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THE DISCRETE PLATEAU PROBLEM:

ALGORITHM AND NUMERICS

GERHARD DZIUK AND JOHN E. HUTCHINSON

Abstract. We solve the problem of finding and justifying an optimal fully
discrete finite element procedure for approximating minimal, including unsta-
ble, surfaces. In this paper we introduce the general framework and some
preliminary estimates, develop the algorithm and give the numerical results.
In a subsequent paper we prove the convergence estimate.

The algorithmic procedure is to find stationary points for the Dirichlet
energy within the class of discrete harmonic maps from the discrete unit disc
such that the boundary nodes are constrained to lie on a prescribed boundary
curve. An integral normalisation condition is imposed, corresponding to the
usual three point condition. Optimal convergence results are demonstrated
numerically and theoretically for non-degenerate minimal surfaces, and the
necessity for non-degeneracy is shown numerically.

1. Introduction

A minimal surface or solution of the Plateau Problem is a surface in IRn which
has the topology of the unit disc, spans a given boundary curve Γ ⊂ IRn, and either
minimises, or more generally is stationary for, the area functional. Comprehensive
references for the classical theory of minimal surfaces are the books by Dierkes,
Hildebrandt, Küster, Wohlrab [DHKW] and by J.C.C. Nitsche [N2]. Various for-
mulations of the problem are discussed in Section 3.

In this and a subsequent paper [DH4] we solve the problem of finding and justi-
fying an optimal, fully discrete, finite element procedure for approximating general
(including unstable) minimal surfaces. In [DH1] we developed a boundary integral
method but the effects of numerical quadrature were not considered. An outline of
some of this work appears in the conference proceedings [DH3], where there is also
a summary of the algorithm for the finite element method. Apart from this, the
main related results are due to Tsuchiya. He gives an existence proof for discrete
minimal surfaces in [T2, 3] and proves convergence to a continuous solution in the
H1(D)-norm. Although this seems to be the first complete convergence result for
the approximation of parametric minimal surfaces, an indirect argument is used
which does not give any order of convergence with respect to the grid size, and
convergence is proved only for minimisers.

The Plateau Problem is highly nonlinear and the techniques here can be applied
to other geometric and nonlinear problems. Technical difficulties also arise since
local uniform convexity (more generally, nondegeneracy) of the energy functional
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is measured with respect to one norm, but the energy functional is only smooth
with respect to a stronger norm. Moreover, the discrete energy functional is not
the restriction of the original functional (unlike the situation in [DH1]).

Let D be the unit disc in IR2. An equivalent characterisation of minimal surface
which we will use is the following. Let F be the class of maps u :D → IRn such that
u|∂D : ∂D → Γ is monotone, u|∂D satisfies a “three-point condition” (c.f. (9) and
in our case (21) ), and u is harmonic. The function u ∈ F is said to be a minimal
surface if u is stationary in F for the Dirichlet energy D(u) = 1

2

∫

D
|∇u|2. See the

fourth definition in Section 3.1. Such maps u provide an harmonic and conformal
parametrisation of the corresponding minimal surface.

Following this characterisation, a first approximation to our numerical method
is as follows. Let Dh be a quasi-uniform triangulation of D with grid size controlled
by h. Let Fh be the class of continuous piecewise-linear maps uh :Dh → IRn for
which uh(φj) ∈ Γ whenever φj is a boundary node of Dh, which satisfy the three-
point condition, and which are discrete harmonic. Note that we do not require
“monotonicity” of uh|∂Dh

. The function uh ∈ Fh is said to be a discrete minimal
surface if uh is stationary within Fh for the Dirichlet energy D(uh) = 1

2

∫

Dh
|∇uh|2.

A member of Fh is determined by its values at the boundary nodes. Thus Fh is a
finite dimensional (nonlinear) manifold in some high dimensional Euclidean space.
The first and second derivatives of the Dirichlet energy restricted to this manifold
can be computed from a knowledge of Γ. From this, one can compute discrete
minimal surfaces.

The main convergence result in [DH4] is that if u is a “nondegenerate”, harmonic
and conformally parametrised minimal surface spanning Γ, then there exist discrete
minimal surfaces uh such that

‖u− uh‖H1(Dh) ≤ ch,(1)

where c depends on γ and the nondegeneracy constant for u but is independent of
h.

We now discuss some of the main ideas in our approach. For both computational
and theoretical reasons it is important to move the nonlinearity from the constraint
manifold and onto the energy functional. Following [St1] and [St2] fix a smooth
parametrisation γ :S1 → Γ, where S1 is the unit circle in IR2; it will be convenient
to distinguish between S1 and the boundary ∂D of D. A map f :∂D → Γ can be
uniquely written in the form f = γ ◦ s where s : ∂D → S1. The set of all maps
s :∂D → S1 is an affine vector space, since we have a well defined notion of what it
means to add to such a map s another map from the (ordinary) vector space of maps
σ :∂D → IR. We will restrict considerations to maps s with winding number one,
which satisfying a certain normalisation condition (c.f. (21) ) and which have finite
“norm” in one of two possible senses. The corresponding affine Banach spaces will
be denoted H and T (= H∩C0), see Definitions 3.4 and 3.5. Somewhat informally,
members of H have finite “norm” in the H1/2 sense and members of T have finite
“norm” in the H1/2 ∩ C0 sense. The associated spaces of variations are ordinary
Banach spaces and are denoted by H and T (= H ∩ C0) respectively.

Rather than the area functional, we will work with the following energy func-
tional E. Let u = Φ(γ ◦ s) :∂D → IRn be the (unique) harmonic extension of γ ◦ s,
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for s ∈ T . The energy functional E is defined on T by

E(s) =
1

2

∫

D

|∇u|2 =
1

2

∫

D

|∇Φ(γ ◦ s)|2.(2)

The class of competing maps is now the linear (affine) space T , but the energy
functional E(s) is no longer quadratic in s. In particular, the Euler equations are
highly nonlinear. A parametrised surface u = Φ(γ ◦ s) is a minimal surface if s is
monotone and stationary for E in T . We remark that E is smooth on T but not
even C1 on H, as indicated in one of the remarks preceding Proposition 3.8. On the
other hand, “nondegeneracy” is expressed in terms of the H1/2 norm and so refers
to the space H rather than to T . Members of H may “just” fail to be continuous
and hence to be members of T ; counter examples blow up logarithmically.

Our numerical and theoretical convergence results are obtained under the condi-
tion that the minimal surface u be nondegenerate. Such surfaces may have pertur-
bations which strictly decrease area, i.e. the second derivative of the area functional
may have negative eigenvalues, but there must be no zero eigenvalues apart from
those corresponding to reparametrisatons of the surface. More precisely, the eigen-
values of the second variation E ′′(s) of the energy functional must be bounded away
from zero. Minimal surfaces with branch points are always degenerate; a branch
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point on a minimal surface u is a point at which ∇u = 0 — see the examples in Sec-
tion 6. On the other hand, minimal surfaces without branch points are generically
nondegenerate, i.e. arbitrarily small perturbations of the boundary remove any non-
degeneracy, see Böhme and Tromba [BT]. Moreover, area minimising surfaces in
IR3 have no branch points, at least in the interior, see Osserman [O], Alt [A1,2] and
Gulliver [G]. This is not true in IRn if n ≥ 4. If γ is analytic then area minimisers
have no branch points on Γ, but this is not known if γ is not analytic.

The integral normalisation condition (21) (analogous to the classical three point
condition (9) ) removes a three parameter family of perturbations corresponding
to the Möbius group of conformal transformations of the unit disc D. This family
leaves E invariant and would lead to zero eigenvalues for E ′′(s) at a minimal surface
u = Φ(γ ◦ s). The integral form is more convenient than the three point condition
both numerically and theoretically.

The discrete analogue of T (and H) is the affine subspace Hh (⊂ T ⊂ H) of
continuous maps sh :∂D → S1 which are piecewise linear with respect to arc length
on the arc segments joining consecutive boundary nodes. Functions sh ∈ Hh are
defined on ∂D rather than on ∂Dh. However, they may be identified in a one-one
manner with maps from the boundary nodes of Dh into S1, provided the image of
each arc segment under sh is less than π, which is no restriction in practice. We
use the H1/2 norm on Hh and the corresponding metric on Hh.

Let uh = ΦhIh(γ ◦ sh) be the (unique) discrete harmonic extension of the piece-
wise linear interpolant Ih(γ◦sh) of sh ∈ Hh. We remark that Ih(γ◦sh) :∂Dh → IRn

is defined on ∂Dh and is piecewise linear in the usual Euclidean sense, whereas γ◦sh

is defined on ∂D. Note also that Ih(γ ◦ sh) maps the boundary nodes of ∂Dh into
Γ, the image of Ih(γ ◦ sh) is a polygon in IRn and the image of uh is a continuous
and piecewise linear surface. The discrete energy functional Eh is defined on Hh

by

Eh(sh) =
1

2

∫

Dh

|∇uh|2 =
1

2

∫

Dh

|∇ΦhIh(γ ◦ sh)|2.(3)

Note that whereas Hh ⊂ T ⊂ H, Eh is not the restriction of E to Hh. If sh ∈ Hh is
stationary for Eh we say uh = ΦhIh(γ◦sh) is a discrete minimal surface. Stationary
points sh are found by a Newton algorithm which is defined in both abstract and
matrix-vector form in Section 5. We note that Eh(sh) depends only on γ and the
nodal values sh(φj) where φj ranges over the boundary nodes of Dh. The same
dependency applies to the first and second derivatives of Eh(sh), which will be
explicitly computed.

The first author would like to thank the Centre for Mathematics and it Appli-
cations, and the second author would like to thank the Institut für Angewandte
Mathematik, for their hospitality during the course of this work. Some of the
graphics were done with the program GRAPE developed at SFB 256, Bonn and
at the University of Freiburg. This research has been partially supported by the
Australian Research Council.

2. Previous numerical methods

We briefly review previous numerical methods; for more details see [DH1].
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If the graph of a function u :IRk → IR is a (k-dimensional) minimal surface then
it satisfies the minimal surface equation

k
∑

i=1

Di

(

Diu
√

1 + |Du|2

)

= 0.

The problem of numerical approximations in this setting was perhaps first raised
by Douglas [Dou2]. He used a finite difference approach and the paper contains
both numerical examples and graphics, but the appropriate techniques to prove
convergence were not then available. In the case of a convex domain and k = 2
there are now optimal estimates in all norms for finite element approximations; see
Concus [Co], Johnson & Thomée [JT], Rannacher [Ra] and Ciarlet [Ci].

The most successful numerical approach up to now in the parametric (i.e. non-
graphical) setting for polygonal boundary curves uses Courant’s function d(τ),
where τ = {0 < τ1 < · · · < τn < 2π} varies over partitions of ∂D associated
in a natural way to the given polygonal boundary, see [Cou]. This idea was used
by Jarausch [J] to compute approximations to minimal surfaces using finite ele-
ments on D which are bilinear with respect to polar coordinates. Drawbacks of
the method are that the grid on D varies with τ and has a singularity at the ori-
gin. Jarausch proves convergence of the functional D with respect to the grid size.
Wohlrab [Wo] extended this method to partially free minimal surfaces and to more
general variational problems. Heinz proved that with a slight modification in the
definition of d(τ) it becomes an analytic function. The resulting function is called
Shiffman’s function and was used by Hinze [Hi1, 2] to compute minimal surfaces
bounded by polygons.

Some numerical work has been done in directly minimising the area functional
over various discrete spaces. Of course any such numerical method leads to theoret-
ical and numerical problems because of the invariance of the area functional under
arbitrary diffeomorphisms. Wagner [Wa1, 2] used the area functional to minimise
area for polyhedra spanning a given boundary curve. The same approach was used
by Steinmetz [Ste] for more complicated problems involving minimal surfaces, es-
pecially partially free minimal surfaces. See also Tsuchiya [T1; Prop. 1]. Parks [P]
approximated minimal surfaces by the level sets of functions of least gradient.

Mean curvature flow was used by Dziuk [Dz] to compute stable minimal surfaces
by using finite elements on surfaces; no convergence proof is given. A somewhat
similar idea with an infinite time step was used by Pinkall and Polthier [PP] to
compute minimal surfaces and their conjugates. A public-domain program “Surface
Evolver”, which can obtain minimisers for many discrete functionals (including
the discrete area functional), has been written by Brakke [Br]. Conditions under
which there is a smooth minimal surface near a discrete minimal surface have been
obtained by Underwood [U]. Sullivan [Su] has a max flow/min cut type algorithm
which uses a polyhedral decomposition of space to obtain approximations to area
minimising currents; and he provides a theoretical analysis. In all these cases, in
order to obtain reasonable accuracy the numerical estimates require decompositions
too fine for current workstations.

Following the lines of the proof of Rado and Douglas, Tsuchiya gives an existence
proof for discrete minimal surfaces in [T2, 3] and proves convergence to a continuous
solution in the H1(D)-norm. Wilson [Wi] used the Douglas boundary integral form
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of the Dirichlet functional for harmonic u,

D(u|∂D) :=
1

16π

∫

∂D

∫

∂D

|u(φ) − u(φ)|2

sin2
(

φ−φ
2

) dφ dφ = D(u),

in order to compute minimal surfaces. Hutchinson [Hu] minimised the conformal
energy D(u)−A(u), which is always ≥ 0 and equals 0 if and only if u is a minimal
surface. In some situations this has significant numerical advantages over minimis-
ing the Dirichlet energy. In addition, arbitrary and not necessarily stable minimal
surfaces can be found by a minimisation procedure.

In [DH1] (see also [DH3]) we obtained discrete minimal surfaces by, to be some-
what imprecise, computing stationary points of a boundary integral restricted to
certain finite element spaces. More precisely, let γ :S1 → Γ be a fixed parametrisa-
tion of the given boundary curve. For h > 0 let Gh be a partition of ∂D such that
the distance between successive nodes is bounded above and below by multiples of
h which are independent of h. Let Hh be the set of maps sh :∂D → S1 which are
continuous and piecewise linear with respect to arc length along arc segments in
Gh. Let

E(sh) = D(uh) = D(γ ◦ sh),

where uh is the harmonic extension of γ ◦ s. Note that uh is smooth, not discrete,
in the interior of D. We say that uh is a semi-discrete minimal surface if sh is
stationary for E in Hh. We showed that if u is a minimal surface then there is a
sequence of semi-discrete minimal surfaces uh such that

‖u− uh‖H1(D) ≤ ch3/2,

and in [DH2] we proved an O(h5/2) estimate for the L2 norm. Although this gives
a better order of convergence than the current method, the algorithm is computa-
tionally much more intensive. In addition, as noted before, the theoretical analysis
in [DH1] ignores the effect of quadrature approximations in computing the bound-
ary integral D(γ ◦ sh).

3. The smooth Plateau Problem

3.1. Theoretical background. The classical Plateau Problem consists of finding
a least area surface of disk type spanning a given wire in IRn. The wire is represented
by a curve Γ homotopic to a circle, i.e. by a Jordan curve.

Let

D = {z = (x, y) | |z| < 1}
denote the unit disk in IR2. One then looks for functions

u :D → IRn

such that ∂D is mapped onto Γ in a one-one (i.e. monotone) way and such that u
is a minimum for the area functional

A(u) =

∫

D

|ux × uy|.(4)

To be more precise, one is interested in finding u in the set of admissable functions

C′(Γ) =
{

v ∈ H1(D)n ∩ C0(∂D)n | v|∂D : ∂D → Γ is monotone
}

(5)
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such that

A(u) = inf
v∈C′(Γ)

A(v).(6)

More generally, one defines u ∈ C ′(Γ) to be a minimal surface (or solution of
the Plateau Problem) if u is stationary for A. A minimal surface need not be a
minimiser, or even stable.

The area functional A equals Dirichlet’s integral

D(u) =
1

2

∫

D

|ux|2 + |uy|2(7)

if and only if u is conformally parametrized, see (12). In general we have A(u) ≤
D(u). Since A is invariant under arbitrary diffeomorphisms it is easier to work with
D. A variational problem essentially equivalent to (6) is to solve

D(u) = inf
v∈C′(Γ)

D(v).(8)

Dirichlet’s integral is conformally invariant, i.e. D(u) = D(u ◦w) for any conformal
diffeomorphism (Möbius transformation) w of the disc D. Thus one should factor
out the conformal group by some additional assumption on the class C ′(Γ) of ad-
missable functions. Classically this is done by imposing a three-point condition on
u|∂D. Choose any three distinct points zi on ∂D and three distinct points Pi on Γ
and impose the condition

u(zi) = Pi(9)

for i = 1, 2, 3. Consequently the class of admissable functions is changed to

C(Γ) = {u ∈ H1(D)n ∩ C0(∂D)n| u|∂D : ∂D → Γ monotone(10)

and u satisfies (9).}
Such a three-point condition is numerically unpleasant because it is an L∞-condi-
tion. The classical three-point condition will be replaced by an L2-condition for
our purposes, see Definition 3.4. An essentially equivalent second definition then is
that u ∈ C(Γ) is a minimal surface if u is stationary for D.

A function u is stationary for D iff u is harmonic and conformal. Thus an
equivalent third definition is that u ∈ C(Γ) is a minimal surface if

∆u = 0,(11)

|ux| = |uy|, ux · uy = 0.(12)

This definition shows the highly nonlinear character of the Plateau Problem not
only because of the conformality relations (12) but also because of the definiton of
the boundary condition in the class C(Γ). Note that u has a free boundary on the
one dimensional manifold Γ.

Finally, an equivalent fourth definition is that u is a minimal surface if u ∈
C(Γ) ∩ {v|∆v = 0} and u is stationary in this class for D. An advantage of this
definition is that harmonic maps are uniquely determined by their boundary values,
and so we are essentially looking for stationary points of a certain functional defined
over a class of boundary maps from ∂D to Γ. This is the approach we will pursue,
but with a modification to the three point condition.
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The following theorem of Douglas [Dou] and Rado [R] states that the Plateau
Problem has at least one solution.

Theorem 3.1. Let Γ be a rectifiable Jordan curve in IR3. Then the problem

D(u) = inf
v∈C(Γ)

D(v).(13)

has a solution u ∈ C(Γ); moreover u is harmonic and conformal. Also, u solves the
problem

A(u) = inf
v∈C(Γ)

A(v).(14)

The boundary map u|∂D is a topological mapping onto the curve Γ

Apart from the Douglas-Rado solutions, many curves Γ have other, possibly
unstable, solutions to the Plateau Problem. In particular, see the examples in
Section 6. It is an open question whether there exist at most finitely many solutions
of the Plateau Problem for a given curve Γ. From the work of Böhme and Tromba
[BT] it is known that generically the number of solutions is finite. A result of
Tomi [To] guarantees that there are only finitely many absolute minimisers for an
analytic boundary curve Γ.

Asymptotic convergence of the numerical method requires regularity of solutions
up to the boundary. This was proved by Hildebrandt [Hil], Nitsche [N1], Jäger [Ja]
and Heinz [He]:

Theorem 3.2. Let u be a minimal surface which maps an open arc A ⊂ ∂D into
an open portion Γ′ ⊂ Γ and assume that Γ′ ∈ Ck,α for some k ∈ IN and some
0 < α < 1. Then u ∈ Ck,α(D ∪ A).

3.2. Reformulation of the Problem. Assume that Γ is a Jordan curve in IRn

with regular Cr-parametrisation

γ :S1 → Γ,

where r ≥ 3. Although ∂D = {z ∈ IR2 | |z| = 1} and S1 = {eiφ | 0 ≤ φ <
2π} ∼= IR/2π ∼= [0, 2π) are naturally isomorphic, we will consider S1 as the domain
of the fixed parametrisation γ of Γ, and consider ∂D as the boundary of the fixed
parameter domain for various parametrised surfaces.

For f :∂D → IRn we denote by

Φ(f) :D → IRn

its unique harmonic extension to D specified by

∆Φ(f) = 0 in D,(15)

Φ(f) = f on ∂D.(16)

For f :∂D → IR the H1/2(∂D) seminorm is defined by

|f |2H1/2(∂D) =

∫

∂D

∫

∂D

|f(φ) − f(φ)|2
|φ− φ|2

dφ dφ,(17)

the corresponding norm is given by

‖f‖2
H1/2 = ‖f‖2

L2 + |f |2H1/2 ,

and the associated inner product is denoted by ( , )H1/2 . It is standard that

Φ:H1/2(∂D, IRn) → H1(D, IRn)
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is a bounded linear map with bounded inverse.
For future reference we note the following properties which follow from (17).

‖fg‖H1/2 ≤ c‖f‖C1‖g‖H1/2 ,(18)

‖g ◦ s‖H1/2 ≤ c‖g‖C1‖s‖H1/2 .(19)

Now we can define the energy functional E which replaces Dirichlet’s integral in
(13) and which is defined on certain maps s :∂D → S1.

Definition 3.3. For s :∂D → S1 such that γ ◦ s ∈ H1/2(∂D, IRn), let

E(s) =
1

2

∫

D

|∇Φ(γ ◦ s)|2 = D(Φ(γ ◦ s)).(20)

That is, E(s) = D(u) where u is the harmonic extension Φ(γ ◦ s) of γ ◦ s. Notice
that E(s) is comparable to |γ ◦ s|2

H1/2 . As domain for the functional E one first
chooses a suitable space H, see Definition 3.4. Loosely speaking, H consists of those
H1/2 maps s :∂D → S1 which wind once around S1 and satisfy a certain normali-
sation condition, c.f. (21). However, in order to obtain a differentiable functional,
it will be necessary to restrict E to the subspace T of continuous members of H.

In the following Definition and elsewhere, points eiφ = (cosφ, sinφ) ∈ ∂D (or
∈ S1) are usually, but not always, denoted by the corresponding angle φ. Note that
φ is well-defined by eiφ only up to multiples of 2π.

Definition 3.4. The Hilbert space H is defined by

H = {ξ :∂D → IR | |ξ|H1/2 <∞ and (21) is satisfied} ,
where

∫ 2π

0

ξ(φ) dφ = 0,

∫ 2π

0

ξ(φ) cosφ dφ = 0,

∫ 2π

0

ξ(φ) sin φ dφ = 0.(21)

The norm on H is ‖ · ‖H1/2 , which by the first condition in (21) and Poincaré’s
inequality is equivalent to | · |H1/2 . The corresponding affine Hilbert space H is the
space of maps s :∂D → S1 such that

s(φ) = φ+ σ(φ)(22)

for some σ ∈ H . Note that addition in (22) is well-defined.

Definition 3.5. The Banach space T is defined by

T = H ∩ C0(∂D, IR)

with norm
‖ξ‖T = ‖ξ‖H1/2 + ‖ξ‖C0 .

The corresponding affine space T is defined by

T = H
⋂

C0(∂D, S1).

Because s ∈ H is a periodic perturbation of the “identity” map, see (22), we say
s winds once around S1. Notice that the function σ in (22) is well-defined by s
up to integer multiples of 2π at each point. But one can show that the only H1/2

functions whose values lie in the set {2kπ | k an integer} are integer multiples of
the constant function 2π. It then follows from the first condition in (21) that σ is
in fact uniquely determined by s. The space of variations at s ∈ H or s ∈ T is then
naturally identified with H or T respectively.
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The normalisation conditions (21) are the analogue of the three-point condition
(9). More precisely, it follows from the conformal invariance of Dirichlet’s integral
that E(s) = E(s ◦ g) for any g : ∂D → ∂D which is the restriction of a Möbius
transformation. However, for any continuous monotone s :∂D → ∂D there exists a
(unique) s = s ◦ g, where g is the restriction of a Möbius transformation, such that
s satisfies (21)—see the Appendix to Section 3 in [DH0] for a proof. Thus there is
no loss of generality in working in the class of s satisfying (21).

The energy functional E is well-defined and finite on H, see Proposition 3.7; and
conversely, if s is continuous and E(γ ◦ s) is finite then s ∈ H, see [St2; II.2.7]
and the estimates in [St2; Lemma II.2.6]. Differentiability of E on T follows from
Proposition 3.8.

We are now ready to give the formulation of the Plateau Problem which we use
in this paper.

Definition 3.6. The harmonic function

u = Φ(γ ◦ s)
is a minimal surface spanning Γ, or a solution of the Plateau Problem for Γ, if and
only if s ∈ T is monotone and stationary for E, i.e.

〈E′(s), ξ〉 = 0, ∀ξ ∈ T.(23)

The equivalence of this with the formulations of Plateau’s Problem in Section 3.1
is established in [St2]; the main point being to use the stationarity condition to first
establish the regularity result Φ(γ ◦ s) ∈ H2(D, IRn). Finding stationary points for
E is thus equivalent to solving the nonlinear system (11) and (12).

3.3. Estimates for the energy functional. Although H and T are only affine
Banach spaces, it will be convenient to introduce the notation

‖s‖ = 1 + ‖σ‖,
where s(φ) = φ+σ(φ), for various norms on σ. Note that ‖s‖ ≥ 1; we will use this
frequently.

We now have:

Proposition 3.7. E :H → IR and

E(s) ≤ c‖γ‖2
C1‖s‖2

H1/2 .

Proof.

E(s) =
1

2

∫

D

|∇Φ(γ ◦ s)|2 ≤ c|Φ(γ ◦ s)|2H1(D) ≤ c|γ ◦ s|2H1/2(∂D) ≤ c‖γ‖2
C1‖s‖2

H1/2 ,

from (19).

From (20) and formal computation we have

E(s) =
1

2

∫

D

|∇u|2,(24)

〈E′(s), ξ〉 =
d

dt

∣

∣

∣

∣

t=0

E(s+ tξ) =

∫

D

∇u∇v,(25)

E′′(s)(ξ, ξ) =
d2

dt2

∣

∣

∣

∣

t=0

E(s+ tξ) =

∫

D

∇u∇w +

∫

D

|∇v|2,(26)
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where

u = Φ(γ ◦ s), v = Φ(γ ′ ◦ s ξ), w = Φ(γ′′ ◦ s ξ2).(27)

Bilinearity gives a corresponding expression for distinct variations in (26). Note that
the evaluation of the derivatives of E requires the solution of Laplace’s equation
with various boundary conditions. The map γ ′◦s ξ can be thought of as a tangential
vector field defined either along ∂D or along Γ; the map v is its harmonic extension
and can be thought of as the harmonic variation induced by ξ.

Under appropriate smoothness assumptions on γ it is not difficult to prove that
E is a smooth mapping on T ⊂ H, see Proposition 3.8. The estimates in Propo-
sition 3.8 cannot be improved by replacing ‖ξ‖T by ‖ξ‖H1/2 , unless the regularity
on s is increased. The main point is that the composition operator s 7→ γ ◦ s is
smooth on T but not even C1 on H. Although we do not need Proposition 3.8
we include it for comparison with Proposition 3.9. The latter shows that if s is
sufficiently smooth, then the linear and bilinear operators E ′(s) and E′′(s) defined
on T can be extended to bounded linear and bilinear operators defined on H . The
arguments used in the proof of Proposition 3.9 are simple prototypes of those used
in proving the convergence result in [DH4]. The proof of Proposition 3.8 is similar,
see [St2] and also Propositions 5.1, 5.2 and 5.3 in [DH1].

Proposition 3.8. If γ ∈ C3 then E ∈ C2(T , IR). Moreover,

|〈E′(s), ξ〉| ≤ c‖γ‖2
C2‖s‖2

H1/2‖ξ‖T ,

|E′′(s)(ξ, η)| ≤ c‖γ‖2
C3‖s‖2

H1/2‖ξ‖T‖η‖T .

Proposition 3.9. If γ ∈ C2 and s ∈ C1 then

|〈E′(s), ξ〉| ≤ c‖γ‖2
C2‖s‖2

C1‖ξ‖H1/2 ,(28)

|E′′(s)(ξ, η)| ≤ c‖γ‖2
C2‖s‖2

C1‖ξ‖H1/2‖η‖H1/2 .(29)

Proof. ¿From (27) and (25),

|〈E′(s), ξ〉| ≤ |u|H1(D)|v|H1(D) = I1I2.

But

I1 ≤ c|γ ◦ s|H1/2(∂D) ≤ c‖γ‖C1‖s‖C1 by (19)

and

I2 ≤ c|γ′ ◦ s ξ|H1/2(∂D) ≤ c‖γ′ ◦ s‖C1‖ξ‖H1/2 ≤ c‖γ‖C2‖s‖C1‖ξ‖H1/2

by (18) and (19).
For the second derivative we may assume η = ξ. Then from (26)

E′′(s)(ξ, ξ) =

∫

D

|∇v|2 +

∫

D

∇u∇w =

∫

D

|∇v|2 +

∫

∂D

∂u

∂ν
w = I1 + I2,

since u is harmonic. But

I1 = |v|2H1(D) ≤ c|γ′ ◦ s ξ|2H1/2 ≤ c‖γ′ ◦ s‖2
C1‖ξ‖2

H1/2 ≤ c‖γ‖2
C2‖s‖2

C1‖ξ‖2
H1/2
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from (27), (18) and (19). Also

I2 ≤
∥

∥

∥

∥

∂u

∂ν

∥

∥

∥

∥

L2(∂D)

‖w‖L2(∂D)

≤ |u|H1(∂D)‖w‖L2(∂D) since
∫

∂D

∣

∣

∂u
∂ν

∣

∣

2
=
∫

∂D

∣

∣

∂u
∂τ

∣

∣

2
where τ is the

unit tangent vector, using a Fourier series expansion

≤ c|γ ◦ s|H1‖γ′′ ◦ s ξ2‖L2 from (27)

≤ c‖γ‖C1‖s‖C1‖γ‖C2‖ξ‖2
L4

≤ c‖γ‖2
C2‖s‖C1‖ξ‖2

H1/2 by a Sobolev embedding theorem.

This gives the estimate for E ′′.

3.4. Nondegeneracy for the energy functional. We will need to consider the
second order behaviour of E near a stationary point s ∈ T . More generally, if
s ∈ H ∩ C1 and γ ∈ C2 (in particular, if s is stationary and γ ∈ C2 by regularity
theory, see [DH4]), we use Proposition 3.9 to define the bounded self-adjoint map

∇2E(s) :H → H(30)

by

(

∇2E(s)(ξ), η
)

H1/2 = E′′(s)(ξ, η)(31)

for all ξ, η ∈ H . Write

H = H− ⊕H0 ⊕H+,(32)

ξ = ξ− + ξ0 + ξ+ if ξ ∈ H,(33)

for the orthogonal decomposition generated by the eigenfunctions of ∇2E(s) having
negative, zero and positive eigenvalues respectively. It is not difficult to show from
elliptic theory that H− and H0 are finite dimensional and that their members are
smooth, depending on the regularity of γ; see the proof of [St2, Proposition 5.6]
and also [DH4].

If s is monotone and stationary for E, we say:

s is nondegenerate if H0 = {0}.
The corresponding minimal surface u = Φ(γ◦s) is also said to be nondegenerate. If s
is nondegenerate it follows from standard arguments, c.f. [DH1, Proposition 4.9(iii)],
that the eigenvalues of ∇2E(s) are bounded away from zero. In this case we define

λ+ = inf{µ | µ is a positive eigenvalue of ∇2E(s)} > 0(34)

λ− = inf{−µ | µ is a negative eigenvalue of ∇2E(s)} > 0(35)

λ = min{λ+, λ−} > 0.(36)

In particular, if ξ ∈ H ,

E′′(s)(ξ, ξ+ − ξ−) = E′′(s)(ξ+, ξ+) −E′′(s)(ξ−, ξ−) ≥ λ||ξ‖2
H1/2 .(37)

We call λ the nondegeneracy constant for s.
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4. The discrete Plateau Problem

4.1. Discrete function spaces. Let Gh be a quasi-uniform triangulation of D
controlled by h; i.e. each triangle has diameter at most h and at least σh for some
σ > 0 independent of h, and has angles bounded away from zero independently of
h.

Define

Dh =
⋃

{G | G ∈ Gh},

∂Dh =
⋃

{Ej | 1 ≤ j ≤M} where the Ej are the boundary edges,

Bh = {φ1, . . . , φM} is the set of boundary nodes,

Nh = {v1, . . . , vN} is the set of all nodes,

where vj = φj = eiφj for j = 1, . . . ,M .

Suppose f ∈ C0(∂D, IRn). Then the continuous and piecewise linear interpolant
Ihf is defined on ∂Dh (not on ∂D) by

Ihf
(

(1 − t)eiφj + teiφj+1
)

= (1 − t)f(eiφj ) + tf(eiφj+1)(38)

for 0 ≤ t ≤ 1, 1 ≤ j ≤ M . Here and elsewhere, φM+1 = φ1. Note that the image
of Ih(γ ◦ s) is a polygonal approximation to Γ defined on ∂Dh, and Ih(γ ◦ s)(φj) =
γ ◦ s(φj) ∈ Γ for φj ∈ Bh. We also need a continuous and piecewise linear (with
respect to arc length) interpolant I∂D

h f , defined on ∂D (as opposed to ∂Dh), given
by

I∂D
h f

(

ei((1−t)φj+tφj+1)
)

= (1 − t)f(eiφj ) + tf(eiφj+1)(39)

for 0 ≤ t ≤ 1, 1 ≤ j ≤M .
In order to compare functions defined on ∂D with functions defined on ∂Dh,

define the projection π :∂D → ∂Dh by

π
(

ei((1−t)φj+tφj+1)
)

= (1 − t)eiφj + teiφj+1(40)

for 0 ≤ t ≤ 1, 1 ≤ j ≤ M . Thus π maps the small arc on ∂D joining two adjacent
boundary nodes to the line segment on ∂Dh joining the same two nodes; the map
is linear with respect to arc length on the arc and with respect to ordinary length
on the line segment. Finally, note that

I∂D
h f = Ihf ◦ π.(41)

As noted before, instead of working directly with maps f : ∂D → Γ, we work
with the corresponding maps s : ∂D → S1 where f = γ ◦ s. For this purpose we
consider the following discrete spaces:

Definition 4.1.

Hh = {ξh ∈ C0(∂D, IR) | ξh ∈ P1(π
−1[Ej ]) ∀j, ξh satisfies (21)},

Hh = {sh ∈ C0(∂D, S1) | sh(φ) = φ+ σh(φ) for some σh ∈ Hh}.
By P1(π

−1[Ej ]) is meant the set of polynomials of degree one over the arc π−1[Ej ].

ThusHh ⊂ T ⊂ H andHh is anM−3 dimensional vector space, where “3” comes
from the number of constraints in (21). Notice that these constraints correspond
to linear equations for the ξh(φj). Moreover, Hh ⊂ T ⊂ H, Hh is an affine space of
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dimension M −3, and the space of variations at any sh ∈ Hh is naturally identified
with Hh.

In order to define the discrete energy functional Eh, analogous to Definition 3.3
of the energy functional E, we require the following discrete spaces:

Definition 4.2.

Xn
h =

{

uh ∈ C0(Dh; IRn) | uh ∈ P1(G) for G ∈ Gh

}

,(42)

xn
h =

{

fh ∈ C0(∂Dh; IRn) | fh ∈ P1(Ej) for 1 ≤ j ≤M
}

.(43)

Taking n = 1 we similarly define Xh and xh.

For fh ∈ xh we define the discrete harmonic extension Φhfh ∈ Xh by

4hΦhfh = 0 in Dh,(44)

Φhfh = fh on ∂Dh,(45)

where 4h is the discrete Laplacian. Thus (44) is interpreted in the weak sense:
∫

Dh

∇(Φhfh)∇ψh = 0(46)

for all ψh ∈ Xh such that ψh = 0 on ∂Dh. If fh ∈ xn
h the discrete harmonic

extension is defined componentwise.

4.2. The discrete energy functional.

Definition 4.3. For sh ∈ Hh, the discrete energy functional Eh is defined by

Eh(sh) =
1

2

∫

Dh

|∇ΦhIh(γ ◦ sh)|2 = Dh(ΦhIh(γ ◦ sh)).(47)

That is, Eh(sh) = Dh(uh) where uh is the discrete harmonic extension of Ih(γ ◦
sh). We first apply Ih to γ ◦ sh since the latter is not in xn

h , not being piecewise
linear.

Note that, for a fixed parametrisation γ, Eh(sh) is completely determined by the
nodal values sh(φj), and can be computed from the values γ ◦ sh(φj) by solving a
linear system of equations, c.f. Section 5. In particular, if γ ∈ Ck then Eh(sh) is
also a Ck function of sh ∈ Hh, as follows immediately from (60) since the Aij do
not depend on γ. Finally, note that Eh is of course not the restriction of E to Hh.

We are now ready to give the formulation of the discrete Plateau Problem which
we use in this paper:

Definition 4.4. The discrete harmonic function

uh = ΦhIh(γ ◦ sh)

is a discrete minimal surface spanning Γ, or a solution of the discrete Plateau
Problem for Γ, if and only if sh ∈ Hh is stationary for Eh, i.e.

〈E′
h(sh), ξh〉 = 0(48)

for all ξh ∈ Hh.

Note that we do not require monotonicity of sh, as is the case for s in Defini-
tion 3.6.
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For later use we compute from (47) that

Eh(sh) =
1

2

∫

Dh

|∇uh|2,(49)

〈E′
h(sh), ξh〉 =

d

dt

∣

∣

∣

∣

t=0

Eh(sh + tξh) =

∫

Dh

∇uh∇vh,(50)

E′′
h(sh)(ξh, ξh) =

d2

dt2

∣

∣

∣

∣

t=0

Eh(sh + tξh) =

∫

Dh

∇uh∇wh +

∫

Dh

|∇vh|2,(51)

where

uh = ΦhIh(γ ◦ sh), vh = ΦhIh(γ′ ◦ sh ξh), wh = ΦhIh(γ′′ ◦ sh ξ
2
h).(52)

Bilinearity gives a corresponding expression for distinct variations in (51). The
map Ih(γ′ ◦ sh ξh) can be thought of as a discrete tangential vector field defined
either along ∂Dh or Γh (the polygonal image of ∂Dh under the map Ih(γ ◦ sh)); it
is uniquely determined by its values γ ′(sh(φj)) ξh(φj) at boundary nodes φj . The
map vh is the discrete harmonic extension of Ih(γ′ ◦ sh ξh) and can be thought of
as the discrete harmonic variation of uh induced by ξh.

5. The numerical algorithm

We now describe our algorithm for the computation of discrete minimal surfaces.
We want to solve the equation

E′
h(sh) = 0

in the discrete space Hh. This is equivalent to computing sh such that

〈E′
h(sh), ξh〉 = 0 ∀ξh ∈ Hh.

The abstract Newton algorithm for the solution is the following.

Algorithm 5.1. Given an initial parametrization sh ∈ Hh and a tolerance ε > 0:

(1) Compute E′
h(sh).

(2) If ‖E′
h(sh)‖Hh

′ ≤ ε then go to step 5.
(3) Solve the linear problem

E′′
h(sh)(ηh, ξh) = −〈E′

h(sh), ξh〉 ∀ξh ∈ Hh.

(4) Update the solution: sh := sh + ηh and go to step 1.
(5) Compute the discrete minimal surface

uh = ΦhIh(γ ◦ sh)

and stop.

In order to efficiently implement this algorithm we will translate it into matrix-
vector form. Recall that M is the number of boundary nodes on ∂D and N is the
number of nodes in Dh. Recall Xh is the space defined in (42) with n = 1. By

Hh(⊃ Hh)

is meant the space defined as is Hh, but without the normalisation condition (21).

The nodal basis functions ζ
(i)
h ∈ Hh and ψ

(l)
h ∈ Xh are uniquely specified by

ζ
(i)
h (φj) = δij and ψ

(l)
h (xm) = δlm,

where i, j = 1, . . . ,M and l,m = 1, . . . , N .
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For the remainder of this Section, subscripts i, j, k will range from 1 to M , and
subscripts l,m will range from 1 to N .

For sh ∈ Hh, ξh ∈ Hh and uh ∈ Xn
h let

si = sh(φi) ∈ S1, ξi = ξh(φi) ∈ IR, ul = uh(xl) ∈ IRn.

Then

ξh =
M
∑

i=1

ξiζ
(i)
h , uh =

N
∑

l=1

ulψ
(l)
h .

The coefficient vectors will be written

s = (s1, . . . , sM ) ∈ (S1)M , ξ = (ξ1, . . . , ξM ) ∈ IRM ,

u = (u1, . . . , uN) ∈ (IRn)N .

Given ξ ∈ IRM the corresponding function ξh belongs toHh iff the normalisations
corresponding to (21) are satisfied. It is easily seen that this is equivalent to

M
∑

i=1

ξi+1 + ξi
2

(φi+1 − φi) = 0,

M
∑

i=1

ξi+1 − ξi
φi+1 − φi

(cosφi+1 − cosφi) = 0,

M
∑

i=1

ξi+1 − ξi
φi+1 − φi

(sinφi+1 − sinφi) = 0,

where φM+1 = φ1 + 2π. We write the above linear constraints as

Lξ = 0.(53)

We will need to compute E ′
h(sh) and E′′

h(sh), c.f. (50) and (51). For this, first
note that from the definition of Ih we have

Ih(γ ◦ sh) =

M
∑

i=1

ψ
(i)
h

∣

∣

∣

∂Dh

γ(si),

Ih(γ′ ◦ sh ξh) =

M
∑

i=1

ξi ψ
(i)
h

∣

∣

∣

∂Dh

γ′(si),

Ih(γ′′ ◦ sh ξhηh) =
M
∑

i=1

ξiηi ψ
(i)
h

∣

∣

∣

∂Dh

γ′′(si).

In order to compute the effect of the discrete harmonic operator Φh applied to
the above quantities, we need the (scaled) discrete Poisson kernel functions. More

precisely, for i = 1, . . . ,M , the functions K
(i)
h = Φh

(

ψ
(i)
h

∣

∣

∣

∂Dh

)

∈ Xh are uniquely

defined by
∫

Dh

∇K(i)
h ∇ψ(l)

h = 0 for M < l ≤ N(54)

K
(i)
h = ψ

(i)
h on ∂Dh,(55)

c.f. (44)–(46).
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In order to compute the K
(i)
h , and for later use, define the N×N stiffness matrix

S = [Slm] by

Slm =

∫

Dh

∇ψ(l)
h ∇ψ(m)

h .(56)

The N × N matrix S0 = [S0
lm], and the N -vectors b(i) = (b

(i)
l ) for i = 1, . . . ,M ,

are defined by

S0
lm =







δlm 1 ≤ l,m ≤M
Slm M < l,m ≤ N
0 otherwise

and b
(i)
l =

{

δil 1 ≤ l ≤M
−Sil M < l ≤ N.

(57)

Note that S0 is a symmetric matrix with 4 blocks, of which the upper right and
lower left are zero matrices.

Let

K
(i)
h =

N
∑

l=1

K
(i)
l ψ

(l)
h .

Then from (54) and (55), the N -vectors

K(i) = (K
(i)
1 , . . . ,K

(i)
N )

for i = 1, . . . ,M are each given by solving the system of equations

S(0)K(i) = b(i).(58)

Note that the matrix S(0) is independent of i.
The M ×M harmonic stiffness matrix A is defined by

Aij =

∫

Dh

∇K(i)
h ∇K(j)

h =

∫

Dh

∇K(i)
h ∇ψ(j)

h ,

and from the preceding we have

Aij =

N
∑

l,m=1

K
(i)
l K(j)

m Slm =

N
∑

l=1

K
(i)
l Slj .(59)

Of course, for computational purposes the second expression is much more efficient.
In terms now of previously computed quantities, it follows from (47), (50), (51)

and the preceding that

Eh(sh) =
1

2

M
∑

i,j=1

Aijγ(si) · γ(sj),(60)

〈E′
h(sh), ξh〉 =

M
∑

i,j=1

Aijγ(si) · γ′(sj) ξj ,(61)

E′′
h(sh)(ηh, ξh) =

M
∑

i,j=1

Aij

(

γ(si) · γ′′(sj) ξjηj + γ′(si) · γ′(sj) ξiηj

)

.(62)

Moreover, the discrete harmonic surface corresponding to sh is given by

uh = ΦhIh(γ ◦ sh) =

M
∑

i=1

K
(i)
h γ(si) =

N
∑

l=1

(

M
∑

i=1

K
(i)
l γ(si)

)

ψ
(l)
h .(63)



18 GERHARD DZIUK AND JOHN E. HUTCHINSON

We now give the previous algorithm in matrix-vector form. In the following, the
vector g and the matrix B correspond to E ′

h(sh) and E′′
h(sh) respectively, while

the equation E′′
h(sh)(ηh, ξh) = −〈E′

h(sh), ξh〉 ∀ξh ∈ Hh becomes the equation
Bη = −g together with the (constraint) equation Lη = 0.

Algorithm 5.2. Suppose a triangulation Dh of the unit disc is given:

(1) Compute the N ×N stiffness matrix S,

S = Slm =

∫

Dh

∇ψ(l)
h ∇ψ(m)

h .

(2) Define S0 and b(i) as in (57) and solve the N ×N systems of equations

S0K(i) = b(i)

for i = 1, . . . ,M .
(3) Compute and save the M ×M harmonic stiffness matrix

A = Aij =

N
∑

l=1

K
(i)
l Slj .

Suppose, furthermore, a parametrised curve γ, an initial vector sh ∈ Hh, and a
tolerance ε > 0 are given. Then:

(4) Compute the M -dimensional “gradient vector” g = (gj),

gj =

M
∑

i=1

Aijγ(si) · γ′(sj).

(5) If |g| ≤ ε then go to step 8.
(6) Solve the M ×M linear system of equations

Bη = −g, Lη = 0,

where B = [Bij ] is the M ×M matrix

Bij = Aijγ
′(si) · γ′(sj) + δij

M
∑

k=1

Akjγ(sk) · γ′′(sj),

and L is as in (53).
(7) Update the solution

s := s + η

and go to step 4.
(8) Compute the discrete minimal surface

uh = ΦhIh(γ ◦ sh) =

N
∑

l=1

ulψ
(l)
h

by solving

S(0)u = γ,

where

u = (u1, . . . , uM , . . . , uN ),

γ = (γ(s1), . . . , γ(sM ), 0, . . . , 0),

and stop.
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Note that the computation of the harmonic stiffness matrix A depends only on
the triangulation, and not on γ or sh. Thus steps 1–3 may be performed just once,
independently of γ, for each grid; in steps 4–7 only A is needed from steps 1–3.

The sparse matrix S is used in step 8. It is not necessary to store the K(i). In
particular, it is better to solve the system in step 8 directly, rather than saving the

K(i) and using (63) to find u.
The algorithm requires O(N 3/2) operations. Each of the M sparse equations

in step 2 can typically be solved in O(N) operations to within a prescribed error
by a conjugate gradient algorithm, and M = O(N 1/2). Step 3 requires O(M2) =
O(N) operations, because of the sparsity of S. Thus the initial set-up requires
O(N3/2) operations. Step 4 requires O(M 2) = O(N) operations. In step 6 the
computation of B requires O(M 2) = O(N) operations, and the solution of the (full)
system requires O(M2) = O(N) operations by an iterative method. Thus each loop
through steps 4–7 requires O(N) operations. The number of loops required to find
the M entries in g is typically O(M). Finally, the sparse system in step 8 can be
solved in O(N) operations by a conjugate gradient method.

6. Implementation and numerical results

The classical Enneper surface with parameter R which acts as a bifurcation
parameter is a good test example because here the exact solution for the unstable
case is known. For 0 < R ≤ 1 Enneper’s surface is area minimising and is the
unique solution of Plateau’s Problem. For 1 < R <

√
3 one observes three distinct

solutions of Plateau’s Problem—two area minimisers and one unstable minimal
surface, but this has only been proved if r0 < R <

√
3 for some r0 near

√
3. For a

discussion of this important example and further references, see [N2], particularly
§§118, 388–395, A14–16. Here, we compute the unstable solution and calculate the
order of convergence between the smooth solution and the discrete solution.

The boundary curve is given by

γ1(s) = R cos s−R3/3 cos 3s

γ2(s) = R sin s+R3/3 sin 3s

γ3(s) = R2 cos 2s

for s ∈ [0, 2π]. The continuous solution is the harmonic continuation of this
parametrization. Denote by eh the error between the continuous solution and the
discrete solution. For two successive grids with grid sizes h1 and h2 the experimen-
tal order of convergence is

eoc = ln
eh1

eh2

/ ln
h1

h2
.

In each of the three cases a different grid was used for the computations in order
to make the comparison of the orders of convergence more realistic. The grids are
based on initial macro triangulations of the unit disk which are of quadrilateral,
hexagonal or pentagonal form.
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Stable Enneper Surface, R=0.9, hexagonal grid

level h L2-error eoc L2 H1-error eoc H1 energy E

0 1.0000 1.9557 e-1 - 1.3301 - 3.8318
1 0.5176 1.0617 e-1 0.928 8.5964 e-1 0.663 4.8395
2 0.3098 3.1492 e-2 2.368 4.4964 e-1 1.263 5.0842
3 0.1685 7.8183 e-3 2.288 2.2709 e-1 1.122 5.1432
4 0.0875 1.9786 e-3 2.095 1.1389 e-1 1.052 5.1576
5 0.0445 3.1723 e-4 2.709 5.6979 e-2 1.025 5.1612

Enneper Surface, R = 1.0, pentagonal grid

level h L2-error eoc L2 H1-error eoc H1 energy E

1 0.6641 1.0586 e-1 - 1.1595 - 6.5176
2 0.3320 2.9051 e-2 1.866 6.3118 e-1 0.877 7.1272
3 0.1843 7.4972 e-3 2.302 3.2300 e-1 1.138 7.2799
4 0.0964 1.8916 e-3 2.124 1.6250 e-1 1.060 7.3178
5 0.0492 4.7398 e-4 2.058 8.1384 e-2 1.028 7.3272

Unstable Enneper Surface, R=1.1, quadrilateral grid

level h L2-error eoc L2 H1-error eoc H1 energy E

1 0.7654 1.8741 e-1 - 1.5713 - 8.1395
2 0.3902 4.9817 e-2 1.967 8.8969 e-1 0.844 9.6962
3 0.2102 1.2713 e-2 2.207 4.6046 e-1 1.065 10.1150
4 0.1110 3.1975 e-3 2.161 2.3238 e-1 1.071 10.2208
5 0.0569 8.0072 e-4 2.071 1.1647 e-1 1.033 10.2473

In order to demonstrate the sharpness of our error estimates we include an
example from [DH3]. We do not prove convergence if the kernel of the second
derivatives of E is nontrivial. The following experiment shows that in general these
results cannot be improved. The example uses the exact formula for a minimal
surface u = Φ(γ ◦ s) with a branch point at the origin. In this case the kernel of
E′′(s) is well known and we are able to subtract the singular part of the solution,
i.e. to project the solution onto the space orthogonal to the kernel and so obtain
the regular part.

Branch point (order=1, index=3)

level h L2-error eoc L2 H1-error eoc H1

2 0.3902 7.151 e-3 - 3.455 e-2 -
3 0.2102 7.817 e-3 -0.1 2.875 e-2 0.3
4 0.1110 1.119 e-2 -0.6 3.920 e-2 -0.5

Branch point: regular part

level h L2-error eoc L2 H1-error eoc H1

2 0.3902 3.761 e-3 - 1.878 e-2 -
3 0.2102 7.292 e-4 2.7 3.879 e-3 2.6
4 0.1110 9.881 e-5 3.1 5.977 e-4 2.9
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Figure 2. Discrete solution of the Plateau Problem with 96 triangles

Figure 3. Discrete solution of the Plateau Problem with 1536 triangles

Finally we compute a non-minimising solution for a well known boundary curve
consisting of four circles, parallel in pairs and connected in a smooth way. The
distance between two parallel circles is ε = 0.5 for the coarse grid in Fig. 2 and
ε = 0.2 for the fine grid in Fig. 3. The radii of the circles are 1.0 in either case.
The four connections between the circles are of length proportional to ε and thus
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at these parts of the boundary very high curvatures occur. These curvatures are
equivalent to large C2-norms of the parametrisation γ and as can be seen from
the constants in our error estimates large errors between discrete and continuous
solution can be expected at these points. In fact, these parts of the discrete minimal
surface induce many Newton steps in our algorithm.
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