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1 Introduction

In this paper we investigate the regularity properties of minimisers u of the Mumford-Shah func-
tional

/ \Vul|? + a(u — g)* de + BHN 1S, N Q)
Q

or, more generally, of quasi-minimisers of the main part [, |Vu|?dz + SHN (S, N Q) of the
functional. Here g is bounded and measurable, o > 0, § > 0, w is an SBV function and S, is the
discontinuity set of u (see [6] for a discussion of the Mumford-Shah functional). As in [4, 5, 6], we
are not making any restriction on the number N of dimensions of the ambient space.

Let us define the scaled Dirichlet energy D(z, ¢) and the mean flatness A(zx, o) by

1 1
1.1) D(x,0) = —/ Vul? dy, Az, 0) = —min/ dist?(y, T) dHN 1
( ( T o N A

where the above minimum is taken over all the affine (V — 1)-planes 7. In [5] (see also [6]) we
proved the existence of a relatively closed and HN~Lnegligible singular set ¥(u) C S, such that
Su\X(u) is a C11/* hypersurface. Moreover, we proved that there exists an absolute constant

€g > 0 such that
Y(u) = {x €5, limlionfD(x, 0) + A(z, 0) > 60} .
0

Therefore, for any small ball centered at « € X (u), either the scaled Dirichlet energy or the flatness
are sufficiently large. Clearly we may split the singular set (u) in three parts: points where
the Dirichlet energy tends to 0, points where the flatness tends to 0 and points where neither of
them tends to 0. Notice that in the case N = 2 the analysis in [19] suggests that the first set
corresponds to the so called “triple junctions” (or “propellers”, according to the terminology of
[10]), the second set corresponds to “crack tips” and the third set is empty. In general we may
expect that the Hausdorff dimension of ¥(u) is at most N — 2; this result is still open even in the
two-dimensional case and, in our opinion, is the main open problem in the regularity theory of the
Mumford-Shah functional (see [5, 8, 10, 17] for partial results).
In this paper we make one step in this direction proving that the first set, i.e.

Y= {x € X(u) : lim QlfN/ |Vul|? dy = O}
elo By ()

has Hausdorff dimension at most N — 2 (see Theorem 5.6). As a consequence, we are able to prove
in Corollary 5.7 that

(1.2) H—dim(X(u)) < max{N — 2, N — p/2}

provided |Vu| € L}, (Q2) for some p > 2.

E. De Giorgi conjectured in [14] that |Vu| is locally p-summable for some p € (2,4) and this
conjecture is still open; notice that p = 4 is exactly the critical exponent leading to the optimal
estimate on the Hausdorff dimension of ¥(u) in (1.2) and that the crack tip local minimiser (see
[9]), defined in polar coordinates by

207

u(r,0) = — sin(6/2) ,

satisfies |Vu| € LP _(R™) for any p < 4.

loc



Our proof of the estimate of the Hausdorff dimension is based on a blow-up analysis of the
properties of S, near points x € ¥': we prove that limit points S of the rescaled sets (S, — x)/0
as o | 0 are local minimisers of the area functional. Since we are not dealing here with boundaries
or oriented sets, the local minimality must be properly understood: a concept perfectly tailored to
our purposes is Almgren’s minimality, saying that

(1.3) HNH(S N Br) < HV ! (¢(S N Bg))

whenever R > 0, ¢ : R — IR" is a Lipschitz map and {z : ¢(z) # 2} CC Bg. The regularity
theory for Almgren’s area minimising sets provides us with the desired estimate.

In order to check (1.3) for the blown up discontinuity set S, the main source of technical
difficulties is the fact that the admissible maps ¢ need not be one to one (and exactly for this reason
the regularity theory for Almgren’s minimising sets is stronger, compared to Allard’s regularity
theory, see Theorem 4.1 and Theorem 4.3). Therefore, in §2 we examine more closely the behaviour
of BV or SBV maps under Lipschitz change of coordinates, not necessarily one to one. §3 is devoted
to the proof of a delicate approximation theorem; using this result one can check the minimality
property (1.3) using only a special class of maps ¢ of the form ®oyo¥ !, with ®, ®~1, ¥, ¥~! close
in C! norm to the identity and V+ piecewise constant (see Theorem 3.1 for the precise statement).
In §4 we recall the main facts on Almgren’s area minimising sets and in §5 we prove the asymptotic
area minimality of the jump set S, at points x € ¥’. Finally, in §6 we indicate other heuristic
reasons suggesting (in two dimensions) that the gradient of any minimiser is in L for any p < 4.
This higher integrability property seems to be related to a conjecture of Brennan stating that a
conformal map from any bounded open set of the plane into the unit disk has gradient in LP for
any p < 4 (see [20, Chap.8]).

2 On the behaviour of BV maps under Lipschitz changes of
coordinates

In this section we discuss the following problem: given u € BVj.(€2) and a proper one to one
orientation preserving Lipschitz map ¢ : Q — Q' we want to relate the distributional derivative of
uo ¢~ ! with the distributional derivative of u. More generally, if either ¢ is not one to one or ¢
is not orientation preserving, we may define the push forward of u through ¢ by

ppuly) == Y u(z)sign(det(Ve(z)))

z€p~1(y)

if y € p(Q) and ppu(y) =0if y € &'\ ¢(Q), and study its differentiability properties. This map
is well defined almost everywhere in €, since the image of the set of points where either Vo is
not defined or V is singular is £V -negligible. Moreover, the area formula shows that pxu is the
unique w € LL _(©) such that

loc
/ wody = / up(p)detVpdr Vo € CZ(Q).
’ Q

The following result is well known (see for instance [6, Theorem 3.16] for a proof). In the language
of the theory of currents, which identifies locally BV functions with locally normal currents, it
means that the push-forward operator induced by ¢ maps locally normal currents to locally normal
currents.



Theorem 2.1 Let Q, Q' be open subsets of RY, let ¢ : Q@ — ' be a proper Lipschitz function and
u € BVioe(2). Then pyu belongs to BViec () and satisfies

(2.1) [D(p4u)|(B) < [Lip(o)]" ™" [Dul(¢~"(B))
for any Borel set B C Q.

In our setting we are interested in understanding whether additional properties of w, as for
instance u € SBV or u € W1, are preserved by the push forward operator.

If ¢ has a Lipschitz inverse it is easy to see that the SBV (or Sobolev) property is preserved. In
fact, since ¢! maps £V -negligible sets into £ -negligible sets, (2.1) still holds with the singular
part of derivatives. Hence, as the measure |D®u| is concentrated on S, |D*(pxu)| is concentrated
on ¢(S,). Since this set has o-finite H™~!-measure, and since the Cantor part of the derivative
does not see any set with o-finite H™¥ ~!-measure, it follows that pxu € SBV (and also, as a
byproduct, that H~~!-almost all of S, u is contained in ¢(S,)).

However, since we will be dealing with minimality in the Almgren sense, we are forced to
consider deformation maps ¢ which are not one to one. Quite surprisingly, in [6, Section 3.1] it
is shown that in this generality no SBV or Sobolev property is preserved by the ¢4 operator:
indeed, any w € BWoc(IR) can be represented as @yxu for suitable Lipschitz maps ¢, u. Though
the extension of this negative result to higher dimensions seems to be a very hard problem, we are
therefore led to make additional assumptions on .

Our first result is concerned with the approximate differential of p4u; we prove that L? in-
tegrability of the approximate differential is preserved if the multiplicity function card(¢~1(y)) is
essentially bounded and the essential supremum

(2.2) cp(p) = esssup {[[(Vip()) 7 [[P|det(Vip(x))| = det(V(p(x)) # 0}

is finite. Notice that c;(p) is always finite, since it can be estimated with a constant multiple of

[Lip(¢)]V . Notice also that ¢p(p) < o0 if ¢ is one to one and ¢! is a Lipschitz function.

Theorem 2.2 Let Q, Q' be open subsets of RY, let ¢ : Q — Q' be a Lipschitz function and
u € BVioe(2). Then the approzimate differential of ppu is given almost everywhere in o(2) by

(2.3) Z Vu(z)(Ve(z)) tsign (det(V(x))).

z€p~1(y)

Moreover, if card(p ™ (y)) < k for LN -almost every y, we have
(24) [ 19esolay<com [ vards
B )

for any Borel set B ¢ RY.

Proof. The proof can be easily achieved in the case when ¢ € C1(€, ), using the local invert-
ibility theorem. The general case can be obtained by a Lusin-type approximation of ¢ by C'! and
equi-Lipschitz functions (see Theorem 3.6 below).



Eventually we want to find conditions ensuring that ¢uu € SBVioc(RY) whenever v €
S BVlOC(IRN ). A sufficient one is given in the following theorem.

Theorem 2.3 Assume that ¢ : RY — RY is Lipschitz, piecewise affine and proper. Then P#
maps SBVlOC(IRN) mn SBVlOC(IRN). Moreover, if the rank of Vi is either N or is strictly less than
N —1 in any open region where Vi is constant, we have

HY 7 (Spu \ 9(Su)) = 0.

Proof. Let (P;);cr be the open regions where Vy is constant and has rank N and let (Q;),es be
the remaining open regions where Vy is constant and its rank is strictly less than N. We define

R=R"\ [ Jrul]Q;

i€l jeJ

The set T' = (R UU;Q;) U ¢(S,) has o-finite HY ~1-measure, because H ~1(p(Q;)) is o-finite
for any j € J. Let B be a Lebesgue negligible Borel set on which D¢(pxu), the Cantor part of the
derivative @yu, is concentrated. Since p~1(B) N P; is Lebesgue negligible for any i € I, by (2.1)
we get

D (ppu)|(RY) = \D"(w#U)I(B\F)SCZIDUI(Piﬁ@_l(B)\Su)

Z/ [Vu|dx =0,
ic1 Y Pine=(B)

IN

therefore D¢pyu = 0 and ppu € SBVio.(RY).

Under the stronger assumption on the rank of Vi the set ¢(U;Q;) is HN 1 negligible. Taking
into account the fact that |Du| is zero on any Borel set o-finite with respect to H¥ ! and disjoint
with S, we get

ID(w)(Sppu \ (Su)) = ID(0pw)(Sppu \ #(Su U @)

jeJ

IN

C

/ |Vu|dx + |[Du|(R\ S,)| = 0.
iel Y Pine=1(Spu)

Since
IDu|(ANS,) :/ ot — v dHY !
ANS,
for any Borel set A and any v € BVio(IR"), choosing v = ppu and A = S, \ ©(S,) we infer
that HV=1(A4) = 0. |

Beside the piecewise affine functions satisfying the assumptions of Theorem 2.3 there are other
useful Lipschitz functions ¢ such that ¢4 maps SBV into SBV, namely those considered in the
next lemma. Notice that the map ¢ constructed in the lemma squashes a whole neighbourhood
of a Lipschitz graph I" over the graph itself. In the sequel we denote by Cg the cylinder Bg “1x
(=3R,3R), where By ' is the (N — 1)-dimensional ball {z = (z1,...,2n-1) : |2| < R}.



Lemma 2.4 (Deformation) There exists a constant Cy depending only on the dimension N

such that if g : Bg_l — IR s a Lipschitz function with LipIBwfl(g) <1,g=0o0n 83%‘1 and
R

e € (0,1/2), then there exists a Lipschitz map ¢ : Cr — Cgr such that

Lip(p) < Cy, p(z) =z on 9CR, e(Ue,r) CTyN (BNl1 x R),

E

where Uz g = {(z,t): z € Bg(lls), lg(2)—t| < 2¢R} and T, is the graph of g over By ~'. Moreover
¢ has the property that if u € SBV(CR), then pgu € SBV(CR), wxu has the same trace of u on
OCRr and

/ IV (ppu) do < 00/ VuPdr, Sy \TyCo(Su\Uer).
Cr Cr\U¢ R

Proof. Let us fix 0 < € < 1/2 and define two functions g*, g™ : Bgfl — IR setting

N-1
g(z) +2dist(z,0Br ") if z€ By \BR(I )’

g(z) —2eR if ze€ BN( 15)

9 ()= {g(z) — 2dist(z,0Bp 1) if z€ BN7! \BR(1 o
Clearly LiplBgfl(g+),Lip|Bgf1(g_) < 3; moreover since sup |g(z)| < R we have sup gt (z) < 2R,

inf g~ (2) > —2R. Let us now define ¢ : Cp — Cp as follows

(z,3R+ (3 ft/R)(g( )—R—g"(2)) if 2R<t< 3R

(z,t +9(2) —g*(2)) if g¥(2) <t<2R
p(z,t) =1 (2,9(2)) if g7(2) <t <g"(2)

(Z,t+g( ) =97 (2)) if —2R<t<g (z)

(z,-3R+ (3+t/R)(g(z) + R—g (2)) if -3R<t<—2R.

It is easy to check that p(x) = z if © € OCgr and that ¢ : Wr — Cg \ T'y is invertible, where
Wgr = {(z,t) € Cr: t > g"(z) ort < g~ (2)}, and that ¢(Cr \ Wg) = Ty, thus in particular
©(Ue,r) C T'y. Notice also that ¢ is proper and that since the Lipschitz constants of g™, g~ are less
than 3, the derivatives of ¢ and (g0|WR)’1 can be estimated by an absolute constant independent
of R. Therefore if u € SBV(Cpg) from Theorem 2.1 it follows that pxu € BV (Cr). Moreover
since for all y € Cg \ Ty card(¢~!(y)) = 1 from (2.4) we have

[ WeswPdy= [ VepulPde<co [ [VuPda,
Cr Cr\T'y Cr\Uc,r

where Cj is a constant depending only on N and on the bounds on the derivatives of ¢ and
(¢jwr) ", hence ultimately only on the dimension N. Also, since p(Wg) = Cg \ Ty and O|wp 18
invertible, pxu € SBV(Cr\I'y) (see the observations made after Theorem 2.1). Finally, the Cantor
part of D(pxu) cannot be concentrated on I'y, hence we may conclude that p4u € SBV(Cg) and
that S, CTgU@(Sy) and thus S, \ Ty C ¢(Sy) \ Ty C @(Sy \ Ue,r)- O



3 Approximation in area of the Lipschitz image of a rectifi-
able set

In many situations one would like to approximate the H™ ~!-measure of the Lipschitz image M =
©(S) of an HN ~L-rectifiable set S by approximating ¢ (using one of the many available classical con-
structions) with a sequence of piecewise affine Lipschitz maps . However in general one may only
expect, by the lower semicontinuity of the area functional, that HV =1 (M) < liminf, HN =1 (pn(S)),
the inequality being possibly strict.

In this section we study the problem of approximating the H~ ~!'-measure of the Lipschitz image
©(S) of a rectifiable set. Namely, we show that the measure of ¢(S) can be approximated by the
measure of sets of the type (® oo W¥~1)(S), where v is a piecewise affine map whose Lipschitz con-
stant is controlled by the Lipschitz constant of ¢ and ®, ¥ are suitable diffeomorphisms arbitrarily
close to the identity map. Our approximation result is stated in Theorem 3.1 and it is used in
Section 5 to study the properties of certain singular points of the jump set of the minimisers of the
Mumford—-Shah functional. We think that the approximation provided by this result is interesting
in itself and could be useful for other applications to geometric measure theory; for this reason we
dedicate a separate section to it.

Theorem 3.1 Let S C Br be an HN ~'-rectifiable set and let o : RY - RN be a Lipschitz map
such that p(x) = x for allz & Br and o(Br) C Bgr. For anye > 0 there exist two diffeomorphisms
o, 0 : RY - RY and a piecewise affine function v : RY — RY such that

HY T (@ 0oy 0 TH)(S)) < HYTH(p(S)) +e.

Moreover the maps ®, ¥ and ~ coincide with the identity map outside the ball Br, the Lipschitz
constants of ®, W, ®~1 and V=1 are less than 1 + ¢ and Lip(y) < cLip(p) + ¢ for some constant c
depending only on N and R. Also, v can be chosen so that HN~1(¥~1(S) N D) < ¢, where D is
the discontinuity set of Vv, and such that detV+y # 0 in each open set where V7 is constant.

The proof of the theorem makes use of the following result, saying roughly speaking that any
rectifiable set can be covered, apart from a set of small measure, with a smooth compact manifold
which is arbitrarily close to a polyhedron. The proof of the result can be achieved by standard
covering arguments, arguing for instance as in [16, Theorem 4.2.19]), where an analogous property
is proved for integral currents.

Theorem 3.2 Let S C Bgr be an HN"'-rectifiable set. For any & > 0 there exist a polyhedron
K = UM K, C Bg, where each K; is a closed (N — 1)-cube, K; N K; =0 ifi#j, and a
diffeomorphism ¥ : RN — RN such that ¥(z) = z if x & Bg, Lip(¥),Lip(¥~1) <1 +¢, and

HN Y SAY(K)) <€ .

In order prove Theorem 3.1 we start with the case when the rectifiable set S is indeed a polyhedron
K. The next lemma deals with this simpler situation. However the lemma, as a first step in the
proof of the approximation result, provides a piecewise affine map 1 which is only defined on K
and not on all IRY. The extension of ¢ to a piecewise affine map defined on the whole IRY is then
given by the subsequent Lemma 3.4.

In the sequel, whenever ¢ : S — IRY is a Lipschitz map and S is a countably HN ~!-rectifiable set,
we denote the differential of ¢ at by d%p,. We recall (see for instance [21]) that d°¢, is a linear
map from the approximate tangent plane 72 to IRY and that it is defined at HN~'-a.e. point x
of S. The corresponding Jacobian is denoted by Jx_1d°¢,.



Lemma 3.3 Let K = UM, K, C Bg be a polyhedron such that each K; is a closed (N — 1)-cube
contained in the affine (N — 1)-plane S;, K; N K; = 0 if i # j, and let ¢ : RY — RY be
a C' Lipschitz map such that o(K) C Bgr. For any ¢ > 0 there ewist a piecewise affine map
¥ T — RY such that Lip;p(¢) < Lip(¢) + € and a diffeomorphism @ : RY — R" such that
®(2) =z if & & Bg, Lip(®), Lip(®~1) < (1+¢), with the property that ||® o 1) — @|| (1) < € and

(3.1) HYH(@ 0 ) (K)) < HY T ((K)) +¢

Moreover T = Uij‘ilTi, where the sets T; are pairwise disjoint, K; C T; C S; N Br and T; is the
union of a finite number of (N — 1)-simplezes T; ; with pairwise disjoint interiors such that for all
i,7, dT5i1p is a constant matriz of rank N — 1.

Proof. STEP 1. Let us denote by K" the set of points € K such that Jy_;d¥¢, < r. Using
the local invertibility theorem it is easy to check that for any r > 0 there exists M, € IN such that
card (o7 (y) NK \ K") < M, for all y € RY.

To prove this claim let us first notice that card (¢~'(y) N K \ K") < oo. In fact if this is not true
there exists a sequence (zp,) in K \ K" such that xp, # ay if h # k, p(ap) =y for all h, z, — x.
Let i € {1,..., M} be such that « € K; and let S; be the affine (N — 1)-plane containing K;. Since
Jn_1d%p, > r, there exists a neighbourhood U of z such that PY|uns, is a diffeomorphism and
this contradicts the fact that in U N K; there exist infinitely many points xz;, such that ¢(x,) = y.
Let us assume now that there exists a sequence (y,) such that card (¢~ (y,) N K\ K”) — oo and
let us suppose, with no loss of generality, that y;, — y. Let us set m = card (go*l(y) NK\ KT).

We can then construct m + 1 sequences (x}), ..., (z)"™) such that for h large enough z¥ # ) if
i %7, cp(x}'L)_: yp for all e = 1,...,m+ 1. Again, with no loss of generality we may assume that

for each i, 2, — 2 € ' (y) N K \ K". Thus at least two of these points z* must coincide and, to
fix the ideas, let us assume that x! = 22 = 2. As before, we get a contradiction since there exists
a neighbourhood U of x such that ¢y~ g is injective, but at the same time for h large the distinct
points x}, 27 belong to U and ¢(z}) = ¢(23).

STEP 2. We now construct the diffeomorphism ® and the set 7" where the function % is going
to be defined. To this aim, let us fix 0 < ¢ < 1 and apply Theorem 3.2 to the H™ ~l-rectifiable
set ¢(K), thus getting a diffeomorphism ® : RY — IR" and an open polyhedron P such that
Lip(®),Lip(®1) < 1+¢, ®(x) = 2 for z € Bg and

52

(3.2) HY Y p(K)AR(P)) < ——

M.
where M. is defined as in STEP 1. Notice that we may always assume that P = U] P;, where each
P; is an open (N —1)-cube with dist(P;, P;) > 0if i # j. Let usset ¢y = ®"lop and L = ¢(K)\ P,
which is a compact subset of IRY. From the area formula, using (3.2), we have

- 1
(3.3) HN ! (zzrl(L) N K\KE) < —[ In_1d%p, dHN !
€ JY-1(L)NK\K*®

1

€ L<¢1<L)0K\Ks>
1
E1\4577HV—1(<1>(L)) <e.

IN

card (¢~ H(y) N K \ K¢) dHN ™!

IN

Let us denote by ¥ = {x € RV : 2 =tier+...+tn_1en—_1, >ty <1,t; > 0Vj5} the standard
(N — 1)-simplex, and let p : ¥ — R" be a piecewise affine function such that p(z) = 0 for all



2 € 0% and Jn_1d”p, > 0 in every open region where d>p is constant. For any i = 1,..., M let
us cover each face K; with a mesh of simplexes congruent to ¥, having pairwise disjoint interiors.
For any h > 1 and any ¢ each simplex of the covering of K; can be subdivided in a standard way in
2PN =1) simplexes Tjh of side 1/2". If T]?,h = xéh + (1/2h)2, we shall denote by p})h the function
obtained by rescaling p in T} ;,, i.e. pj () = 2= hp (2 (2 — ) for all z € T} . Notice that there
exists h such that if h > h the following relations hold:

(3.4) TWNEKT£) = T}, c{xeS;: In_1d%p, < 2e};

. . 1 .
(3.5) Ti,NK#0) = diam(T},) < glltr;indist(Kth) and Tj, C Bg;
(3.6) HN"Y(B) <&, where B=U{T}, : T}, NOK #0, i = L...,M}.
Given hg > h we denote by C the union of all those T; ,, such that T}, N oYL ) NK\K®#9.
From (3.3) it is clear that hy can be chosen sufficiently large so that HN 1(C) < . With such a
choice of hg let us denote by D the union of all the Ti , having not empty intersection with K*

and not contained in C'. Then let us denote by G the union of those 77, = such that TJ7 ho NK#0

and which are not contained in C nor in D. Notice that from (3.6) 1t follows that if G denotes
the union of those simplexes T}, contained in G'N K, then HN=1(G'\ G) < . Notice also that

G c K\ ¢ YL), hence )(G) C P. Finally let us set T = C'U D UG and for any i let us denote
by T; the union, running over j, of those TJZ h, contained in T'. From (3.5) it follows immediately
that every T; is contained in Br and that the sets T; are pairwise disjoint.

STEP 3. We now define ) with the required properties. For any h > hq let us denote by ¢h T —
IRY the piecewise affine function coinciding with 1 on the vertices of any T; - Then ¢y — ¥ and
dT ¢y, — dT+) uniformly on T. Therefore, since G C K\ K¢, for h sufficiently large Jy_1d” (wh)x

0 for all z € G. Moreover, since z/;(é) is a compact subset of P, then @(é) = U, H;, where H; C P,
is compact for any [. Thus, given o > 0, for any [ there exists A; D H;, relatively open in P; such
that HN=1(U™, (A, \ H;)) < 0. Let us recall that the faces P, of P are at a positive distance one
from the other. Thus for h large z/Jh( ) C P and therefore the uniform convergence of ¥, — ¥
implies that for h large we have @h(é) C U, A;. From the arbitrariness of ¢ we then get that

limsup Y (4 (6)) < HVH(@(G)) -
Let us fix hy > hg so that Lip‘T(zzhl) < Lip(¢)) 4+, In_ 1dT(1ﬂh1) <In_1dT, +eforallz eT,
maxy |Povy,, — | < Lip(®) maxy |n, —1| < e and KN~ 1(wh1( 7)) < HN- 1(1#(@))—1—5 With such
a choice of hy we define a piecewise affine function ¢ : T" — IRY setting Y(z) = Yn, (v) if v € G or
x € TZh for some Tlh C T\ G where Iy _1d% (¢, )z > 0. IfTZh C T\ G is such that in Tlh the
constant matrix d”4y,, has rank strictly less than N — 1, we set 1(z) = by, (x) + 7P 4, () for all
x e T? by where 7 > 0 is chosen small enough so that the Lipschitz constant in T' of the resulting
functlon remains strictly less that Lip(1)+¢, maxp |[Pop—¢p| < e and 0 < Iy_1d” (¢p, +7p ) <€
in T}, . This choice of 7 is clearly possible since this Jacobian is constant on each of the finite open

regions of TJZ n, Where dTp] n, is constant and in each of these regions is a polynomial of degree
N — 1 in the variable 7. To conclude the proof it remains to estimate the measure of (® o ¢)(K).
From our construction of T' we then get

(3.7) HYH@((K) < (1+) T HY T (y(K)



< (14N R W(E) + YT (DN K))
FHY GG G)) + HY T ((G))

Recall that HY~1(C) < e, hence HN 1 (¢)(C)) < ce where the constant ¢ depends only on N and
Lip(¢). Similarly, H¥N~1((G \ G)) < ce, while from the area formula and (3.4) we have

HY-L((D N K)) < /

In_1dT o, dHN T g/ In_1dTy 4+ ) dHN P < eeHV 1K),
DNK

DNK

where ¢ depends only on N. Therefore, recalling that ¢(G) C P, from (3.7) and (3.2) we have

HNH@(W(K))) < (1+ )V [ee + HYTHBE))] < MY (o(K)) + 2=

where the constant ¢ depends only on N, Lip(y), HY~!(K). Hence the result follows. O

We can now construct a piecewise affine extension to IR™Y of the function ) obtained in the
previous lemma.

Lemma 3.4 Under the same assumptions of Lemma 3.3 and if p(x) = x for x & Bg, for any
e > 0 there exists a piecewise affine map v : RY — RY such that v(x) = x if © ¢ By, Lip(y) <
Lip(¢) + &, detVy # 0 in each open set where V-~ is constant and there exists a diffeomorphism
®: RY - R"Y such that ®(x) = = if v & Bg, Lip(®),Lip(®~") < 1+ ¢ such that

HY (@ o) (K)) < HY N (p(K)) +e .
Moreover HN~Y(K N D) = 0, where D is the discontinuity set of V.

Proof. Let us fix 0<e<1,0< 0 <e A R such that 30 <dist(K,0Bg) and 20 <min,; dist(K;, K).
Let us apply Lemma 3.3 with ¢ replaced by oe and notice that from the proof of the lemma it is
clear that we may always assume that dist(T’,0Br) > 3¢ and that dist(7;,T};) > 20 whenever i # j.
For any i € {1,..., M} let us denote by N; the number of the (N — 1)-simplexes T; ; where the
function 1 is affine. Let us extend ¥ near each T;. To this aim let us fix ¢ and in order to simplify
the notation let us assume that the affine (N — 1)-plane S; containing 7; is the coordinate plane
{zy =0}. For any j =1,..., N; let us denote by Efj and E; ; the closed pyramids of height o (to
be chosen later) and basis T} ; contained respectively in the half spaces {xx > 0} and {zx < 0}.
We extend v to the set E; = Uj-vzil(E;fj U E; ;) setting for all x € E; ¢(z) = ¢(2',0) + azy,
where 2’ = (z1,...,2ny-1) and o € IRY is to be chosen. Notice that above definition of E; implies
that if p is chosen small enough then dist(E;, E;) > 0 when ¢ # j and dist(E,0Bg) > 20, where
E = UM, E;. Notice that since Jy_1d%#i¢) > 0 for all i and j we may always choose a arbitrarily
small in norm and such that detVi # 0 in all the sets E;r] and E; ;. Thus, we choose a and g so
that we have also

(3.8) Lipjp(¥) < Lip(¢) + 25, [ ® 0 — @]l () < 20

Let us now set
ifxe FE

- ¥(z)
w(x):{x ifo:GIRN\BR_U2,

F =EURY\ Bg_,» and let us estimate Lip (). To this aim, by the first inequality in (3.8)

it is enough to consider [/(z) — ¥(y)| with 2 € E and y € Br \ Br_,2. Given two such vectors,
recalling that dist(E,dBr) > 20 and hence |x — y| > o, from the second inequality in (3.8) we get

() =P = () -yl < (@) — 27 (p(@))| + |27 (p(x)) — 27 (e (y))]



+ @ (o(y)) — 2 (e (Ry/lyl))HlRy/lyl—yl
Lip(®~1)|®(¢(z)) — o(x )|+Llp( YLip(p)|x — y| + c(R — |y|)
2(1+¢€)oe + (1 +¢)Lip(p)|z — y| + co?

(Lip(p) + ¢e) [z — y,

IAIAIA

where ¢ depends only on Lip(y). To conclude the proof we may extend 1, thanks to Kirszbraun’s
theorem (see [16, 2.10.43]), to a Lipschitz map from RY to IRY, still denoted by ¥, with Lipschitz
constant in R™ equal to Lip‘F(dJ). Notice that Vi is continuous in the interior of each set E;'jUEi_,j

and hence the intersection of the discontinuity set D of V4 with K is contained in the union of
the (N — 2)-dimensional faces of the sets T} ;. Therefore H¥~1(D N K) = 0. Finally, let us fix a
finite union of congruent cubes @ such that Br_,» CC Q CC Bg and let us approximate 1) on
Q \ E with a piecewise affine map 7 such that Lip|o\ 5(7) < Lip‘Q\E(E) + &, detV7 # 0 in each

open subset of @ \ E where V7 is constant and 7 = 1 on O(Q \ E). The map 7 is then obtained
setting y(z) = ¢(z) if € EU (RN \ Q) and () = 7(z) if z € Q \ E. O

We can pass now to the proof of Theorem 3.1. This proof makes use of Lemma 3.4 and of a
suitable version of the Whitney extension theorem given at the end of this section.

Proof of Theorem 3.1. Let us fix 0 < € < 1. Since S is an HY ~!-rectifiable set, there exist
finitely many, pairwise disjoint, compact subsets of S, Hy, ..., H,, such that H¥N 1 (S\U, H;) < e.
Moreover we may always assume that each H; is contained in the graph of a C! function g; : U; —
7, where U; is an open subset of a suitable (N — 1)-plane 7;, and that Lipy,(¢:) < 1 +¢,
where ¢; : U; — RY is the map ¢;(z) = (z,9:(2)). Since ¢ o ¢; is a Lipschitz continuous map
from Theorem 3.6 it follows that for any ¢ there exists a compact set C; C m;(H;) such that ¢ o ¢;
coincides on C; with the restriction of a C* map ¢; : U; — IRY. Moreover the sets C; can be chosen
so that HN =1 (UL, (H; \ ¢:(C;)) < e. Let us now apply the Whitney Extension Theorem 3.5 to
the maps f and & defined on C' = U, ¢;(C;) U (RN \ Bg) setting f = ¢ on this set and s(z) = I if
x & Bpg, k(z) = V(@;om;)(x) ifx € qbz( C;). Notice that the assumptions of Theorem 3.5 are clearly
satisfied and that since Lip|;,(¢;) < 1 + ¢ one immediately gets that both sup{|x(z)| : = € C}
and sup{|R(x,y)| : = # y, x,y € C} are controlled by cLip(¢), where ¢ is a constant depending
only on the dimension N. Thus we get a C' map ¢ : RY — R" such that ¢(z) = ¢(z) on C
and Lip(¢) < ¢(N, R)Lip(p). Moreover, since U, ¢;(C;) CC Br and ¢(z) = = when x ¢ Bg, by
enlarging a little the Lipschitz constant of ¢ we may always assume that @(Bgr) C Br. Thus we
have

(3:9) HYTH@(8) = HN T (i U@ (€2))) +H 7 (2(5\ U 0:(C)) ) < HY T (o(8) + e
i=1

where ¢ depends only on Lip(¢), N and R. Let us now apply Theorem 3.2 to S, thus getting a
polyhedron K and a diffeomorphism ¥ such that ¥(z) = z for all z ¢ Br and HN "1 (SA¥(K)) <
€. Then we apply Lemma 3.4 to the polyhedron K and to the function ¢ o ¥. Thus, we get a
piecewise affine map v : RY — IR" such that v(z) = z if # & Bg, Lip(y) < ¢(N, R)Lip(p) + ¢,
detV+y # 0 in each open set where V+ is constant, and a diffeomorphism ® such that HY~1(® o
N(K)) < HN=Y(($ 0 ¥)(K)) + ¢. Therefore, using (3.9), we obtain

HY (@ oy o ®™)(8)) < HYTH(@ oy o wTH(S\ U(K))) +HY (2 07)(K))
<ce+HN (B0 U)(K)) +¢
< HYTHB(S) + HYTH(@(L(K) \ 8)) + e < HNTHG(S)) + e,
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where the constant ¢ depends only on Lip(p), N and R. To conclude the proof let us remark that
if D is the discontinuity set of V7, since by Lemma 3.4 HY~1(K N D) =0 and Lip(¥~!) < 1 +¢,
we have

HY (U HS)ND) =HYNH(THS)\K)ND) < (1+e)V 'e.
O

The next result gives a suitable version of the classical Whitney extension theorem (see for
instance [16]), giving sharp conditions ensuring the existence of a C! extension of a function
defined on a closed set. Here we show that beside the existence of such extension one may also
prove a precise estimate of the L° norm of its gradient. For this reason we recall how the extension
is obtained, but we limit ourselves to prove only the gradient bound.

Theorem 3.5 (Whitney extension) There exists a constant Co(N) such that if C ¢ RY is a
closed set and f : C — R, k: C — RY are two continuous maps such that for any compact set
K contained in C

%iﬁ)l sup{|R(z,y)| : z,y € K,0< |y — x| <4} =0,

where for all z,y € C, x #vy

fly) = f(x) = (k(z),y —2)
ly — x|

R(x,y) =

)

then there exists a function f € C’l(]RN) such that f = f, Vf =k on C and such that for allr > 0

(3.10) sup |V f(@)] < Co(1+7)|sup |r(z)| + sup |R(l’,y)|} )
z€l,.(C) zeC THAY

where I.(C) = {z : dist(z,C) < r}.

Proof. Let us recall how the construction of the extension f works. For the proof that f = f and
Vf =k on C we refer to [15] (see the proof given in Section 6.5 of that book).
Let us set U = RY \ C and for all z € U

r(z) = 2—10 min{1, dist(z, C)}.

By the Vitali covering theorem there exists a countable set S C U such that U = UsesBsr(4)(5)
and the balls B, (4)(s) are pairwise disjoint. For each x € U let us define

Sy = {8 €5: BlOr(:r) (ZC) N BlOr(s)(S) 7é Q)}

Then (see [15]) it can be easily shown that

(3.11) card(S,) < 1297, < Ti—x) <3 Ve eU,s€S,.
r\s

)

Let us now fix n € C*°(IR) such that 0 < n(t) <1, n(t) =1if t <1, n(t) =0 for t > 2 and for all

s € S let us define
us(x) = |z — |
= 5r(s) ) -

Wl




Notice that us(y) = 0 if y € Bigpz)(z) and s & Sy, therefore, using (3.11) we get

(3.12) |Duy ()] < %

Let us also set o(z) = Y, gus(z) for all z € U. Then o(x) > 1 for all z. Thus we set for all s

VeeU seS,.

us(x)
o(x)

vs(x) = VeeU.

Finally for any 2 € U let us denote by 7(x) a point such that
|l — 7(x)| = dist(z,C) .
Following [15] we define f : RY — IR setting

f(l‘) ifxed
f(x) = sz(x) [f(7(8)) + (k(T(5)),x — 7(s))] ifxeU.
s€ES

For the proof that f € C*(IRY) we refer to [15] limiting ourselves to show the estimate (3.10). To

this aim let us fix 2 € U. Since vs = 0 in Bigp(p)(z) if s € S and Y g Voug(z) =0, we have

Vi) =Y {lf(7(s) = f((@)) + ((7(s)), 2 = 7(5))] Vo (@) + vs()r(7(s))} -
SES,

Setting M = sup,cc |5(@)] + sup,, |[R(z,y)|, from the first inequality in (3.11) and from (3.12)
we have

Vi@ < M| Y (17(s) = 7@)| + o = (@) Vos(@)] +1
SES,
<MY s~ 2l j:(f)_ @l 1.
SES,

Since Byor(z) (%) N Bior(s)(s) # 0 if s € S, from the second inequality in (3.11) we have that
|s — x| < 10r(x) + 10r(s) < 40r(x).
Therefore, recalling the definition of r(x) we may conclude that
|V ()] < e(N)M(1 + max{1, dist(z, C)})
and from this inequality the result follows. m|

The classical Whitney theorem is used to show a Lusin type property of the Lipschitz functions,
i.e. that any Lipschitz function f coincides with a C'! function f outside a set of small measure.
From Theorem 3.5 also this classical result can be improved showing that indeed f can be con-
structed in such a way that its Lipschitz constant remains smaller than Cy(N)Lip(f), where C;
is a constant depending only on the dimension N. The proof is a simple consequence of the a.e.
differentiability of Lipschitz functions and of Egorov theorem.

Theorem 3.6 There exists a constant C1(N) such that for any function f € Lip(RN) and for
any € > 0, there exists f € CY(IRY) such that

LN ({x: fx) # f(@)}) <e
and Lip(f) < Cy(N)Lip(f).
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4 Almgren area minimising sets

In this section we recall some basic facts on sets minimising the area functional with respect to local
deformations, not necessarily one to one. This minimality property is referred to as (M, 0, 00)-
minimality in Almgren’s seminal paper [2].

Let S be a countably HY ~!-rectifiable set with locally finite H~ ~!-measure. We say that S is
an Almgren area minimiser if

(4.1) HY"H(S N Br) < Y7 (9(S N Br))

whenever ¢ : RY — IR" is a Lipschitz map, R > 0 and {z € R" : ¢(z) # 2} CC Bg.
Theorem I1.3(12)-(13) of [2] (see also [13]) implies the density bounds

(4.2) coV T < HNTH(S N By(x)) < doN T Vo € suppHYILS, 0> 0

for suitable dimensional constants ¢, d > 0. In particular, denoting by S’ the support of HV =1L,

we have
HN=H(SAS') = 0.

For this reason in the following we shall always assume, possibly modifying S in a H™¥ ~-negligible
set, that S = suppHV LS.

Choosing one to one deformations ¢.(x) = x +e¢(x) it is easy to check that any area minimiser
is stationary for the area functional, i.e.

/ divigdHN "' =0 V¢ e Co(RN;RY).
S

We first state a compactness property of Almgren minimising sets.
Theorem 4.1 Let Sy be Almgren area minimisers and let x € (), Sp. Then

(i) the family Sy is relatively compact with respect to the convergence of the associated varifolds
as h — oo;

(i) any limit point of the varifolds associated to Sy, is the varifold associated to a suitable Almgren
area minimising set C;

(iii) if © = 0 and S, = S/on, where g5, | 0 and S is an Almgren area minimiser, then any limit
point is an Almgren area minimising cone C.

Proof. The proof of this theorem is analogous to the one of Proposition 5.3 and Theorem 5.4 in
the next section, and actually simpler (since only surface energies are involved). For this reason
we only briefly indicate the main ingredients of the proof.

(i) Denoting by V;, the rectifiable varifolds associated to S, (i.e. measures in G = RY x Gy_1,
where G y_ is the set of unoriented (N — 1)-subspaces of RY), by (4.2) we get

Vi(Br x Gn_1) = HN71(S, N Bgr) <dRM™' VR >0.

Hence, the family (V) has limits points as h — oo.

(ii) Let V' = lim; V4, with h; — oo. By the general theory of rectifiable varifolds (see for instance
[1, 21]), we know that V is a stationary rectifiable varifold induced by a countably H~ ~!-rectifiable
set C' and a multiplicity function 8. Moreover, the upper semicontinuity of the multiplicity function
(see [21], Theorem 42.7) implies that § > 1 H¥~!-a.e. on C.
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Tt remains to show that 8 < 1 HV l-a.e. on C and that C is an Almgren area minimiser.
To this aim let us remark that from the density bound (4.2) we may deduce (see the proof of
Proposition 7.4 in [6]) the following height bound: if S is an Almgren area minimiser, 7 is any
(N — 1)-plane, ¢ > 0 and « is any point in IR”, then

(4.3) sup (g — o))V < (V) / et (y — )[2 dHY T
yeSNB,(x) SNB2,(x)

where ¢(N) is a constant depending only on the dimension N. Let us fix now z € C such that
there exists the approximate tangent plane m, = 7w at  to C and let us assume, with no loss of
generality that z = 0. Applying (4.3) to the sets S;, and arguing as in the Step 2 of Proposition 5.3,
we get that for any € > 0 there exists g, such that if o < o,

(4.4) limsup sup |7y < co(N)oe.
h—oo  §,NBe

Let us now fix € > 0 such that co(N)e <1 and ¢ < g. and let us denote by ¢, the function defined
on (RN \ B,)UF, ., where F,. = {y € Bo—ye |Tty| < co(N)o(1 — \/€)e}, setting

oly)=y ify¢g B, oy)=m(y) ifyeF,..
Notice that if y; € B, and y2 € F, . then
16(y1) — @(y2)| = ly1 — 7(w2)| < [y — ya| + |7 (12)]
< Jy1 — yo| +co(N)oe < (14 co(N)VE)|lyr — va ,

hence the Lipschitz constant of ¢ is less than or equal to 1 + ¢o(IN)y/e. Hence we may use
Kirszbraun’s theorem (see [16, 2.10.43]) to extend ¢ to a function ¢ : RV — IR” with the same
Lipschitz constant of ¢. From the minimality of the sets S, we then have, using (4.4) and (4.2),
HNTHC N B,) = lim HYTH(Sy 1 By) < liminf 1! ((S) N By))
— 00

h—o0

IN

lim sup HY ~1(@(S), N Eg(l,\/g))) +limsup HY 1 (¢(Sh N B, \ Eg(li\/g)))

h—o0 h—o0

wy-10™ 7+ (Lin(e) " lim HY S0 B\ Byasys)

wn-10" T+ L+ a(NVa)VTTHYTHC N B\ B,y ye)
wyn_10™N T+ HNil(C N B, \ Eg(lf\/g)) + CQ(N)\/ggNil

IA

IN A

and thus
HY N C N B,a_ 7)) Swn—10” '+ ea(N) Ve .

From this inequality the estimate ¥(z) < 1 immediately follows, letting first ¢ — 0 then ¢ — 0.
Notice that, since ¥(z) = 1 for HN"l-a.e. € C and the varifold V induced by C is stationary,
we have

/cdivcn dHN"1 =0 v € CHRN; RY).

Therefore Allard’s regularity theorem for stationary varifolds (see [1], [21]) implies that there exists
a closed set ©(C), with HV~1(X(C)) = 0 such that C'\ £(C) is a C! hypersurface.

To prove that C' is an Almgren area minimizer let us take a Lipschitz map ¢ : RY — RY such
that {z € R : ¢(x) # 2} CC Bp for some R > 0 and let us fix ¢ € (0,1/2). For any z € C\ %(C)
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let us denote by 7, the (classical) tangent plane to C' at « and by g, a radius such that if o < g,
then C'N C,(z) is the graph over z + m, of a C! function g, with Lipschitz constant less than e,
where

Co(z) = {y e RV : |mp(y — 2)| < 0, |7z (y — )| < 30},

and moreover
(4.5) limsup sup |7y (y — )| < e?p

h—oo 5, NC,(x)
(see (4.4) above). By a standard argument, based on an extension of the Besicovitch—Vitali covering
theorem to cylinders (see for instance [18, Theorem 5.11]), we may find a finite number of these
cylinders Cy, (z;), i = 1,...,m, pairwise disjoint and such that HN =1 ((C\UZ, C,, (z;))NBr) < €
and HN=1(C' N aC,, (z)) = 0. Therefore we have

(4.6) Jim. HNH(Sh\ | Cou (1)) N Br) <&

i=1

Since the Lipschitz constant of the functions g, is less than €, we can easily construct a Lipschitz
function §; defined on (z; + my,) N By, (x;), with Lipschitz constant less than 1, and such that
Gi(2) = gu,(2) for all z € (z; + 74,) N By, (1—¢)(7:) and g;(z) = 0 on (x; + 7,,) N OBy, (;); clearly,
sup |g;(z)| < €g;. Let us now apply the deformation Lemma 2.4 to each cylinder C,, (x;) and to the
corresponding function §;. Thus for all ¢ = 1,...,m we get a Lipschitz map ¢, : Cy, (x;) — Cy, (x;)
such that

(47) Llp(’l/JZ) < Cy, ’(ﬁl(l') = on 3091 (1’1)7 ’lﬁl(UZ) ccn CQi (I.Cz) R

where U; = {z € RN : |m,, (x — )| < 0i(1 —¢), |gi(a + 7, (x — 7)) — 7y (z—w;)| < 2e0;}. Notice
that from (4.7) we get that for any h sufficiently large

(4.8) Yi(Sh N Co, (i) C ¥i(Sh N Cp, (x:) \ Us) U (C'NCy, () -

Let us now define ¢ : RY — RY setting ¢(z) = z if & ¢ U2, C,, (x:)), ¥(x) = () if z € C,, (24)
for some i = 1,...,m and notice that from (4.7) it follows that Lip(¢) < max{1,Cy}. Then, using
the minimality of the sets S}, we have

HN"HC N Bg) < lim inf HN=1(S, N Bg) < lim inf HV =1 ((¢ 0 ) (Sp N Bg))
< limsup BV~ (9 0 ) ((Sh \ U2, Cy, (1)) N Br)

h— o0

+limsup BV~ (9 0 9)(Sh N U, Cy, (24))) -

h— o0

Therefore, from (4.6) and (4.8), we get

HYHC N Br) < e(N)[Lip(0)]" e + limsup B (0(Uiy 93 (Sh 1 Co, () \ Ui))

h—o0

RN (UL (C N Cy, ()

IN

(NLin(@)] ¥ (2 + D HY 1O N Coulwi) \U:)) + HY " (9(C 1 Br)) -

Since C' N Cy, () \ U; coincides with the graph of g,, on (z; + 74,) N (By, (z:) \ By, (1—¢)(4)),

(4.9) HY MO N Cy () \ Ui) < e(N)ee) ™ < e(N)eHN (O N Cy (1)),
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and thus

HN-Y(C N Bg) < ¢(N) [Lip(go)}N_:LE(l +HN Y Cn BR)> +HN " (p(C'N Bg)) .

From this inequality the minimality of C' immediately follows letting € | 0.
(iii) This is a consequence of (i) and of the monotonicity formula (see [21], Corollary 42.6). m|

The singular set ¥(S) of an Almgren area minimising set is the H™¥~!-negligible set of all
points z € S where the approximate tangent plane to S at x does not exist. Allard’s regularity
theory for stationary varifolds (see [1], [21]) implies that X(.59) is a relatively closed subset of .S and
that S\ X(95) is a smooth hypersurface. The crucial ingredient in Allard’s proof is the so-called
tilt—excess, defined by

T(S,z,0)= min o'V |y — |2 dHN T
TeGnN_1 SNB,(z)

where 7, is the approximate tangent space to S at y.
Allard characterized singular points of area stationary sets S as those points x such that, for
any ball B,(x), either the tilt—excess is sufficiently large or the density

HYH(S N By())

wy—10N1

is sufficiently larger than 1. In the special case of Almgren minimisers we can neglect the density
condition, as the following corollary shows.

Corollary 4.2 There exists an absolute constant §g > 0 such that
(S)={zxeS: T(S,z,0) >d Vo>0}
for any Almgren area minimiser S.

Proof. The inclusion D holds for any choice of dg > 0; we will prove that for dg small enough
the opposite one holds by a simple contradiction argument. Assume that (up to homotheties
and translations) Almgren area minimisers S;, and numbers J, > 0 exist such that 0 € 3(Sp),
T(Sh,0,1) < 6y and dy, | 0. By Theorem 4.1 we can assume that the varifolds V}, associated to Sy,
converge to the varifold associated to some Almgren area minimiser S. The continuity of 7 under
varifold convergence implies 7(5,0,1) =0, hence SN By is a (N — 1)-disk. In particular

. . _ WN_
hILH;O T(51,0,1/2) =0 and hlingo HN (S, N By o) = %
and therefore, by Allard’s regularity criterion, 0 ¢ 3(S},) for h large enough. m|

Theorem 4.3 For any Almgren area minimising set S we have H-dim(%(S)) < N — 2.

Proof. We apply the abstract version of Federer’s dimension reduction argument in Theorem A .4
of [21] with the set of characteristic functions

F :={xc: C is an Almgren area minimising set}
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endowed with the convergence

Xc, — Xc¢ — lim gdHN ! :/ gdHN™1 Vg e C.(RY)
h—o0 Ch c
and with the “singularity map” sing(xc) = X(C).

It is easy to check that the assumptions A.1 (scaling invariance of F), A.3(2) (scaling invariance
of ¢) and A.3(1) (sing(¢) = 0 if ¢ is the characteristic function of an hyperplane) of the theorem are
satisfied. The validity of assumption A.2 (existence of homogeneous degree zero tangent functions)
is the content of Theorem 4.1(iii). Assumption A.3(3) (upper semicontinuity of ¢ +— sing(¢))
is a direct consequence of the varifold convergence and of the representation of ¥(C) given in
Corollary 4.2. m|

5 Limit behaviour of sequences of quasi-minimisers

Let u be a function in SBVec(€2). In the following we shall set
F(u,Q) :/ \Vu|? de + HN71(S,).
Q

We say that u is a quasi-minimiser of the functional F' in € if there exists a constant w > 0 such
that
(5.1) F(u, By(x)) < F(v, By()) +wo®

whenever B,(z) CC Q and v is any function in SBWc(€2) such that supp(u — v) CC B,(z). If
w = 0 then u will be called a local minimiser of F' in €.
We recall that if w € SBV () is a minimiser of the Mumford—Shah functional

(5.2) \Vu|2dm+oz/ lu — g|9dx +HN1(S, NQ),
Q Q

where g € L>®(Q), « > 0, ¢ > 1, then it is easy to check (see [6, Section 7.2]) that u is a quasi-
minimiser satisfying (5.1) with w = 2%awy|g/|% .

In this section we study the limit behaviour of a sequence (u;) of quasi-minimisers of the
functional F' whose volume energies fQ |Vu|?dx vanish as h — oo and we prove that, up to a
subsequence, the corresponding jump sets .S, converge weak* locally to an Almgren area min-
imiser. This result is then applied to the case when the sequence is obtained by blowing up a
quasi-minimiser at a singular point of the jump set S,. This fact can be used to estimate the
dimension of a subset of the singular set of S, where the rescaled volume energy vanishes asymp-
totically. A consequence of this estimate (see Corollary 5.7) is that if u is a local minimiser of F
such that Vu is in LP for some p > 2 then the dimension of the singular set ¥(u) is less than or
equal to max{N — 2, N — p/2}.

Remark 5.1 (Scaling of quasi-minimisers) If u € SBV(B,(z)) and we set
up(y) = 0™ ulxo + oy) Yy € By,

then u, € SBV(B1), Su, = (Su — #0)/0 and moreover the Dirichlet integral and the area term in
the functional F both rescale by o' =%, hence

F(u,, B1) = 0"V F(u, B,(x0)) .
From this inequality it follows also that if u € M, () is a quasi-minimiser, then u, € M, (£2,))
with Q, = (2 — z¢)/ 0.
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The following Euler-Lagrange inequality can be easily checked by comparing the energy of a
quasi-minimiser u in B,(xo) with the energy of u(®;'(y)), where ®.(z) = x + en(z) and 7 is a
Lipschitz map with compact support in B,(zg) (see [6, Section 7.4]).

Proposition 5.2 If u € M, (Q) is a quasi-minimiser, By(zo) CC Q, F(u, By(x0)) < M and
n € Lip(B,(xo), ]RN) has compact support in By(xo), there exist e(n) > 0 and c(n, M) such that if
0<lel <e(n)

(5.3) E/ [[Vul*divy — 2(Vu, Vu - V)] dz + E/ divn dHN = > —¢(n, M)e® — wolV .
By (xo) S

u

Let us now consider the limit behaviour of a sequence of quasi-minimisers whose volume energies
are infinitesimal. To simplify the presentation of proofs we have split our result in two parts.
First, in the next proposition, we prove that limit of the jump sets is area stationary and then in
Theorem 5.4 we show that this set is an area minimiser in the Almgren sense.

Proposition 5.3 Let up, € M, () be a sequence of quasi-minimisers such that

Vu, — 0 in L2 (Q,RY), wp — 0,

loc
HNLL S, — p weakly® locally in Q.

Then there exists a countably H™~1-rectifiable set C C Q such that up = HN"1_C. Moreover C
1s area stationary, i.e.

(5.4) / divéndHN"t =0  vne CHRN,RY).
c

Proof. The proof can be achieved arguing as in Theorem 8.8 of [6], where the stronger assumption
that the quadratic oscillation of tangent planes was infinitesimal was made (with the stronger
conclusion that C is a locally finite union of m-lanes). However the arguments used in the proof
of that theorem still work in this more general situation. O

Theorem 5.4 Let ujp, € M, (IRN) be a sequence of quasi-minimisers of F satisfying in RY the
assumptions of Proposition 5.83. Then the set C in the conclusion of the proposition is an Almgren
area minimiser.

Proof. Let us fix a Lipschitz map ¢ : RY — IR" such that {z € RY : o(z) # } cC Bg. To
prove that
HN"HC N Br) < HY 7! (9(C' N Br))

we may always assume, with no loss of generality, that ¢(Br) C Bg and that HN~1(CNdBg) = 0.
Let us fix € € (0,1/2) and let us follow the argument of the proof of part (ii) of Theorem 4.1. In
this way we can find a finite number of pairwise disjoint cylinders C; CC Bg, i = 1,...,m, and
of open sets U; CC C; such that

(5.5) lim HY~1((S,, N Br) \UM™,C;) < €,

h—oo

and such that for all i (see 4.9)

(5.6) HYN Y CONC\Uy) < e(N)eHN Y CNCy).
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Moreover we can construct a Lipschitz map 1) : RY — RY such that

(5.7) Lip(¥) < ¢(N),  (z)=z YzeRN\U™,C, V(C)=C; Vi=1,....,m
and such that for all i (see 4.8)

(5.8) Y(Sy, NC;) CY(Sy, NC;\U;) U(CNC).

Recalling the Deformation Lemma 2.4, we have also that if v € SBV(C;), then yxv € SBV(C;),
that 14v has the same trace of v on dC; and that

2 2
(5.9) /. V() dy < e(N) / e

Finally, we have also, with the same notation used in the proof of Theorem 4.1,
(5.10) Siye © Tz UB(S,),

where I', C C; is a Lipschitz graph with the property that

(5.11) HY N T, A(CNC)) < e(N)eHNHCNG).

Let us now set

Vp = Ypup
and let us apply Theorem 3.1 to S = C'N Br and to the map ¢, thus getting two diffeomorphisms
®, ¥ and a Lipschitz map 7 as in the statement of that theorem. In particular we have
(5.12) HY (@ oyo U H(CNBR)) <HYHp(CNBR)) +e¢.
Then we set
wh = Py (v (T gon)) -

Since ® and ¥ are diffeomorphisms and v is a piecewise affine function such that detV~ > 0 in
each region where V+ is constant, from Theorem 2.3 it follows that wy, € SBVlOC(IRN ) and that
HN=L (S, \ (P oy o ¥1)(S,,)) =0 for all h. Moreover wy, coincides with vy, (and thus with uy,)
outside Bg and from (2.4), (5.9) we have

/|th\2dx§c/ |Vvh\2dx§c’/ \Vuy, | dz
Br Bgr Br

where ¢’ is a constant depending only on N and on v. Therefore from the quasi-minimality of wuy,
comparing F(up, Bg) with F(wp, Br), we have

(5.13) Jim HNY(S,, N Bg) < lim inf HY =1 ((® 0y o U1)(S,, N Br))
< (1+e)" Mliminf HY ' ((yo ¥T1)(S,, N Br)) .

h— o0

Recalling (5.7), we have that

i=1 i=1

Svh N Br = <SuhﬁBR\ GCZ> U(Svh n GCZ)
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and from (5.10) and (5.8) we have the following inclusion
S'Uh Nne; = (S'Uh ne; \ ng) U (S'Uh n ng) - w(Suh N CZ) U (ng \ (C n Cl)) U (C n Cl)
C T/J(Suh N C; \ UZ) U (I‘gl \ (C N Cl)) U (C N Cl) .
Therefore, from (5.5), (5.6) and (5.11),we get

liminf HY ! ((y o ¥71)(S,, N Bg)) < [Lip(yo U1V lim HN (S, N Br \ UL, C)

h— o0 h—oo

+[Lip(yo Ut ogp)| V1 Z limsup HY (S, NC; \ U;)

i—1 h—o0

+[Lip(y o THIN TS HN T T \ (C N C) +HY T (o TN (C N U, Cy)
=1
< Cie[1+HN"HCNBR)] +HYN H(yo ¥ (C N BR)),

where C; depends only on N and Lip(y), hence only on N, Lip(¢) and R. Finally from the
inequality above, (5.13) and (5.12) we obtain

HNH(C N Bg) = Jim. HNL(S,, N Bg)

ce [L+HN"HC N BR)] + (1+)* M DHN=L(@ 0y 0 T)(C N Bg))

<
< Coe [L+HNTH(C N Br)] + HYH(p(C N BR)),

with C5 again depending only on N, Lip(p) and R. The result then follows letting e | 0. O
Theorem 5.5 Let u € M, (Q) and let x € S, be a point such that

(5.14) lim gl—N/ |Vul|?dy = 0.
el0 B, ()

Then for any sequence o, — 0 there exist a subsequence on; and a closed set C' such that

Su—x S HN-1 ¢ weak* locally in IRY .
Oh,;

HNL

Moreover C is an Almgren area minimiser.

Proof. We recall the energy upper bound (see [6, Section 7.2]) which states that if u € M, (B,(z))
then

(5.15) / |Vaul? dy + HY 1S, N B,(2)) < Nwyo™¥ 1 +wo? .
By ()

Given the sequence gp, let us set up(y) = 9;1/2u(x + ony) for y € (Q — x)/op. From Re-
mark 5.1 it follows that up, € My, (2 —x)/on), while the assumption (5.14) implies that
[Vup| — 0 in leoc(IRN). Moreover the energy upper bound (5.15) implies that the measures
HNTL(S, —2)/on = HN-'LS,, are locally equibounded in IRY. Therefore (up to a not rela-
belled subsequence) we may assume that the measures HN~'L_S,,, converge weak* locally in RY
to a Radon measure p. Then Proposition 5.3 and Theorem 5.4 imply that u = HY =1 _C for some

Almgren area minimising set C. O
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We recall the following regularity result proved in [4], [5] (see also [6, Ch. 8]). For any
u € M, (Q) there exists an HYN ~!-negligible set ¥(u) C S, N, relatively closed in €, such that
SN\ X(u) is an (N — 1)-manifold of class C*'/4. Moreover there exist o, Ry depending only
on w and N such that

(5.16) Y(u)={r €S, NQ: D(z,0) + Az, 0) > ¢ for all p < Ry},
where the quantities D and A are defined in (1.1).

Theorem 5.6 Let u € M, (Q) and let
Y= {x € Y(u) : lim QI*N/ |Vu|? dy = 0} .
ol0 By ()

Then H-dim(¥') < N — 2.

Proof. Let s € (N —2,N —1). We claim that H*(¥X’) = 0. To prove this claim we argue by
contradiction, assuming that H*(X’) > 0. If this is true then we have also HZ_(X') > 0 and (see
[21, Theorem 3.6]) for H®-a.e. z € ¥’

(5.17) limlsoup 0 *HS (X' N B,) >
0

%I

Let us fix a point 2 € 3’ such that (5.17) holds and let assume for simplicity that = 0. Let us
also denote by gp, an infinitesimal sequence such that

s ¥5) Ws s
(518) HOO(E/ N th) Z ﬁgh .

Then from Theorem 5.5 it follows that, up to a subsequence, HV 1S, /on — HN 1L C weak*
locally in IR, where C' is an Almgren area minimising set. Let us set ¥j = ¥'/gj,. Given any
open set A containing ¥(C) N By, let us show the existence of hg such that

(5.19) E;L ﬂEl cA VYh > hg.

In fact, otherwise we could find a sequence of points zj; € Z;Lj N By \ A converging to a point
xo € X(C). Since the approximate tangent plane Tr% to C at x( exists, there exists g such that

gfl*N/ distz(y,wfo) dHN 7t < gy,
CQBQ(CE())
where ¢ is as in (5.16). Hence we have that

lim Q_l_N/ dist*(y, 7S, ) dHN ! < &g
Su/ghj nt(Ihj)

J—00

Therefore, by (5.16), for j large enough zj, ¢ E'hj. This contradiction shows (5.19) and then from
(5.18) it follows that

H* (2(C)NBy) > HS, (B(C)NBy) > 11}13Ls;pH§o (S, NBy) > SerT

Then, the contradiction follows by Theorem 4.3. m|
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Assuming higher integrability of the gradient we can obtain an estimate on the Hausdorff
dimension of the full singular set X (u).

Corollary 5.7 Let u € M (Q). If Vu € L2 (4 RYN) for some p > 2 then

loc
H-dim(3(u)) < max{N —2,N —p/2}.

Proof. Let us fix s € (N —p/2, N —1). We set

As ={z € Q: limsup g_s/ |Vul? dy > 0}
0l0 By (x)

and recall that H*(A;) = 0. Then the result will follow from (5.16) and from Theorem 5.6 if we
show that X(u) \ As C ¥’. In fact, notice that if x & A, then we have

2/p
QHV/ [Vul® dy < w}v_Q/pQ‘s(@S/ IVUI”dy> :
BQ(I) BQ(I)

where 6 = 14+2(s— N)/p > 0, and the right hand side of this inequality is infinitesimal as ¢ | 0. O

We conclude this section showing that if w is a quasi-minimiser of F', then at any singular point
of S, where the rescaled Dirichlet integral D(z, 0) goes to zero there exists a blow-up limit C of
S, which is a cone. In two dimensions this property, together with the fact that C is an Almgren
area minimiser, implies that C' is a propeller, i.e. the set consisting of three half-lines meeting at a
point with equal angles.

Proposition 5.8 Let u be a quasi-minimiser of the functional F and let x € X, be a point
satisfying (5.14). Then there exists a sequence op, | 0 such that HN~11_(S, —x)/on — HN"1_C,
where C' is an Almgren area minimising cone. Moreover:

(a) if N =2, C is a propeller;

(b) if N =3, C is either the three sheeted cone consisting of three half planes meeting along a line
at equal angles or is the cone over the 1-skeleton of a tethraedron with vertex at the center of the
tethraedron.

Proof. Let us fix z € %,, such that (5.14) holds and let r; be an infinitesimal sequence such
that HNV-11(S, — z)/r; — HN'LC, where by Theorem 5.5 C is an Almgren area minimiser.
Moreover from the proof of Theorem 5.6 it is clear that 0 is a singular point of C. From [22,
Corollary I1.2] we know that there exists an increasing sequence nyp, with n, € IN, such that
the sets n,C converge to an Almgren area minimiser tangent cone C as h — oo. Since for all
h HN YL ng (S, —z)/ri — HNE L n,C as i — oo, we get easily that there exists an infinitesimal
sequence oy, = ny,/r;, such that HN-1L(S, —z)/on — HNILC.

The last part of the assertion then follows again from [22, Proposition 11.3) O

Remark 5.9 If u is a local minimiser of F' satisfying the assumptions of Corollary 5.7, the conclu-
sion of Proposition 5.8 can be strengthened. In fact it is possible to show that if x € ¥, is a point
satisfying (5.14) and gy, is any infinitesimal sequence such that HN =1L (S, — x)/o, — HN"1LC,
then C'is a cone and hence, by Proposition 5.4, an Almgren area minimising cone. The proof can
be obtained by deriving a suitable monotonicity formula for S, and then passing to the limit in
that formula.
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6 Final remarks

In this section we prove that if N = 2 and u € SBVjo.(2) is a local minimiser of the functional
F then Vu is p-summable for any p < 4 in a neighbourhood of any crack tip point or any triple
junction.

Lemma 6.1 Let A C IR? be a connected open set and let T C IR? be a CY' graph such that
A\T = Aj U Ay, where Ay and Ay are connected open sets. Let u € WH2(A\T) be a weak solution
of the equations

(6.1) / (Vu, V) =0 VneCi(A), i=1,2 .
A

For all p > 2 there exists ¢, > 0 depending only on p,I' such that if Py € I' and Ba,(Py) C A, then

p/2
(6.2) ][ |Vul? <e¢, ][ |Vul? .
By (Po) B2, (Po)

Proof. By rotating and translating we may always assume that Py = (0,0) and that I' = {(xz,y) :
a<x<by= )} for some o € CL1([a,b]). We set L = /1 + [|¢'|% and R; = (—t,t) x
(—4Lt,4Lt) for t > 0. Let us fix o so that Ry, C A. Let us set also ®(z,y) = (z,y — ¢(z)), Uz =
®(Ry,), Uy = ®(R,), while T denotes the z-axis and, if U C R? is any open set, U™ is the set of
points of U respectively above or below T'. Moreover it is easy to check that there exists a strictly
positive constant ¢ depending only on L such that

(6.3) dist(OUs, Uy) > co .
The function v(r, s) = u (®~*(r,s)) is a weak solution of the equation
(6.4) / a;; VivVndrds =0

U

for all n € C! (U;) vanishing in a neighbourhood of 8U2Jr \ T, where a;; = 1, a125 = a9 =
—¢@'(r), aze = 1+ ¢'?(r). Let us extend v and the coefficients a;; to U, setting for all (r,s) € Uy

v(r,s) =v(r,—s), an =1, az=a =¢'(r), ax=1+ @’2(7") .

In this way we get immediately that for all n € C§(Us)
/ a;;Vi;oVindrds =0 .
Uz

By a standard difference quotient argument we then have that Vv € Wﬁ)f (Uz) and that for all
n € C§(U2)

(6.5) |V(Vs0)|?n? drds < c/ |Vol?|Vn|? drds |
Uz U2

where ¢ depends on L, Lip(¢’). By (6.3) we can find a function n € C}(Us), such that 0 < n <
1, n=1o0n U; and |Vn| < ¢/p. Inserting this function n in (6.5) we have by the Sobolev—Poincaré
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inequality that for all p > 2

(6.6) (2] | vmp)”p <ce(e? [ 2 |V<nvsv>|2)1/2

1/2 1/2
< co (w / |Vv2|w|2) <c <@2 / |Vv|2) .
U2 U2

Integrating by parts the equation satisfied by v we have that for all n € C3(Us)

0
Vrn(auvrv + algvsv) = — VST](CLQVTU + azzvsv) = / n—(algvrv + aggvsv),
Us Us v, 0s

hence |V, (a11V,v+a12V)| < ¢|Vs(Vv)|. In particular we have that |V v| < ¢[|Vv|+|V(Vv)]]
and thus that |[V(V,v)| < ¢[|[Vv| + |V(Vsv)|]. Therefore, arguing as before we have also that for

allp>2
1/p 1/2
(o2 o) " e f )
U1 U2

and this inequality together with (6.6) immediately implies the assertion. O

Remark 6.2 Notice that in the above lemma, since u is harmonic in A \ T', the inequality (6.2)

clearly holds with another constant c,, depending only on p, if the ball By,(P) is contained in
A\T.

We are now in position to prove the desired property of SBV minimisers of the functional F'.

Proposition 6.3 Let A C IR? be open and I' = UM.T; cC A, where each T; is a CY! graph.
Assume that if i # j then either T; NT'; = 0 or they intersect with a strictly positive angle at a
finite number of points. Let u € SBVioc(A) be a local minimiser of F. Then Vu € L, (A, R?) for
all p < 4.

Proof. We limit ourselves to prove that if Py € I'; for all ¢ = 1,..., M then Vu € LP for all
p < 4 in a neighbourhood of Py, since the other possible cases can be dealt with in a similar (and
simpler) way. To this aim notice that we may assume with no loss of generality that Py = (0,0),
that Py is an endpoint of all the curves I'; and that there exist a ball Br such that in Bg \ {Py}
the curves do not intersect and do not have other endpoints. Moreover, since the curves intersect
each other at Py with positive angles it is easy to check that there exists a constant v € (0,1/2)
such that if 3p < R then

diSt(FiﬂB3Q\§Q/2,FjﬁB3Q\§Q/2) > Vo Vi#£j .

Let us fix ¢ < R/3 and denote by F the covering of Bs, \ B, containing either closed balls of
the type §V09/4(P)7 with P € T; N By, \ B, for some 4, or balls of the type Eyog/g(P), with
P € By, \ B, and dist(P,T';) > vpo/4 for all i. Notice that in the first case (when P € I'; for
some i) the open ball B, ,/2(P) does not intersect neither the endpoints of I'; nor the other curves
and in the second case trivially the open ball B, ,/, does not intersect any of the curves I';. By
the Besicovitch covering theorem we can extract a finite number & (with ¢ an absolute constant)
of disjoint subfamilies F; of F so that the family G = Uizlfh is still a covering of Ba, \ B,.
Since the balls in each family F}, are pairwise disjoint and have radius comparable with o, we have
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#(G) < ~, where v depends only on £ and vy. From Lemma 6.1, Remark 6.2 and the energy upper
bound (5.15) for any p > 2 we have

p/2
[Vul? < / IVulP < 11 0? ][ |Vul|? < ey® P2
/329\59 Z By, (P:) o Z By, (P:)

B, (P;)€g B, (P;)eg

Therefore from this inequality, if p < 4 we may conclude that

oo oo R 2—p/2
g P <L —
/BR [Vul E /B [VulP < ¢ E (22> < 00,
/2 i=1 i=1

which proves the assertion. O

R/2i\BR/2i+1
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