
1 Introduction

Suppose S ⊂ IRn is a smooth surface with boundary, having the same topo-
logical type as the closed unit disc D. Is there in some sense an “optimal”
parametrisation Y : Ω → S where we consider both arbitrary (simply con-
nected) Ω ⊂ IR2 and arbitrary Y : Ω → S? We give a positive answer to
various formulations of this question, which we call the Cartography Prob-
lem.

For any disc-like Ω ⊂ IR2 there is a conformal diffeomorphism Y :Ω→ S.
Moreover, such Y minimises

∫
Ω |DY |2 among all diffeomorphisms Y :Ω→ S

for which Y |∂Ω is monotone. It is clear, however, from the invariance of∫
Ω |DY |2 under conformal changes of the domain, that an optimal domain

Ω0 cannot be obtained by minimising
∫

Ω |DY |2 for different Ω.

Instead, motivated by the idea that for an optimal representation (Ω0, Y0)
the map Y0 should be as close to linear as possible, we consider minimising
the Hessian Functional ∫

Ω
|D2Y |2

over suitable (Ω, Y ). But note that if ρr : IR2 → IR2 is the scaling map
ρr(x) = rx then∫

ρr(Ω)
|D2(Y ◦ ρ−1

r )|2 = r−2
∫

Ω
|D2Y |2 → 0 as r →∞.

For this reason we need to impose some further constraint on Ω.

We are thus led to the following minimisation problems:

M1 Suppose S ⊂ IRn is a smooth immersed surface with boundary and S
has the same topological type as the closed unit disc D.

Minimise ∫
Ω
|D2Y |2

over pairs (Ω, Y ), where Ω ⊂ IR2 is diffeomorphic to D, Y : Ω → S is a
conformal diffeomorphism, and either |Ω| = π or H1(∂Ω) = 2π.

For example, let S ⊂ IR3 be the surface given by

S = {(r cos θ, r sin θ, εθ) : 1/
√

3 ≤ r ≤ 1, 0 ≤ θ ≤ 3π},

where ε > 0. Then for ε sufficiently small we expect the problem M1 to have
the solution (Ω0, Y0) approximately described by

Ω0 ≈ {(r cos θ, r sin θ) : 1/
√

3 < r < 1, 0 < θ < 3π} ⊂ IR2,

i.e. Ω0 is counted with multiplicity 2 in the region corresponding to both
0 < θ < π and 2π < θ < 3π, and

Y0(r cos θ, r sin θ) ≈ (r cos θ, r sin θ, εθ),
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i.e. Y0 is a “multiple-valued” function.

Rather than vary the domain Ω, and also in order to handle the difficulty
of domains counted with “multiplicity” as above, we reformulate the problem
as follows:

Let D be the open unit disc. Fix a conformal diffeomorphism X :D → S.
For any disc-like Ω ⊂ IR2 there exists a conformal diffeomorphism F :D →
Ω, and moreover Y (:= X ◦ F−1) : Ω → S is a conformal diffeomorphism.
Conversely, for any conformal diffeomorphism Y : Ω → S the map F (:=
Y −1 ◦X) :D → Ω is a conformal diffeomorphism and Y = X ◦ F−1.

For F as above, let e2h(x)δij be the metric induced on D from F and from
the standard metric on Ω. Since e2hδij is a flat metric it follows 4h = 0.

Conversely, suppose 4h = 0 where h :D → IR. Define F :D → C ∼= IR2

by F (z) =
∫ z

0 e
h+ik where k is the harmonic conjugate of h for which k(0) = 0.

Then F is conformal and |F ′(z)| = eh, so that e2hδij is the metric induced on
D from F . Moreover, if h is defined from F as above, then F and F agree
up to composition with an isometry.

With g = gij = e2hδij, let∇2
gX be the covariant Hessian of X with respect

to g, and |∇2
gX| be the length of ∇2

gX with respect to the metric g on D and
the Euclidean metric on IRn. Then |∇2

gX|(w) = |D2Y |(F (w)) by isometric
invariance (or by direct calculation).

Motivated by the preceding, we consider the following minimisation prob-
lems:

M2 Suppose S ⊂ IRn is a smooth immersed surface with boundary and
X :D → S is a fixed conformal diffeomorphism.

Minimise
E(h) :=

∫
D
|∇2

gX|2dg

over all functions h :D → IR, where g = gij = e2hδij, 4h = 0, and either∫
D e

ph = π (some fixed p > 0), or
∫
∂D e

ph = 2π (some fixed p > 0), or
h(0) = 0.

We denote by M the class of competing functions h.

The problems M1 and M2 are essentially equivalent if we take the con-
straints

∫
D e

2h = π or
∫
∂D e

h = 2π respectively.

We will initially not assume in M2 that the map X is conformal. The
problem analogous to M1 is then one of finding the “optimal” parametrisa-
tion of S in the conformal class corresponding to the pair (D,X).

Note that the trivial case for M1 is S ⊂ IR2. Suppose Ω = ρS where
ρ is chosen so |Ω| = π or H1(∂Ω) = 2π. Let Y (x) = ρ−1x. Then clearly∫
Ω |D2Y |2 = 0 and (Ω, Y ) is the unique (up to isometry) minimiser for M1.

Similarly, for M2 suppose X : D → S(⊂ IR2) is a conformal (for sim-
plicity) parametrisation. Then E(h) = 0 iff eh = c|DX| for some con-
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stant c chosen so h ∈ M. This follows from observing that X is a scal-
ing map with respect to the standard metric on S and the pull-back metric
g = e2hδij = 1

2
|DX|2δij on D, and so ∇2

gX ≡ 0. If F (z) :=
∫ z

0 e
h+ik as before,

then F [D] is just a scaled version of S and F is a constant multiple of X (up
to isometry).

The problem of minimising higher order geometric quantities involving
curvature has been considered recently in a number of situations. In [Hu] the
existence of a minimiser of functionals involving the second fundamental form
was shown in the context of curvature varifolds. See also [AST] and [Ma].
In [Si] the existence of a smooth torus minimising the Willmore functional
is established. The functional considered here is related, see in particular
Proposition 6.2.

The outline of the paper is as follows.

In Section 2 we consider some model linear problems (linear in the sense
of the associated Euler-Lagrange system). While these problems do not have
the same geometric content as the main problem, they are none-the-less
interesting and the arguments involved are much simpler. In particular,
existence, uniqueness, and regularity are relatively straightforward.

We next show that problems M1 and M2 have a solution. This is per-
haps somewhat surprising. The energy functional in M1 involves the second
derivatives of the map Y . However, passing to the equivalent problems in-
volving the metric h, the energy integrand E(h) in M2 is quadratic in e−h

and its first derivatives. The precise expression, see Proposition 4.2, is

E(h) =
n∑

α=1

∣∣∣e−hD2Xα +D(e−h)¯DXα
∣∣∣2 . (1)

The quantity D(e−h) ¯DXα is a type of symmetric product of the vectors
D(e−h) and DXα and is a 2× 2 symmetric matrix (c.f. (5) in Section 3).

Our aim is to prove the existence of a minimiser of E(h) for h ∈M. One
could work with the function ψ = e−h, but this is not so convenient. In
particular, one then has the open constraint ψ > 0 on D and the constraint
4h = 0 becomes nonlinear in ψ. These considerations are more important
when one considers the question of regularity of solutions.

The first problem then is to find some sort of coercivity type estimate for
the e−h. This is not at all clear initially, and depends on an analysis of the
precise form of the energy integrand. See Proposition 4.7 (also Lemmas 4.4.3
and 4.5) for a pointwise estimate and Proposition 5.2 for the W 1,2 estimate.
The latter estimate requires that the surface S not be flat, and in fact the
estimate degenerates as S becomes flat.

The existence of a minimiser is obtained by considering two cases, see
Theorem 5.3. If S is flat one can classify all minimisers. If S is not flat, the
problem is to show that a minimising sequence hj has a limit inM. It follows
from the estimates on e−h that the hj are bounded uniformly from below on
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compact subsets of D. The integral constraints imposed on members of M
together with Rouché’s theorem (or Harnack’s inequality) imply that the hj
are bounded uniformly from above on compact subsets. The existence of a
minimiser then follows from the particular form of the integral constraints.
Analogous results for branched immersions and for univalent maps are also
obtained.

In Section 6 we obtain expressions for the energy functional in the case X
is conformal. As a consequence the Weierstrass representation of Enneper’s
surface is shown to be the unique optimal parametrisation. Moreover, stere-
ographic projection of the unit disc onto a spherical cap is also optimal. For
the latter one first finds another appropriate form of the energy functional
and then, with MathematicaTM as a guide, shows the positivity of various
integrals.

Note that a minimising map h is analytic on D (being harmonic) and the
map F is hence analytic and locally invertible on D. Thus we automatically
have full interior regularity of the minimising metric. In [FH] we consider
the question of boundary regularity of minimisers, as well as related Plateau
and Dirichlet type problems.

The authors would like to thank Min-Chun Hong, Gary Lieberman, Neil
Trudinger, and John Urbas for helpful remarks. This research was partially
supported by ARC grant A69131962.

2 Some Linear Model Problems

Let D = {x ∈ IR2 : |x|2 < 1} be the unit disk in IR2. Let X :D → IRn be a
fixed immersion and let S be the corresponding surface.

Let

e2h =
1

2
|DX|2. (2)

Thus in case X is conformal, eh is the conformal factor of X.

The following result is completely straightforward. It shows that for any
function h in various function spaces there is a unique closest harmonic func-
tion h in the relevant norm.

Theorem 2.1 Suppose h ∈ L2(D) or h ∈W 1,2(D) respectively. Let

M = L2(D) ∩ {h : 4h = 0}

or
M = W 1,2(D) ∩ {h : 4h = 0}

respectively. Let

E(h) =
1

2

∫
D
|h− h|2 (3)
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or

E(h) =
1

2

∫
D
|h− h|2 + |Dh−Dh|2 (4)

respectively. Then there exists a unique h ∈M which minimises E.

Proof: Let
γ = inf{E(h) : h ∈M}.

Let (hj) be a minising sequence..

Passing to a subsequence, hj ⇀ h (say) weakly in L2 or W 1,2 respectively.
By regularity theory for harmonic functions, hj → h uniformly on compact
subsets of D, together with all derivatives. In particular 4h = 0. Moreover,
by Fatou’s Lemma, E(h) ≤ γ, and so E(h) = γ as h ∈ M. Thus h is the
required minimiser.

Uniqueness follows from Taylor’s formula in the usual way. Thus in the
L2 case we write∫

D
|k − h|2 =

∫
D
|h− h|2 + 2(h− h)(k − h) + (k − h)2.

The second integrand on the right integrates to zero by the stationarity of h
and so E(k) ≥ E(h) with equality iff k = h. The argument for the W 1,2 case
is similar.

Application Suppose h is defined as in (2). If h is the minimiser in either
of the previous problems, let k be the harmonic conjugate of h (such that
k(0) = 0) and define

F (z) =
∫ z

0
eh+ik.

Then F [D] (which may be “multiple-valued” as discussed in the Introduc-
tion) together with the map X ◦ F−1 is a natural candidate for the optimal
parametrisation of S.

Note, however, that E(h) here only considers the intrinsic curvature of S,
unlike the functional considered elsewhere in the paper. One could attempt
to account for extrinsic curvature by including, for example, a term in the
energy functional of the form

∫
D a

2(x)h2. But this is not so geometrically
natural. The more important point, however, is that the natural geometric
quantities are the conformal factors eh and eh, rather than h and h.

Regularity of solutions to the present problems follows from the appropri-
ate Euler-Lagrange system. Note that the Lagrange multiplier f is a member
of an appropriate function space.

Theorem 2.2 Suppose h ∈ L2(D) and h is the minimiser of (3) in the
previous theorem. Then h satisfies the following system of equations:

(i) 4f = h− h in D
(ii) 4h = 0 in D
(iii) f = 0 on ∂D

(iv) ∂f
∂ν = 0 on ∂D
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for some f ∈ W 2,2(D), where the equations are interpreted in weak or trace
sense. If h ∈W k,2(D) then f ∈W k+2,2(D) and h ∈ W k,2(D).

Proof: Define
4 :L2(D)→ W 2,2

0 (D)∗

by

〈4k, f〉 :=
∫
D
k4f

for all f ∈ W 2,2
0 (D). By standard regularity theory, k ∈ ker4 iff 4k = 0 in

the classical sense.

Extend E to all of L2(D) by the same definition as in (3). The derivative
of E at h is defined by

〈dE(h), k〉 :=
d

dt

∣∣∣∣∣
t=0

E(h+ tk)

=
∫
D

(h− h)k,

and is a bounded linear operator on L2(D).

If h is the minimiser of E(h) in M, it follows

dE(h) :ker4→ {0},

and so
dE(h) = T ◦ 4

for some bounded linear operator T :W 2,2
0 (D)∗ → IR.

By the reflexivity of W 2,2
0 (D), T corresponds to a function f ∈ W 2,2

0 (D)
and so for all k ∈ L2(D),

〈dE(h), k〉 = 〈T,4k〉
= 〈4k, f〉
=

∫
D
k4f.

That is, ∫
D

(h− h)k =
∫
D
k4f

for all k ∈ L2(D). The Euler-Lagrange system follows.

For the regularity, we note

42f = −4h

in weak form. If h ∈ W k,2(D) it follows, using (iii) and (iv), that f ∈
W k+2,2(D). It then follows from (i) that h ∈ W k,2(D).

We similarly have:
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Theorem 2.3 Suppose h ∈ W 1,2(D) and h is the minimiser of (4) in The-
orem 2.1. Then h satisfies the following system of equations:

(i) 4f +4h− h = 4h− h in D
(ii) 4h = 0 in D
(iii) f = 0 on ∂D

(iv) ∂
∂ν (f + h) = ∂h

∂ν on ∂D.

for some f ∈W 1,2(D), where the equations are interpreted in the appropriate
weak or trace sense. If h ∈W k,2(D) then f ∈W k,2(D) and h ∈W k,2(D).

Proof: The proof is similar. But now

4 :W 1,2(D)→ W 1,2
0 (D)∗

is defined by

〈4k, f〉 := −
∫
D
Dk ·Df

for all f ∈W 1,2
0 (D).

The derivative of E at h is given by

〈dE(h), k〉 =
∫
D

(h− h)k + (Dh−Dh) ·Dk .

The Lagrange multiplier f ∈W 1,2
0 (D) satisfies∫

D
(h− h)k + (Dh−Dh) ·Dk = −

∫
D
Dk ·Df

for all k ∈W 1,2(D). This is just the weak formulation of (i) and (iv).

If h ∈W 3,2(D), it follows from (i) and (iv) that f+h ∈W 3,2(D). Writing
(iii) in the form h = f + h, it follws from (ii) and (iii) that h ∈W 3,2(D).

If h ∈ W 5,2(D), it now follows from (i) and (iv) that f + h ∈ W 5,2(D).
It then follows as before that h ∈W 5,2(D), etc.

3 Algebraic Preliminaries

In order to study the energy integrand E(h) in (1) we need a little algebra,
some of it not completely standard.

The Euclidean inner product and associated norm in IR2 are denoted by

a · b and |a|

respectively. The Euclidean inner product and norm on L(IR2; IR2) are de-
fined by

M ·N =
∑
i,j

MijNij and |M | = (M ·M)1/2.
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If M = (M1, . . . ,Mn) where each Mα ∈ L(IR2; IR2), then

|M |2 =
∑
α

|Mα|2.

The space of symmetric linear maps from IR2 to IR2 is denoted by

S(IR2; IR2).

For a = (a1, a2), b = (b1, b2) ∈ IR2, we define the symmetric product
a¯ b ∈ S(IR2; IR2) to be the linear map with matrix

a¯ b =

[
a1b1 − a2b2 a1b2 + a2b1

a1b2 + a2b1 a2b2 − a1b1

]
. (5)

(Note that this is different from the usual definition of symmetric product.)
It is easily checked that the definition is independent of choice of orthonormal
basis. The geometric interpretation is that a¯ b is reflection about the line
bisecting a and b, composed with the dilation |a| |b|.

If a ∈ IR2 and c = (c1, . . . , cn) where each cα ∈ IR2 then we define

a¯ c = (a¯ c1, . . . , a¯ cn) ∈
(
S(IR2; IR2)

)n
.

For any vector a ∈ IR2 let ã = (a2,−a1) be the vector obtained by rotating
a through −π/2. Then it is easy to check that

(a¯ b) · (c¯ d) = 2(a · c)(b · d) + (a · c̃)(b̃ · d)

(a¯ b) · (c¯ b) = 2(a · c)|b|2

|a¯ b| =
√

2|a| |b|. (6)

If M ∈ S(IR2; IR2) and b ∈ IR2 then we denote by M∧b the unique vector
such that

M∧b · a = M · (a¯ b)
for all a ∈ IR2. It follows

M̃(b) = M∧b,

where

M̃ =

[
M11 −M22 M12 +M21

M21 +M12 M22 −M11

]
(7)

and M =
[
Mij

]
. Moreover,

|M∧b|2 =
(
(M11 −M22)2 + (M12 +M21)2

)
|b|2 =

1

2
|M̃ |2|b|2.

Clearly
M∧b = 2M(b)− (TrM)b, (8)
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where Tr denotes the trace. With respect to an orthonormal basis of eigen-
vectors of M we have

M∧b = (λ1 − λ2)

[
b1

−b2

]
.

If

M = (M1, · · · ,Mn), Mα ∈ S(IR2; IR2)

b = (b1, · · · , bn), bα ∈ IR2,

then we define

M
∧
b =

n∑
α=1

Mα∧bα (∈ IR2). (9)

4 Properties of the Energy Integrand

Let D = {x ∈ IR2 : |x|2 < 1} be the unit disk in IR2. Let X : D → IRn

be a fixed immersion and let S be the corresponding surface. In particular
|DX| > 0 on D. We will always assume that X ∈ C2(D; IRn). Let x =
(u, v) = (u1, u2), X1 = Xu1 = Xu, X2 = Xu2 = Xv, X12 = Xu1u2 , etc.

We will fix the following notation throughout the paper.

Definition 4.1 Suppose h :D → IR is harmonic.

Let g be the corresponding flat metric on D, conformally equivalent to
the standard metric, defined by gij = e2hδij.

Let M denote the class of harmonic h as above, subject to one of the
following additional constraints:

h(0) = 0 or
∫
D
eph = π or

∫
∂D
eph = 2π (10)

for some fixed p > 0.

Let k be the conjugate harmonic function of h such that k(0) = 0.

Let
f = eh+ik, F (z) =

∫ z

0
f(ζ) dζ.

Remarks

1. The choice of constants 2π and π is merely a convenient normalisation
and implies that the only constant function inM is the zero function.
In particular, with this normalistion, if X :D → IR2 is the identity map
then E(h) = 0 iff h ≡ 0, i.e. iff gij = δij. This is clear since

E(h) = 2
∫
D
|De−h|2

from (16) and (6). In particular, X is the unique (up to isometry)
optimal parametrisation of D.
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2. We interpret
∫
∂D e

ph as follows. Since h is harmonic, it follows eph is
subharmonic and hence

r−1
∫
∂Dr

eph,

where Dr = {x ∈ IR2 : |x| < r}, is an increasing function of r for
0 < r < 1. Now define∫

∂D
eph = lim

r→1
r−1

∫
∂Dr

eph. (11)

3. Recall from the discussion in the Introduction that g = e2hδij is the
pullback metric from F . Thus F is one-one means that the metric g
defines a domain in IR2 which is diffeomorphic to D.

The Hessian or second covariant derivative of a function f :D → IR with
respect to the metric g, in the directions V1, V2 ∈ Tx(D), is defined by

∇2
gf(V1, V2) = (V1V2 −∇V1V2) f, (12)

where ∇ is the Levi-Civita connection associated to g. The Hessian is sym-
metric and bilinear, and for fixed f the value at x is independent of the
extension of V1 and V2 to a neighbourhood of X used to evaluate the right
side of (12). In case g is the Euclidean metric, the Hessian is denoted by

D2f,

and is given by the usual matrix of second derivatives. The length of the
Hessian is defined by

|∇2
gf |2 =

∑
i,j

|∇2
gf(τi, τj)|2,

where (τ1, τ2) is an orthonormal frame with respect to g.

The Hessian of X is defined componentwise by

∇2
gX = (∇2

gX
1, . . . ,∇2

gX
n), (13)

and the length of ∇2
gX is given by

|∇2
gX|2 = |∇2

gX
1|2 + . . .+ |∇2

gX
n|2.

In case g is the standard metric, the Hessian is

D2X = (D2X1, . . . , D2Xn).

The Energy Functional is defined by

E(h) :=
∫
D
|∇2

gX|2dg =
∫
D
e2h|∇2

gX|2, (14)

where g = gij = e2hδij and 4h = 0. Here and elsewhere, integration is with
respect to Lebesgue measure unless noted otherwise.

Finally, the Energy Integrand is denoted by

E(h) := e2h|∇2
gX|2. (15)
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Proposition 4.2 One has

∇2
gX = e−2h

(
D2X −Dh¯DX

)
,

and in particular

E(h) = e−2h
∣∣∣D2X −Dh¯DX

∣∣∣2 (16)

=
∣∣∣e−hD2X +D(e−h)¯DX

∣∣∣2 . (17)

Proof: Let Γkij be the Christoffel symbols for g. Recall that

Γijk =
1

2
(∂jgpk + ∂kgpj − ∂pgjk) gpi.

Standard calculations then give

Γ1
11 = −Γ1

22 = Γ2
12 = Γ2

21 = hu1 = h1,
Γ2

22 = −Γ2
11 = Γ1

12 = Γ1
21 = hu2 = h2.

(18)

Let (τ1, τ2) be the orthonormal frame for g given by

τi = e−h
∂

∂ui
, i = 1, 2.

Since ∇ ∂

∂ui

∂
∂uj

=
∑
k Γkij

∂
∂uk

it follows from (12), (13), (18) and the bilinearity

of ∇2
gX that

∇2
gX(τ1, τ1) = e−2h (X11 − h1X1 + h2X2) ,

∇2
gX(τ1, τ2) = e−2h (X12 − h2X1 − h1X2) ,

∇2
gX(τ2, τ1) = e−2h (X12 − h2X1 − h1X2) ,

∇2
gX(τ2, τ2) = e−2h (X22 + h1X1 − h2X2) .

Hence by (5)
∇2
gX = e−2h(D2X −Dh¯DX).

The result follows from (15).

Because of the form of the energy integrand (16) we will be interested in
quadratic expressions in w ∈ IR2 of the following type:

Definition 4.3 Let

M = (M1, · · · ,Mn), Mα ∈ S(IR2; IR2),

b = (b1, · · · , bn), bα ∈ IR2.
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Then for w ∈ IR2,

Q(w) := |M − w ¯ b|2 =
n∑

α=1

Qα(w)

where
Qα(w) = |Mα − w ¯ bα|2.

The minimum value of Q(w) is denoted by Qmin. If b 6= 0 it then follows
from Lemma 4.4.2(a) that Q(w) has a unique minimum point, denoted by
wmin. Similarly from Lemma 4.4.1(a), if bα 6= 0 the minimum value Qα

min of
Qα(w) is taken at a unique point wαmin.

The following Lemma allows us to express Q(w) as a sum of various pos-
itive terms, and also gives some useful lower bounds for Q(w). In particular,
note 2(c) and the last inequality in 3.

Lemma 4.4

1. (a) Qα(w) = |Mα|2 − 2Mα∧bα · w + 2|bα|2|w|2.

(b) If ba 6= 0 then
wαmin = Mα∧bα/2|bα|2

= Mα(bα)/|bα|2 − (TrMα)bα/(2|bα|2)

(c) Qα(w)

{
= |Mα|2 ≥ 1

2
(TrMα)2 |bα| = 0

= 1
2
(TrMα)2 + 2|bα|2 |w − wαmin|

2 |bα| 6= 0

2. (a) Q(w) = |M |2 − 2M
∧
b · w + 2|w|2|b|2

(b) If |b| 6= 0 then Q(w) takes its minimum at the unique point
wmin =

∑
α |bα|2wαmin/|b|2

=
∑
αM

α∧bα/2|b|2
=

∑
αM

α(bα)/|b|2 −∑α(TrMα)bα/(2|b|2)

(c) If |b| 6= 0 then
Q(w) =

∑
{α:bα=0} |Mα|2

+
∑
{α:bα 6=0}

(
1
2
(TrMα)2 + 2|bα|2|wmin − wαmin|2

)
+2|b|2|w − wmin|2

3. Q(w) ≥ ∑α
1
2
(TrMα)2 + 2|b|2|w − wmin|2

≥ |b|2
∣∣∣w −∑aM

α(bα)/|b|2
∣∣∣2

+ |b|2
∣∣∣w −∑aM

α(bα)/|b|2 +
∑
α(TrMα)bα/(|b|2)

∣∣∣2
≥ |b|2

∣∣∣w −∑aM
α(bα)/|b|2

∣∣∣2
Proof: We have

Qα(w) = |Mα|2 − 2Mα · w ¯ bα + |w ¯ bα|2

= |Mα|2 − 2Mα∧bα · w + 2|w|2|bα|2.
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Differentiating this and setting the derivative to zero gives the first expression
for wαmin; the second expression follows from (8).

The expression for Qα(w) when |bα| = 0 is trivial.

Since D2Qα(w) = 4|bα|2I, it follows from Taylor’s formula that if |ba| 6= 0
then

Qα(w) = Qα
min + 2|bα|2|w − wαmin|2.

Moreover,
Qα

min = |Mα − wαmin ¯ bα|2.
Straightforward calculations from (7) show

Mα∧bα ¯ bα = M̃α(bα)¯ bα = |bα|2M̃α,

and so

Mα − wαmin ¯ bα = Mα − 1

2
M̃α =

[
1
2
(Mα

11 +Mα
22) 0

0 1
2
(Mα

11 +Mα
22)

]
.

Hence

Qα
min =

1

2
(TrMα)2 .

This gives the expression for Qα(w) if |bα| 6= 0.

The expression 2(a) for Q(w) follows from 1(a) and (9). The first expres-
sion for wmin follows from differentiating the sum of the terms in 1(c) and
setting the derivative to zero. The second expression follows from (8).

Since D2Q(w) = 4|b|2I from 2(a), we have

Q(w) = Qmin + 2|b|2|w − wmin|2.

The expression for Qmin is obtained by setting w = wmin in 1(c), and this
then gives 2(c).

Finally, the first inequality for Q(w) follows from 2(c). It then follows
from the third expression for wmin and the Cauchy-Schwartz inequality that

Q(w) ≥ 1

2

∑
α

(TrMα)2 + 2|b|2
∣∣∣∣∣w −

∑
αM

α(bα)

|b|2
+

∑
α (TrMα) bα

2|b|2

∣∣∣∣∣
2

=
1

2

∑
α

(TrMα)2 + |b|2
∣∣∣∣∣w −

∑
αM

α(bα)

|b|2

∣∣∣∣∣
2

− 1

2
|b|2

∣∣∣∣∣
∑
α (TrMα) bα

|b|2

∣∣∣∣∣
2

+ |b|2
∣∣∣∣∣w −

∑
αM

α(bα)

|b|2
+

∑
α (TrMα) bα

|b|2

∣∣∣∣∣
2

≥ |b|2
∣∣∣∣∣w −

∑
αM

α(bα)

|b|2

∣∣∣∣∣
2

+ |b|2
∣∣∣∣∣w −

∑
αM

α(bα)

|b|2
+

∑
α (TrMα) bα

|b|2

∣∣∣∣∣
2

≥ |b|2
∣∣∣∣∣w −

∑
αM

α(bα)

|b|2

∣∣∣∣∣
2

.
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Notation For x ∈ D and w ∈ IR2 let Q(x,w) be the quadratic expression
in Definition 4.3 with M there replaced by D2X(x) and b replaced by DX.
Thus

E(h) = e−2hQ(· ;Dh).

For fixed x let Qmin(x) denote the minimum value of Q(x; ·) and (recall
|DX(x)| 6= 0) let wmin(x) be the unique point at which this minimum is
taken (see the previous Lemma).

The following observation is useful.

Lemma 4.5

D2Xα(DXα) = |DXα|D|DXα| for α = 1, . . . , n∑
α

D2Xα(DXα) = |DX|D|DX|.

Proof:

D2Xα(DXα) =

∑
j

D1jX
αDjX

α,
∑
j

D2jX
αDjX

α


=

1

2

(
D1(|DXα|2), D2(|DXα|2)

)
=

1

2
D|DXα|2 = |DXα|D|DXα|.

This gives the first result. The second follows from summing the penultimate
expression above.

We now have various expressions involving the energy integrand.

Proposition 4.6

wαmin(·) =
1

2
|DXα|−2D2Xα∧DXα = D log |DXα| − 1

2
|DXα|−24XαDXα,

wmin(·) =
1

2
|DX|−2D2X∧DX = D log |DX| − 1

2
|DX|−24X ·DX,

Qmin(·) = |D2X|2 − 2

∣∣∣∣∣D|DX| − 1

2
4X · DX|DX|

∣∣∣∣∣
2

,

E(h) = e−2hQmin + 2

∣∣∣∣∣D(|DX|e−h)− 1

2
e−h4X · DX|DX|

∣∣∣∣∣
2

,

where 4X ·DX := (
∑
α4XαD1X

α,
∑
α4XαD2X

α).

In case X is conformal, 4X ·DX = (0, 0) and the corresponding expres-
sions simplify accordingly.
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Proof: The given expressions follow from Lemma 4.4, the previous Lemma
and (8).

In case X is conformal then 4X ·DX = (0, 0), since the mean curvature
vector is the Laplacian on the surface S of the position vector and by confor-
mality this is a multiple of the Laplacian on the disc D. Alternatively, one
can differentiate the conformality relations X1 ·X2 = 0 and X1 ·X1 = X2 ·X2

and then add or subtract the appropriate equations.

The following pointwise coercivity type estimate is important.

Proposition 4.7

E(h) ≥
∣∣∣D (

e−h|DX|
)∣∣∣2 .

Proof: From Lemmas 4.4.3 and 4.5 we have

E(h) = e−2h
∣∣∣D2X −Dh¯DX

∣∣∣2
≥ e−2h

∣∣∣∣∣|DX|Dh−
∑
αD

2Xα(DXα)

|DX|

∣∣∣∣∣
2

=
∣∣∣|DX|D(e−h) + e−hD|DX|

∣∣∣2
=

∣∣∣D(e−h|DX|)
∣∣∣2 .

We next see how Qmin(·) measures the flatness of the immersion X. First
we have a pointwise result.

Lemma 4.8 Suppose x ∈ D and Qmin(x) = 0. Then

1. if |DXα(x)| = 0 then D2Xα(x) = 0,

2. if |DXα(x)| 6= 0 then4Xα(x) = 0 and D log |DXα(x)| = D log |DX(x)|.

Moreover, wmin(x) = D log |DX(x)|.
Conversely, if the implications 1 and 2 hold then Qmin(x) = 0.

Proof: Suppose Qmin(x) = 0. The first implication is immediate from
Lemma 4.4.2(c). If |DXα(x)| 6= 0 then 4X(x) = 0 from Lemma 4.4.2(c).
From Proposition 4.6

wαmin(·) = D log |DXα| and wmin(·) = D log |DX|.

The rest of the first part of the proposition follows from Lemma 4.4.2(c) and
by noting Proposition 4.6.

The converse is similar.
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We now show that Qmin(·) ≡ 0 iff X is the composition of a flat conformal
map with an affine transformation.

Proposition 4.9 Suppose Ω ⊂ D is simply connected and open.

If Qmin(·) ≡ 0 in Ω then X[Ω] is contained in a plane. Moreover, X|Ω =
L ◦ G where G : Ω → C is holomorphic and L is affine. Also, wmin(·) =
D log |DX| = D log |G′|.

Conversely, if X|Ω = L ◦ G where G : Ω → C is holomorphic and L is
affine then Qmin(·) ≡ 0 in Ω.

Proof: Assume Qmin(·) ≡ 0 in Ω. From the previous Lemma, 4X = 0
in Ω. Without loss of generality we can assume 0 ∈ Ω and X(0) = 0. For
α = 1, . . . , n let X̃α be the harmonic conjugate of Xα such that X̃α(0) = 0.
Since X is an harmonic immersion we can assume |DXα(x)| > 0 except at
isolated points, as otherwise Xα is constant on Ω in which case we can ignore
the coordinate function Xα.

On the set
Ω′ = {x ∈ Ω : |DXα(x)| > 0 ∀α}.

we have from Proposition 4.8 that

D log |DXα| = D log |DX1|

for α = 2, . . . , n. hence there exist constants cα such that

|DXα| = ecα|DX1|

on Ω′, and hence on Ω by continuity.

Let φα = Xα + iX̃α and note that the φα are holomorphic. We have

|φ′α| = |DXα| = ecα|DX1| = ecα|φ′1|.

Thus the holomorphic functions φ′α/φ
′
1 are constants, and so there exist real

constants Aα and θα and complex constants Bα such that

φα = Aαe
iθαφ1 +Bα.

Since φα(0) = φ1(0) = 0, we have Bα = 0. Taking the real part of each side
we have

X = (X1, . . . , Xn)

= (1, A2 cos θ2, . . . , An cos θn)X1 + (0,−A2 sin θ2, . . . ,−An sin θn)X̃1.

That is, X is contained in the plane spanned by (1, A2 cos θ2, . . . , An cos θn)
and (0,−A2 sin θ2, . . . ,−An sin θn).

By means of an orthonormal transformation of IRn we may assumeX[D] ⊂
IR2. Then we can write[

X1

X2

]
=

[
1 0

A cos θ −A sin θ

] [
X1

X̃1

]
= T ◦G,
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where G = X1 + iX̃1. This establishes the required form for X|Ω. It follows
that |DX| = c|G′| for some constant c, and hence from Proposition 4.8 we
have wmin(x) = D log |DX| = D log |G′|.

For the converse assume X|Ω = L ◦ G where G : Ω → C is holomorphic
and L is affine. By means of an orthonormal transformation in IRn we may
assume X[Ω] ⊂ IR2. From the form of X|Ω there exist non-zero constants
c1, c2 such that

|DXα| = cα|DX|
and

4Xα = 0

for α = 1, 2. The result now follows from Proposition 4.8 since |DXα(x)| 6= 0.

5 Existence of a Minimiser

First we need an auxiliary lemma.

Lemma 5.1 Let Ω ⊂ IRn be a bounded convex domain. Suppose u ∈W 1,2(Ω)
and E ⊂ Ω a measurable set such that |E| > 0. Then∫

Ω
|u|2 ≤ c

(
|E|−2

∫
Ω
|Du|2 + |E|−1

∫
E
|u|2

)
,

where c depends only on n and the diameter of Ω.

Proof: From [GT] (Lemma 7.16, pp 162–3)

|u(x)| ≤ c|E|−1

(∫
Ω

|Du(y)|
|x− y|n−1

dy +
∫
E
|u|
)
.

Integrating over Ω with respect to x,∫
Ω
|u| ≤ c|E|−1

(∫
Ω
|Du|+

∫
E
|u|
)
.

Replacing u by u2,∫
Ω
|u|2 ≤ c|E|−1

(∫
Ω
|u||Du|+

∫
E
|u|2

)
≤ ε

∫
Ω
|u|2 + c|E|−2

∫
Ω
|Du|2 + c|E|−1

∫
E
|u|2,

and the result follows.

The following coercivity estimate is important, and depends on the vari-
ous hypotheses as noted in the subsequent remarks.
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Proposition 5.2 Suppose h ∈ M, X ∈ C2(D; IRn), |DX| > 0 on D, and
Qmin(·) 6≡ 0 on D. Then

‖e−h‖2
W 1,2(D) ≤ c E(h),

where c = c (X).

Proof: There is a measurable E ⊂ D such that |E| > 0 and Qmin ≥ δ > 0
on E. By the hypotheses on X there are positive constants θ and M such
that θ ≤ |DX| ≤M and |D|DX|| ≤M on D.

In the following, constants c will depend only on δ, θ, M and |E|.
From Proposition 4.7 and the previous Lemma, and recalling the Notation

following Lemma 4.4, we have∫
D
e−2h ≤ c

∫
D
|DX|2e−2h

≤ c
(∫

D

∣∣∣D (
|DX|e−h

)∣∣∣2 +
∫
E
|DX|2e−2h

)
≤ c

(
E(h) +

∫
E
Qmin(·)e−2h

)
≤ c

(
E(h) +

∫
E
Q(· ;Dh)e−2h

)
≤ c E(h).

Since∣∣∣De−h∣∣∣ =
∣∣∣D (
|DX|−1

)
|DX|e−h + |DX|−1D

(
|DX|e−h

)∣∣∣
≤ c

(
e−h +D

(
|DX|e−h

))
,

it follows from Proposition 4.7 again that∫
D

∣∣∣De−h∣∣∣2 ≤ c
∫
D

(
e−2h +

∣∣∣D (
|DX|e−h

)∣∣∣2)
≤ c E(h).

This completes the proof.

Remarks 1 The hypothesis |DX| > 0 on D, and not just on D, is neces-
sary.

To see this let
X = G :D → C ∼= IR2

be the holomorphic function given by G(z) = (1− z)2. The pull-back metric
induced on D via G is

gij := |G′|2δij = 4|1− z|2δij = e2 log(2|1−z|)δij.
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Let h = log(2|1− z|). Since X is an isometry from D (with the pull-back
metric g) to X[D] (with the standard metric), it follows that ∇2

gX ≡ 0 on
D and so

E(h) =
∫
D
|∇2

gX|2dg = 0.

However, e−h = 1
2
|1− z|−1 6∈ L2(D).

2 The condition Qmin(x0) 6= 0 for some x0 ∈ D is also necessary. For
example, let X :D → IR2 be the identity map. Then

Q(x;w) = |w ¯ e1|2 + |w ¯ e2|2 = 4|w|2,

where e1, e2 are the usual basis vectors in IR2, and so Qmin(·) ≡ 0. Moreover,
if h is the zero function,

‖e−h‖L2(D) = π and E(h) = 0.

We can now prove the following result, where M is any of the classes
from Definition 4.1.

Theorem 5.3 Suppose X :D → IRn is an immersion where X ∈ C2(D; IRn)
and |DX| > 0 on D. Then there exists h0 ∈M such that

E(h0) = inf
h∈M
E(h).

Proof: Recall

E(h) =
∫
D
e−2h

∣∣∣D2X −Dh¯DX
∣∣∣2 =

∫
D
e−2hQ(x;Dh),

using the Notation following Lemma 4.4.

We consider separately the cases Qmin(x) = 0 for all x ∈ D and Qmin(x) >
0 for some x ∈ D.

First suppose Qmin ≡ 0 in D.

Then from Proposition 4.9, X = L ◦G where G :D → C is holomorphic
and L is affine. Moreover, Q(· ;Dh0) ≡ 0 if h0 = log |G′|+c for some constant
c. Such h0 is harmonic (note that |G′| 6= 0 since X is an immersion) and we
may choose c so that h0 ∈M. Thus h0 is the required minimiser and in this
case E(h0) = 0.

Next suppose Qmin(x0) > 0 for some x0 ∈ D.

Let
γ = inf

h∈M
E(h).

Let {hj} be a minimising sequence. Let kj be the harmonic conjugate of
hj such that kj(0) = 0. Let

φj = e−(hj+ikj).
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Then φj is holomorphic, |φj| = e−hj , |Dφj| = |De−hj |, and hence from Propo-
sition 5.2,

‖φj‖W 1,2(D) ≤M

for some M independent of j.

Passing to a subsequence,

φj → φ0 (say) weakly in W 1,2(D).

Moreover, φ0 is holomorphic and φj → φ0 uniformly on compact subsets of
D and similarly for their derivatives.

Since φj 6= 0 on D it follows from Rouché’s theorem that either φ0 ≡ 0
on D or φ0 6= 0 on D. If φ0 ≡ 0 on D then hj → ∞ uniformly on compact
subsets of D, contradicting hj ∈M (see Definition 4.1).

Hence φ0 6= 0 on D and h0 := − log |φ0| is finite and harmonic. Moreover,
hj → h0 uniformly on compact subsets and similarly for their derivatives.

By Fatou’s Lemma

E(h0) =
∫
D
e−2h0

∣∣∣D2X −Dh0 ¯DX
∣∣∣2

≤ lim
j→∞

∫
D
e−2hj

∣∣∣D2X −Dhj ¯DX
∣∣∣2

= γ.

Note that γ > 0 as otherwise E(h0) = 0. But then E(h0) = 0 and so
Qmin(·) ≡ 0, contradiction.

Thus to show h0 is the required minimiser we need only check that
h0 ∈M.

If hj(0) = 0 for all j then clearly h0(0) = 0.

If
∫
D e

phj = π for all j then
∫
D e

ph0 = c0 ≤ π by Fatou’s Lemma. But if
c0 < π then

h0 := h0 +
1

p
log

π

c

satisfies ∫
D
eph0 = π,

and

E(h0) =
(
c0

π

)2/p

E(h0) < γ,

using γ > 0. This contradicts the definition of γ, and so
∫
D e

ph = π.

By a similar argument, if
∫
∂D e

phj = 2π for all j then
∫
∂D e

ph0 = 2π (recall
the definition of

∫
∂D e

ph following Definition 4.1).

Remark We have in fact shown that

either (i) infh∈M E(h) = 0, which happens iff X = L ◦ G where L is affine
and G : D → C is holomorphic, and in this case h = log |G′| + c for
some constant c;
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or (ii) infh∈M E(h) > 0, in which case any minimising sequence has a
subsequence which converges uniformly on compact subsets, together
with all derivatives, to a minimiser h.

Extensions 1 With the normalisation condition
∫
D e

ph = π or
∫
∂D e

ph =
2π one can weaken the requirement |DX| > 0 on D to |DX| > 0 on D, thus
allowing boundary branch points.

Proposition 5.2 is no longer valid, but the proof of the previous Theorem
in case Qmin(x0) > 0 for some x0 ∈ D can be modified as follows.

First define
ψj = ep(hj+ikj)/2

where kj is the harmonic conjugate of hj. Then the ψj are uniformly bounded
in L2(D) (note that −∫D eph ≤ −∫∂D eph). Hence, passing to a subsequence,

ψj → ψ0 (say) weakly in L2(D).

Moreover, ψ0 is holomorphic and ψj → ψ0 uniformly on compact subsets and
similarly for their derivatives.

Since ψj 6= 0 on D it follows from Rouché’s Theorem that either ψ0 ≡ 0
on D or ψ0 6= 0 on D. If ψ0 ≡ 0 then hj → −∞ uniformly on compact
subsets of D. Since Qmin 6≡ 0, there is a compact E ⊂ D such that |E| > 0
and Qmin ≥ δ > 0 on E. Then

E(hj) ≥
∫
E
e−2hjQmin →∞,

contradicting the fact that hj is a minimising sequence. Hence ψ0 6= 0 on D.

Thus h0 := 2(log |ψ0|)/p is finite and harmonic. The proof that h0 is a
minimiser now proceeds as before.

2 With the same normalisation condition
∫
D e

ph = π or
∫
∂D e

ph = 2π and
assuming Qmin 6≡ 0 (in particular if the parametrised surface X[D] is not
flat), then one can completely drop the requirement |DX| > 0 on D in the
previous Theorem. In particular, one can allow interior branch points.

In particular, if X is a conformal branched immersion and F (z) :=∫ z
0 e

h0+ik0 where h0 is the minimiser and k0 is the harmonic conjugate, then
(F [D], X ◦ F−1) can be taken as the optimal branched conformal immersion
for the surface X[D]. As in the case of no branch points, F [D] may be a
domain with “multiplicity”.

3 In case X is one-one it is natural to consider the classM∗ of h ∈M such
that if F =

∫
eh+ik then F is one-one (since in this case the parametrisation

(F [D], X ◦ F−1) is also one-one). One can then prove the existence of a
minimiser in M∗ as follows.

First suppose Qmin ≡ 0. Then using the notation from the proof of the
Theorem, if F0 =

∫
eh0+ik0 , one has

F0 = ecG = ec L ◦X.
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In particular, F0 is one-one.

If Qmin(x0) > 0 for some x0 ∈ D, writing φ0 = e−(h0+ik0), let

Fj(z) =
∫ z

0
ehj+ikj =

∫ z

0
φj
−1, F0(z) =

∫ z

0
eh0+ik0 =

∫ z

0
φ0
−1.

Then Fj → F0 uniformly on compact subsets of D. Hence if each Fj is
one-one on D then F0 is also one-one on D by Rouché’s Theorem.

6 The Conformal Case and Examples

Let S be the surface given by the immersion X :D → IRn. The metric on S
is given by gij = Xi ·Xj. Let Γkij be the corresponding Christoffel symbols.
Let A be the second fundamental form. Then

Xij =
∑
k

ΓkijXk + A(Xi, Xj). (19)

If n = 3 then |A|2 = κ2
1 +κ2

2 where κ1 and κ2 are the principal curvatures.
The mean curvature is H = (κ1+κ2)/2 and the Gauss curvature is K = κ1κ2.

In the remainder of this section we assume X is conformal.

To simplify notation we set

Λ = |DX|2/2,

so that
√

Λ is the conformal factor associated with X.

We will derive several useful expressions for the energy integrand E(h).
First recall (see Proposition 4.6) that4X ·X = (0, 0) in this case. Moreover,
we have the following useful observation

Lemma 6.1 If X :D → IRn is conformal then

|D2X|2 = 2|D|DX| |2 +
1

4
|DX|4|A|2.

If n = 3, then
|D2X|2 = 4Λ2H2 +4Λ.

Proof: From the conformality of X, gij = Λδij. By standard computations
(as for (18)) we have

Γ1
11 = −Γ1

22 = Γ2
12 = Γ2

21 = 1
2
D1Λ/Λ,

Γ2
22 = −Γ2

11 = Γ1
12 = Γ1

21 = 1
2
D2Λ/Λ.

By an orthonormal transformation of IRn we may assume at a fixed x ∈ D
that X1 =

√
Λe1, X2 =

√
Λe2. From (19) it follows that

|D2X|2 = Λ−1|DΛ|2 + Λ2|A|2

= 2|D|DX||2 +
1

4
|DX|4|A|2.
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If n = 3, then
|D2X|2 = Λ−1|DΛ|2 + Λ2(4H2 − 2K).

Since (e.g. [DHKW] pp 26,27)

K = − 1

Λ
4 log

√
Λ = − 1

2Λ2

(
4Λ− 1

Λ
|DΛ|2

)
,

we have
|D2X|2 = 4Λ2H2 +4Λ.

Proposition 6.2 If X :D → IRn is conformal then

E(h) = e−2h
(
|D2X|2 − 2|D|DX| |2

)
+ 2

∣∣∣D(e−h|DX|)
∣∣∣2

=
1

4
e−2h|DX|4|A|2 + 2

∣∣∣D(e−h|DX|)
∣∣∣2 .

If n = 3 then
E(h) = 4e−2hΛ2H2 +4(e−2hΛ).

Proof: The first two formulae are immediate from Proposition 4.6, the fact
4X ·DX = (0, 0) and the previous Lemma.

For the third formula we compute using the previous Lemma that

E(h) = e−2h
(
|D2X|2 − 4|D

√
Λ|2

)
+ 4

∣∣∣D(e−h
√

Λ)
∣∣∣2

= e−2h
(
4Λ2H2 +4Λ− 4|D

√
Λ|2

)
+

4e−2h|D
√

Λ|2 − 8e−2hD
√

Λ ·Dh
√

Λ + 4Λe−2h|Dh|2

= e−2h
(
4Λ2H2 +4Λ− 4Dh ·DΛ + 4Λ|Dh|2

)
= 4e−2hΛ2H2 + e−2h4Λ + 2De−2h ·DΛ + Λ4e−2h(

noting 4e−2h = 4e−2h|Dh|2 since 4h = 0
)

= 4e−2hΛ2H2 +4(e−2hΛ).

This completes the proof.

With the help of these expressions for a conformal immersion we now
show that the standard Weierstrass representation of Enneper’s surface is
optimal.

Proposition 6.3 For R > 0 and z ∈ D let

XR(z) = Re
∫ z

0

(
1

2
(1−R2ζ2),

i

2
(1 +R2ζ2), Rζ

)
dζ,

be the standard parametrisation of a part of Enneper’s surface.

Then h ≡ 0 is the unique minimiser of E(h). Equivalently, (D,XR) is
the unique optimal conformal parametrisation.
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Proof: We have

Λ =
1

2
|DXR(z)|2 =

1

4

(
|1−R2z2|2 + |1 +R2z2|2 + 4R2|z|2

)
=

1

2

(
1 +R2|z|2

)2
=

1

2

(
1 +R2r2

)2
,

where r = |z|. In particular, Λ is rotationally symmetric.

From Proposition 6.2, if 0 denotes the zero function,

E(h)− E(0) =
∫
D
4
(
(e−2h − 1)Λ

)
=

∫
∂D

∂

∂r

(
(e−2h − 1)Λ

)
=

∂Λ

∂r
(1)

∫
∂D

(e−2h − 1) + Λ(1)
∫
D
4e−2h. (20)

The normalisation conditions
∫
D e

ph = π and
∫
∂D e

ph = 2π imply h(0) ≤
0 by the subharmonicity of eph. Thus all three normalisation conditions
imply e−2h(0) − 1 ≥ 0 and hence the first integrand in (20) is positive, again
by subharmonicity. The second integral is also positive. Finally ∂Λ

∂r
(1) =

2R2(1 +R2) > 0 and Λ(1) = (1 +R2)2/2 > 0.

It follows that the zero function is the unique minimiser, since 4e−2h =
4|Dh|2e−2h = 0 iff h ≡ 0.

Stereographic projection of the unit disc onto a spherical cap in S2 is
given by

X = XR : D → SR

where

XR(x, y) =
(2Rx, 2Ry,R2(x2 + y2)− 1))

1 +R2(x2 + y2)
.

The image SR = X[D] is the lower spherical cap

SR = S2 ∩
{

(u, v, w) : w <
R2 − 1

R2 + 1

}
.

Straightforward computations show that

Λ = ΛR =
4R2

(1 + r2R2)2
, (21)

4Λ = Λ′′ + r−1Λ′ =
32(−1 + 2r2R2)R4

(1 + r2R2)4
. (22)

Denote by
ER(h)

the energy functional corresponding to XR.

We first compute another form for the energy functional in the general
case that Λ is rotationally symmetric.
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Lemma 6.4 If X :D → IR3 is conformal and Λ is rotationally symmetric,
then

E(h) =
∫
D

(4Λ2H2 +4Λ)e−2h +
∫
D

(2Λ(1)− Λ)4e−2h.

Proof: From Proposition 6.2,

E(h) =
∫
D

4e−2hΛ2H2 +
∫
D
4(Λe−2h)

=
∫
D

(4Λ2H2 +4Λ)e−2h + 2D(Λ− Λ(1)) ·De−2h + Λ4e−2h

=
∫
D

(4Λ2H2 +4Λ)e−2h − 2(Λ− Λ(1))4e−2h + Λ4e−2h

=
∫
D

(4Λ2H2 +4Λ)e−2h + (2Λ(1)− Λ)4e−2h.

Theorem 6.5 The function h ≡ 0 is the unique minimiser of ER(h). Equiv-
alently, the map XR :D → SR is the unique optimal conformal parametrisa-
tion of SR.

Proof: From (21), (22) and the previous Lemma, if 0 denotes the zero
function, then

ER(h)− ER(0) =
∫
D
hR(r)

(
e−2h − 1

)
+
∫
D
gR(r)4e−2h

=
∫ 1

0
rhR(r)

(∫ 2π

0
e−2h − 1 dθ

)
dr

+
∫ 1

0
rgR(r)

(∫ 2π

0
4e−2hdθ

)
dr, (23)

where

h(r) = hR(r) =
32(1 + 2r2R2)R4

(1 + r2R2)4
,

g(r) = gR(r) =
8R2

(1 +R2)2
− 4R2

(1 + r2R2)2
.

Note for future reference that

hR(r) > 0 if 0 ≤ r ≤ 1, (24)

∫ 1

0
rgR(r) dr =

2(1−R2)R2

(1 +R2)2
, (25)

and for r ∈ [0, 1]

gR(r)


≤ 0 if r ≤

√
1√
2
−
√

2−1
R2

≥ 0 if r ≥
√

1√
2
−
√

2−1
R2 .

(26)
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If R ≤
√

2−
√

2 then the second alternative in (26) holds for all r ∈ [0, 1].

Let k be the harmonic conjugate of h such that k(0) = 0 and define

f = e−(h+ik). (27)

Then f is holomorphic, |f |2 = e−2h, and

4e−2h = 4|f |2 = 4
∂

∂z

∂

∂z

(
ff
)

= 4|f ′|2. (28)

Since f is holomorphic we can write

f(z) =
∑
n≥0

anz
n =

∑
n≥0

anr
n(cosnθ + i sinnθ).

Since |f(0)| = e−h(0) and h(0) ≤ 0 (see the penultimate paragraph of the
proof of Proposition 6.3) it follows

|f(0)| = |a0| ≥ 1. (29)

Moreover ∫ 2π

0
|f |2dθ = 2π

∑
n≥0

|an|2r2n,

∫ 2π

0
|f ′|2dθ = 2π

∑
n≥1

n2|an|2r2n−2.

Hence (c.f. (23))∫ 1

0
rhR(r)

(∫ 2π

0
e−2h − 1 dθ

)
dr ≥ 2π

∑
n≥1

|an|2
∫ 1

0
r2n+1hR(r) ,

using (29). Also, using (28),∫ 1

0
rgR(r)

(∫ 2π

0
4e−2hdθ

)
dr = 8π

∑
n≥1

|an|2
∫ 1

0
n2r2n−1gR(r).

Hence

ER(h)− ER(0) ≥ 2π
∑
n≥1

|an|2
∫ 1

0
FR,n(r), (30)

where
FR,n(r) := r2n+1hR(r) + 4n2r2n−1gR(r). (31)

For R ≤ 1 it follows from (24), (25), (26) and the observation rk is a
positive increasing function of r ∈ [0, 1] if k ≥ 0, that∫ 1

0
FR,n(r)dr > 0 if n ≥ 1.

This proves the Theorem in this case.
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For general R > 0, direct and tedious computation (see the following
Lemma) shows ∫ 1

0
FR,n(r)dr > 0 if n = 1, 2, 3 (32)∫ 1

0
r7gR(r)dr > 0. (33)

It follows from this, (24), (31) and once again the fact that rk is a positive
increasing function of r, that∫ 1

0
FR,n(r)dr > 0 if n ≥ 1 and R ≥ 1.

This completes the proof of the Theorem.

We remark that if n = 1, 2, 3 then in fact
∫ 1

0 r
2n−1gR(r)dr < 0 for suffi-

ciently large R. But this is compensated for by the positivity of the integral∫ 1
0 r

2n+1hR(r)dr, c.f. (30) and (31).

The following result was first proved by MathematicaTM.

Lemma 6.6 Using the notation of the previous Theorem, one has for R > 0
that ∫ 1

0
FR,n(r)dr > 0 if n = 1, 2, 3 (34)∫ 1

0
r7gR(r)dr > 0. (35)

Proof: With the aid of MathematicaTM, one computes∫
FR,1(r)dr =

−16

3(1 +R2r2)3 +
24

(1 +R2r2)2 −
24

1 +R2r2
+

16 (1 +R2r2)

(1 +R2)2 ,

∫
FR,2(r)dr =

64R2r4

2(1 +R2)4 +
128R4r4

2(1 +R2)4 +
64R6r4

2(1 +R2)4 +
16

3R2(1 +R2r2)3

− 32

R2(1 +R2r2)2 +
48

R2 (1 +R2r2)
,∫

FR,3(r)dr =
8

3
R−4

(
1 +R2

)−2(
1 +R2r2

)−3
·((

−14− 28R2 − 14R4 − 54R2r2 − 108R4r2 − 54R6r2

− 72R4r4 − 144R6r4 − 72R8r4 − 27R6r6 − 90R8r6

− 45R10r6 + 39R8r8 − 30R10r8 − 15R12r8

+ 54R10r10 + 18R12r12
)

+ 12 log(1 +R2r2)
(

1 + 2R2 +R4 + 3R2r2 + 6R4r2+

+ 3R6r2 + 3R4r4 + 6R6r4 + 3R8r4 +R6r6 + 2R8r6

+R10r6
))
.
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Differentiating back with MathematicaTM, one checks these results.

Hence∫ 1

0
FR,1(r)dr =

8R2 (3 + 3R2 + 2R4)

3(1 +R2)3 ,

∫ 1

0
FR,2(r)dr =

16R2 (3 + 2R2)

3(1 +R2)3 ,

∫ 1

0
FR,3(r)dr =

8

3
R−4

(
1 +R2

)−3
(
−12R2 − 30R4 − 13R6 + 3R8

+12 log(1 +R2)
(

1 + 3R2 + 3R4 +R6
))
.

The first two of these expressions are clearly positive for all R. For the
third denote the numerator by p(R2). Then

p(x) = −12x− 30x2 − 13x3 + 3x4 + 12
(
1 + 3x+ 3x2 + x3

)
log(1 + x)

p′(x) = −36x− 27x2 + 12x3 + 36(1 + 2x+ x2) log(1 + x)

p′′(x) = −18x+ 36x2 + 72(1 + x) log(1 + x)

p′′′(x) = 54 + 72x+ 72 log(1 + x).

Thus p(0) = p′(0) = p′′(0) = 0 and p′′′(x) > 0 if x > 0. It follows p(R2) > 0
if R > 0. This completes the proof of (34).

We next compute with MathematicaTM, differentiating back as a check,
that∫
r7gR(r)dr = R−6

(
1 +R2

)−2 (
1 +R2r2

)−1
·((

−2− 4R2 − 2R4 + 4R2r2 + 8R4r2 + 4R6r2

+ 3R4r4 + 6R6r4 + 3R8r4 −R6r6 − 2R8r6

−R10r6 +R8r8 +R10r10
)

− 6 log(1 +R2r2)
(

1 + 2R2 +R4 +R2r2 + 2R4r2 +R6r2
))
.

Hence

∫ 1

0
r7gR(r)dr =

6R2 + 9R4 + 2R6 − 6 log(1 +R2)
(

1 + 2R2 +R4

)
R6(1 +R2)2 .

Denoting the numerator by q(R2) one obtains

q(x) = 6x+ 9x2 + 2x3 − 6(1 + 2x+ x2) log(1 + x),

q′(x) = 12x+ 6x2 − 12 log(1 + x)− 12x log(1 + x),

q′′(x) = 12x− 12 log(1 + x).

Thus q(0) = q′(0) = 0 and q′′(x) > 0 if x > 0. It follows q(R2) > 0 if R > 0.

This completes the proof of the Lemma.
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