A upr + vy A vpr)
oDy
2 _ o _
+ 3 Q(ay) - (Wp A Upr + Up A Upy)
oDy,

2

- —/ (Q'(un)vn) - vi Aupr — (Q'(WR)TR) - U ATy
3 Jap,

2 2
::A+2B+2C+2D—§E—§F.

From Lemmas (4)—(8) (or [DH4, Proposition 5.2]) we estimatby
|A| < |V (vp — Eh)||L2(Dh)(||Vvh||L2(Dh) + ||V5h||L2(Dh))
+ IV (up, = un) |2 (o) IVwrll 22Dy
+ IV (wn — @) 20, VR 22 (D)
< cllog bl [(nn, xn)| 12 s |(€ha¢h)|§{1/2><]{1’
From Lemmas 4-8, the inverse estimate (64) to obtain

[@illeon,) < cllog A" (a1 p,).
and noting|p| g1 (p,) is bounded from Lemma 8 and the assumption on
|(7h, Xn)| 1725 1 » We Obtain the following. The highest power [dfg 4|
comes from the second term.

B| = /D (FE (un) — H (@) - una A ung

+ H (@) (wp, — W) - Uy A Upy

+ H (@)W, - (uhy — Tha) A uny + H (@)W - Upg A (Uhy — Tny)
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< cllun = Tl 2oy lwnll 2Dy lunl Go (b,
+ cllwp — Uh||L2(Dh)|Uh|200,1(Dh)
+ cll@pl L2 (pyy|un = @l (o, [unlcor (b,
+ cl|Whllco(p,) [@nl a1 (D, un — Tnl a1 (D)

S C|10g h’|3/2|(nha Xh)|H1/2><H1 |§h|§{1/2a

Similarly, using the same Lemmas and (64),

ICl =

/D(H(Uh) —H(@p))vp - Opg A uny + H (@) (v — Tp) - Vpg A Upy

h
+ H(Uh)ﬁh . (U}w — Ehz) A Upy + H(Uh)ﬁh “Uhe N\ (uhy — th)

+ (four similar terms)

< cflup — HhHLQ(Dh)th||CO(Dh)|Uh|H1(Dh)|Uh|COa1(Dh)
+ CHUh — 6h||L2(Dh)|/Uh|H1(Dh)|uh|CO’1(Dh)
+cllTnllc2(p,)lvn = Ul (p,)lunlcor ()
+ cllwnllco(p,) [Onl a1 (py)lun — Talmro,)

< C|10gh|3/2|(nha Xh)|H1/2 ><H1|(§h7 ¢h)|§{1/2><H1'

Likewise,

D] =

/D (' (up) — H(20)) - vn on - e Aty
h

(@n) + (vn — Tp) Vh - Ung A Upy
(@h) - Tp (v — Tp) - Ung A Upy
+ H'(up,) - Op Op - (Uha — Tha) A Uny
(W) - Up Op - Upg A (Une — Ung)
< ellun = Tnll 2oy lonll 2o lonllco oy lunlGop,)
+ cllon = Tl 2oy lonll 2 () [unlGo.a o,
+ cllwnllrz(py)llon — 5h||L2(Dh)|Uh|%o,1(Dh)
+ clonll 22 (py) 1nllco(pyy lun — Tnl 1 (g lunl oo (p,)
+ cllTnllZo o,y [@h 1 (D) [en = Tnl 1 (D)

< C|logh|3/2|(nhaXh)|H1/2><H1 |(§ha¢h)|§{1/2xH1-
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We have
E= ; (Q(up) — Q(T@n)) - (wp A upr + vp Avpy)
Dy,
+ Q) - ((wn A uns + v, Avpe) — (W ATpr + Uy ATps))
=: k1 + Ey

As for G in the previous proposition, using Lemma 8 and (64)
|B1| < cllun — Tnllco(p, ) blEnl5 )
< chllog h[*|(nn, Xu) g1/ 11 1€n1 512

~ To estimateEs, let E; be the boundary edge &fD), joining e to
eli+1, Let hj = |0j — 0j+1| and SetSj = Sh(ej), Sjt1 = Sh(0j+1)a nj =
Mn(05), nj+1 = nn(0i41), & = &n(0;) and & = &u(B541). We first
compute

Up N\ Opr — Op NUpr

1
= =&k (7’(8;‘) AY (s51) = (55 +15) A (41 + leH))
J

1
:7%QQH<¢@ﬂA(%H_”ﬂ[;y%%+rwﬂ1_%»dr
=7 (85 +15) A (8541 + M1 — 55— 1))
1
/0 7”(5]- +n; +r(sjpr + 041 — S5 — ﬁj)) dr)
:51 +52a

where (usings;41 — sj|/hj < |s|c1 < ¢)

Nj+1 — Ny
& ==& %’Y’(Sj + ;)
j

1
AAVW%+W+N%H+WH—%—mDﬁa
|E&2] < &l 1€l (njl + [mja)-
We similarly compute

Wh N\ Upr — WhH N\ Upr

- _hij('Y(Sj—I—l) = 7(s7) A (1 =D& () + 165 117" (s541))

1
+ h—(7(3j+1 +nj41) —y(s5 + 773’))

<
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A((L—t) J2-'y”(sj- +n;) + t§j2-+17"(8j+1 +1j11))
1 1
= =5 (8541 = Sj)/ Y (85 +r(sj1 = s5)) dr
j 0
A (L= 1)E"(s5) + €217 (s541))

1
+ K(Sjﬂ + 141 — 85— 1j)
7

1
/0 Y (s + 05+ r(sjp1 +mj41 — 85— ny)) dr

A((L=0)EY" (55 4+ mj) + 17" (8541 + mj41))
= 53 + 547

where
1 t,
€= —(njp1r =) [ (s +mj+r(sjmr +mjp1 =55 —nj)) dr
J 0

A ((L=8)E" (55 4 mj) + 15117 (5541 + mj+1)),
Eal < e(1&51 + 1€5011%) (Ing| + Inja)-
In order to estimaté; + &3 pointwise on the edg#’;, consider

1 1
‘(1 — )& + F(nj—i—l - 773')/0 v (s; 4+ nj +r(sjs1 +mjp1 — 55 —m;))dr
7

A (1= 1)E5y" (s +nj)
Nj+1 — Ny
=@ -0"H 0 (g s )
J
1
A /0 V" (sj +mj +r(sj01 +nj1 — 55— my)) dr
1
+& /0 Y (85 + 5+ r(sj41 + 01 — 55— 15)) dr

A AGs; +m)>‘

Nj+1 — Ny
—|la-pl =W
\( B

((—aj£j+1 L) (s +my) A (55 4+ )
— &8 (s5 + 1) ANO(sjr1 — 55| + [nj+1 — njl)

+E50(Isj41 = 551+ Injr — mjl) A" (s5 + ’U)> ‘
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< cwo@l €11 = &1+ (1€ 1€ ]+ 1€17)

(Isj1 = 85l + g = 1))
< chlZmnl (I€nllco F€n] + 1€nlZa(1 + [Vn)),

where pointwise quantities in the last expression are taken on the arc corre-
sponding to the edgg’;.
We similarly estimate

1 1
t&1 + 5= (nj41 — 773')/ Y (85 + 15+ 7 (8401 + 041 — 85— m5)) dr
J 0
2 "
NEET 1Y (5541 +nj11)]s

and hence&; + &3], by the same quantity, and thence obtain

‘(wh A Upr + v A Vpr) — (Wh A Upr + Uy /\Uhr)\
< &1 + &3] + €] + |E4]

< ch| V| (1€nllco | VER] + 1€nlIZ0 (1 + [Vnal))
+ cllEnllgo(Inil + Imjzal)-
It follows that
| Es| < chlnn| i (log bl 21€n) %2 + 1I€nllco (1 + [nalm))

+cllénllcollnmll 12

< clnnlge (|10gh|1/2|§h|§{1/2 + [log A |§h|§{1/2 (h1/2 + |77h|H1/2))
+ c[log | |§h|§{1/2|77h|H1/2

< cllog bl |nn| g2l 52

which together with the estimate f@f;, implies
|E| < c[log h|1/2|(77haXh)|Hl/2><H1|€h|§{1/2'
To estimateF’ we write

F= / (Q'(un)on — Q'(Wh)Tp) - v A upr
an,,

/ (Q' (@h)1) - (vh Ay — T ATins
oDy,

= F1+F2
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From (64), Lemmas 8 and 6, Section 5.1 and (71),

|F1| < c([lun = @nlleollonllco + lon = Brllcol[@nllco) lon A wnr 1
< c([og Al |y Xt 172 1€y ) iz
+ [log hf 0] 12 Enl rise) BlER] g2
< chllog Bl [(€ns $n) 51172 o g | (M X0 e s i -

Using (64) and Lemma 8 to estimdtey, || o,
|Fo| < cllog h| [(§ns ¥n) sz mrllvn A une — Un Anrllrian,)-  (74)

Using the notation in the estimate fé, we have at?i + t(efi+1 — i)
on the edge?,,

Uy N Upr — Up N\ Upr

B _hij(')’(sj+1) —v(55)) A (1 =& (55) + €117 (s541))
+ hij(’Y(SjJrl +nj+1) — (85 + 1))
A (1= )& (s5 +n5) + t€417 (841 + njg1))
1 '
= —h—j($j+1 - 3]’)/0 V' (sj +7(sjs1 = s5))dr

A((1 = 8)&7 (55) + €417 (sj41))
1
+ —(8j+1 + mj1 — 85 — nj)
h;j L
/0 Y (854 m5) +r(sj41 + nj11 — s5 — ny)) dr
A (1 =1)&7 (55 +m5) + t&417 (841 + Mjt1))
1
Nj+1 — Ny
R . ’ / Y (sj 4+ nj +7(sj41 +mj11 — 85— n5)) dr
9 0
A (1 =t)& (55 +mj)
Nj+1 — Nj

1
» /0 Y (sj +nj +7(sjp1 +nj11 — 85— n5)) dr
J

AL =0)& 7 (sj+1 + 1j41)

_l’_
siti=si( '
+ h </0 ’Y(Sj+7]j+r($j+1+’f]j+1—Sj—nj))dr
j
A (1 =8)& (s + 1) + 5317 (5531 + 1j41))

1
- [ A+l s ar



Approximating Surfaces of Prescribed Mean Curvature 35

A (1= D7 (55) + t5.017 (3541)) )
= F|+Fy+ F3

The main point in order to estimai®, and F; is that, after integrating,
(nj+1—n;)/h; leads tdnp| g1 (< ch ™|, g1/2), and so we need to gain
a factorh!/2. We have

= Nj+1 = 0
Fi = —*ﬁ}l, L (1—1) &7 (sj +ny)
]

A (7’(8;‘ + 1) + (sj41 +njp1 — 5 — 1))

1 1
/o /0 ry"(sj +nj +prisjpa +njp1 — 55— ;) dr dp)

and so (evaluating quantities at the point with paramgter

[F1| < chlng|(Ish] + nh])I&;]-
Similarly,
|Fa| < chlny|(Ish] + 1nuDIg+1].
Since’ is Lipschitz, subtracting terms and estimating,

P3| < clshl (Il + Ingl) (1€] + 1€11)-

From the pointwise estimates foF |, |F|, | F'3|, using (40), the inverse
estimate fromH' to H'/2, the bound onjz;,| ;1> from the hypothesis of
the theorem,(64) and (74), it follows that

|F5| < cllog h| [(§ns ¥n)| vz
(Pl (1wl =+ Vnlie ) el co + Isnles lmnll 2 16 22
< cllog bl [(&n Yl g2
<|77h|H1/2 (B2 + nn] gras2) [log b1 6n gy + |Tlh|H1/2|§h|H1/2>
< C|logh’|3/2|77h|H1/2|(§h7¢h)|§{1/2><]{1'

It now follows that

1P| < cllog hl*2|(€ns ¥n) s g 1nl g1/

The Proposition follows by combining the estimates fiofF' .
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The proof of the main theorem is now a consequence of the following
guantitative version of the Inverse Function Theorem, as follows for exam-
ple from the proof in [Be; pp 113-114]. The modifications necessary since
X is anaffinespace are trivial.

Lemmal2Llet X be an affine Banach space with Banach spaceas
tangent space, and lét be a Banach space. Suppasg € X and f €
C'(X,Y). Assume there are positive constants3, § ande such that

1f(zo)lly <6, (75)
1 (z0) Nrovyxy < et (76)
1f'(z) = f'(zo)llLxyy < B forall z € Be(xo), (77)
where
f<a, 0<(a—pPe (78)

Then there exists a unique € B (zg) such thatf(z,) = 0.

In the following, by||H |2 1, We imply dependence off as in Sec-
tion 5.1

Theorem 51. Assumd’ is a simple closed curve iR* with C* monotone
parametrisiationyy . Letu = &(vy o s) + ¢ be aC? nondegenerate confor-
mally parametrised surface spannirdg with prescribed mean curvature
given by theC? function H, with nondegeneracy constaktand withv as
in (33).

Then there exist positive constants hy and e, depending on|y|| ¢4,
Y17 oo, [l o 1H |2 00 @nd a@lSO 0N, v in the case ohg andeo,
such that if0 < ~ < hg then there is a discrete nondegenerate conformally
parametrised surface;, = @, 1;(y o sp) + @, Spanningl’, with discrete
mean curvature given bif, satisfying

Is = sullmir2@p,) < A 'hy Nl = nllmi(p,) < cor™'h, 79)
lu — unll g1 (p,) < A"

Moreoveruy, is the unigue discrete conformally parametrised surface span-
ning I", with discrete mean curvature given B, satisfying

Is = snll g1r2(apy < €ollog bl ™2, llo = @nll(p,) < eollog bl /2.
Proof We apply the previous version of the Inverse Function Theorem with
X =Hp x Xpo, Y = (Hp, x Xpo)' (the dual space)f = Ej, f' = E},
andzg = (pns, Iny).

From Proposition 9, (75) holds with= c; h.
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From Proposition 10, settinlgy = hy and restrictingh to 0 < h < hg,
(76) holds witha: = 3\ /4.

From Proposition 11, choosg so [log k32| (n, xu)|gi/2 gt < €0
implies || E} (pns, Inp) — By (pns + nns Ine + xn)ll < A/2. Then (77)
holds with = A\/2 ande = ¢;/|log h|*/2, i.e.4c1h/ ) < e/ |log h|*/2.

By further restrictingh if necessary, (78) also holds and so by Lemma
12 there is a unique discrete solutiop = @, 1, (y o s,) + ¢p, as in Defi-
nition 2 in the rangé(sy, — pus, on — In@)| /2w < €o/|log h|?/?, for
0 < h < hyg.

Takingd = c1h, a = 3\/4, p = A/2, ande = 4c1h/ A, the hypotheses
of the Inverse Function Theorem again hold for< h < hyg. recalling
that4c,h/\ < €/|log h|*/2, it follows that the unique solution from the
previous paragraph also satisfies, —pns, on — )| g2 g1 < 4cih/A.

Using the interpolation estimate (39) completes the proof of the theorem
(with possibly newhg, €g, cp), except for the last inequality in (79). This
follows from the expressions far andwy, in terms of(s, ¢) and(sp, ¢p),
Proposition 3 and the decoupling (23), and is otherwise almost exactly the
same as the proof of Theorem 5.5 in [DH4].

6 Numerical Implementation

Functions which are stationary for the discrete energy functidhatan
be found directly by applying a Newton procedure in the cldgsx Xj.
Alternatively we here work in the subclass of palsg, ¢p) which are al-
ready stationary for thds,, with respect to variations fixing,, i.e. such
thatoEy, /0 (sh, on) = 0. Defininguy, = @ (I (7y o sp)) + ¢p asin (2),
we sayuy, is discreteH -harmonic.

For s;, in a neighourhood of a nondegenerate staionary functiotfor
local unigueness af;, and hence ofp;, follows from the non-degeneracy
of the discrete functional in Proposition 10. Thus if we set

Fy(sn) = En(sn, on(sn))
then

oF
F}(sp) = g:(shawh(sh)),

andsy, is stationary forF}, iff (sp, on(sy)) is stationary forE}, .

Algorithm 1 (Main Algorithm). For given initial guess;, € H;, and
tolerances > 0

1. Computeu;, € X, with uy, = I(7y o s5) ondD), and stationary foF? :

Vuy, - Vb, + 2 H(Uh)@bh “Upg N Upy = 0 Von € Xpo. (80)
Dy, Dy,
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2. Set up the right hand side of (82):

(F(sn),mm) = [ Vun-Voi +2 [ H(up)v) - une A upy
Dy, Dy,

2
-= Q(up) - v) Aupy N € Hy, (81)

with »9 any continuation of, (v’ o sj, np,) t0 Dj,.
3. Solve the linear systep, € H,

Fy/(sp)én = —Fy(sn) (82)

with a biconjugate gradient algorithm.
4. If ||€n]l < e, then stop. Otherwise update the solution

Sp = 58p +&n (83)

and go to step 1.

For the first step we use the Newton method with a suitable initial guess
and then with the last;, available in the algorithm. In order to keep the
computational complexity of the problem reasonable, in step 2 we use as
a special continuation)) the discrete function which is zero at all interior
nodes inDj,, and equaldy (v’ o spn) on the boundanpDy,. Thus each
component o} (s;,) is of complexitynb, wherenb is the number of nodes
on dDy,. The reduction of the general form &7 (s;,) to the form which is
given in (81) is done with the use of equation (80).

The most important step in the Main Algorithm is the solution of the
linear system (82). The standard bicg method requires an algorithm for
matrix-vector multiplication. This step is described in the following Algo-
rithm. It shows how the multiplicatiod™ (s;,)¢, for an arbitraryé, € Hy,
is done. Here again we use the above mentioned reduction of complexity
by choosingv2 andwg from X}, such that they are zero at interior nodes
and have the correct boundary data.

Algorithm 2 (Matrix-vector multiplication). For givenu, € X, s, €
Hp andfh € Hy,

1. Computey, € X}, such thaty, = Ij,(y' o s,) ondD;, and
Voy - Veor+2 | H(up) (Vhe Aty + e A Vny) - @3
Dy, Dy,

+2 [ H'(up) - vp on - Ung Nupy =0 Yop € Xpo. (84)
Dy,
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2. For arbitraryy;, € Hy,

FY(sp)(Ensmn) = | Vup-Vwy + [ Vo, - Vo)
Dh Dh

+2 H(uh)wg “Upg N Upy
Dy,

+2 H(uh)v2  (Vha N Uy + Uz A Vpy)
Dy,

+2 H' (up) - vpvfy - upg A Upy
Dy,

2
~3 Q(up) - (w2 AUpr + 02 A th)
oDy,

2
- - Q' (up)vp - vg A Upy. (85)
3 Jop,
wherev) is a continuation of}, (7 o spn,) andw) is a continuation of
In(y" o spépnn) 10 Dp,.
The reduction of the general form of the second derivativéjofo the
form used in (85) is done with the use of the equation (84).

We start with a test computation of a problem for which we know exact
small and large solutions. See Figure 2 for the discrete solutions. That the

ZANVANN
,/;/,/Agl,tmmwm
NN,
NN
NNy
N 20000
\‘Q:% SS i‘%‘,’é’;‘ 4

Fig. 2. Small and large solution for circular boundary with= 0.9 with 289 nodes.

large solution appears relatively coarsely approximated is a consequence of
the conformal parametrisation of the surface. Let the constant prescribed
mean curvaturéd be positive and less than The boundary curve i§ =

S, the parametrisation is given bys(¢) = ¢ and

14 62 Lz -1

uj(z) = miﬁj (1=12), us(z)= 5ma (86)
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h nodes| L% (D) eoc | L*(D) eoc | H(D) eoc
1.0 9 0.1657e-1 - 0.1002 - 0.2607 -
0.7368 25 0.1616e-1 0.08 0.3900e-1 3.09 0.1816 1.18
0.4203 81 0.4568e-2 2.25 0.1070e-1 2.30) 0.9624e-1 1.13
0.2219 289 | 0.1231e-2 2.05 0.2703e-2 2.15 0.4816e-1 1.08
0.1137 1089 | 0.3349e-3 1.95 0.6724e-3 2.08 0.2389%-1 1.05
0.5754e-1 4225| 0.8949e-4 1.94 0.1673e-3 2.04 0.1187e-1 1.03

Table 1. Absolute errors for the small solution from (86) with = 0.5.

h nodes| L*(D) eoc | L*(D) eoc | H'(D) eoc
0.4203 81 0.1299e1 - 0.1230el - 0.6188el -
0.2219 289 | 0.5629 1.31| 0.4679 151} 0.2908e1 1.18
0.1137 1089 | 0.1904 1.62| 0.1611 1.60{ 0.1137e1 1.40
0.5754e-1 4225| 0.5785e-1 1.75 0.4708e-1 1.81 0.5870 0.97

Table 2. Absolute errors for the Absolute errors for the large solution from (86) Witk
0.5.

wheres = H/(H?*++/1 — H?) for the smalland = H/(H?—+/1 — H?)
for the large solution respectively.

In Tables 1 and 2 we list the errors between the smooth solutiamnd
the discrete solutiom;, in the normsL> (D), L?(D) and H' (D) for dif-
ferent grid sizes. From the erroegh,) ande(hs) for two successive grid
sizesh; andhsy for a certain norm we computed the experimental order of
convergence

e(hy) h
i/

The results show that the theoretically proved order of convergence in the
H'(D)-norm is reproduced by the practical computations. In Figure 1 we
have shown two solutions of the Plateau Problem for the same boundary

eoc = log

Fig. 3. Solutions for the boundary curve (87) witi = 0.0, 0.05, and0.1.
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curve
v(s) = ((1 4+ 0.1cos 3s) cos 2s, (1 4+ 0.1 cos 3s) sin 2s, — sin s)

but with the different constant curvaturéé = 0 and H = 0.8. Figure
3 shows the dependency of solutions on mean curvature for the boundary
curve

R3 R3
~v(s) = <R €08 § — —5- €08 3s, Rsins + 5 sin3s, R? cos 23) . (87)

with R = 2.

In Figure 4 we show a small and a large solution spanned in the curve
(87) for R = 0.75 with constant mean curvatufé = 0.5. The correspond-
ing parametrisations = s(¢) are plotted in Figure 5 and exhibit interesting
symmetries.
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Fig. 4. Small (graphically enlarged) and large solutions for the boundary curve (87) with
H=05
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