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Abstract. Deterministic and random fractals, within the framework of Iterated
Function Systems, have been used to model and study a wide range of phenomena
across many areas of science and technology. However, for many applications
deterministic fractals are locally too similar near distinct points while standard random
fractals have too little local correlation. Random fractals are also slow and difficult to
compute.

We construct V -variable fractals, which have the property that at each level of
decomposition there are at most V distinct components up to a natural equivalence
relation. We show that V -variable fractals are elements of a superfractal, for which
there is a fast forward algorithm. Finally we show that V -variable fractals approximate
standard random fractals for large V and thereby obtain a fast forward algorithm for
obtaining standard random fractals and their natural probability distribution to within
any prescribed degree of approximation.

The main ideas are developed by means of examples with the intention of being
accessible to a wide readership.
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1. Introduction

We introduce the class of V -variable fractals. This solves two problems previously

restricting further applications of Iterated Function System (IFS) generated fractals,

the absence of fine control on local variability and the absence of a fast algorithm

for computing and accurately sampling standard random fractals. In order to make

the ideas clearer and hopefully facilitate the application of these notions to non-

mathematical areas, except in Section 5 we have deliberately avoided technicalities

and illustrated the ideas by means of a number of model examples, but the general

construction and results should be clear. A careful mathematical treatment of the

material here and a number of generalisations and further developments is given in

Barnsley, Hutchinson and Stenflo 2003b.

The integer parameter V in “V -variable” controls the number of distinct shapes

or forms at each level of magnification (Figures 4, 6 and the discussion at the end of

Section 3). The case V = 1 includes standard deterministic fractals (Figures 1, 2, also

the fern and lettuce in Figure 4) generated by a single IFS and homogeneous random

fractals (c.f. Hambly 1992, 2000 and Stenflo 2001). See Section 3 for a description of

the construction in a particular case with V = 5 and note that the parameter V equals

the number of buffers used in the construction. In Section 6 we construct and discuss

examples of 2-variable fractals. In Section 5 we define the class of V -variable fractals

and in (4) of the theorem in that section we justify the terminology “V -variable”.

The construction of V -variable fractals is by means of a fast Markov Chain Monte

Carlo type algorithm. See Section 6 for an example of the algorithm. Large V allows

rapid approximations to standard random fractals in a quantifiable manner, and the

approximation is to not one, but to a potentially infinite sequence of correctly distributed

examples. See parts (5) and (6) of the theorem in Section 5 and the remarks following

the proof of this result. In particular, one can approximate standard random fractals,

together with their associated probability distribution, by means of a fast forward

algorithm.

A surprising but important fact is that each family of V -variable fractals, together

with its naturally associated probability distribution, forms a single superfractal

generated by a single superIFS, operating not on points in the plane (for example)

as for a standard IFS but on V -tuples of images. See Section 4 and the theorem in

Section 5.

Dimensions of V -variable fractals are computable using products of random

matrices and ideas from statistical mechanics. We implement a Monte Carlo method

for this purpose, see Section 7.

Since the mathematically natural notion of a V -variable fractal solves two major

problems previously restricting wider applications, we anticipate that V -variable fractals

should lead to further developments and applications of fractal models. For example,

IFSs provide models for certain plants, leaves and ferns by virtue of the self-similarity

which often occurs in branching structures in nature. But nature also exhibits
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randomness and variation from one level to the next — no two ferns are exactly alike, and

the branching fronds become leaves at a smaller scale. V -variable fractals allow for such

randomness and variability across scales, while at the same time admitting a continuous

dependence on parameters which facilitates geometrical modelling. These factors allow

us to make the hybrid biological models in Figures 4, 9. Because of underlying special

code trees (Barnsley, Hutchinson and Stenflo 2003a) which provide the fundamental

information-theoretic basis of V -variable fractals, we speculate that when a V -variable

geometrical fractal model is found that has a good match to the geometry of a given

plant, then there is a specific relationship between these code trees and the information

stored in the genes of the plant.

In Barnsley, Hutchinson and Stenflo (2003a) we survey the classical properties

of IFSs, develop the underlying theory of V-variable code trees and establish general

existence and other properties for V -variable fractals and superfractals. In Barnsley,

Hutchinson and Stenflo (2003b) we give a fairly extensive mathematical treatment of

the theory and generalisations, and in particular prove the dimension results for V -

variable fractals for which we here give an informal justification.

2. Iterated Function Systems

By way of background we first recall the concept of an IFS via the canonical example

of the Sierpinski triangle S (approximated in the bottom right panel of Figure 1),

which has been studied extensively (see Falconer 1990, 1997 and Hambly 1992, 2000)

both mathematically and as a model for diffusion processes through disordered and

highly porous material. The set S has three components, each of which is a scaled

image of itself; each of these components has three sub-components, giving nine scaled

images of at the next scale, and so on ad infinitum. A simple observation is that if

f1, f2, f3 are contractions of space by the factor 1
2

with fixed points given by the three

vertices A1, A2, A3 respectively of S, then the three major sub-components of S are

f1(S), f2(S), f3(S) respectively and

S = f1(S) ∪ f2(S) ∪ f3(S). (1)
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Figure 1. Convergent or Backward Process. Beginning from any set (fish) T0,

iterates T1 = F (T0), T2 = F (T1),. . . converge to the Sierpinski Triangle S. Shown

are iterates T0, T1, T2, T3, T4, T8.

The collection of maps F = (f1, f2, f3) is called an Iterated Function System (or

IFS ). For any set T one similarly defines F (T ) = f1(T ) ∪ f2(T ) ∪ f3(T ). It is standard

that S is the unique compact set satisfying (1) . Furthermore, beginning from any

compact set T0, and for k ≥ 1 recursively defining Tk = F (Tk−1), it follows that Tk

converges to S in the Hausdorff metric as k → ∞, independently of the initial set T0

(Figure 1). For this reason, S is called the fractal set attractor of the IFS F and this

approximation method is called the convergent or backward process, c.f. Hutchinson

(1981).

An alternative approach to generating S is by a chaotic or forward process (Barnsley

and Demko 1985), sometimes called the chaos game (Figure 2). Begin from any point x0

in the plane and recursively define xk = f̂k(xk−1), where each f̂k is chosen independently

and with equal probability from (f1, f2, f3). With probability one the sequence of

points (xk)k≥0 approaches and moves ergodically around, and increasingly closer to,

the attractor S. For this reason F is called an iterated function system. If instead the

f̂k are selected from (f1, f2, f3) with probabilities (p1, p2, p3) respectively, where each

pi > 0 and p1 + p2 + p3 = 1, then the same set S is determined by the sequence (xk)k≥0,

but now the points accumulate unevenly, and the resulting measure attractor can be

thought of as a greyscale image on S, or probability distribution on S, or more precisely

as a measure. In this case (f1, f2, f3; p1, p2, p3) is called an IFS with weights.

Figure 2. Chaotic or Forward Process. Beginning from any initial point and

randomly and independently applying f1, f2 or f3 produces the Sierpinski Triangle

as attractor with probability one. Shown are the first 10,000 and 100,000 points

respectively.

These ideas and results naturally extend to general families of contraction maps and

probabilities. Even with a few affine or projective transformations, one can construct

natural looking images (see the initial fern and lettuce in Figure 4).

IFSs have been extended to study the notion of random fractals. See Falconer

(1986), Graf (1987) and Mauldin and Williams (1986); also Hutchinson and Rüschendorf

(1998, 2000) where the idea of an IFS operating directly in the underlying probability

spaces is used.
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3. Construction of V -variable fractals

We now proceed to the construction of V -variable fractals. This can be understood in

the model situation of two IFSs F and G, with F as before and with G having the same

fixed points A1, A2, A3 but with contraction ratios 1
3

instead of 1
2
. We emphasise that

the following construction is in no sense ad hoc, but is the natural chaotic or forward

process for a superfractal whose members are V -variable fractals as we discuss in Section

4 and establish in Section 5.

Figure 3. Forward algorithm for generating families of V -variable fractals. Shown

are levels 1 (top), 2 and 3 in the construction of a potentially infinite sequence of

5-tuples of 5-variable Sierpinski Triangles. For each buffer from level 2 onwards,

F or G indicates which IFS was used, and the input arrows indicate the buffers to

which this IFS was applied.

One begins with arbitrary sets, one in each of V input buffers at level 1 (Figure 3

where V = 5, colour coded to indicate the maps involved, and Fig. 6 where V = 2). A

set in the first of V output buffers (level 2, Figure 3) is constructed as follows: choose

an IFS F or G with the preassigned probabilities P F or PG respectively; then apply

the chosen IFS to the content of three buffers chosen randomly and independently with

uniform probability from the input buffers at level 1, allowing the possibility that the

same buffer is chosen more than once (thus one is performing uniform sampling with

replacement). The resulting set is placed in the first buffer at level 2. The content of

each of the remaining buffers at level 2 is constructed similarly and independently of

the others at level 2. These output buffers then become the input buffers for the next

step and the process is repeated, obtaining the bottom row in Figure 3, and so on.

The construction produces an arbitrarily long sequence of V -tuples of approximate

V -variable fractals associated to the pair of IFSs (F, G) and the probabilities (P F , PG).
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The degree of approximation is soon, and thereafter remains, within screen resolution

or machine tolerance (Figure 6). The empirically obtained distribution of V -variable

fractals over any infinite sequence of runs is the same with probability one and is the

natural distribution as we explain later. The generalisation to the case of a family of

IFSs (F 1, . . . , FN) with associated probabilities (P 1, . . . , PN) is straightforward; also

sets can be replaced by greyscale images or more generally by coloured sets built up

from primary colours if IFSs with weights are used (Figure 9).

Figure 4. 2-Variable Fractals. In the first “Squares and Shields” example, the

number of components at each level of magnification is 1,4,16,64, . . . , but at each

level there are at most two distinct shapes/forms up to affine transformations. The

actual shapes depend on the level. In the second example of fractal breeding, fern

and lettuce fractal parents are shown with four possible 2-variable offspring. The

two IFSs used are those generating the fern and the lettuce. The associated

superfractal is the family of all possible offspring together with the naturally

associated probability distribution.

The V -variability can be understood as follows. In Figure 3 the set in each buffer

from level 2 onwards is composed of three component parts, each obtained from one

of the V = 5 buffers at the previous level; at level 3 onwards sets are composed of

9 smaller component parts each obtained from one of the V buffers two levels back;

at level 4 onwards sets are composed of 27 smaller component parts each obtained

from one of the V buffers three levels back; etc. Thus at each level of magnification

there are at most V distinct component parts up to rescaling. In general, for a V -

variable fractal, although the number of components grows exponentially with the level

of magnification, the number of distinct shapes or forms is at most V up to a suitable

class of transformations (e.g. rescalings, affine or projective maps) determined by the

component maps in each of the IFSs (F 1, . . . , FN) (Figure 4 first panel, Figure 6). If

parts of the V -variable fractals overlap each other, the V -variability is not so obvious,

and fractal measures (greyscale or colour images) rather than fractal sets (black and

white images) are then more natural to consider.
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4. Superfractals

The limit probability distribution on the infinite family of V -variable fractals obtained

by the previous construction is independent of the experimental run with probability

one as we explain at the end of this Section and establish in Section 5. As noted

previously, an initially surprising but basic fact is that this family of V -variable fractals

and its probability distribution is a fractal in its own right, called a superfractal,

and the construction process for the generated collection of V -variable fractals turns

out to be the forward or chaotic process for this superfractal, see also Barnsley,

Hutchinson and Stenflo (2003a). For large V , V -variable fractals approximate standard

random fractals and their naturally associated probability distributions in a quantifiable

manner, providing another justification for the canonical nature of the construction, see

Barnsley, Hutchinson and Stenflo (2003a, b). Although there was previously no useful

forward algorithm for standard random fractals such as Brownian sheets, one can now

rapidly generate correctly distributed families of such fractals to any specified degree

of approximation by using the previously described fast forward (Monte Carlo Markov

Chain) algorithm for large V . The number of required operations typically grows linearly

in V as only sparse matrix type operations are required.

The superfractal idea can be understood as follows. The process of passing from

the V -tuple of sets at one level of construction to the V -tuple at the next (Figures 3, 6)

is given by a random function Fa : HV → HV , where HV is the set of all V -tuples of

compact subsets of [0, 1]2 ⊂ R2 or of some other compact metric space as appropriate,

and where a belongs to some index set A. All information necessary to describe the

chosen Fa at each level in Figure 3 is given by the chosen IFSs for each buffer at that level

(namely G, F, G, F, F across level 2) and by the arrows pointing to each buffer at that

level (indicating which three buffers at the previous level are used for each application

of F or of G), see also the captions in Figure 6. Each Fa has a certain probability Pa of

being chosen, this probability is induced in the natural manner from the probabilities

P F and PG of selecting F or G. The Fa are contraction maps on HV in the Hausdorff

metric, with contraction ratio equal 1
2
, and in general the contraction ratio of Fa equals

the maximum of the contraction ratios of the individual maps in the IFSs being used. In

particular, the superIFS (Fa,Pa, a ∈ A) is an IFS operating not on points in R2 as for

a standard IFS but on V -tuples of sets in HV . From IFS theory applied in this setting,

there is a unique superfractal set and superfractal measure which with probability one

is effectively given by the collection of V -tuples of V -variable fractals together with the

experimentally obtained probability distribution arising from the previous construction.

See Barnsley, Hutchinson and Stenflo (2003a) for detailed proofs.

5. Definitions and Proofs

In this section, which is independent of the rest of the paper and written in a more

formal style, we provide definition, theorem and proof.
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Suppose (X, d) is a compact metric space. For each n = 1, . . . , N let F n =

(fn
1 , . . . , fn

M) be an IFS consisting of Lipschitz maps fn
m : X → X. Let rn

m := Lip fn
m,

i.e. d(fn
m(x), fn

m(y)) ≤ rn
md(x, y) for all x, y ∈ X.

Assume r := maxm,n rn
m < 1.

For a fixed integer V ≥ 1 let AV be the set of all matrices

a =

 Ia(1) Ja(1, 1) . . . Ja(1, M)
...

...
. . .

...

Ia(V ) Ja(V, 1) . . . Ja(V, M)

 (2)

where 1 ≤ Ia(v) ≤ N and 1 ≤ Ja(v, m) ≤ V .

Let H(X) be the set of compact subsets of X and let dH be the Hausdorff metric

on H(X). Then (H(X), dH) is a compact metric space. We also use dH to denote the

induced Hausdorff metric on H(H(X)) in (6) of the following Theorem.

For 1 ≤ n ≤ N define F n : H(X)M → H(X)M by

F n(K1, . . . , KM) =
M⋃

m=1

fn
m(Km).

For a ∈ AV define the buffer map Fa : H(X)V → H(X)V by

Fa(K1, . . . , KV ) :=
(
F Ia(1)(KJa(1,1), . . . , KJa(1,M)), . . . , F

Ia(V )(KJa(V,1), . . . , KJa(V,M))
)
.

Define the metric

dH ((K1, . . . , KV ), (K ′
1, . . . , K

′
V )) = max

1≤v≤V
dH(Kv, K

′
v).

Then (HV , dH) is a compact metric space. Moreover, it is immediate that each Fa is a

contraction map with LipFa ≤ r < 1.

Let

FV = (Fa, a ∈ AV ).

Then FV is an IFS with constituent maps Fa : H(X)V → H(X)V . (Recall for comparison

that the original IFSs F n had constituent maps fn
m : X → X.)

Let H(H(X)V ) denote the set of compact collections of subsets of H(X)V and let d∗H
denote the Hausdorff metric on H(H(X)V ). Then (H(H(X)V ), d∗H) is itself a compact

metric space, whose elements are compact collections of V -tuples of compact subsets

of X.

Since FV is an IFS on H(X)V we define in the usual manner FV : H(H(X)V ) →
H(H(X)V ) by

FV (K) =
⋃

a∈AV

Fa(K) =
⋃

a∈AV

{Fa(K1, . . . , KV ) : (K1, . . . , KV ) ∈ K}

= {Fa(K1, . . . , KV ) : a ∈ AV , (K1, . . . , KV ) ∈ K}

for any K ∈ H(H(X)V ).
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Definition. The pair FV = (Fa, a ∈ AV ) is a superIFS. The unique compact attractor

K∗V ⊂ H(X)V is called a superfractal, as is its projection KV onto any component (see

the following theorem). Members of KV are called V -variable fractals.

Theorem.

(1) There exists a unique K∗V ∈ H(H(X)V ) such that FV (K∗V ) = K∗V . For any

K0 ∈ H(H(X)V ), Fk
V (K0) → K∗V in the d∗H sense as k → ∞ and d∗H(Fk

V (K0),K∗V ) ≤
rkd∗H(K0,K∗V ).

(2) If πv : H(X)V → H(X) denotes the vth projection map then KV := πv[K∗V ] is

independent of v.

(3) Each (K1, . . . , KV ) ∈ K∗V can be written in the form

(K1, . . . , KV ) = lim
k→∞

Fa1 ◦ · · · ◦ Fak(K0
1 , . . . , K

0
V )

for some (in fact many) (ak)k≥1 ⊂ AV . The limit is independent of (K0
1 , . . . , K

0
V ). Any

set (K1, . . . , KV ) of this form belongs to K∗V .

(4) Let T be the tree of all finite sequences from {1, . . . ,M} including the empty

sequence ∅ of length 0. Then for each K ∈ KV and each k ≥ 1,

K =
M⋃

m1,...,mk=1

fη(∅)
m1

◦ fη(m1)
m2

◦ fη(m1m2)
m3

◦ · · · ◦ fη(m1...mk−1)
mk

(Km1...mk
)

for some“code function” η : T → {1, . . . , N} and some collection of sets Km1...mk
∈ KV .

Moreover, there are at most V distinct such sets Km1...mk
for each k.

(5) Suppose for k ≥ 1 that ak ∈ AV are iid so that Iak(v) ∈ {1, . . . , N} and

Jak(v, m) ∈ {1, . . . , V } each have the corresponding uniform distribution. Then for

every (K0
1 , . . . , K

0
V ) ∈ H(X)V and a.e. (ak)k≥1 the set of limit points of the sequence

(Kk
1 , . . . , Kk

V )k≥1, where

(Kk
1 , . . . , Kk

V ) := Fak ◦ · · · ◦ Fa1(K0
1 , . . . , K

0
V ),

equals the set K∗V .

(6) Let K∞ be the collection of random fractal sets generated in the usual manner

from the IFSs F 1, . . . , FN . Then dH(KV ,K∞) ≤ r[log V/ log M ]diamX where [s] denotes

the integer part of s. In particular, KV → K∞ in the dH sense as V →∞.

Proof. Results (1), (3) and (5) follow from standard results for IFSs. More precisely,

since Fk
V is a contraction map with contraction ratio r on a complete metric space it has

a unique fixed point with exponential convergence as stated in (1). For (3) one similarly

uses the fact each Fa is a contraction. Result (5) follows from ergodic theory or in this

case directly from the given probability distributions.

For (2) note that FV is invariant under permutations of {1, . . . , V } and use the

uniqueness of K∗V .
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Result (4) follows from Fk
V (K∗V ) = K∗V and expanding out the left side. Note that

any standard random fractal generated from the IFSs F 1, . . . , FN is of the same form

but without any restriction on the Km1...mk
.

For (6) let k =
[

log V
log M

]
. Then Mk ≤ V < Mk+1. It follows from a combinatorial

argument that for any element of K∞ with code function η there is an element of

KV whose code function η agrees on nodes of length at most k − 1. It follows that

dH(KV ,K∞) ≤ rkdiamX, which gives the result.

The terminology V -variable is justified by (4). In the case of deterministic fractals

or more generally of homogeneous random fractals, V = 1. Standard random fractals

correspond to the case “V = ∞”.

From (5) there is a fast forward algorithm for generating V -variable fractals, and

from (6) it follows that one has a fast forward algorithm for generating standard random

fractals up to any apriori prescribed error. In fact much more is true. We show in

Barnsley, Hutchinson and Stenflo 2003b that similar results apply to random fractal

measures. Moreover, the empirical distribution obtained by the forward algorithm

approximates the probability measure on standard random fractals in a quantifiable

manner.

The results of the theorem hold under much weaker average contractive conditions,

provided one works with fractal measures and the appropriate metrics are used, as is

established in Barnsley, Hutchinson and Stenflo 2003b.

6. Examples of 2-variable fractals

We begin with 2 IFSs U = (f1, f2) (“Up with a reflection”) and D = (g1, g2) (“Down”),

where

f1(x, y) =
(x

2
+

3y

8
− 1

16
,

x

2
− 3y

8
+

9

16

)
, f2(x, y) =

(x

2
− 3y

8
+

9

16
,−x

2
− 3y

8
+

17

16

)
,

g1(x, y) =
(x

2
+

3y

8
− 1

16
,−x

2
+

3y

8
+

7

16

)
, g2(x, y) =

(x

2
− 3y

8
+

9

16
,

x

2
+

3y

8
− 1

16

)
.

The corresponding fractal attractors are shown in Figure 5.
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Figure 5. Up (green) and Down (red) attractors

Figure 6 shows the first 20 steps in the construction of a sequence of pairs of 2-

variable fractals from the two IFSs U and D. The initial pair of input figures can be

arbitrarily chosen, here they are each the same and consist of four leaves.

For the first step in the construction (producing the contents of the second pair of

buffers) the IFS U = (f1, f2) was chosen, f1 was applied to the previous left buffer L

and f2 was applied to the previous right buffer R; the second buffer was obtained by

applying U with f1 and f2 both acting on the right buffer R at the previous step. Thus

the first step in the construction can be described by U(L, R) and U(R,R) respectively;

see the caption below the second pair of screens in Figure 6. The second step is given

by D(R,R) and D(R,L), the third by U(L, R) and D(R,L), the fourth by U(R,R) and

D(L, L), and so on from left to right and then down the page.

Initial Sets

U(L, R) U(R,R) D(R,R) D(R,L)
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U(L, R) D(R,L) U(R,R) D(L, L)

U(R,R) D(L, R) D(R,L) U(R,R)

D(R,R) D(R,R) D(L, L) D(R,L)

D(L, R) D(L, L) U(R,R) D(R,L)

U(R,R) D(R,L) U(R,R) D(R,L)

U(R,L) D(R,R) U(L, R) D(R,L)
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D(L, L) U(R,R) U(R,L) D(L, L)

D(L, R) D(R, R) U(R,L) U(L, R)

U(L, R) U(L, L) U(R,R) U(R,L)

Figure 6. A sequence of pairs of (approximate) 2-variable fractals (from left to

right and then down the page).

In each case in this particular example, for each buffer at each step, either U or

D was chosed with probability 1
2
. For each buffer, the (in this case two) input buffers

chosen from the previously generated pair of buffers were also each chosen as either L or

R with probability 1
2
, and the same buffer is allowed to be selected twice. After about

12 iterations, the images obtained are independent of the initial images up to screen

resolution. After this stage the images (or “necklaces”) can be considered as examples

of 2-variable fractals corresponding to the family (U,D) of IFSs with associated choice

probabilities (1
2
, 1

2
).

The pair of 2-variable fractals obtained at each step depends on the previous choices

of IFS and input buffers, and will vary from one experimental run to another. However,

over any sufficiently long experimental run, the empirically obtained distribution on

pairs of 2-variable fractals will (up to any prescribed resolution) be the same with

probability one. This follows from ergodic theory and the fact that the construction

process corresponds to the chaos game for an IFS (operating here on pairs of images

rather than on single points as does a standard IFS — see the discussion of the chaos

game in the second half of Section 2 and also Fig. 2) As discussed in the previous

section, we call this type of IFS a superIFS. The collection of 2-variable necklaces

obtained over a long experimental run should be thought of as a single superfractal,

and the corresponding probability distribution on necklaces should be thought of as the

corresponding superfractal measure.
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In Figure 7 we have superimposed the members of a generated sequence of 2-

variable fractal necklaces. By virtue of the fact that, as discussed before, the probability

distribution given by such a sequence approximates the associated superfractal measure,

the image can be regarded as a projection of the superfractal onto 2-dimensional space.

The attractors of the individual IFSs U and D are shown in green and red respectively.

The projected support of the superfractal is shown on a black background but, inside

the support, increasing density of the superfractal measure is indicated by increasing

intensity of white.

Figure 7. Superfractal projected onto 2 dimensional space.

In Figure 8 are shown a fern and lettuce generated by two IFSs, each IFS consisting

of 4 functions. In Figure 9 is a sequence of hybrid offspring, extending the examples

in Figure 4. The colouring was obtained by working with two IFSs in 5 dimensional

space, with the three additional dimensions corresponding to RGB colouring. The two

IFSs used project onto two IFSs operating in two dimensional space and which give

the (standard black and white) fern and lettuce attractors respectively. The 2-variable

offspring were coloured by extending the superfractal construction to 5 dimensional

space in a natural manner.
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Figure 8. Lettuce and fern attractors.

Figure 9. A sequence of fern-lettuce hybrid offspring.

7. Computation of Dimension for V -variable Fractals

An important theoretical and empirical classification of fractals is via their dimension.

We first show how to compute the dimensions of V -variable Sierpinski triangles. As we



V -variable fractals and superfractals 16

discuss in the final paragraph of the next section, and prove in Barnsley, Hutchinson

and Stenflo 2003b, the method generalises by using the uniform open set condition.

Associated with the transition from the k-level set of V buffers to the k + 1 level is

a matrix Mk(α) defined for each α as follows. Entries of Mk(α) are initialised to zero.

For the set in the vth output buffer at level k +1 one considers each input buffer w used

in its construction and adds rα to the wth entry in the vth row where r = 1
2

or 1
3

is

the corresponding contraction ratio. The construction of Mk(α) can be seen in passing

from level 1 to level 2 and from level 2 to level 3 in Figure 3, giving respectively:

M1(α) =


1
3α

1
3α

1
3α 0 0

0 2
2α 0 0 1

2α

0 1
3α

1
3α 0 1

3α

1
2α 0 0 2

2α 0

0 0 1
2α

1
2α

1
2α

 , M2(α) =


1
2α

1
2α

1
2α 0 0

1
3α 0 1

3α
1
3α 0

0 0 1
3α

1
3α

1
3α

1
3α 0 0 0 2

3α

0 0 2
2α 0 1

2α

 .

The “pressure” function

γV (α) = lim
k→∞

1

k
log

(
1

V

∥∥M1(α) · . . . ·Mk(α)
∥∥)

(3)

exists and is independent of the experimental run with probability one by a result of

Furstenberg and Kesten (1960), see also Cohen (1988) for the version required here.

(By ‖A‖ we mean the sum of the absolute values of all entries in the matrix A.) The

factor 1/V is not necessary in the limit, but is the correct theoretical and numerical

normalisation, as we see in the next section. (See Feng and Lau (2002) for another use

of Furstenberg and Kesten type results for computing dimensions of random fractals.)

In case V = 1,

γ1(α) =
(
1− α

2

)
log 3− α

2
log 2 (4)

from the strong law of large numbers.

It can be shown, see Barnsley, Hutchinson and Stenflo (2003b), that for each V

γV (α) is monotone decreasing. In this example the derivative lies between − log 2 and

− log 3, corresponding to the contraction ratios 1
2

and 1
3

respectively, see Figure 10.

Moreover, there is a unique d = d(V ) such that γV (d) = 0. This is the dimension of the

corresponding V -variable random fractals with probability one. The establishment and

generalisation of this method uses the theory of products of random matrices and ideas

from statistical mechanics, as we discuss in the next section.
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d(infty)d(5)d(2)d(1)

α

γ(α)

–0.04

–0.03

–0.02

–0.01

0

0.01

0.02

0.03

1.23 1.24 1.25 1.26 1.27

Figure 10. Graphs of the “pressure” function γV (α) for V = 1, 2, and 5

respectively, from left to right.

It was previously known that the dimension of homogeneous random Sierpinski

triangles (V = 1) is 2 log 3/(log 2 + log 3) ≈ 1.226, see Hambly (1992, 2000), and that

the dimension of standard random Sierpinski triangles (V → ∞) is the solution d of
1
2
3
(

1
2

)d
+ 1

2
3
(

1
3

)d
= 1, or approximately 1.262, see Falconer (1986), Graf (1987) and

Mauldin and Williams (1986). In particular, (4) is in agreement when computing d(1).

For V > 1 we used Monte Carlo simulations to compute γV (α) in the region of the

interval [d(1), d(∞)], with the computed values shown (Figure 10). These values have

error at most .001 at the 95% confidence level, and from this one obtains the dimensions

d(2) ≈ 1.241, d(5) ≈ 1.252 (Figure 10). The computed graphs for V > 1 are concave

up, although this does not show on the scale of Figure 10.

8. Analysis of Dimension results for V -variable Fractals

In order to motivate the following analysis, consider a smooth curve or smooth surface

having dimension 1 or 2 respectively. It is possible to cover each “efficiently” (i.e. with

little overlap) by sets of small diameter such that the sum of the diameters raised to

the power 1 or 2 respectively is very close to the length, or to the area divided by π/4,

respectively. However, if any power α > 1 or 2 respectively is used then the limit of this

sum, as the maximum diameter of the covering sets becomes arbitrarily small, is zero.

For any power α < 1 or 2 respectively the limit of the sum, as the maximum diameter

becomes arbitrarily small, is infinity.
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In the case of the construction of 5-variable Sierpinski fractal triangles, we see that

if one begins the construction process with 5 copies of a triangle T as indicated (Figure

3), then the contents of each buffer at later stages will consist of a large number of

tiny triangles which approximate and cover the “ideal” or limiting 5-variable Sierpinski

fractal triangles. (Note that what is obtained after k steps is only an actual 5-variable

Sierpinski fractal triangle up to k levels of magnification.) One can check that the sum

Sk
v (α) of the diameters to the power α of the triangles in the v-th buffer at level k is

given by the sum of the entries in the v-th row of the matrix M1(α) · . . . ·Mk(α).

Using (3) it is not too difficult to show that limk→∞
1
k

log Sk
v (α) also exists for each

v and equals γV (α), independently of v, with probability one. (The argument relies on

the existence of “necks”, where a neck in the construction process occurs at some level

if the same IFS and the same single fixed input buffer is used for constructing the set

in each buffer at that level.) One can show (Barnsley, Hutchinson and Stenflo 2003b)

that γV (α) is decreasing in α and deduce that there is a unique d = d(V ) such that

γV (d) = 0 (Figure 10). From this and (3) it follows that

α < d =⇒ γ(α) > 0 =⇒ lim
k→∞

Sk
v (α) = lim

k→∞
exp(k γ(α)) = ∞,

α > d =⇒ γ(α) < 0 =⇒ lim
k→∞

Sk
v (α) = lim

k→∞
exp(k γ(α)) = 0.

It is hence plausible from the previous discussion of curves and surfaces that the

dimension of V -variable Sierpinski triangles equals d(V ) with probability one. The

motivation is that the covering by small triangles is very “efficient”.

The justification that the dimension is at most d is in fact now straightforward

from the definition of (Hausdorff) dimension of a set. The rigorous argument that

the dimension is at least d, and hence exactly d, is much more difficult, see Barnsley,

Hutchinson and Stenflo (2003b). It requires a careful analysis of the frequency of

occurrence of necks and the construction of Gibbs type measures on V -variable Sierpinski

triangles, analogous to ideas in statistical mechanics.

Similar results on dimension have been established much more generally, see

Barnsley, Hutchinson and Stenflo (2003b). For example, suppose the functions in each

IFS are similitudes, i.e. built up from translations, rotations, reflections in lines, and a

single contraction around a fixed point by a fixed ratio r (both the point and the ratio r

may depend on the function in question). We also require that the IFSs involved satisfy

the uniform open set condition. In the case of 5-variable Sierpinski fractal triangles

constructed from the IFSs F = (f1, f2, f3) and G = (g1, g2, g3) this means the following.

There is an open set O (the interior of the triangle T ) such that f1(O) ⊆ O, f2(O) ⊆ O,

f3(O) ⊆ O, and f1(O), f2(O), f3(O) have no points in common, and such that analogous

conditions apply to the maps g1, g2, g3 with the same set O. (In general, a single open set

O which applies to every IFS may not be so simple to obtain.) Under these circumstances

one constructs the matrices Mk(α) and the pressure function γV (α) as before and it

follows that the solution d(V ) of γV (d) = 0 is the dimension of the corresponding V -

variable fractals with probability one.
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9. Generalisations

Many generalisations are possible. These are proved in Barnsley, Hutchinson and Stenflo

2003b, or are otherwise clear.

The number of functions M in each of the IFSs F n = (fn
1 , . . . , fn

M ; pn
1 , . . . , p

n
M) may

vary. The maps fn
m need only be mean contractive when their contraction ratios are

averaged over m and n according to the probabilities pn
m and P n respectively. Neither the

number of functions in an IFS nor the number of IFSs need be finite; this is important

for simulating various selfsimilar processes, including Brownian motion, see Hutchinson

and Rüschendorf (2000). The maps fn
m may be nonlinear, and many of the results and

arguments, including those concerning dimension, will still be valid. The set maps fn
m

need not be induced from point maps; this is technically useful in extending results to

the case where M is not constant by artificially adding set maps fn
m such that fn

m(A) is

always the empty set. It could also be important in applications to modelling biological

or physical phenomena where the objects under consideration are not naturally modelled

as sets or measures. Buffer sampling need not be uniform; buffers could be placed in a

rectangular or other grid, and nearby buffers sampled with greater probability, in order

to simulate various biological and physical phenomena.

An IFS operates on R2, or more generally on a compact metric space (X, d), to

produce a fractal set attractor; a weighted IFS produces a fractal measure attractor.

We have seen in this paper how a family of IFSs operating on (X, d), a probability

distribution on this family of IFSs, and an integer parameter V , can be used to generate

a (super)IFS operating in a natural way on (H(X)V , dH), where H(X) is the space

of compact subsets of X and dH is the induced Hausdorff metric. In the case of a

family of weighted IFSs, the induced superIFS operates on (P(X)V , dMK) where P(X) is

the space of unit mass measures on X and dMK is the induced Monge Kantorovitch

metric. In either case there is a superfractal set (consisting of V -variable sets or

measures respectively) together with an associated superfractal measure (a probability

distribution on the collection of V -variable sets or measures). There is also a fast forward

algorithm to generate this superfractal.

We can consider iterating this procedure. Replace (X, d) by (H(X)V , dH) or

(P(X)V , dMK), take a family of superIFSs, an associated probability distribution, and

a new parameter W . To speculate; if a superfractal may be thought of as a gallery of

a new class of fractal images, can one use some version of the iteration to produce a

museum of galleries of yet another new class of fractal images?

10. Conclusion

There appear to be many potential applications, which include both the extension of

modelling possibilities to allow a controlled degree of variability where deterministic or

random fractals have been previously applied, and the rapid generation of accurately

distributed examples of random fractals — previously not possible except in very special
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cases.
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