
1 Introduction

A minimal surface is a surface for which the area is a minimum among all other surfaces
with the same boundary and topology; or more generally one for which the area functional is
stationary within the class of surfaces having the same boundary. The problem of investigating
such surfaces is known as the Plateau Problem.

We prove optimal convergence results for the problem of approximating parametrised
disc-like minimal surfaces by functions from certain finite dimensional spaces. The minimal
surfaces may be unstable, and are assumed to be non-degenerate. In the absence of branch
points this non-degeneracy condition holds for a dense open set of boundaries, i.e. for “almost
all” boundaries.

The main results are simply, if somewhat informally, stated. Let Γ be a smooth curve in
IRn and let D be the unit disc in IR2. Let u0 :D → IRn be a non-degenerate minimal surface
with boundary Γ. Without loss of generality assume u0 is a conformal parametrisation. For
each small h > 0 fix a sequence of points on ∂D with distance between consecutive vertices
being of order h. Consider piecewise linear maps with respect to arc length s0 : ∂D → IRn

which send the prescribed vertices to points on Γ. Within this finitely parametrised class of
maps, consider those maps for which the (unique) harmonic extension either minimises the
Dirichlet energy or more generally for which the Dirichlet energy is stationary. The harmonic
extension of such a map is called a semi-discrete minimal surface. Semi-discrete minimal
surfaces can be computed to within a prescribed degree of accuracy.

Then the main theorem, Theorem 6.3, implies there are semi-discrete minimal surfaces uh
such that

||u0 − uh||H1(D) ≤ ch3/2.

In [DH] we prove the further result

||u0 − uh||L2(D) ≤ ch5/2.

These rates of convergence are optimal with respect to the exponent of h.

Such convergence results are of the type usually proved via boundary element methods
for solutions of partial differential equations, but this appears to be the first class of results
of this type for geometric objects solving a highly non-linear geometric variational problem.
We introduce a number of new techniques which we expect will be of use in other geometric
problems.

Apart from their intrinsic interest, such results have computational significance. It fol-
lows from Theorem 6.4 that any convergent sequence of solutions of the discrete problem we
consider will have as limit a conformally parametrised minimal surface u0. Moreover, if u0

is non-degenerate (which “generically” means that u has no branch points, and this fact can
be determined by observation) and if the observed rate of convergence is at least hα for some
α > 0 (a slower rate of convergence would not normally be numerically observable) then in
fact the convergence rate of Therorem 6.3 must apply. These rates of convergence typically
appear in computational experiments after a small number of grid refinements and provide
very good evidence that one is indeed converging towards a non-degenerate minimal surface.
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The outline of the paper is as follows. In Section 2 we review the history of the problem.
In Section 3 we recall the formulation of the Plateau Problem in terms of stationary points
for the Dirichlet Energy of the harmonic extension of monotone boundary maps. In Section 4
we follow [St2] and introduce the two spaces H and T of variations of boundary maps and
establish some properties of the energy functional. The finite dimensional approximation
spaces are introduced in Section 5 and various properties are established. The proof of the
main result, Theorem 6.3, is given in Section 6. In the final Section we discuss the numerical
results.

The first author would like to thank the Centre for Mathematics and it Applications, and
the second author would like to thank the Institut für Angewandte Mathematik, for their
hospitality during the course of this work. The second author also thanks Steve Roberts for
many enlightening discussions and Rick Loy for some advice on functional analysis. This re-
search has been partially supported by the Australian Research Council and by the Deutsche
Forschungsgemeinschaft via Sonderforschungsbereich 256 ’Nichtlineare Partielle Differential-
gleichungen’ Bonn.

2 Historical Remarks

Plateau’s Problem always has served as a model problem for highly nonlinear problems in
analysis as well as in numerical analysis. In numerical analysis the approximation of minimal
surfaces which are graphs has been treated extensively. In this case one studies the minimal
surface equation

n∑
i=1

Di

 Diu√
1 + |Du|2

 = 0

on some domain under Dirichlet or Neumann boundary conditions. Perhaps the first paper
was by Douglas himself [Dou2], using a finite difference approach. The paper contains both
numerical examples and graphics, but, as remarked by Douglas, the appropriate techniques
were not available at that time to prove the necessary convergence results (even for graphs).
If the domain is convex, there are now optimal error estimates in all relevant norms for the
Finite Element approximation to the solution, including L∞-estimates. References for this
problem are for example Concus [Co] and Ciarlet [Ci].

In this paper we treat the parametric minimal surface problem with prescribed boundary
curve. This problem is theoretically and numerically completely different from the case of a
minimal graph.

The numerically most successful approach up to now in parametric situations uses Courant’s
function for polygonal boundary curves. If the boundary curve is a polygon with vertices aj
(j = 1, . . . , n + 3) then the boundary of the unit disk D is decomposed into the segments
γj = {eiφ : τj < φ < τj+1} for given τ = (τ1, . . . , τn+3). Let us call the segments of the polygon
Γj. One then minimises Dirichlet’s integral over X(τ) = {u ∈ H1(D; IR3) : u(γj) ⊂ Γj, j =
1, . . . , n+ 3}. Let

d(τ) = inf
u∈X(τ)

1

2

∫
D
|Du|2 =

1

2

∫
D
|Du0(τ)|2.
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Due to Courant [Cou] u0(τ) : D → IR3 is a minimal surface spanning Γ iff∇d(τ) = 0. Because
of the conformal group three fixed points on ∂D, τn+k = (1 + k)π/2, k = 1, 2, 3, correspond
to three fixed vertices an+1, an+2, an+3 on Γ.

This idea was used by Jarausch [J] to compute approximations of minimal surfaces using
a finite dimensional subspace of X(τ) consisting of Finite Elements on the unit disk D which
are bilinear with respect to polar coordinates. A serious drawback of this method is that the
grid on D moves according to τ and has a singularity at the origin. He proves convergence
of the functional D with respect to the grid size. Wohlrab [Wo] extended this method to
partially free minimal surfaces and even more general variational problems.

One of the problems with Courant’s function d(τ) is that it is not smooth enough. Heinz
[He] proved that a slight change in the definition of d(τ) makes it an analytic function in
τ ∈ {τ ∈ IRn : 0 < τ1 < . . . < τn < π}. Instead of u(γj) ⊂ Γj in the definition of X(τ) one
allows u to map the boundary part γj into the straight line Γj which contains the segment
Γj. The resulting function d(τ) then is called Shiffman’s function. Hinze used this function
in [Hi1] and [Hi2] to compute minimal surfaces bounded by polygons.

Some work has been done to go the direct way to minimal surfaces, namely to minimise
the area functional

A(u) =
∫
D
|ux1 ∧ ux2|

over some discrete space. Of course any such numerical method leads to theoretical and
numerical problems because of the invariance of the area functional under arbitrary diffeo-
morphisms. Wagner [Wa1], [Wa2] used the area functional to minimise area for polyhedra
spanned by a boundary curve. The same approach was used by Steinmetz [Ste] for more
complicated problems involving minimal surfaces, especially partially free minimal surfaces.
See also Tsuchiya [T1; Prop. 1].

Mean curvature flow of surfaces is the gradient flow for the area functional. This is
used by Dziuk [Dz] to compute stable minimal surfaces by a Finite Element Method using
finite elements on surfaces. No convergence proof is given. A somewhat similar idea with
infinite time step is used by Pinkall and Polthier [PP] to compute minimal surfaces and their
conjugates.

Parks [P] approximates minimal surfaces by the level sets of functions of least gradient.
A public-domain program “Surface Evolver”, which can obtain minimisers for many discrete
functionals (including the discrete area functional), has been written by Brakke [Br]. Con-
ditions under which there is a smooth minimal surface near a discrete minimal surface have
been obtained by Underwood [U]. Sullivan [S] has a max flow/min cut type algorithm which
uses a polyhedral of space to obtain approximations to area minimising currents; and provides
a theoretical analysis. In all these cases, in order to obtain reasonable accuracy the numerical
estimates require decompositions too fine for current workstations.

Following the lines of the proof of Rado and Douglas, Tsuchiya gives an existence proof
for discrete minimal surfaces in [T2,3] and a convergence proof of the discrete surfaces to a
continuous solution in the H1(D)-norm. This convergence can be arbitrarily slow because the
author uses an indirect argument in connection with the Courant-Lebesgue Lemma and so
cannot prove any order of convergence with respect to the grid size. Although the result of
Tsuchiya seems to be the first complete convergence result for the approximation of minimal
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surfaces, it is proved for minimisers only.

A numerical method for the computation of solutions of Plateau’s Problem which one
could call a Boundary Element Method was proposed by Wilson in [Wi] who used the Douglas
Integral.

Since the difference between Dirichlet’s integral and Area always is nonnegative andD(u)−
A(u) = 0 only for minimal surfaces u, Hutchinson [Hu] minimises this difference, which is
called the conformal energy of the surface u. In some situations this has significant numerical
advantages over minimising the Dirichlet energy. In addition arbitrary, not necessarily stable,
minimal surfaces can be found in this way by a minimisation procedure.

3 Formulation of the Plateau Problem

Let Γ be a Jordan curve in IRn with a Cr parametrisation

γ :S1 → Γ,

where r ≥ 3. Let D be the (open) unit disc in IR2.

We will be interested in maps u :D → IRn such that u|∂D : ∂D → Γ is monotone and
such that A(u), the area of the image of u, is stationary with respect to variations in
this class of maps. We need to take account of the fact that A(u) is invariant under the
operation of composing u with a diffeomorphism of D.

Let
D(u) =

1
2

∫
D
|Du|2

denote the Dirichlet Energy of u. It is well-known that a more precise reformulation of
the Plateau Problem is to find those harmonic maps u :D → IRn such that u|∂D :∂D → Γ
is monotone (see below) and such that u is stationary for D in this class. Any solution u
of the reformulated Plateau Problem will be a solution of the original Plateau Problem,
and moreover u will be a conformal map. Conversely, if u is a (smooth) solution of
the original Plateau Problem then for some diffeomorphism d :D → D the map u ◦ d
will be a solution of the reformulated Plateau Problem (and in particular u ◦ d will be
conformal).

It will be convenient to factor boundary maps through the fixed parametrisation γ :
S1 → Γ. Thus we write w = γ ◦ s where s :∂D → S1. See Figure 1.
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We now make these ideas precise. We use the notation

D = {z = (x, y) ∈ IR2 : |z| < 1}

and
∂D ∼= S1 = {eiφ : 0 ≤ φ < 2π} ∼= IR/2π ∼= {φ : 0 ≤ φ < 2π}.

Although ∂D and S1 are naturally isomorphic, it will convenient to consider S1 as the
domain of the fixed parametrisation γ of Γ, and to consider ∂D as the boundary of the unit
disc D which is the fixed parameter domain for various parametrised surfaces spanning Γ.

A map s ∈ C0(∂D, S1) is monotone if s is positively oriented and s−1{p} is connected for
all p ∈ S1 (as φ moves once around ∂D, so s(φ) moves once around S1 in the same direction,
possibly pausing but never retracing its path). We similarly define the notion of a monotone
map from ∂D → Γ. There is a one-one correspondence s↔ γ ◦ s between monotone maps in
C0(∂D, S1) and monotone maps in C0(∂D,Γ).

Let
id :∂D → S1

be the “identity” map given by id(φ) = φ. Then id is monotone. Any monotone map
s ∈ C0(∂D, S1) (or more generally, any s ∈ C0(∂D, S1) with winding number +1) can be
written in the form

s = id + σ
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for some 2π-periodic function σ ∈ C0(∂D, IR). Addition is performed modulo 2π and the
function σ is unique up to a constant multiple of 2π. It is often more convenient to work with
σ rather than s.

For w ∈ C0(∂D, IRn) denote by
Φ(w)

the unique harmonic extension of w to D.

We can now define the energy functional E.

Definition 3.1 For s ∈ C0(∂D, S1) let

E(s) =
1

2

∫
D
|DΦ(γ ◦ s)|2 = D(Φ(γ ◦ s)).

Thus E(s) is just the Dirichlet Energy of the harmonic extension of γ ◦ s. The Energy can be
expressed directly in terms of the values of the function γ ◦s by means of the Douglas Integral

E(s) =
1

16π

∫
∂D

∫
∂D

|(γ ◦ s)(φ)− (γ ◦ s)(φ′)|2

sin2
(
φ−φ′

2

) dφ dφ′, (1)

c.f. [N2; §§310–311].

There is one further restriction that we need to make on the class of boundary maps.
It is easily checked that the Dirichlet Energy of a function is invariant under composition
of the function with any conformal diffeomorphism of its domain. If the original function
is harmonic then so is the composed function. For this reason we factor out the class of
Möbius transformations. The usual way to do this is to specify that u|∂D satisfies a three-
point condition u(pi) = qi for i = 1, 2, 3, where the pi are any three distinct points on ∂D and
qi are any three distinct points on Γ. But here it is more convenient to impose the following
integral constraints on s = id + σ:∫ 2π

0
σ(φ) dφ = 0,

∫ 2π

0
σ(φ) cosφ dφ = 0,

∫ 2π

0
σ(φ) sinφ dφ = 0. (2)

It can be shown by a homotopy argument that for any monotone t ∈ C0(∂D, S1) there exists
g :∂D → ∂D, where g is the restriction of a Möbius transformation, such that s = t◦g = id+σ
satisfies (2).

We next define a class of monotone boundary maps.

Definition 3.2

M = {s ∈ C0(∂D, S1) : s = id + σ is monotone, σ satisfies (2), E(s) <∞}.

Because of the first condition in (2) the function σ in the previous definition is uniquely
determined by s (otherwise it would only be determined up to multiples of 2π). Note thatM
is convex but not linear or even affine, since arbitrarily small (in the C0 norm) deformations
can destroy monotonicity.

We now formulate the Plateau Problem in the form we will use it.
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Definition 3.3 The function s ∈M is a stationary point for E if

d

dt

∣∣∣∣∣
t=0

E(s+ tξ) ≥ 0

whenever s+ ξ ∈M. If s is stationary for E then we say that the harmonic map u = Φ(γ ◦s)
is a minimal surface or that u is a solution of the Plateau Problem.

In Section 4 we will imbedM in an affine Banach space T on which E extends to a Cr−1

functional in the Fréchet sense. We will see that s ∈ M is stationary for E in the previous
sense iff s is stationary for E in the sense of T , i.e. iff dE(s) = 0 in T .

An equivalent formulation which also shows the nonlinearity of the Plateau Problem is
(c.f. [St2; Lemmas I.2.2, II.2.9]):

Definition 3.4 Suppose u ∈ H1(D; IRn) and u|∂D is a continuous monotone map onto Γ.
Then u solves the Plateau Problem if u is harmonic and conformal: i.e.,

4u = 0,

|ux| = |uy| , ux · uy = 0.

We finally make a few comments on properties of solutions of the Plateau Problem.

The existence of a solution was first established by Douglas [Dou] and Rado [R] by, in
essence, showing the existence of a minimiser of D(u) subject to the three-point condition.
Solutions of the Plateau problem which are not minimisers were found by Morse-Tompkins
[MT] and Shiffman [S] using Morse theory methods. A simple example is Enneper’s surface;
see also the later discussion of numerical results. For a very clean Morse theory treatment,
see [St2; Section II].

If u is a solution then it is analytic in the (open) set D, being harmonic there. If u is
smooth up to the boundary then there are at most a finite number of points where |Du| = 0.
Such points are called branch points. For the behaviour of u in a neighbourhood of a branch
point see [St2; Definition I.5.4] and the subsequent remarks there.

The boundary behaviour of a solution u to the Plateau problem is also well understood.
In particular, u|∂D is a homeomorphism ([St2; Theorem I.5.3]). From results of Hildebrandt
[Hil], Jäger [Ja] and J.C.C. Nitsche [N1], see also Heinz [He], if the parametrisation γ of Γ is
Cm,α, where m ≥ 1 and 0 < α < 1, then u ∈ Cm,α(D, IRn).

In case n = 3, it was established by Osserman [O], with improvements due to Alt [A1,A2]
and Gulliver [G], that the Douglas-Rado solutions have no interior branch points. This is not
true in case n ≥ 4. If γ is analytic (and n = 3) there are no boundary branch points, but this
is not known in case γ is not analytic.

Good general references are the books by J.C.C. Nitsche [N2] and by Dierkes, Hildebrandt,
Küster and Wohlrab [DHKW].
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4 Properties of the Energy Functional

Assume that
γ ∈ Cr, r ≥ 3.

For given s ∈ M the class of perturbations ξ of s such that s + ξ ∈ M is not linear,
since arbitrarily small (in the C0 norm) perturbations can destroy monotonicity. For
this reason it is necessary to enlarge the classM. In fact it is necessary to consider two
spaces H and T extending M (see below).

The functional E extends to a smooth functional on T (but not even to a C1 functional
on H). It follows from regularity theory (Proposition 4.5) that s0 ∈ M is stationary
for E in the sense of perturbations that remain in M iff s0 is stationary in the sense of
T . We will simply say that s0 is stationary. On the other hand, T is not the correct
space on which to define non-degeneracy for stationary points (c.f. the remark following
Corollary 4.11), and for this reason one introduces the space H. For stationary s0 the
bilinear function d2E(s0) :T×T → IR extends to a bounded symmetric bilinear operator
d2E(s0) :H ×H → IR (Proposition 4.4). We associate with d2E(s0) a self-adjoint map
∇2E(s0) :H → H. Then (Proposition 4.9) ∇2E(s0) has finite dimensional negative and
null eigenspaces. The natural notion of non-degeneracy for the stationary point s0 is
the requirement that the null space of ∇2E(s0) be trivial. It follows (Corollary 4.11)
that the eigenvalues of ∇2E(s0) are bounded away from zero.

It is “almost always” true that s0 is non-degenerate iff the associated minimal surface
Φ(γ ◦ s0) has no branch points. More precisely, if s0 is stationary and Φ(γ ◦ s0) has a
branch point then the null space of ∇2E(s0) will contain the so-called “forced Jacobi
fields” and in particular s0 will be degenerate. Conversely, if s0 is stationary and Φ(γ◦s0)
has no branch points then, at least generically (for an open dense set of boundary maps
γ), s0 is non-degenerate. For these important results see Böhme and Tromba [BT].

We follow the approach of [St1, St2]. We will use the notation

[φ− φ′] (3)

to denote the distance in IR/2π between the points eiφ and eiφ
′

on ∂D or S1 corresponding
to φ and φ′ respectively.

Definition 4.1 Let | · |H1/2 be the H1/2(∂D; IRm) semi-norm defined by

|ξ|2H1/2 =
∫
∂D

∫
∂D

|ξ(φ)− ξ(φ′)|2
[φ− φ′]2 dφ dφ′.

Setting m = 1, let H be the Hilbert space

H = {ξ :∂D → IR : |ξ|H1/2 <∞ and (2) is satisfied with σ replaced by ξ}

with inner product

(ξ, η)H1/2 =
∫
∂D

∫
∂D

(
ξ(φ)− ξ(φ′)

)
·
(
η(φ)− η(φ′)

)
[φ− φ′]2 dφ dφ′
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and corresponding norm | · |H1/2 (by the first condition in (2) and the Poincaré inequality, this
is a norm on H and is equivalent to the usual H1/2 norm).

Define the norm
||ξ||T = |ξ|H1/2 + ||ξ||C0 ,

and in case m = 1 the corresponding Banach space T by

T = H ∩ C0(∂D; IR).

It follows from the Douglas integral (1) that E(s) is comparable to |γ ◦ s|2
H1/2(∂D;Rn)

.

By performing the addition s = id + ξ modulo 2π we define corresponding (affine) spaces
of boundary maps from ∂D → S1 as follows:

Definition 4.2 The affine Banach spaces H and T are defined by

H = {id + ξ : ξ ∈ H} ,
T = {id + ξ : ξ ∈ T} .

The corresponding metrics on H and T are defined to be those induced from H and from T .
Thus we write

|s− t|H1/2 and ||s− t||T ,

for the distance between s and t in the H1/2 and T sense respectively.

Note that the tangent space of variations at any s ∈ T (s ∈ H) is naturally identified with
T (H) respectively.

Note also that the map σ 7→ s = id+σ is one-one for σ ∈ H, because of the first condition
in (2). More precisely, let si = id + σi :∂D → S1 for i = 1, 2. If s1 = s2 then σ1 − σ2 ≡ 0 a.e.
modulo 2π. Since |σ1 − σ2|H1/2 < ∞ it follows from the definition of | · |H1/2 that σ1 − σ2 is
constant a.e. From the first condition in (2) it follows σ1 − σ2 ≡ 0 a.e.

Suppose s ∈ H and ξ ∈ H. It is sometimes convenient to think of ξ as a variation of s as
follows. Define

ξ(φ) =
d

dt

∣∣∣∣∣
t=0

(
γ ◦ (s+ tξ)

)
(φ) = γ′

(
s(φ)

)
ξ(φ).

Then for each φ, we consider ξ(φ) as a tangent vector to Γ at (γ ◦ s)(φ). By taking the
harmonic extension Φ(ξ) we can think of ξ as an harmonic vector field “tangent” to the
harmonic surface Φ(γ ◦ s). See Figure 1.

From [St2; Lemma II.4.1] one has

1. M⊂ T ⊂ H and moreover M is a closed convex subset of T .

2. T is dense in H.

3. If (sn) ⊂M and sn → s in H, then s ∈M and sn → s in T (so M is closed in H).
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We write the energy functional in the form

E = D ◦ Φ ◦G

where

1. G(s) = γ ◦ s and G :T → H1/2(∂D; IRn) from [St2; Lemma II.2.6(i)];

2. Φ is the harmonic extension operator and Φ:H1/2(∂D; IRn) → H1(D; IRn);

3. D is the Dirichlet Energy Functional given by D(u) = 1
2

∫
∂D |Du|2 = 1

2
(u, u)H1(D;IRn) and

D :H1(D; IRn)→ IR.

The map Φ is a bounded linear map by standard trace theory, and in particular is analytic.
The map D is quadratic and hence also analytic. Thus the differentiability properties of E will
depend on those of G, which is Cr−1 from [St2; Lemma II.2.6] and the preceeding comments
there. We will make frequent use of the following properties of E implicit in [St2]. The second
Proposition will be applied to s which are stationary for E.

Proposition 4.3 Let s = id + σ. Then E :T → IR is Cr−1. Moreover

E(s) ≤ c (||γ||C1)
(
1 + |σ|2H1/2

)
,

|djE(s)(ξ1, . . . , ξj)| ≤ c(||γ||Cj+1)(1 + |σ|2H1/2)||ξ1||T · . . . · ||ξj||T 1 ≤ j ≤ r − 1.

If σ ∈ C0(∂D;S1) then
|σ|2H1/2 ≤ c (E(s) + 1),

where c depends on ||γ−1||C1 and the modulus of continuity of σ.

Proof: The first two claims follow from the proof of [St2; Lemma II.2.3]. The third claim
follows from [St2; II.2.7] and the estimates in [St2; Lemma II.2.6].

The reason for the continuity assumption on s is clear. If s(φ) = −π for 0 ≤ φ < π and
s(φ) = π for π ≤ φ < 2π then γ ◦ s is constant and E(s) = 0 but s 6∈ H.

Proposition 4.4 If s is C2 then dE(s) and d2E(s) extend to bounded linear and bilinear
operators respectively on H, and

|dE(s)(ξ)| ≤ c (||γ||C2 , ||s||C1) |ξ|H1/2 ,

|d2E(s)(ξ1, ξ2)| ≤ c (||γ||C2 , ||s||C2) |ξ1|H1/2|ξ2|H1/2 .

Proof: Both claims follow from the estimates in [St2; II.2.6]; the second along the lines of
the proof of [St2; Lemma II.4.2].

We previously defined the notion of stationarity for the energy functional at s ∈ M for
“monotone” variations (Definition 3.3). The following Proposition [St2; Proposition II.2.9]
shows that this agrees with the standard definition in T . The main point in the proof is to
use the stationarity condition to first establish the regularity result Φ(γ ◦ s) ∈ H2(D; IRn).
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Proposition 4.5 The function s ∈ M is stationary for E with respect to monotone varia-
tions iff s is stationary in the sense of T , i.e. iff

dE(s)(ξ) = 0 ∀ξ ∈ T. (4)

For our purposes we may take the condition (4) as the definition of stationarity.

The regularity results of [Hil], [Ja], [N1], [He] imply the regularity of stationary s.

Proposition 4.6 If γ is Cr,α where r ≥ 1 and 0 < α < 1, and s ∈ M is stationary for E,
then s is Cr,α and ||s||Cr,α is controlled by ||γ||Cr,α.

Since we are assuming γ is C3 it follows from Proposition 4.4 that d2E(s) is a (symmetric)
bounded bilinear map. Using the Riesz Representation Theorem we then make the following
definition.

Definition 4.7 Suppose s is a stationary point for E. The self-adjoint bounded linear map

∇2E(s) :H → H

is defined by (
∇2E(s)(ξ), η

)
H1/2

= d2E(s)(ξ, η) ∀ξ, η ∈ H.

In order to obtain our approximation results we will need to consider the second order
behaviour of E near a stationary point s.

Definition 4.8 Suppose s ∈M is stationary for E. Denote by

H = H− ⊕H0 ⊕H+

the standard orthogonal decomposition into the negative, null and positive subspaces gener-
ated by the self-adjoint map ∇2E(s). For ξ ∈ H let

ξ = ξ− + ξ0 + ξ+,

where
ξ− ∈ H−, ξ0 ∈ H0, ξ+ ∈ H+.

Thus H0 is the kernel of∇2E(s) and H− (H+) is the maximal invariant subspace satisfying(
∇2E(s)(ξ), ξ

)
< 0 (> 0) for all 0 6= ξ ∈ H− (H+). It follows from the following Proposition

and standard elliptic theory that H−, H0 and H+ are generated by the eigenfunctions with
negative, zero, and positive eigenvalues respectively.

Proposition 4.9 Assume r ≥ 5, s ∈ M is stationary, and H = H− ⊕ H0 ⊕ H+ is the
decomposition corresponding to ∇2E(s). Then

(i) dim(H− ⊕H0) <∞, H− ⊕H0 ⊂ H5/2(∂D; IR) ⊂ C1(∂D; IR),
and moreover the injections are continuous with norm controlled by ||s||C4,α and hence
in particular by ||γ||C5;
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(ii) ||ξ−||H5/2 , ||ξ0||H5/2 ≤ c(||γ||C5)||ξ||H1/2 ∀ξ ∈ H;

(iii) The non-zero eigenvalues of d2E(s) are bounded away from 0.

Proof: For (i) see the proof of [St2; II.5.6].

For (ii) let τ1, . . . , τk be an orthonormal basis for H−. Then ξ− =
∑k
i=1(ξ, τi)τi, and the

result for ξ− follows from (i) and the fact the sum is finite. Similarly for ξ0.

For (iii) We have H/∇2E(s)(H) ∼= H0. Since∇2E(s)(H0) = {0} and∇2E(s)(H−⊕H+) ⊂
H− ⊕ H+, it then follows by a dimension argument that ∇2E(s)(H− ⊕ H+) = H− ⊕ H+.
Also ker∇2E(s)|H−⊕H+ = {0}. Hence ∇2E(s) :H−⊕H+ → H−⊕H+ is bijective, and so has
bounded inverse by the Open Mapping Theorem. This implies (iii).

Definition 4.10 A stationary point s ∈ M is non-degenerate if the corresponding null
eigenspace H0 = {0}. The corresponding minimal surface Φ(γ ◦ s) is also said to be non-
degenerate.

The following non-degeneracy estimate will be important. It follows immediately from the
previous proposition.

Corollary 4.11 Assume r ≥ 5 and s ∈ M is stationary. Then s is non-degenerate iff the
eigenvalues of ∇2E(s) are bounded away from 0. Equivalently, iff there exists ν > 0 such that

d2E(s)(ξ, ξ+ − ξ−) ≥ ν|ξ|2H1/2 ∀ξ ∈ H.

In case s is stable, i.e. the negative space is trivial, this is just the ellipticity estimate

d2E(s)(ξ, ξ) ≥ ν|ξ|2H1/2 ∀ξ ∈ H.

The constant ν is called the non-degeneracy constant for d2E(s).

Remark One cannot expect similar estimates with the T norm on the right side, despite
the fact that the natural (affine) space on which to work with respect to the differentiability
properties of E is T . In fact a computation (c.f. the proof of [St2; Lemma II.4.2]) shows

d2E(s)(ξ1, ξ2) =
∫
D
D
(
Φ(γ′ ◦ s · ξ1)

)
·D

(
Φ(γ′ ◦ s · ξ2)

)
+
∫
∂D

∂

∂ν
Φ(γ ◦ s) · γ′′ ◦ s · ξ1 · ξ2.

But H1/2(∂D; IR) does not imbed into C0(∂D; IR).

5 Approximation Spaces

For h > 0 we define finite-dimensional spaces Hh approximating the space H and con-
sisting of piecewise linear functions. While the norms ||.||H and ||.||T are not comparable,
they are comparable on the spaces Hh up to a factor | lnh|1/2 (Proposition 5.3). Al-
though this factor blows up as h→ 0, it approaches zero when multiplied by any power
of h (c.f. the proof of Lemma 6.2). In Proposition 5.8 we establish approximations in
Hh to the positive, null and negative eigenspaces of the bilinear operator d2E(s) at
a stationary point s. This requires the finite dimensionality of the null and negative
eigenspaces and the regularity of their members.
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For each h > 0 let Gh be any grid on ∂D ∼= [0, 2π) such that

c−1h < |I| < ch ∀I an interval of Gh,

where |I| is the length of I and c is independent of h. If I is an interval, denote by

P1(I)

the space of first order polynomials (in the arc length variable) defined over I.

Definition 5.1 Let

Hh =
{
ξh ∈ C0(∂D, IR) : ξh ∈ P1(I) ∀I ∈ Gh, (2) is satisfied

with σ there replaced by ξh} .

Then
Hh ⊂ T ⊂ H.

Let
Hh = {id} +Hh ⊂ T ⊂ H

be the corresponding finite dimensional affine space of continuous piecewise affine maps (with
respect to arc length) from ∂D to S1.

Remarks (i) It will usually be convenient to think of Hh as having its “origin” at some
sh ∈ Hh. That is, Hh is a finite dimensional space of possible variations at sh. We sometimes
give Hh the inner product and norm induced from H, and sometimes the norm induced from
T .

(ii) The elements ξh ∈ Hh are linear with respect to arc length along arc segments in Gh. It
is sometimes convenient to regard ξh as a continuous 2π-periodic map ξh :IR → IR, where ξh
is linear on each interval of IR which corresponds to some I ∈ Gh. Similarly, we can regard
sh ∈ Hh as a continuous map sh :IR→ IR, linear on the same intervals as above, and satisfying
the condition sh(φ+ 2π) = sh(φ) + 2π for all φ ∈ IR.

(iii) Let
φ1 < φ2 < . . . < φN

be the vertices of Gh. Then for ξh ∈ Hh, (2) is equivalent to

N∑
i=1

ξh(φi+1) + ξh(φi)

2
(φi+1 − φi) = 0,

N∑
i=1

ξh(φi+1)− ξh(φi)
φi+1 − φi

(cosφi+1 − cosφi) = 0,

N∑
i=1

ξh(φi+1)− ξh(φi)
φi+1 − φi

(sinφi+1 − sinφi) = 0,

where φN+1 = φ1 + 2π. In particular the normalisation conditions (2) are linear constraints
on ξh.
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The standard interpolation operator may not map T (T ) into Hh (Hh) since the normali-
sation conditions (2) may not be satisfied. However, by first interpolating and then projecting,
we obtain a suitable operator.

Proposition 5.2 There is a bounded linear map

Ih :T → Hh

such that

||ξ − Ihξ||H1/2 ≤ ch3/2||ξ||H2 ,

||ξ − Ihξ||C0 ≤ ch2||ξ||C2 .

Proof: The main point is to preserve the normalisation conditions.

Let
Hh =

{
ξh ∈ C0(∂D; IR) : ξh ∈ P1(I) ∀I ∈ Gh

}
.

Thus Hh is defined as for Hh, but without the normalisation condition (2).

Let Ih :T → Hh be the interpolation operator uniquely defined by

Ihξ(φi) = ξ(φi),

for all vertices φi of Gh. One has the following standard estimates for Ih:

||ξ − Ihξ||L2 ≤ ch2||ξ||H2 ,
||ξ − Ihξ||H1 ≤ ch||ξ||H2 ,
||ξ − Ihξ||H1/2 ≤ ch3/2||ξ||H2 ,
||ξ − Ihξ||C0 ≤ ch2||ξ||C2 .

(5)

The first two estimates c.f. [C; Theorem 3.2.1, p. 132] are classical. The third inequality then
follows easily by interpolation between the spaces L2 and H1:

||ξ − Ihξ||H1/2 ≤ ||ξ − Ihξ||1/2L2 ||ξ − Ihξ||1/2H1 .

Note that this can easily be seen by expressing the non-integer norms in terms of Fourier
coefficients. The fourth estimate is standard.

Let Ph :H → Hh be the L2-projection operator uniquely defined by

(Phξ, ηh)L2 = (ξ, ηh)L2 ∀ηh ∈ Hh.

Because of the optimality of the L2-projection we have from the first equation in (5)

||Phξ − ξ||L2 ≤ ch2||ξ||H2 , (6)

Let (τ1, τ2, τ3) be the L2-orthonormal set

τ1 =
1

2π
, τ2 =

1

π
cosφ, τ3 =

1

π
sinφ.

14



It follows from (6) that (Phτi)
3
i=1 is “almost” an L2 orthonormal set, i.e.

1− ch2 ≤ ||Phτi||L2 ≤ 1 + ch2 (7)

and
|(Phτi, Phτj)L2| ≤ ch2 if i 6= j.

In particular, (Phτi)
3
i=1 spans a 3-dimensional space if h is sufficiently small. Since τi and

hence Phτi is L2-orthogonal to Hh, it follows (Phτi)
3
i=1 spans the L2 orthogonal complement

of Hh in Hh.

Let (P ∗hτi)
3
i=1 be obtained from (Phτi)

3
i=1 by the Gram-Schmidt orthogonalisation process.

Then it is easy to check that

|||P ∗hτi − Phτi||| ≤ ch2 max
j=1,2,3

|||Phτi||| (8)

for any norm ||| · ||| on Hh.

For ξ ∈ H we now define

Ihξ = Ihξ −
3∑
i=1

(
Ihξ, P

∗
hτi
)
L2
P ∗hτi.

It follows (Ihξ, P
∗
hτi)L2 = 0 for i = 1, 2, 3 and so

Ih :H → Hh.

For ξ ∈ H one has (ξ, Phτi)L2 = 0 and so

Ihξ − Ihξ =
3∑
i=1

((
Ihξ, P

∗
hτi − Phτi

)
L2
P ∗hτi +

(
Ihξ − ξ, Phτi

)
L2
P ∗hτi

)
.

The required estimates now follow from (5), (6), (7) and (8).

The following inverse type estimate will be important.

Proposition 5.3 If ξh ∈ Hh then

||ξh||H1/2 ≤ ||ξh||T ≤ c| lnh|1/2 ||ξh||H1/2 ,

for h ≤ 1/2, say. If L :Hh → Hh is a linear map, then

||L||H1/2 ≤ c| lnh|1/2 ||L||T , ||L||T ≤ c| lnh|1/2 ||L||H1/2 ,

where ||L||T and ||L||H1/2 denote the corresponding operator norms.

Proof: The first inequality is trivial and the last two will follow from the second.

We first prove that for a function u ∈ H1/2(∂D; IR) we have the estimate

∣∣∣ 1

2ρ

∫ φ0+ρ

φ0−ρ
u| ≤ c| ln ρ|1/2‖u‖H1/2 (9)
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for any small ρ > 0 and any φ0. We may assume that φ0 = 0, and by replacing u by its
symmetrisation about 0 that u is an even function. Since the right hand side of the inequality
contains the L2-norm we may assume that

∫ π
−π u = 0.

We expand u in a Fourier series

u(φ) =
∞∑
k=1

ak cos kφ

and integrate

1

2ρ

∫ ρ

−ρ
u =

∞∑
k=1

ak
sin kρ

kρ

≤
( ∞∑
k=1

a2
kk
)1/2( ∞∑

k=1

sin2 kρ

k3ρ2

)1/2

= c|u|H1/2ρ−1(Φ(ρ))1/2,

where

Φ(ρ) =
∞∑
k=1

sin2 kρ

k3
.

Since Φ(0) = 0, Φ′(0) = 0 and

Φ′′(ρ) = 2
∞∑
k=1

cos 2kρ

k
= −2 ln (2 sin ρ),

we conclude that
Φ(ρ) ≤ cρ2| ln ρ|.

This proves (9).

If ξh ∈ Hh then ||ξh||C0 = |ξh(φ0)| for some grid point φ0. Suppose [φ0 − α, φ0] and
[φ0, φ0 + β] are grid elements. Then

|ξh(φ0)| ≤ γ−1
∣∣∣∫ φ0+γ

φ0−γ
ξh
∣∣∣,

where γ = min{α/2, β/2}. The second inequality in the Proposition now follows from (9).

Definition 5.4 The energy functional Eh on Hh is defined by

Eh = E|Hh ,

i.e. Eh is the restriction of E to Hh.

For later purposes we require the following definitions, which are justified by the Riesz
Representation Theorem.

Definition 5.5 The operator
∇Eh :Hh → Hh
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is uniquely defined by (
∇Eh(sh), ηh

)
H1/2

= dEh(sh)(ηh) ∀ηh ∈ Hh.

Suppose sh ∈ Hh. Then
∇2Eh(sh) :Hh → Hh

is uniquely defined by(
∇2Eh(sh)(ξh), ηh

)
H1/2

= d2Eh(sh)(ξh, ηh) ∀ηh ∈ Hh.

The proof of the following is immediate.

Proposition 5.6

d∇Eh(sh) = ∇2Eh(sh) ∀sh ∈ Hh.

Note that d2Eh(sh) is the restriction of d2E(sh) to Hh×Hh, but∇2Eh(sh) is not necessarily
the restriction of ∇2E(sh) to Hh.

Definition 5.7 A function sh ∈ Hh is called a semi-discrete stationary point for E if

dEh(sh)(ξh) = 0 ∀ξh ∈ Hh.

The associated function uh = Φ(γ ◦ sh) is called a semi-discrete minimal surface.

Note that we do not require that sh is monotone. Note also that uh is analytic in the
interior of D, but of course only Hölder-continuous on D.

We will be interested in the existence, uniqueness and convergence (as h → 0) of semi-
discrete minimal surfaces near a smooth minimal surface u0.

Assumptions: For the remainder of this Section, assume

r ≥ 5 and s is a stationary point for E

and let
H = H− ⊕H0 ⊕H+,

as in Definition 4.8, where
dimH− = k, dimH0 = d.

Note that Proposition 4.9 applies.

We now define a discrete approximation to this decomposition of H.
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Definition 5.8 Let

H
(−)
h = Ih(H

−),

H
(0)
h = the orthogonal complement of H

(−)
h in Ih(H

− ⊕H0),

H
(+)
h = the orthogonal complement of H

(−)
h ⊕H(0)

h in Ih(H) = Hh.

Thus
Hh = H

(−)
h ⊕H(0)

h ⊕H
(+)
h .

For ξh ∈ Hh let
ξh = ξ

(−)
h + ξ

(0)
h + ξ

(+)
h ,

where
ξ

(−)
h ∈ H(−)

h , ξ
(0)
h ∈ H

(0)
h , ξ

(+)
h ∈ H(+)

h .

We think of H
(−)
h (respectively H

(0)
h , H

(+)
h ) as being discrete approximations to H− (re-

spectively H0, H+) by members of Hh. More precisely we have the following result. Note
that the estimates rely on the finite dimensionality of H− ⊕H0.

Proposition 5.9 For all sufficiently small h,

dimH
(−)
h = dimH− = k, dimH

(0)
h = dimH0 = d.

Moreover, if ξh ∈ Hh then

||ξ−h − ξ
(−)
h ||H1/2 ≤ ckh3/2||ξh||H1/2 ,

||ξ0
h − ξ

(0)
h ||H1/2 ≤ cdh3/2||ξh||H1/2 ,

||ξ+
h − ξ

(+)
h ||H1/2 ≤ cmax{k, d}h3/2||ξh||H1/2 ,

where c = c(||γ||C5).

Proof: In the following, constants c will depend on ||γ||C5 .

Let τ1, . . . , τk+d be an orthonormal basis for H− ⊕H0. Since τ1, . . . , τk+d ∈ H2(∂D) from
Proposition 4.9, it follows from Proposition 5.2 that

‖τi − Ihτi‖H1/2 ≤ ch3/2.

Hence
1− ch ≤ ||Ihτi||H1/2 ≤ 1 + ch3/2.

If i 6= j then ∣∣∣(Ihτi, Ihτj)H1/2

∣∣∣ =
∣∣∣((Ihτi − τi) + τi , (Ihτj − τj) + τj

)
H1/2

∣∣∣
≤ ch3/2.

Thus the Ihτi form an orthonormal basis for H
(−)
h ⊕H(0)

h to within an error at most ch3/2.
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Applying the Gram-Schmidt process to Ihτ1, . . . , Ihτk+d we obtain an orthonormal basis
I∗hτ1, . . . , I∗hτk for H

(−)
h and an orthonormal basis I∗hτk+1, . . . , I∗hτk+d for H

(0)
h . Moreover, it is

straightforward to check that

||I∗hτi − Ihτi||H1/2 ≤ ch3/2, | (I∗hτi, Ihτj)H1/2 | ≤ ch3/2 if i 6= j.

It follows from Proposition 5.2 that

||I∗hτi − τi||H1/2 ≤ ch3/2, | (I∗hτi, τj)H1/2 | ≤ ch3/2 if i 6= j.

Hence for ξh ∈ Hh,

||ξ−h − ξ
(−)
h ||H1/2 =

∥∥∥ k∑
i=1

(ξh, τi)H1/2 τi − (ξh, I
∗
hτi)H1/2 I

∗
hτi
∥∥∥
H1/2

=
∥∥∥ k∑
i=1

(ξh, τi)H1/2 (τi − I∗hτi) + (ξh, τi − I∗hτi)H1/2 I
∗
hτi
∥∥∥
H1/2

≤ ckh3/2||ξh||H1/2 .

Similarly, ||ξ0
h − ξ

(0)
h ||H1/2 ≤ cdh3/2||ξh||H1/2 .

Finally,

||ξ+
h − ξ

(+)
h ||H1/2 = ||(ξh − ξ+

h )− (ξh − ξ(+)
h )||H1/2

= ||(ξ−h + ξ0
h)− (ξ

(−)
h + ξ

(0)
h ||H1/2

= ||(ξ−h − ξ
(−)
h ) + (ξ0

h − ξ
(0)
h ||H1/2

≤ cmax{k, d}h3/2||ξh||H1/2 ,

from the previous results.

6 Approximation Results

The main result is Theorem 6.3. The proof is by means of a quantitative version of the
Inverse Function Theorem. The necessary estimates are obtained in Theorem 6.2 using
the results from Sections 4 and 5. The H1/2(∂D) and H1(D) estimates are optimal
with respect to the exponent of convergence. We also remark that in order to establish
the estimates involving the discrete minimal surfaces uh we need to first establish the
corresponding boundary estimates for sh. In Theorem 6.4 we prove a result which in
numerical computations provides strong evidence that a discrete stationary solution is
indeed close to a true (smooth) stationary solution. Finally, we finish this section with
remarks about other related results.

We will apply the following quantitative form of the Inverse Function Theorem to the
approximation space Hh, with k = chs for suitable s.

Proposition 6.1 Suppose V,W are finite dimensional normed linear spaces of equal dimen-
sion. Suppose ζ0 ∈ U ⊂ V where U is open and suppose G ∈ C1(U ;V ).

Suppose the following are true for some β > 0, λ > 0, and some α ∈ (0, β):
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(a) if ζ ∈ Bβ(ζ0) then dG(ζ) :V → W is a homeomorphism and
‖[dG(ζ)]−1‖ ≤ λ−1,

(b) if ζ, η ∈ Bβ(ζ0) then ||dG(ζ)− dG(η)|| ≤ 1
2
λ,

(c) ||G(ζ0)|| ≤ 1
2
λk.

Then there exists a unique ζ ∈ Bβ(ζ0) such that G(ζ) = 0. Moreover, ||ζ − ζ0|| ≤ k.

Proof: This follows directly from the proof of the Inverse Function Theorem in [Be; pp
113–114].

The following Lemma now verifies the hypotheses of the previous Proposition for the
operator ∇Eh :Hh → Hh (see Definition 5.5). Note that the previous Proposition is still true
for an affine space V . Recall also the definition of the non-degeneracy constant following
Corollary 4.11.

Lemma 6.2 Assume r ≥ 5. Let s0 be a non-degenerate stationary point for E with non-
degeneracy constant λ. Then there exist constants h∗0, ε∗0 and M∗ (depending on λ, dimH−

and ||γ||C5) with the following properties:

If h ≤ h∗0, ζh, ηh ∈ Hh and |ζh|H1/2 , |ηh|H1/2 ≤ ε∗0| lnh|−3/2, then

(i) d∇Eh(Ihs0 + ζh) :Hh → Hh is invertible and∣∣∣∣∣∣[d∇Eh(Ihs0 + ζh)]
−1
∣∣∣∣∣∣
H1/2
≤ 2λ−1;

(ii)

||d∇Eh(Ihs0 + ζh)− d∇Eh(Ihs0 + ηh)||H1/2 ≤
1

4
λ;

(iii)

|∇Eh(Ihs0)|H1/2 ≤
M∗

4
λh3/2.

Proof: In the following, constants c are allowed to depend on ||s0||C4 and hence on ||γ||C5 ,
see Proposition 4.6.

Suppose h ≤ h∗0, ζh, ηh ∈ Hh and |ζh|H1/2 , |ηh|H1/2 ≤ ε∗0| lnh|−3/2. We will place various
restrictions on h∗0 = h∗0(n, ||γ||C5) and ε∗0 = ε∗0(n, ||γ||C5) as we proceed.

We will apply Proposition 6.1 to show that d∇Eh(Ihs0 + ηh) is invertible. Recall from
Proposition 5.6 that d∇Eh(Ihs0 +ηh) is the linear operator corresponding to the bilinear form
d2Eh(Ihs0 + ηh).

Suppose ξh ∈ Hh satisfies |ξh|H1/2 = 1. Then

d2Eh(Ihs0 + ζh)(ξh,−ξ(−)
h + ξ

(+)
h )

= d2E(s0)(ξh,−ξ(−)
h + ξ

(+)
h ) +(

d2E(Ihs0 + ζh)− d2E(s0)
)

(ξh,−ξ(−)
h + ξ

(+)
h )

= A+B.
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But

A = d2E(s0)
(
ξh,−ξ−h + ξ+

h + (ξ−h − ξ
(−)
h ) + (ξ

(+)
h − ξ+

h )
)

= d2E(s0)(ξh,−ξ−h + ξ+
h ) + d2E(s0)(ξh, ξ

−
h − ξ

(−)
h )

+ d2E(s0)(ξh, ξ
(+)
h − ξ+

h )

≥ λ− ch3/2 from Propositions 4.4, 5.9

≥ 3

4
λ.

provided h∗0 is sufficiently small. Also

|B| ≤
∣∣∣∣∣∣d2E(Ihs0 + ζh)− d2E(s0)

∣∣∣∣∣∣
T
||ξh||T || − ξ(−)

h + ξ
(+)
h ||T

≤ c ‖Ihs0 + ζh − s0‖T | lnh| from Propositions 5.3, 4.3

≤ c (‖Ihs0 − s0‖T + ‖ζh‖T ) | lnh|
≤ c| lnh|

(
h3/2 + | lnh|1/2|ζh|H1/2

)
from Propositions 5.2, 5.3

≤ 1

4
λ,

provided h∗0 and ε∗0 are sufficiently small. Thus

d2Eh(Ihs0 + ζh)(ξh,−ξ(−)
h + ξ

(+)
h ) ≥ 1

2
λ

provided h∗0 and ε∗0 are sufficiently small.

Result (i) now follows from algebra and the arbitrariness of ξh, since |−ξ(−)
h +ξ

(+)
h |H1/2 = 1.

For (ii) we note, using the fact d∇E(sh) is self-adjoint, that

||d∇Eh(Ihs0 + ζh)− d∇Eh(Ihs0 + ηh)||H1/2

= sup
ξh∈Hh

|ξh|H1/2=1

((
d∇E(Ihs0 + ζh)− d∇E(Ihs0 + ηh)

)
(ξh), ξh

)
H1/2

.

But if ξh ∈ Hh and |ξh|H1/2 = 1 then from Proposition 5.6((
d∇E(Ihs0 + ζh)− d∇E(Ihs0 + ηh)

)
(ξh), ξh

)
H1/2

=
(
d2E(Ihs0 + ζh)− d2E(s0)

)
(ξh, ξh)−(

d2E(Ihs0 + ηh)− d2E(s0)
)

(ξh, ξh)

≤ 1

4
λ,

for h∗0, ε
∗
0 sufficiently small, by the same argument used to estimate B. This establishes (ii).

Finally,
|∇Eh(Ihs0)|H1/2 = sup

ξh∈Hh
|ξh|H1/2=1

dEh(Ihs0)(ξh).
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But if ξh ∈ Hh and |ξh|H1/2 = 1 then

dEh(Ihs0)(ξh) = dE(Ihs0)(ξh)

≤ dE(s0)(ξh) + d2E(s0)(Ihs0 − s0, ξh) + c ‖Ihs0 − s0‖2
T ||ξh||T

by Proposition 4.3

≤ c|Ihs0 − s0|H1/2|ξh|H1/2 + ch3| lnh|1/2 |ξh|H1/2

as s0 is stationary and from Propositions 4.5, 4.4, 5.2 and 5.3

≤ ch3/2 + ch3| lnh|1/2 from Proposition 5.2

≤ ch3/2,

for sufficiently small h∗0. Now, with this last c, choose M∗ = 4c/λ. This establishes (iii).

Theorem 6.3 (Energy Estimate) Assume r ≥ 5. Let s0 ∈M be a non-degenerate station-
ary point for E with with non–degeneracy constant λ and negative subspace H− and let u0 =
Φ(γ ◦ s0) be the associated minimal surface.

Then there exist constants h0, ε0 and c, depending on λ, dimH− and ||γ||C5, such that if
0 < h ≤ h0 then there is a unique semi-discrete stationary point sh ∈ Hh such that

|s0 − sh|H1/2(∂D) ≤ ε0| lnh|−3/2.

Moreover,

|sh − s0|H1/2(∂D) ≤ ch3/2 and ||sh − s0||C0(∂D) ≤ ch3/2| lnh|1/2.

Finally, if uh = Φ(γ ◦ sh) is the corresponding semi-discrete minimal surface, then

||uh − u0||H1(D) ≤ ch3/2 and ||uh − u0||C0(D) ≤ ch3/2| lnh|1/2.

Proof: In the following, constants may depend on ||s0||C4 and hence on ||γ||C5 . (a) Choose
h∗0, ε

∗
0,M

∗ as in the previous Lemma.

Suppose h ≤ h∗0.

From the previous Lemma and Proposition 6.1 applied to G = ∇Eh :Hh → Hh, there
exists a unique semi-discrete stationary point sh ∈ Hh such that

|Ihs0 − sh|H1/2 ≤ ε∗0| lnh|−3/2. (10)

Moreover, sh satisfies
|Ihs0 − sh|H1/2 ≤M∗h3/2. (11)

By Proposition 5.2 choose c1 so that h ≤ h∗0 implies

|s0 − Ihs0|H1/2 ≤ c1h
3/2.

Choose ε0 = ε∗0/2 and M = M∗ + c3. For later purposes choose h0 ≤ h∗0 so that h ≤ h0

implies
c1h

3/2 ≤ ε0| lnh|−3/2.
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It follows that

|s0 − sh|H1/2 ≤ |s0 − Ihs0|H1/2 + |Ihs0 − sh|H1/2

≤ Mh3/2,

thus establishing one of the required estimates.

(b) It also follows that if th ∈ Hh and

|s0 − th|H1/2 ≤ ε0| lnh|−3/2,

then

|Ihs0 − th|H1/2 ≤ |Ihs0 − s0|H1/2 + |s0 − th|H1/2

≤ c1h
3/2 + ε0| lnh|−3/2

≤ 2ε0| lnh|−3/2 = ε∗0| lnh|−3/2.

It then follows from (10) that sh is the unique semi-discrete stationary point satisfying |s0 −
sh|H1/2 ≤ ε0| lnh|−3/2.

(c) It follows from (11) and Proposition 5.3 that

||sh − Ihs0||T ≤ ch3/2| lnh|1/2.

Combining this with Proposition 5.2 gives

||sh − s0||C0 ≤ ch3/2| lnh|1/2.

(d) The estimate for ||uh − u0||H1(D) follows from

|γ(sh)− γ(s0)|H1/2 ≤ c‖γ‖C1|sh − s0|H1/2 + c‖γ‖C2‖s0‖C1‖sh − s0‖L2 . (12)

and from the regularity of s0, Proposition 4.6.

To see (12) compute∣∣∣(γ(s0(φ))− γ(sh(φ))
)
−
(
γ(s0(ψ)− γ(sh(ψ))

)∣∣∣
≤
∣∣∣∣∫ sh(φ)−s0(φ)

0
γ′(t+ s0(φ)) dt−

∫ sh(ψ)−s0(ψ)

0
γ′(t+ s0(ψ)) dt

∣∣∣∣
≤
∣∣∣∣∫ sh(φ)−s0(φ)

sh(ψ)−s0(ψ)
γ′(t+ s0(φ)) dt

∣∣∣∣+ ∣∣∣∣ ∫ sh(ψ)−s0(ψ)

0
γ′(t+ s0(φ))− γ′(t+ s0(ψ)) dt

∣∣∣∣
≤
∣∣∣(sh(φ)− s0(φ)

)
−
(
sh(ψ)− s0(ψ)

)∣∣∣ ‖γ‖C1 + ‖γ‖C2 |s0(φ)− s0(ψ)| |sh(ψ)− s0(ψ)|.

Then (12) follows after dividing through by |φ−ψ|, squaring and integrating with respect to
φ and to ψ.

The final estimate for ||uh − u0||C0(D) follows from the maximum principle and the corre-
sponding estimate for ||sh − s0||C0 .
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We will finally prove a result to the effect that convergent sequences of semi-discrete
stationary points have stationary limits. Moreover, if the convergence rate is better than
logarithmic to the power 3/2, then the convergence rates of Theorem 6.3 apply.

Theorem 6.4 Suppose sh is a sequence of semi-discrete stationary points and ||sh−s0||T → 0
as h→ 0. Then s0 is a stationary point for the Plateau Problem.

If s0 is monotone and non-degenerate and moreover | lnh|3/2||sh − s0||T → 0, then the
convergence rates of Theorem 6.3 will apply.

Proof: Suppose ξ ∈ T and ε > 0.

Choose (e.g. by mollification) ξ̃ ∈ C∞ such that

||ξ − ξ̃||T < ε/2.

From Proposition 5.2
||ξ̃ − Ihξ̃||T ≤ ch3/2||ξ̃||T ≤ ε/2

and hence
||ξ − Ihξ̃||T < ε,

provided h ≤ h0 = h0(ε, ξ).

Then from Proposition 4.3

|dE(s0)(ξ)| ≤ |dE(s0)(ξ − Ihξ̃)|+ |
(
dE(s0)− dE(sh)

)
(Ihξ̃)|

≤ c||ξ − Ihξ̃||T + c||dE(s0)− dE(sh)||T ||Ihξ̃||T
= A+B.

But A ≤ cε and B → 0 as h → 0 from Proposition 4.3. Hence s0 is stationary for E. The
last claim follows from Theorem 6.3.

In [DH] we use a modification of the Aubin-Nitsche technique to show under the hypotheses
of Theorem 6.3 that

|sh − s0|H−1/2(∂D) ≤ ch5/2, ||uh − u0||L2(D) ≤ ch5/2.

In a subsequent paper we will pursue a different approach. For each grid Gh on ∂D, let
G∗h be an extension of Gh to a triangulation of D. Let Dh =

⋃{κ : κ ∈ G∗h}. For sh ∈ Hh

let uh be the corresponding discrete harmonic extension of the interpolant of γ ◦ sh. Thus
uh ∈ C0(Dh; IR

n), uh agrees with γ ◦ sh at the boundary nodes of Gh, and uh is a polynomial
of degree one on each triangle κ ∈ G∗h. We can compute uh exactly up to machine error by
solving a certain linear system. Define

E∗h(sh) = D(uh).

A single “run” of Newton’s method will find a stationary point of E∗h in Hh to any previously
prescribed degree of accuracy.
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The difficulty in analysing E∗h is that if sh are the corresponding stationary points then
it is not clear that dE∗h(sh) approaches zero as h → 0. None-the-less, with some further
techniques we obtain optimal estimates analogous to those of the previous theorem. In this
case, however, if uh is the appropriate discrete minimal surface then one has

||uh − u0||H1(D) ≤ ch, ||uh − u0||L2(D) ≤ ch2.

7 Implementation and Numerical Results

For the description of the implementation we shall need the following notations. We assume
that γ : [0, 2π)→ Γ is a fixed, 2π-periodic, smooth parametrisation of the boundary curve Γ.
Let φj (j = 1, . . . , n) be the grid points on [0, 2π), Ij = [φj, φj+1], hj = φj+1−φj (j = 1, . . . , n)
and h = maxj=1,...,n hj be the grid size. For piecewise linear s(φ), φ ∈ [0, 2π],

s(φ) = sj +
φ− φj
hj

(sj+1 − sj), φ ∈ Ij

where sj = s(φj) for j = 1, . . . , n.

Since we cannot integrate exactly we have to choose an approximation to the Douglas
Functional

E(s) =
1

16π

∫ 2π

0

∫ 2π

0

|γ(s(φ))− γ(s(φ′))|2

sin2(φ−φ
′

2
)

dφ dφ′.

For this we approximate the integrand by

γ(s(φ))
∣∣∣
Ij

= γ
(
sj +

φ− φj
hj

(sj+1 − sj)
) ∼= γ(sj) +

φ− φj
hj

(
γ(sj+1)− γ(sj)

)
for j = 1, . . . , n. We replace the functional E by the approximation

E(s1, . . . , sn) =
1

16π

n∑
j,k=1

Ejk,

where Ejk equals

∫
Ij

∫
Ik

∣∣∣(γ(sj) + φ−φj
hj

(γ(sj+1)− γ(sj))
)
−
(
γ(sk) + φ′−φk

hk
(γ(sk+1)− γ(sk))

)∣∣∣2
sin2

(
φ−φ′

2

) dφ dφ′.

In order to reduce the computational costs we use integration formulae for the non-singular
parts Ejk, |j − k| ≥ 2 (mod n), and an approximation for the singular kernel if |j − k| ≤ 1
(mod n). The proof of the following Proposition is done by straightforward calculations using
Taylor expansions.

Proposition 7.1 For j, k = 1, . . . , n (mod n)

Ejj = 4
∣∣∣γ(sj+1)− γ(sj)

∣∣∣2 (1 +O(h2)
)
,
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Ej,j−1 =

(
4
∣∣∣γ(sj+1)− γ(sj)

∣∣∣2hj−1

hj

(
1− hj−1

hj
ln(1 +

hj
hj−1

)
)

+4
∣∣∣γ(sj)− γ(sj−1)

∣∣∣2 hj
hj−1

(
1− hj

hj−1

ln(1 +
hj−1

hj
)
)

+4
(
γ(sj+1)− γ(sj)

)
·
(
γ(sj)− γ(sj−1)

)(h2
j−1 + h2

j

hj−1hj
ln(1 +

hj
hj−1

)− 1
))
·
(

1 +O(h2)

)
,

and if |j − k| ≥ 2 (mod n) then

Ejk =
1

4
hjhk

(
|γ(sj)− γ(sk)|2(σjk + σj+1,k + σj,k+1 + σj+1,k+1)

+|γ(sj+1)− γ(sj)|2(σj+1,k + σj+1,k+1) + |γ(sk+1)− γ(sk)|2(σj,k+1 + σj+1,k+1)

−2(γ(sj+1)− γ(sj)) · (γ(sk+1)− γ(sk))σj+1,k+1

+2(γ(sj)− γ(sk)) · (γ(sj+1)− γ(sj))(σj+1,k + σj+1,k+1)

−2(γ(sj)− γ(sk)) · (γ(sk+1)− γ(sk))(σj,k+1 + σj+1,k+1)

)
·
(

1 +O(h2)

)

where

σjk =
1

sin2
(
φj−φk

2

) .
The following Newton algorithm was used for the computation of the numerical examples.

We use the previous expressions for Ejk without the error terms and use the corresponding
expression for E(s1, . . . , sn). We also need to compute the first and second derivatives of E
with respect to s1, . . . , sn.

Algorithm 7.2 Given a grid φj, j = 1, . . . , n, initial values s = (s1, . . . , sn) and parametri-
sation γ:

1. Compute the derivative of the approximate energy E ′(s).

2. If |E ′(s)|/|s| ≤ ε then stop.

3. Compute the second derivative of the approximate energy E ′′(s).

4. Solve the linear system E′′(s)d = −E ′(s), update the solution s := s+d and go to step 1

Here |s| is the l2-norm of s and ε is a given tolerance.

The most expensive part of the algorithm is step 3 where the n2 elements of the full matrix
of the second derivatives of E are computed.

The following examples were computed on a uniform grid. It should be mentioned that
in order to avoid superconvergence effects it was necessary to disturb the parametrisations of
the boundary curve by a suitable diffeomorphism in such a way that the well known exact
solution was not the identity. The identity map is contained in the discrete space we used.
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The possibly unstable Enneper surface is given by the harmonic extension of

γ1(φ) = r0 cosφ− r3
0/3 cos 3φ,

γ2(φ) = r0 sinφ+ r3
0/3 sin 3φ,

γ3(φ) = r2
0 cos 2φ,

for φ ∈ [0, 2π]. It is well known that for 0 < r0 < 1 there is exactly one solution of Plateau‘s
problem for Γ = γ([0, 2π)) and for 1 < r0 <

√
3 there are two minima and one unstable

minimal surface bounded by Γ.

We computed the discrete analogue for r0 = 0.5, r0 = 1.0 and r0 = 1.5 using the fixed
parametrisation

γ∗ = γ ◦ τ, τ(s) = s+ 0.1 cos 2s.

The error
eh = ‖s0 − sh‖

between the piecewise linear discrete solution sh and the continuous solution s = τ−1 ◦ id was
computed for various norms and for uniform grid sizes h = 2π/n. The experimental order of
convergence eoc between two grid sizes h1 and h2 is given by

eoc = ln
eh1

eh2

/ ln
h1

h2

.

As the following tables show, the numerical results confirm the asymptotic convergence in the
H1/2(∂D) norm predicted by the main theorem.

In the paper [DH] we prove asymptotic convergence of order O(h5/2) in the H−1/2(∂D)
norm , and thence of order O(h2) in the L2(∂D) norm. This is confirmed in the following
tables for the L2 norm. The experimental error in the H−1/2 norm behaves like O(h2) only,
due to the fact that we used an integration formula for E (and its derivatives) which restricts
the order of convergence to 2. The use of a higher order quadrature would lead to a much
more complicated scheme and would not change the order of convergence in the energy norm.

Stable Enneper Surface (r=0.5)

n H−1/2-error eoc L2-error eoc H1/2-error eoc

20 2.7913e-3 7.6477e-3 1.5378e-2

40 6.6122e-4 2.08 1.7860e-3 2.10 4.2490e-3 1.86

80 1.6041e-4 2.04 4.2902e-4 2.06 1.2859e-3 1.72

160 2.9575e-5 2.44 8.3727e-5 2.36 4.0727e-4 1.66

320 4.1573e-6 2.83 1.5176e-5 2.46 1.3790e-4 1.56

Enneper Surface (r = 1.0)

n H−1/2-error eoc L2-error eoc H1/2-error eoc

20 3.4175e-3 9.7364e-3 1.9275e-2

40 7.1311e-4 2.26 1.9620e-3 2.31 4.5275e-3 2.09

80 1.6602e-4 2.10 4.4812e-4 2.13 1.3098e-3 1.79

160 4.0129e-5 2.05 1.0722e-4 2.06 4.1841e-4 1.67

320 9.8698e-6 2.02 2.6237e-5 2.03 1.4062e-4 1.57
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Unstable Enneper Surface (r=1.5),

n H−1/2-error eoc L2-error eoc H1/2-error eoc

20 3.8572e-3 1.1189e-2 2.2074e-2

40 7.2308e-4 2.42 1.9958e-3 2.49 4.5825e-3 2.27

80 1.6672e-4 2.12 4.5050e-4 2.15 1.3128e-3 1.80

160 4.0202e-5 2.05 1.0747e-4 2.07 4.1864e-4 1.65

320 9.8783e-6 2.02 2.6266e-5 2.03 1.4064e-4 1.57

We also computed discrete solutions on some discretization levels for a case where the
kernel of E ′′ is nontrivial. The boundary curve is given by

γ1(φ) = r2
0 cos 2φ+ r4

0 cos 4φ,

γ2(φ) = r2
0 sin 2φ− r4

0 sin 4φ,

γ3(φ) = −4
√

2

3
r3

0 sin 3φ.

The numerical results show that we have no convergence in this case.

Branch point

n H−1/2-error eoc L2-error eoc H1/2-error eoc

10 7.8308e-2 0.1109 0.1579

20 8.5221e-2 -0.12 0.1205 -0.12 0.1706 -0.11

40 8.7044e-2 -0.04 0.1231 -0.03 0.1742 -0.03

80 8.7506e-2 -0.01 0.1238 -0.01 0.1751 -0.01

160 8.7622e-2 0.00 0.1239 0.00 0.1753 0.00

Next we consider the numerical computation of a minimal surface spanning a knotted
curve. The curve is parametrized by

γ1(φ) = (c1 + c2 cos 3φ) cos 2φ,

γ2(φ) = (c1 + c2 cos 3φ) sin 2φ,

γ3(φ) = −c3 sin 3φ,

and we have chosen c1 = 1.0, c2 = 0.2, c3 = 0.5 for our computations. In this case we use a
solution on the very fine grid with 200 nodes as a quasi exact solution for the computation of
the error. The results are as follows.

Knotted boundary curve

n L2-error eoc H1/2-error eoc

33 0.1028 0.6910

42 4.2445e-2 3.67 0.3001 3.46

56 1.6182e-2 3.35 0.1095 3.51

100 2.4769e-3 3.24 1.5841e-2 3.33
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The discrete solutions are plotted in the following figures.

Fig. 2: Quasi exact solution (n=200) for the knotted boundary curve.

Fig. 3: Discrete solutions for 9,15,21,30,42 and 51 grid points.
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Fig. 4: Discrete minimal surface for the knotted boundary curve.
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