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Abstract. New metrics are introduced in the space of random measures and
are applied, with various modifications of the contraction method, to prove
existence and uniqueness results for self-similar random fractal measures. We
obtain exponential convergence, both in distribution and almost surely, of
an iterative sequence of random measures (defined by means of the scaling
operator) to a unique self-similar random measure. The assumptions are quite
weak, and correspond to similar conditions in the deterministic case.

The fixed mass case is handled in a direct way based on regularity properties
of the metrics and the properties of a natural probability space. To prove
convergence in the random mass case needs additional tools such as a specially
adapted choice of the space of random measures and of the space of probability
distributions on measures, the introduction of reweighted sequences of random
measures and a comparison technique.

1. Introduction

A theory of self-similar fractal sets and measures was developed in Hutchinson
(1981). Further results and applications to image compression were obtained by
Barnsley and Demko (1985) and Barnsley (1988).

Falconer (1986), Graf (1987) and Mauldin and Williams (1986) randomized each
step in the approximation process to obtain self-similar random fractal sets. Ar-
beiter (1991) introduced and studied self-similar random fractal measures, see also
Olsen (1994). For further material see Zähle (1988), Patzschke and Zähle (1990),
the survey in Hutchinson (1995), and the references in all of these.

In this paper we first introduce metrics `∗p and `∗∗p , for 0 < p < ∞, on the spaces
of random measures (with random supports) and their distributions, respectively.
Unlike the much simpler case for the Lp and `p metrics on real random variables
(see Rachev and Rüschendorf (1995) and Rösler (1992)), the contraction properties
of these new metrics arise from the linear structure of the set of measures rather
than any independence properties. As a consequence it is possible to handle non-
independent sums of measures, a surprising fact in the theory of probability metrics
(c.f. the construction of Brownian motion in Hutchinson and Rüschendorf (1999)).

Based on contraction properties of random scaling operators with respect to `∗p
and `∗∗p we establish existence, uniqueness and approximation properties of self-
similar random fractal measures under very general conditions concerning the scal-
ing system. We obtain exponential rates of convergence a.s. and in distribution, as
well as convergence of moments, for the usual approximating sequences of random
fractal measures. The major hypotheses are that E

∑
pir

p
i < 1 for some p > 0 and

E
∑

pi = 1 (where ri are the Lipschitz constants for the functions Si determining
the random scaling operator, and pi are the random weights, see Definition 2.1).
Passing to the limit p → 0 gives results under the very weak hypotheses of Corol-
laries 2.7 and 3.4. (In the deterministic case one obtains a very short proof of the
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Barnsley-Elton Theorem, originally established by Markov process arguments —
see Barnsley and Elton (1985, 1988).)

The proof of existence, uniqueness and convergence in distribution in case the
masses of the random measures are constant follows from the fact that the ran-
dom scaling operator induces a contraction with respect to `∗∗p (see Theorem 2.6).
Note, however, that the argument is not merely an application of the determinis-
tic arguments at the individual realisation level — such arguments lead to much
weaker results. Essentially one then needs to assume

∑
pir

p
i < 1 a.s., rather than

E
∑

pir
p
i < 1.

In order to prove a.s. convergence of approximating sequences at the random
measure level, as opposed to convergence in distribution, one needs to use the com-

pound metric `∗p and the natural sample space Ω̃ of “construction trees”, as well as a
“non-constructive” extension of the random scaling operator from the distribution
level to the random measure level (see (3.5), Remark 3.1 and Theorem 3.2). The

tree construction Ω̃ was used in a crucial manner in the work of Kahane and Peyrière
(1976) (see also the references therein) and in the papers by Falconer (1986), Graf
(1987), Mauldin and Williams (1986), and Arbeiter (1991). But apart from our
earlier paper Hutchinson and Rüschendorf (1998), it is nowhere else used to our
knowledge in the critical manner of the present paper. More precisely, by means
of the shift operators ω 7→ ω(i), we avoid martingale arguments and are thus able
to improve a.s. convergence to exponential convergence (for the random measures
and masses, not just their distributions). See Theorem 3.2 and Lemma 4.4.

The variable mass case in Section 4 requires a number of additional new ideas.
The first is the introduction of sets M

∗
p and M∗

p of random measures and their
associated distributions in (4.7) and (4.3). This is needed to handle the difficulty
caused by the fact that our metrics lead to infinite distance between two random
measures, unless they have the same random mass a.s. (as opposed to just having
the same expected mass). The second major point is the introduction of renor-
malised random measures µn. In this manner we are able to handle the interplay
between weights with E

∑
pi = 1 (rather than

∑
pi = 1 a.s.) and random trans-

formations (S1, . . . Sn).
As a consequence we are able to apply probability metric arguments to random

measures with variable mass, random supports and even non-independent sums.
Results similar to those for the fixed mass case are then obtained.

By way of comparison with previous work, we note that the results in Kahane
and Peyrière (1976), Rachev and Rüschendorf (1995) and Rösler (1992) refer only
to random masses (i.e. random real variables) and not random transformations or
random measures in general. In Hutchinson and Rüschendorf (1998) we introduced
“Monge-Kantorovich type” metrics on random measures and their distributions.
Although those metrics are equivalent to `∗1 and `∗∗1 , they cannot be directly ex-
tended to the present setting. Moreover, we did not treat the variable mass case in
the earlier paper.

The corresponding results of Falconer, Graf, Mauldin and Williams, and Olsen,
follow from the case ri < 1 a.s. and

∑
pi = 1 a.s., although the arguments in Olsen

can be modified to give stronger results which then follow from the case
∑

piri < 1
a.s. and

∑
pi = 1 a.s.. Arbeiter (using martingale arguments) assumes E

∑
pi = 1

and restricts considerations to contraction maps, although much of his work can be
extended and then follows from the additional assumption E

∑
piri < 1. In all cases

we obtain stronger quantitative convergence results. But we also obtain our results
under much weaker hypotheses with a simpler and more general approach. Finally,
the techniques introduced here can be applied in other situations, in particular
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to the construction of various stochastic processes as noted in Hutchinson and
Rüschendorf (1999).

We next discuss in a somewhat informal manner the main results and techniques
in the paper. We refer to the example at the end of this section and those in
Section 2 of Hutchinson and Rüschendorf (1998) as motivation for the following.

Let (X, d) be a complete metric space; the reader should think of the case X = R
2

with the Euclidean metric. A scaling law (p1, S1, . . . , pN , SN ) is a 2N -tuple of real
numbers pi ≥ 0 with

∑
pi = 1, and Lipschitz maps Si : X → X with Lipschitz

constants denoted by ri. A random scaling law S is a random variable whose values
are scaling laws, except that the condition

∑
pi = 1 is replaced by E

∑
pi = 1.

The distribution induced by S is denoted by S. We now fix S and S.
We are interested in random measures µ with values in the set of Radon mea-

sures on X, and the corresponding probability distributions P (on the set of Radon
measures on X) induced by such random measures.

Given a random measure µ, one defines the random measure

Sµ =

N∑

i=1

piSiµ
(i),

where (p1, S1, . . . , pN , SN) is chosen with distribution S, and the µ(i) are iid copies
of µ, independent of (p1, S1, . . . , pN , SN). This is only defined up to distribution;
the corresponding probability distribution on measures is denoted by

SP = dist

N∑

i=1

piSiµ
(i),

where P = dist µ. Thus we can regard S and S as scaling operators which operate
respectively on random measures or on the corresponding probability distributions
on measures. Equivalently, S and S can be regarded as random iterated function
systems, using an extension of the well-known terminology of Barnsley to the ran-
dom setting.

One can iterate this construction to obtain sequences

µ0 = µ, µ1 = Sµ, µ2 = S2µ, . . . , µn = Snµ, . . . ,(1.1)

P0 = P , P1 = SP , P2 = S2P , . . . , Pn = SnP , . . . .(1.2)

Under quite general conditions one has convergence of these sequences to a random
measure µ∗ and probability distribution P∗ respectively, where P∗ = dist µ∗. More-
over, P∗ is self-similar, in the sense that SP∗ = P∗, and is the unique probability
distribution on measures with this property.

In Sections 2 and 3 we restrict to the constant mass condition
∑

pi = 1 a.s., but
consider the case E

∑
pir

p
i < 1 for arbitrary p > 0. Note that by taking the limit

as p → 0 this is the random analogue of the condition of Barnsley et. al., namely
E

∑
pi log ri < 0, see Remark 2.8. We first define extensions `∗p and `∗∗p of the

usual minimal `p metric (on the space of unit mass measures on X) to the spaces of
random measures and of induced probability distributions respectively, see (2.13)
and (2.16). We then show that S and S are contraction maps in the appropriate
spaces under the metrics `∗∗p and `∗p, thus leading to existence, uniqueness, expo-
nential convergence and convergence of moments; see Theorems 2.6 and 3.2. As in
the case of Hutchinson and Rüschendorf (1998), in order to establish the a.s. con-
vergence (as opposed to convergence in distribution), one needs to carefully extend
the scaling operator S to the random measure level on the space of “construction
trees”, see (3.5). In fact, one gets exponential a.s. convergence, see Remark 3.3.
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In Section 4 we replace the condition
∑

pi = 1 a.s. by E
∑

pi = 1. This latter
is necessary if the expected masses of terms in sequence (1.1) are to converge. But
there are now difficulties in applying contraction methods and thus establishing
exponential rates of convergence. The problem is that the extension of `∗∗p and `∗p
to pairs of random measures whose masses are not a.s. equal, yields the value ∞;
see the discussion at the beginning of Section 4.

However, the problem can be resolved as follows.
One first notes that if P∗ is a self-similar probability distribution on measures,

then the corresponding probability distribution of masses (a probability distribution
on R) is self-similar in a natural sense, see (4.1) and (4.2). The existence and
uniqueness of a self-similar probability distribution P ∗ on R is established by a
contraction mapping argument in Lemma 4.1. We then define a certain class M∗

p

of probability distributions on measures for which the corresponding masses have
distribution P ∗, see (4.7). One shows that `∗∗p is a complete (finite) metric on this
space and that S is a contraction map (Theorem 4.3), thus establishing existence
and uniqueness of a self-similar P∗, and in fact in a larger class obtained by dropping
the mass restriction.

This still does not establish convergence of the sequence (1.2), unless P0 has mass
distribution P ∗. But this mass distribution is not known apriori in any constructive
sense, and in any case we would like to have (exponential) convergence from any
initial constant unit mass measure (which would not have mass distribution P ∗

unless the latter is constant) .
The next step is to switch to the space of “construction trees” and again use the

extended operator S defined in Section 3. Analogous to before, one notes that if
the random measure µ∗ is a fixed point of S then the corresponding real random
variable given by the mass is self-similar, see (4.6). The existence and uniqueness
of such a self-similar real random variable X∗ is established, again by a contraction
argument, in Lemma 4.4. Working in the class of random measures with mass given
by X∗, a contraction argument gives the existence and uniqueness of a fixed point
µ∗ for S, and thence in a larger class obtained by dropping the mass restriction,
see Theorem 4.5, Step 1.

One next modifies the sequence (1.1) by reweighting each of the Nn “compo-
nents” of µn in such a way that the new sequence of random measures µn have their
masses given by X∗. This allows one to show µn → µ∗ in the `∗p metric. A sepa-
rate argument shows that µn → µ∗ in the weak sense of measures, in a uniformly
exponential manner against certain classes of Lipschitz functions, see Theorem 4.5,
Step 2. Finally, one shows that µn − µn → 0 in a similar sense, analogous to an
argument in Arbeiter (1991), see Theorem 4.5, Step 3.

The conclusion is convergence a.s. of the sequence (1.1) in a uniformly exponen-
tial manner, and uniform exponential convergence of the probability distributions
in sequence (1.2) is also a consequence, see Remarks 4.6 and 4.7.

The following example comes from the Diploma thesis of N. Müller (1995). It
indicates that by using random weights the random fractal measure is able to
avoid the mass concentration phenomenon which is typical for deterministic fractal
measures (see also the detailed discussion in D. Saupe (1988)). This allows more
realistic models for the simulation of natural objects. It should be noted, however,
that this is a rather special case of the results treated here. In particular, the
supports of the measures are not random and also

∑
pi = 1 a.s..

In both Figures 2 and 3, N = 4 and the contraction maps Si map the unit square
Q to the corresponding square Qi. Figure 2 shows the self-similar deterministic frac-
tal measure given by certain fixed weights pi = mi satisfying

∑
pi = 1 (as indicated
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schematically in Figure 1). Figure 3 shows one realisation of the self-similar random
fractal measure in case the given p1, p2, p3, p4 are randomly permuted.

Q

Q Q

Q Q
0 1

2 3

m1

m3

m2

m0
1

Figure 1: Partition of the support and development of mass, mi = pi

Figure 2: Deterministic fractal measure (showing the mass concentration
phenomenon)

Figure 3: Random fractal measure (with improved mass distribution)

The authors thank D. Saupe and N. Müller for discussions on the subject and
for providing the simulations. Part of this work was supported by grants from the
Australian Research Council, and done while the first author was a visitor at the
University of Freiburg supported by the Deutsche Forschungsgemeinschaft.
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2. Probability metrics and self-similar random fractals

Let (X, d) be a complete separable metric space and let M = M(X) denote the
set of finite mass Radon measures on X with the weak topology and corresponding
Borel σ-algebra. Denote the mass of µ ∈ M by |µ| := µ(X).

Typically, X = R
n for 1 ≤ n ≤ 3.

Let (Ω,A, Q) be an underlying probability space, and let M denote the set of all
random measures µ with values in M , i.e. random variables µ : Ω → M . Let M
denote the corresponding class of probability distributions on M , i.e.

M = {P = dist µ | µ ∈ M }.

The scaling properties of random fractal measures are described by scaling laws.

Definition 2.1. A scaling law (p1, S1, . . . , pN , SN ) is a 2N -tuple of real numbers
pi ≥ 0 with

∑
pi = 1, and Lipschitz maps Si : X → X. A random scaling law S is

a random variable whose values are scaling laws, but with the condition
∑

pi = 1
replaced by E

∑
pi = 1. We will usually consider a fixed S, and let S denote the

corresponding distribution induced by S.
The associated random scaling operators S : M → M and S : M → M are

defined by

Sµ =

N∑

i=1

piSiµ
(i),(2.1)

SP = dist

N∑

i=1

piSiµ
(i),(2.2)

where µ(i) d
= µ

d
= P , S = (p1, S1, . . . , pN , SN )

d
= S and µ(1), . . . , µ(N),S are inde-

pendent.

Here Siµ
(i) is the image of µ(i) under Si (or the push forward measure) and

d
=

always denotes equality in distribution.
We denote the Lipschitz constant of Si by ri, i.e.

ri = Lip Si.

Remark 2.2. The random variables µ(i)(ω) are only determined up to their distri-
butions, and in particular are not determined pointwise by the random variables
S(ω) and µ(ω). However, in Section 3 we see how to define a natural probability

space Ω̃, in which case we do have canonical representatives for µ(i)(ω), see (3.3) In

this setting we define the random measure Sµ pointwise so that Sµ
d
= SP , see (3.5).

See also Remark 3.1.

Definition 2.3. Let S be a random scaling law with distribution S, and let µ ∈ M

be a random measure with distribution P ∈ M. If

SP = P ,

then µ is called a random fractal measure self-similar w.r.t. S, and P is called a
random fractal measure distribution self-similar w.r.t. S.

The following recursive construction of a sequence of random measures will be
shown to converge under quite general conditions to a self-similar measure.

Definition 2.4. Beginning with an initial measure µ0 ∈ M (or more generally a
random measure µ0 ∈ M) one iteratively applies iid scaling laws with distribution
S to obtain a sequence µn of random measures in M, and a corresponding sequence
Pn of distributions in M, as follows.
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(1) Select a scaling law S = (p1, S1, . . . , pN , SN ) via the distribution S and
define

µ1 =

N∑

i=1

piSiµ0, i.e. µ1(ω) =

N∑

i=1

pi(ω)Si(ω)µ0, P1
d
= µ1,

(2) Select S1, . . . ,SN via S with Si = (pi
1, S

i
1, . . . , p

i
N , Si

N ) independent of each
other and of S and define

µ2 =
∑

i,j

pip
i
jSi ◦ Si

j µ0, P2
d
= µ2,

(3) Select Sij = (pij
1 , S

ij
1 , . . . , p

ij
N , S

ij
N ) via S independent of one another and of

S1, . . . ,SN ,S and define

µ3 =
∑

i,j,k

pip
i
jp

ij
k Si ◦ Si

j ◦ S
ij
k µ0, P3

d
= µ3,

(4) etc.

Thus µn+1 =
∑

piSiµ
(i)
n where µ

(i)
n

d
= µn

d
= Pn, S = (p1, S1, . . . , pN , SN)

d
= S,

and the µ
(i)
n and S are independent. It follows that

Pn = SPn−1 = SnP0,

where P0 is the distribution corresponding to µ0 (so P0 is constant if µ0 ∈ M).

In future, p > 0 is any positive number.

We next introduce some of the various spaces and metrics which we will use in
the paper.

Let Mp = Mp(X) denote the set of unit mass Radon measures µ on X with finite
p-th moment. That is

(2.3) Mp =

{
µ ∈ M

∣∣∣∣ |µ| = 1,

∫
dp(x, a) dµ(x) < ∞

}

for some (and hence any) a ∈ X. In particular, Mp ⊂ Mq if q ≤ p. Note that µ

can be considered as a probability distribution on X, in which case the moment
condition becomes

(2.4) Edp(X, a) < ∞ if X
d
= µ.

The minimal metric `p on Mp is defined by

(2.5) `p(µ, ν) = inf
{

(Edp(X, Y ))
1

p
∧1

∣∣∣ X
d
= µ, Y

d
= ν

}
,

where ∧ denotes the minimum of the relevant numbers. Equivalently,

(2.6) `p(µ, ν) = inf

{(∫
dp(x, y) dγ(x, y)

) 1

p
∧1 ∣∣∣∣ π1γ = µ, π2γ = ν

}
,

where πiγ denotes the i-th marginal of γ, i.e. projection of the measure γ on X×X

onto the i-th component.
It will be convenient in Section 4 to extend the definition of `p to arbitrary

µ, ν ∈ M . Version (2.6) immediately carries over to this setting; version (2.5) is
valid if we allow “random variables” for which the underlying probability measure
need not have unit mass. Consistent with (2.6), we define `p(µ, ν) = ∞ if µ and ν

have unequal masses.
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Note that if δa is the Dirac measure at a ∈ X then

(2.7)
`p(µ, |µ| δa) =

(∫
dp(x, a) dµ(x)

) 1

p
∧1

,

`p(δa, δb) = d1∧p(a, b).

Remark 2.5.
1. (Mp, `p) is a complete separable metric space and `p(µn, µ) → 0 if and only if

(1) µn
w
→ µ (weak convergence) and

(2)
∫

dp(x, a) dµn(x) →
∫

dp(x, a) dµ(x) (convergence of p-th moments).

2. The metric `1 is identical to the Monge Kantorovich metric defined by

(2.8) dMK(µ, ν) = sup

{ ∣∣∣
∫

f dµ −

∫
f dν

∣∣∣
∣∣∣∣ Lip f ≤ 1

}
,

where f : X → R. Hutchinson (1981) used this metric for the construction of fractal
measures. An extension using `p was given in Rachev and Rüschendorf (1995).

3. For measures µ, ν not necessarily of unit mass, and for p ≥ 1, one has

(2.9)
`p
p(αµ, αν) = α`p

p(µ, ν),

`p
p(µ1 + µ2, ν1 + ν2) ≤ `p

p(µ1, ν1) + `p
p(µ2, ν2).

The first follows from (2.6) by setting γ = cγ̃ where γ̃ is optimal for (µ, ν). The
second follows be setting γ = γ1 + γ2 where γi is optimal for (µi, νi). A similar
result holds for 0 < p < 1 if `p

p is replaced by `p, by noting (a + b)p ≤ ap + bp if
a, b ≥ 0 and 0 < p < 1.

For Lipschitz functions S : X → X, one has

(2.10) `p(Sµ, Sν) ≤ (Lip S)1∧p`p(µ, ν).

This follows from (2.6) by setting γ = Sγ̃, the pushforward of γ̃ by S, where γ̃ is
optimal for (µ, ν).

A detailed discussion of the properties of `p can be found in the book Rachev (1991).

Let Mp be supplied with the Borel σ-algebra induced by `p. Let Mp denote the
space of random measures µ : Ω → Mp with finite expected p-th moment. That is,

(2.11) Mp =

{
µ ∈ M

∣∣∣∣ |µ
ω| = 1 a.s., Eω

∫
dp(x, a) dµω(x) < ∞

}
.

It follows from (2.11) that µω ∈ Mp a.s. Note that Mp ⊂ Mq if q ≤ p. Moreover,

since E1/p|f |p → exp(E log |f |) as p → 0,

(2.12)

M0 :=
⋃

p>0

Mp

=

{
µ ∈ M

∣∣∣∣ |µ
ω| = 1 a.s., Eω

∫
log d(x, a) dµω(x) < ∞

}
.

For random measures µ, ν ∈ Mp, define

(2.13) `∗p(µ, ν) =

{
E

1

p

ω `p
p(µ

ω , νω) p ≥ 1

Eω`p(µ
ω, νω) 0 < p < 1.

Compare this with (2.5) and note the formal difference in case 0 < p < 1.
Note that `∗p is a compound metric on Mp(X), i.e. `∗p(µ, ν) depends on the joint

distribution of µ and ν. Moreover, (Mp, `
∗
p) is a complete separable metric space.

Note also that `∗p(µ, ν) = `p(µ, ν) if µ and ν are constant random measures.
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Let Mp be the set of probability distributions of random measures µ ∈ Mp, i.e.

(2.14)

Mp =
{

dist µ
∣∣ µ ∈ Mp

}

=
{
P ∈ M

∣∣∣ µ
d
= P ⇒ |µω | = 1 a.s., Eω

∫
dp(x, a) dµω(x) < ∞

}
.

Note that Mp ⊂ Mq for q ≤ p, and

(2.15)

M0 :=
⋃

p>0

Mp

=
{
P ∈ M

∣∣∣ µ
d
= P ⇒ |µω | = 1 a.s., Eω

∫
log d(x, a) dµω(x) < ∞

}
.

The minimal metric on Mp is defined by

(2.16) `∗∗p (P ,Q) = inf
{

`∗p(µ, ν)
∣∣ µ

d
= P , ν

d
= Q

}
.

Thus

(2.17) `∗∗p (P ,Q) =





inf
{

E
1

p `p
p(µ, ν)

∣∣∣ µ
d
= P , ν

d
= Q

}
p ≥ 1

inf
{

E`p(µ, ν)
∣∣∣ µ

d
= P , ν

d
= Q

}
0 < p < 1.

It follows that (Mp, `
∗∗
p ) is a complete separable metric space with properties

analogous to those in Remark 2.5, the proofs being essentially the same. In fact,
similarly to Remark 2.5.1, `∗∗p (Pn,P) → 0 if and only if

(1) Pn
w
→ P (weak convergence of distributions), and

(2) Eω

∫
dp(x, a) dµω

n(x) → Eω

∫
dp(x, a) dµω(x) for µn

d
= Pn, µ

d
= P (conver-

gence of p-th moments).

We can now prove the first existence, uniqueness and convergence result for
random fractal distributions.

Theorem 2.6. Let S be a random scaling law with corresponding scaling operator
S and

∑
pi = 1 a.s. Assume λp := E

∑
pir

p
i < 1 and E

∑
pid

p(Sia, a) < ∞ for
some p > 0 and some (and hence any) a ∈ X.

Then

(1) The scaling operator S : Mp → Mp is a contraction map w.r.t. `∗∗p .
(2) There exists a unique fractal measure distribution P∗ ∈ Mp which is self-

similar w.r.t. S.
(3) Pn := SnP0 → P∗ exponentially fast w.r.t. `∗∗p for any P0 ∈ Mp; more

precisely

`∗∗p (Pn,P∗) ≤
λ

n( 1

p
∧1)

p

1 − λ
1

p
∧1

p

`∗∗p (P0,P1).

Proof. We first claim that if P ∈ Mp then SP ∈ Mp. For this, choose iid µ(i) d
= P

and (p1, S1, . . . , pN , SN )
d
= S independent of the µ(i). Then

∑
piSiµ

(i) d
= SP . For
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p ≥ 1 we compute from (2.7), Remark 2.5.3 and independence properties,

E

∫
dp(x, a) d

(∑
piSiµ

(i)
)

= E`p
p

(∑
piSiµ

(i), δa

)

≤ 2pE`p
p

(∑
piSiµ

(i),
∑

piSiδa

)
+ 2pE`p

p

(∑
piSiδa,

∑
piδa

)

≤ 2pE
∑

pir
p
i `p

p(µ
(i), δa) + 2pE

∑
pi`

p
p (Siδa, δa)

= 2pλpE`p
p(µ, δa) + 2pE

∑
pid

p(Sia, a)

< ∞.

The case 0 < p < 1 is dealt with similarly, replacing `p
p by `p and 2p by 1.

To establish the contraction property let P ,Q ∈ Mp. Choose µi
d
= P and νi

d
= Q

for 1 ≤ i ≤ N so that the pairs (µi, νi) are independent of one another and so that

`∗∗p (P ,Q) = `∗p(µi, νi). Choose (p1, S1, . . . , pN , SN)
d
= S and independent of the

(µi, νi).
For p ≥ 1, one has from Remark 2.5.3 and independence properties that

`∗∗p
p (SP ,SQ) ≤ E`p

p

(∑
piSiµi,

∑
piSiνi

)

≤ E
∑

pir
p
i `p

p(µi, νi)

=
∑

E(pir
p
i ) E`p

p(µi, νi)

=
∑

E(pir
p
i ) `∗∗p

p (P ,Q)

= λp`
∗∗p
p (P ,Q).

In case 0 < p < 1, one replaces `∗∗p
p and `p

p throughout by `∗∗p and `p respectively.

Hence S is a contraction map on Mp with contraction constant λ
1

p
∧1

p .
Parts 2. and 3. are consequences of 1. �

The next result establishes existence, uniqueness and distributional convergence
for random fractal measure distributions in the class M0.

Corollary 2.7. Let S be a random scaling law with corresponding scaling operator
S and with

∑
pi = 1 a.s. Assume E

∑
pi log ri < 0 and E

∑
pi log d(Sia, a) < ∞.

Then for some p > 0 the hypotheses, and hence the conclusions, of Theorem 2.6
are true. In particular, there is a unique fractal measure distribution P∗ ∈ M0

which is self-similar w.r.t. S. Moreover, Pn = SnP0 → P∗ in the distributional
sense for any P0 ∈ M0.

Proof. The contraction coefficient in Theorem 2.6 is ap = λ
1

p
∧1

p , where λp = E
∑

pir
p
i .

To investigate the behaviour of ap, note that

λp =

∫
r

p
i (ω) dQ∗(ω, i),

where Q∗ is the probability measure on Ω × {1, . . . , N} uniquely defined by

∫
f(ω, i) dQ∗ =

∫ ∑
pi(ω)f(ω, i) dQ(ω) = Eω

∑
pif(ω, i).
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By standard properties of Lp metrics it follows that λ
1

p

p = ‖r(i, ω)‖Lp(Q∗) is
monotonically nondecreasing and continuous on (0,∞) and

λ
1

p

p → ess sup
ω

max
i

{ ri(ω) | pi(ω) > 0 } as p → ∞,

λ
1

p

p → exp E
∑

pi log ri as p → 0.

In particular, ap < 1 implies aq < 1 for all 0 < q < p (although ap is not itself
monotone). Hence S is a contraction on (Mp, `

∗∗
p ) implies S is a contraction on

(Mq , `
∗∗
q ) for all 0 < q < p. Moreover, exp E

∑
pi log ri < 1 iff S is a contraction

on Mp for some p > 0.
Similarly, E

∑
pi log d(Sia, a) < ∞ iff E

∑
pid

p(Sia, a) < ∞ for some p > 0.
The result now follows from Theorem 2.6. �

Remark 2.8. The main hypothesis of the Corollary reduces to
∏

r
pi

i < 1 in the de-
terministic case. This is the condition used in Barnsley, Demko, Elton and Geron-
imo (1988, 1989) and in Barnsley and Elton (1985), provided pi is independent
of x ∈ X. Note that by Jensen’s inequality E log

∏
r

pi

i ≤ log E
∏

r
pi

i , and so the
assumption E

∏
r

pi

i < 1 is stronger than that used in the Corollary.

Remark 2.9. In the opposite direction to the Corollary, if one assumes rmax :=
maxi{ ri | pi 6= 0 } ≤ γ < 1 a.s., then it follows from Theorem 2.6 that one obtains
convergence of moments of all orders. This is even true if γ = 1 a.s., provided that
mini{ ri | pi 6= 0 } < 1 with non-zero probability.

Remark 2.10. In the deterministic case, the arguments in Theorem 2.6 and Corol-
lary 2.7 simplify greatly. In particular, this simplifies the arguments in Barnsley,
Demko, Elton and Geronimo (1988, 1989) and in Elton (1987) and provides further
information concerning the type of convergence.

More precisely, let S = (p1, S1, . . . , pn, SN ) be a fixed scaling law such that∑
pi = 1,

∑
pir

p
i < 1 and

∑
pid

p(Sia, a) < ∞. One argues as in Theorem 2.6
except that one simply uses the `p metric throughout, so it is not necessary to take
expectations and there is no need to consider optimal pairings (µi, νi).

It follows that: If Sµ :=
∑

piSiµ then there is a unique Radon measure µ∗ ∈ Mp

such that Sµ∗ = µ∗. We say µ∗ is self-similar with respect to S. Moreover, for
any µ0 ∈ Mp the sequence Snµ0 converges exponentially in the `p metric, and
in particular in the weak sense of measures, to µ∗. Existence, uniqueness and
weak convergence follow under the weaker condition

∏
r

pi

i < 1 as in the proof of
Corollary 2.7.

Remark 2.11. Let S = (p1, S1, . . . , pn, SN ) be a fixed scaling law as in the previous
Remark. Suppose µ ∈ Mp and consider µ as a probability distribution on X. Let X

be a random variable with dist X = µ and let I be an independent random variable
with P (I = i) = pi. It follows that

Sµ = dist(SIX).

This is the point of view taken in Rachev and Rüschendorf (1995), Section 2.4, and
leads to an instructive alternative approach to some of the results here in Section 2.

For example, to establish the contraction properties of `∗∗p in Theorem 2.6 one can
use a probabilistic argument to show for fixed weights

∑
pi = 1, for µi, νi ∈ Mp(X)

and for p ≥ 1, that

`p
p

(∑
piSiµi,

∑
piSiνi

)
≤

∑
pir

p
i `p

p(µi, νi),

by arguing as follows:
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Let (Xi, Yi) be independent optimal couplings for (µi, νi) and let I be a random
variable independent of the (Xi, Yi) with P (I = i) = pi. Conditioning on I we have

dist SIXI =
∑

pi dist SiXi =
∑

piSiµi,

and so

`p
p

(∑
piSiµi,

∑
piSiνi

)
≤ Edp(SIXI , SIYI)

=
∑

piE|Id
p(SiXi, SiYi) =

∑
piE|Ir

p
i dp(Xi, Yi) =

∑
pir

p
i `p

p(µi, νi).

In case 0 < p < 1 a similar argument applies.

Remark 2.12. Neither the definition of the scaling operator S on Mp, nor the proof
of Theorem 2.6, are the obvious analogue of the deterministic case.

More precisely, motivated by the previous Remark and since P ∈ Mp is the
probability distribution of a random measure, one might try to define

SP = dist(SIµ),

where µ is a random measure with dist µ = P , S = (p1, S1, . . . , pN , SM ) is a random
scaling law with distS = S, I is a real random variable with P (I = i) = pi, and µ,
S and I are independent.

But a scaling operator defined in this manner does not lead to the correct notion.
In particular, one does not here select N independent realisations of P in defining
SP . Moreover, E 7→

⋃
SiE is a contraction map on compact sets in case all

ri < 1. Thus realisations of SnP would here converge to Dirac measures (not a
very interesting situation).

Another analogue of the deterministic case Sµ =
∑

piSiµ is to define

SP = dist
∑

piSiµ,

where µ
d
= P is independent of (p1, S1, . . . , pN , SN )

d
= S. This corresponds to a

variation of the previous iterative procedure where in Step 2 one selects S1, . . . ,SN

with distribution S but all equal to one another a.s., in step 3 one selects Sij equal
to one another, etc. Again, this is not the correct notion.

3. Construction trees and almost sure convergence

The minimal Lp-metric `∗∗p on the set of random measures introduced in Section
2 describes weak convergence of the iterative sequence of distributions Pn of random
measures to a random fractal distribution.

In this section we consider a natural probability space Ω̃, the space of construc-
tion trees, on which the corresponding sequence µn converges almost surely. The
argument for a.s. convergence is based on a contraction argument for the compound
version `∗p of the Lp-metric as defined in (2.13).

In order to introduce the space of construction trees let C = CN denote the
N -fold tree of all finite sequences from {1, . . . , N}, including the empty sequence ∅.
For σ = σ1 . . . σn ∈ C define the length |σ| = n, and for τ = τ1 . . . τm ∈ C denote
the concatenated sequence σ1 . . . σnτ1 · · · τm by σ ? τ .

A construction tree (or tree of scaling laws) is a map ω : C → Υ, where Υ is the
set of scaling laws of 2N -tuples. Let

Ω̃ = {ω | ω : C → Υ }

denote the space of all construction trees. Denote the scaling law at the node σ ∈ C

of ω by

Sσ(ω) = ωσ =
(
pσ
1 (ω), Sσ

1 (ω), . . . , pσ
N (ω), Sσ

N (ω)
)

= ω(σ).
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Consider the probability measure on Ω̃ obtained by selecting iid scaling laws Sσ d
= S

for each σ ∈ C. Note that the distributions and independencies of the Sσ are the
same as in the iterative procedure described in Definition 2.4.

We use the notation

(3.1)
pσ = pσ1

pσ1

σ2
pσ1σ2

σ3
· · · pσ1···σn−1

σn
,

S
σ

= Sσ1
◦ Sσ1

σ2
◦ · · · ◦ Sσ1···σn−1

σn
,

where |σ| = n. In particular pi = pi and S
i

= Si for 1 ≤ i ≤ N . The motivation
for this notation is the following definition.

For a fixed measure µ0 ∈ M define

(3.2) µn = µn(ω) =
∑

|σ|=n

pσ(ω)S
σ
(ω)µ0

for n ≥ 1. This is just the sequence defined in Definition 2.4 with underlying space

Ω = Ω̃. Note that µn is the sum of the Nn measures naturally associated with µ0

and the Nn nodes at level n of the construction tree ω.
For ω ∈ Ω̃ and 1 ≤ i ≤ N let ω(i) ∈ Ω̃, corresponding to the i-th branch of ω, be

defined by

(3.3) ω(i)(σ) = ω(i ? σ)

for σ ∈ C. Then

(3.4)
pi?σ(ω) = pi(ω) pσ(ω(i)),

S
i?σ

(ω) = Si(ω) ◦ S
σ
(ω(i)).

By construction, the “branches” ω(1), . . . , ω(N) of ω are iid with the same distri-
bution as ω and are independent of

(
p1(ω), S1(ω), . . . , pN(ω), SN (ω)

)
. For more

details see Hutchinson and Rüschendorf (1998).
Corresponding to the random scaling law S we define the scaling operator S :

M → M, where M = M(Ω̃) is the class of random measures on Ω̃, by

(3.5) Sµ(ω) =
∑

i

pi(ω)Si(ω)µ(ω(i)).

Since µ(ω(i))
d
= µ are iid, Sµ is identical in distribution to the scaling operator

S applied to dist µ, see (2.2). Moreover, if µn(ω) is as in (3.2) then

(3.6) µn+1(ω) = Sµn(ω).

To see this, note from (3.2) and (3.4) that

µn+1(ω) =

N∑

i=1

∑

|σ|=n

pi?σS
i?σ

(ω)µ0

=

N∑

i=1

pi(ω)Si(ω)
∑

|σ|=n

pσ(ω(i)) S
σ
(ω(i))µ0

=

N∑

i=1

pi(ω)Si(ω)µn(ω(i)) = Sµn(ω).

Thus if we take Ω = Ω̃ then the sequence µn(ω) = Snµ0 is the same as that given
in Definition 2.4.

Remark 3.1. It follows from (3.5) that µn+1(ω) = Sµn(ω) is completely determined
by a knowledge of the construction tree ω up to level n. This is clear in any case from
Definition 2.4, and so in a certain sense we might think of the scaling operator S as
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being constructive. However, in order to apply a contraction mapping argument we
need to extend the definition of S to all of M (or at least Mp), and this extension
is not in general constructive, see (3.5). More precisely, S is of necessity a type of
“shift operator” and Sµ(ω) generally depends on knowledge of the complete tree ω.

We now prove almost sure convergence of µn, with respect to weak convergence

of measures, to a fixed point µ∗ of S. An immediate consequence is that µ∗ d
= P∗,

i.e. by Theorem 2.6 the distribution of µ∗ is the unique distribution in Mp which
is self-similar with respect to S.

Theorem 3.2. Let S = (p1, S1, . . . , pN , SN) be a random scaling law with
∑

pi = 1
a.s. Assume λp := E (

∑
pir

p
i ) < 1 and E

∑
pid

p(Sia, a) < ∞ for some p > 0.
Then

(1) The operator S : Mp → Mp is a contraction map w.r.t. `∗p.
(2) If µ∗ is the unique fixed point of S and µ0 ∈ Mp (or more generally Mp),

then µn = Snµ0 → µ∗ exponentially fast w.r.t. `∗p, and hence a.s. in the
sense of weak convergence of measures.

Moreover, dist µ∗ = P∗.

Proof. The fact S : Mp → Mp can be seen as in Theorem 2.6.
Further, for µ, ν ∈ Mp and p ≥ 1, we have from Remark 2.5.3 and the indepen-

dence of (p1, S1, . . . , pN , SN) and the ω(i), that

`∗p
p (Sµ,Sν) = Eω`p

p

(∑
pω

i Sω
i µ(ω(i)),

∑
pω

i Sω
i ν(ω(i))

)

≤ Eω

∑
pω

i (rω
i )p `p

p

(
µ(ω(i)), ν(ω(i))

)

=
∑

Eωpω
i (rω

i )p Eω`p
p

(
µ(ω(i)), ν(ω(i))

)

= λp`
∗p
p (µ, ν),

as
(
µ(ω(i)), ν(ω(i)

) d
= (µ(ω), ν(ω)). In case 0 < p < 1, one replaces `∗p

p and `p
p

throughout by `∗p and `p respectively.
Thus S is a contraction map with contraction ratio λ

1

p
∧1

p , establishing 1., and
hence giving exponential convergence as in 2. to the unique fixed point µ∗ of S.

Moreover, for p ≥ 1
∞∑

n=1

Q
(
`p
p(S

nµ0, µ
∗) ≥ ε

)
≤

∞∑

n=1

E`p
p(S

nµ0, µ
∗)

ε
≤ c

∞∑

n=1

λn
p

ε
< ∞.

This implies that `p(µn, µ∗) → 0 almost surely, and similarly for 0 < p < 1 with `p
p

replaced by `p.
Finally, since Sµ∗ = µ∗, taking distributions of both sides and using the unique-

ness of P∗ from Theorem 2.6, it follows that dist µ∗ = P∗. �

Remark 3.3. In fact from the above argument

`p(µn, µ∗)

τn
→ 0 a.s., for all 0 < τ < λ

1

p
∧1

p .

That is, we have an exponential a.s. convergence rate.

Analogously to Corollary 2.7 we have:

Corollary 3.4. Let S be a random scaling law with
∑

pi = 1 a.s. Assume that
E

∑
pi log ri < 0 and E

∑
pi log d(Sia, a) < ∞.

Then for some p > 0 the hypotheses, and hence the conclusions, of Theorem 3.2
are true. In particular, S : M0 → M0 has a unique fixed point µ∗, and µn =
Snµ0 → µ∗ a.s. in the sense of weak convergence of measures, for any µ0 ∈ M0.
Moreover, dist µ∗ = P∗.
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Proof. The Corollary follows from Theorem 2.6 by similar arguments to those used
to prove Corollary 2.7. �

4. Self-similar fractals in the general mass case

The aim of this section is to extend the contraction technique in case the condi-
tion

∑
pi = 1 a.s. is replaced by the assumption E

∑
pi = 1. This allows for fractal

measures and distributions in case the masses are not a.s. constant. The condition
E

∑
pi = 1 is necessary if the expected mass of measures in the iterative procedure

is to converge.
The methods from Sections 2 and 3, based on contraction properties of the `p, `∗p

and `∗∗p metrics, appear at first to only work in the fixed mass case. More precisely,
if µ, ν ∈ M(X) and |µ| 6= |ν| then `p(µ, ν) = ∞. This implies that if the definition
of `∗p in (2.13) is extended from Mp to M (defined at the beginning of Section 2)
then `∗p(µ, ν) = ∞ unless |µω | = |µω | a.s. Hence, if the definition of `∗∗p in (2.16)
is extended from Mp to M then `∗∗p (P ,Q) = ∞ unless there exist µ, ν ∈ M with

µ
d
= P , ν

d
= Q and |µω| = |µω| a.s. This would seem to restrict us to the constant

mass case.
However, we can avoid this problem in the following manner. First define for

any µ ∈ M the corresponding real random variable |µ| determined by the masses
|µω|. Similarly, for any P ∈ M define

|P| =
{

dist |µ|
∣∣ µ

d
= P

}
.

If P∗ is self-similar w.r.t. S, then on taking masses of each side of P∗ = SP∗ we
obtain

(4.1) |P∗| = |SP∗| = |S| |P∗|.

Here |S| is the distribution on (p1, . . . , pN ) induced from the distribution S on
(p1, S1, . . . , pN , SN). Also, for any probability distribution P on R, |S|P is the
distribution defined by

(4.2) |S|P = dist
∑

piXi,

where Xi
d
= P are iid with distribution P and (p1, . . . , pN )

d
= |S| is independent of

the Xi.
In Lemma 4.1 we show, under the natural assumption E

∑
p2

i < 1 (c.f. Re-
mark 4.2.1), that there is a unique probability distribution P ∗ on [0,∞), with
expectation normalised to be one and finite variance, such that

P ∗ = |S|P ∗.

Thus if there exists P∗ which is self-similar with respect to S and which has ex-
pected mass one and finite mass variance, then it follows from (4.1) that |P∗| = P ∗.

For this reason, assuming Lemma 4.1, we define
(4.3)

Mp =
{
P ∈ M

∣∣∣ µ
d
= P ⇒ E|µ| = 1, E|µ|2 < ∞, Eω

∫
dp(x, a) dµω(x) < ∞

}

M∗
p =

{
P ∈ M

∣∣∣ µ
d
= P ⇒ |µ|

d
= P ∗, Eω

∫
dp(x, a) dµω(x) < ∞

}
,

where P ∗ is as in Lemma 4.1, c.f. (2.14). Then M∗
p ⊂ Mp by the previous discus-

sion. If P ∈ Mp is self-similar with respect to S, then P ∈ M∗
p. (We will later

define an analogous spaces Mp and M
∗
p at the random measure level, see (4.7); this

is most naturally done in the context of the special probability space Ω̃.)
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Define `∗∗p as in (2.16). Although `∗∗p takes infinite values on Mp (as noted
previously), (M∗

p, `
∗∗
p ) is a complete metric space.

The main new point is to show `∗∗p (P ,Q) < ∞ for P ,Q ∈ M∗
p. To see this, choose

µ
d
= P and ν

d
= Q. Then |µ|

d
= |ν|. A well known result from measure theory

says that for real random variables X, Y with P X = P Y there exists a measure
preserving map φ on Ω (i.e. P φ = P ) such that X = Y ◦φ a.s. So |µ| = |ν| ◦ φ a.s..
Define the random measure ν = ν ◦ φ; then |ν| = |µ| a.s. Therefore for p ≥ 1 one
has from (2.7) that

`∗∗p
p (P ,Q) ≤ E`p

p(µ, ν) ≤ 2pE`p
p(µ, |µ|δa) + 2pE`p

p(ν, |ν|δa)

= 2pE

∫
dp(x, a) dµ(x) + 2pE

∫
dp(x, a) dν(x) < ∞.

A similar argument applies if 0 < p < 1.

For the following Lemma define the set D2 of probability measures P on R by

(4.4) D2 =
{

P | X
d
= P ⇒ EX = 1, EX2 < ∞

}
.

The requirement EX = 1 is a normalisation condition and involves no loss of
generality.

Lemma 4.1. If E
∑

pi = 1 and E
∑

p2
i < 1 then there is a unique probability

distribution P ∗ ∈ D2 such that

(4.5) P ∗ = |S|P ∗.

Proof. We claim |S| : D2 → D2 is a contraction map in the `2 metric.
For this purpose suppose P1, P2 ∈ D2 and let X, Y be optimal `2-couplings,

i.e. `2
2(P1, P2) = E(X − Y )2. Choose iid copies (X(i), Y (i)) of (X, Y ) and choose

(p1, . . . , pN)
d
= |S| independent of the (X(i), Y (i)). Then

`2
2

(
|S|P1, |S|P2

)
≤ E

(∑

i

pi

(
X(i) − Y (i)

))2

=
∑

i

Ep2
i E

(
X(i) − Y (i)

)2

(by the independence properties and since E(X (i) − Y (i)) = 0)

=
(
E

∑
p2

i

)
`2
2(P1, P2).

The contraction mapping principle now implies the Lemma. �

Remark 4.2.
1. The condition E

∑
p2

i < 1 is also necessary for the existence of a fixed point
with finite second moments. (The only exception is the trivial case where, almost
surely, all but one pi equals zero, in which case the exceptional pi must equal 1,
and every P ∈ D2 is then clearly a fixed point.)

To see this, suppose P ∗ is a fixed point and let Z
d
= P ∗. Then from (4.5) we

have

EZ2 =
∑

i

Ep2
i EZ2 + 2

∑

i6=j

Epipj .

If EZ2 < ∞ this implies E
∑

p2
i < 1, apart from the exceptional case mentioned

above.
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2. For 1 < p ≤ 2 one can replace the condition E
∑

p2
i < 1 by

E
∑

p
p
i <

(p − 1)1/2

18 p3/2
.

This comes from working with the `p-metric (instead of `2) and using the Marcin-
ciewicz-Zygmund inequality (c.f. Rachev and Rüschendorf (1995)). A proof of the
existence of a solution of (4.5) without an additional moment assumption (of the
form E

∑
p2

i < 1) can be obtained from a martingale argument.

We are now in a position to give a proof in the variable mass case of the existence
and uniqueness of a self-similar probability distribution on fractal nmeasures.

Theorem 4.3. Let S be a random scaling law with corresponding scaling operator
S, such that E

∑
pi = 1 and E

∑
p2

i < 1. Assume also that E
∑

pir
p
i < 1 and

E
∑

pid
p(Sia, a) < ∞ for some p > 0.

Then the scaling operator S : M∗
p → M∗

p is a contraction w.r.t. `∗∗p , and there
exists a unique distribution P∗ ∈ M∗

p which is self-similar w.r.t. S.

Proof. First note that for P ∈ M∗
p,

|SP| = |S| |P| = |S|P ∗ = P ∗.

As in the proof of Theorem 2.6 one shows that if P ∈ M∗
p then SP has finite ex-

pected p-moment, except that one instead estimates E`p
p

(∑
piSiµ

(i),
∑

pi

∣∣µ(i)
∣∣δa

)

or E`p

(∑
piSiµ

(i),
∑

pi

∣∣µ(i)
∣∣δa

)
, according as p ≥ 1 or 0 < p < 1. It follows that

S : M∗
p → M∗

p.
The proof of the contraction property of S is essentially unchanged, and one

obtains the same contraction constant as before. The fixed point of S is the re-
quired P∗. �

Since any fixed point of S in Mp necessarily has mass distribution P ∗ and so

belongs to M∗
p, uniqueness of a fixed point holds also in Mp.

The contraction argument in Theorem 4.3 shows that for any P0 in M∗
p the

sequence of probability distributions SnP0 converges exponentially fast with respect
to `∗∗p to the unique self-similar distribution P∗ in M∗

p. But the mass distribution
P ∗ of P∗ is not normally known apriori, and so we do not necessarily have a
candidate for P0 (which must also have mass distribution P ∗). In order to obtain
an effective method to approximateP∗ we extend Theorem 4.3 to allow the sequence
of random measures to start with any initial measure in Mp.

Our strategy will be the following. As in Section 3 we change to the special

probability space Ω̃ of construction trees which allowed us to define the scaling
operator S at the random measure level. For any real random variable X we define

(4.6) |S|X(ω) =
∑

pi(ω) X(ω(i)).

If the random measure µ∗ is a fixed point of S, i.e. Sµ∗ = µ∗, then on taking the
mass of each side it follows

|S| |µ∗| = |µ∗|.

In Lemma 4.4 we see that there is a unique real random variable X∗ with EX∗ = 1
and EX∗2 < ∞ such that

X∗ = |S|X∗.

For these reasons, assuming Lemma 4.4, define

(4.7)

Mp =
{

µ ∈ M
∣∣ E|µ| = 1, E|µ|2 < ∞, Eω

∫
dp(x, a) dµω(x) < ∞

}
,

M
∗
p =

{
µ ∈ M

∣∣ |µ| = X∗, Eω

∫
dp(x, a) dµω(x) < ∞

}
,
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with X∗ as in Lemma 4.4. Any fixed point µ∗ of S in Mp belongs to M
∗
p. Note

that `∗p is a complete metric on M
∗
p; finiteness of `∗p follows from the fact µ, ν ∈ M

∗
p

implies |µ| = |ν| = X∗ a.s. (see the remarks at the beginning of this section).
The class X2 of real random variables is now defined by

(4.8) X2 =
{

X | EX = 1, EX2 < ∞
}

.

The following Lemma should be compared with Lemma 4.1. Remember that we

are now working on the space Ω̃.

Lemma 4.4. If E
∑

pi = 1 and E
∑

p2
i < 1 then |S| is a contraction map on X2

and so there is a unique X∗ ∈ X2 such that

(4.9) X∗ = |S|X∗.

Proof. One has |S| : X2 → X2, since

E(|S|X) =
∑

Epi(ω)EX(ω(i)) =
(
E

∑
pi

)
EX = 1,

E
(∑

pi(ω)X(ω(i))
)2

≤ E
(∑

p2
i (ω)

∑
X2(ω(i))

)
< ∞.

Moreover, |S| is a contraction map on X2 in the L2-sense, since

E
(
|S|X − |S|Y

)2
= E

(∑

i

pi(ω)
(
X(ω(i)) − Y (ω(i))

))2

=
∑

i

Ep2
i (ω)E

(
X(ω(i)) − Y (ω(i))

)2

= νE(X − Y )2,

where ν = E
∑

p2
i , using independence properties and the fact

E
(
X(ω(i)) − Y (ω(i))

)
= E

(
X(ω) − Y (ω)

)
= 1 − 1 = 0.

It follows that |S| has a unique fixed point in X2 which we denote by X∗. �

We say X∗ is a self-similar random variable. Note that this notion, unlike
the notion of self-similarity of a real probability distribution P ∗, depends on the

particular sample space (Ω̃, Σ̃).
Since |µ0| ∈ X2 if µ0 is a fixed (non-random) unit mass measure, and |µn+1| =

|S| |µn| from (3.6), it follows from the proof of Lemma 4.4 that |µn| ∈ X2 for all n.
In particular, E|µn| = 1 and E|µn|2 < ∞. Moreover, |µn| → X∗ exponentially fast
in the L2-metric as n → ∞, and hence |µn| → X∗ a.s.

In the next theorem the existence of a unique fixed point µ∗ ∈ M
∗
p (and hence

of a unique fixed point in Mp) for S follows once we show S is a contraction map

on M
∗
p. It then follows that µ∗ d

= P∗ where P∗ is as in Theorem 4.3.
Since the random measures µn = Snµ0 need not have random mass X∗ a.s. we

introduce a reweighted sequence µn for which it is true that |µn| = X∗ a.s., and
then prove by contraction arguments that µn → µ∗. In the final step the reweighted
sequence µn and µn are compared in order to imply a.s. convergence of µn to µ∗.

By C0,1 is meant the space of Lipschitz functions f : X → R

Theorem 4.5. Let S be a random scaling law such that E
∑

pi = 1, E
∑

p2
i < 1,

λp := E
∑

pir
p
i < 1 and E

∑
pid

p(Sia, a) < ∞, for some p > 0.
Then for any µ0 ∈ Mp the sequence of random measures (µn) converges a.s. in

the weak sense of measures to some µ∗ ∈ M
∗
p with µ∗ d

= P∗, where P∗ is the unique

self-similar probability distribution in M∗
p. If p ≥ 1 and f ∈ C0,1, or 0 < p < 1

and f ∈ C0,1 has bounded support, then E|µn(f) − µ∗(f)| → 0 exponentially fast.
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Proof.
Step 1: Contraction on the space M

∗
p.

We claim that

(4.10) S : M
∗
p → M

∗
p.

First note that |µ| = X∗ automatically ensures E|µ| = 1 and E|µ|2 < ∞ since
X∗ ∈ X2. But |µ| = X∗ also implies |Sµ| = |S| |µ| = |S|X∗ = X∗, and so to
establish (4.10) we need only show that E

∫
dp(x, a) dSµ < ∞. This follows by an

argument similar to that in the proof of Theorem 2.6 (see also Theorem 4.3).
We also claim

(4.11) S is a contraction map on M
∗
p with Lipschitz constant λ

1

p
∧1

p .

This follows from an argument similar to that in Theorem 2.6 (see also Theorem
4.3). It follows that S has a unique fixed point in M

∗
p, which we denote by µ∗.

We say µ∗ is a self-similar random measure. Again, this notion depends on the

particular sample space (Ω̃, Σ̃).

Step 2: The reweighted sequence {µn(ω)}
As noted before, we cannot directly deduce the convergence of (µn) from the

contraction property of S, since it is not necessarily the case that |µn| = X∗ a.s.,
i.e. that µn ∈ M

∗
p. For this reason we first consider the “reweighted” sequence

(4.12)

µ0(ω) = X∗(ω)µ0,

µn(ω) =
∑

|σ|=n

X∗(ωσ) pσ(ω)S
σ
(ω)µ0 for n ≥ 1.

Comparing (3.2) with (4.12) we see that µn(ω) is obtained by weighting each of the
Nn components in µn(ω), corresponding to the nodes σ with |σ| = n, with the factor

X∗(ωσ). In particular, µn and µn have the same support
⋃

|σ|=n S
σ
(ω)[spt µ0] a.s.

We next compute from (4.12), (3.4), (3.3) and (3.5) that

(4.13)

µn+1(ω) =
N∑

i=1

∑

|σ|=n

X∗(ωi∗σ) pi∗σ(ω)S
i∗ω

(ω)µ0

=
N∑

i=1

pi(ω)Si(ω)

( ∑

|σ|=n

X∗((ω(i))σ) pσ(ω(i)) S
σ
(ω(i))µ0

)

=

N∑

i=1

pi(ω)Si(ω)µn(ω(i)) = Sµn(ω).

In particular, |µn+1| = |S| |µn|, and since µ0 ∈ M
∗
p it follows from (4.10) and

(4.13) that µn ∈ M
∗
p for all n, and hence |µn| = X∗ a.s. Moreover, µn → µ∗ in the

`∗p metric, and from (4.11),

(4.14) `∗p(µn, µ∗) ≤
λ

n( 1

p
∧1)

p

1 − λ
1

p
∧1

p

`∗p(µ0, µ1).

Next suppose f : R
n → R is Lipschitz. For future reference we compute, choosing

γ optimal for the pair (µn, µ∗), and using the facts |γ| = |µn| = |µ∗| = X∗ a.s.,
EX∗ = 1 and (4.14), that for p ≥ 1
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(4.15)

E

∣∣∣∣
∫

f dµn −

∫
f dµ∗

∣∣∣∣ = E

∣∣∣∣
∫

(f(x) − f(y)) dγ

∣∣∣∣ ≤ (Lip f)E

∫
d(x, y) dγ

≤ (Lip f)E

((∫
dp(x, y) dγ

) 1

p

|X∗|1−
1

p

)

≤ (Lip f)

(
E

∫
dp(x, y) dγ

) 1

p

|EX∗|1−
1

p

= (Lip f) `∗p(µn, µ∗) ≤
λ

n
p

p

1 − λ
1

p

p

(Lip f) `∗p(µo, µ1).

If 0 < p < 1 and d(x, y) ≤ M for x, y in the support of f , then from the first line
in (4.15)

(4.16)

E

∣∣∣∣
∫

f dµn −

∫
f dµ∗

∣∣∣∣ ≤ (Lip f)M1−pE

∫
dp(x, y) dγ

= (Lip f)M1−p`∗p(µn, µ∗)

≤
λn

p

1 − λp
(Lip f)M1−p`∗p(µ0, µ1).

Step 3: Comparison of {µn} and {µn}
Recall that µn is obtained from µn by weighting each of its Nn components,

corresponding to σ ∈ C where |σ| = n, by X∗(ωσ). Using the fact that EX∗(ωσ) =
1, we next show that E|

∫
f dµn −

∫
f dµn| → 0 exponentially fast as n → ∞ for

any f ∈ C0,1.
First note that ν := E

∑
i p2

i < 1. From (3.1) and independence properties,

E
∑

|σ|=n

(pσ)2 = E
∑

1≤σ1,...,σn≤N

(pσ1...σn−1)2(pσ1...σn−1

σn
)2 = ν

∑

|τ |=n−1

E(pτ )2.

Hence

(4.17) E
∑

|σ|=n

(pσ)2 = νn

for all n ≥ 1.
In the next computation, recall that ω(σ) and ω(τ) are independent if σ 6= τ .

In particular pσ and S
σ

are independent of X∗(ωσ) since the former two de-
pend on certain Sτ (ω) = ω(τ) for |τ | < |σ|, while the latter depends on ω(τ)
for |τ | ≥ σ since a.s. X∗(ωσ) = limn→∞(|S|n1)(ωσ) = limn→∞

∑
|τ |=n pτ (ωσ) =

limn→∞

∑
|τ |=n pτ?σ(ω) (the second equality comes from Lemma 4.4 and the last
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equality comes from the natural extension of (3.4)). Hence from (4.12) and (3.2)
(

E

∣∣∣∣
∫

f dµn −

∫
f dµn

∣∣∣∣
)2

≤ E

∣∣∣∣
∫

f dµn −

∫
f dµn

∣∣∣∣
2

= E

∣∣∣∣
∫

f d

( ∑

|σ|=n

X∗(ωσ)pσ(ω)S
σ
(ω)µ0

)
−

∫
f d

( ∑

|σ|=n

pσ(ω)S
σ
(ω)µ0

)∣∣∣∣
2

= E

∣∣∣∣
∑

|σ|=n

pσ(ω)(X∗(ωσ) − 1)

∫
f ◦ S

σ
(ω) dµ0

∣∣∣∣
2

=
∑

|σ|=n

E

(
(pσ(ω))2

(∫
f ◦ S

σ
(ω) dµ0

)2)
E(X∗(ωσ) − 1)2

by the independencies noted above and since E(X∗(ωσ) − 1) = 0,

≤ ||f ||2C0ν
nE(X∗(ω) − 1)2

by (4.17).
From (4.15) and (4.16) it now follows that

(4.18) E

∣∣∣∣
∫

f dµn −

∫
f dµ∗

∣∣∣∣ ≤
{

c maxn{λ
1

p

p , ν1/2}‖f‖C0,1 p ≥ 1

cM1−p maxn{λp, ν
1/2}‖f‖C0,1 0 < p < 1

where c = c(S, µ0), thus proving exponential convergence.
It follows that if f ∈ C0,1 (with bounded support if 0 < p < 1) then µn(f) →

µ∗(f) a.s. Moreover, by choosing a countable set of such f which is dense in C0
c ,

it follows by an approximation argument that µn(f) → µ∗(f) for any f ∈ C0
c , i.e.

µn → µ∗ a.s. in the vague sense of measures. Finally, since |µn| → X∗ = |µ∗| a.s.,
it follows that µn → µ∗ a.s. in the weak sense of measures. �

Remark 4.6. The proof above shows that the exponential convergence is uniform
on the class of f ∈ C0,1 with Lip f ≤ 1 and ‖f‖∞ ≤ 1 if p ≥ 1, and similarly for
0 < p < 1 if the f also have uniformly bounded support.

Remark 4.7. The convergence results in Theorem 4.5 on the space of construction
trees implies approximation results in distribution on any probability space for
the recursive sequence (µn). In particular, uniform exponential convergence is a
consequence of (4.18).

Remark 4.8. The convergence of the recursive sequence (µn) can be extended to

random initial measures µ0 by considering a product space Ω̃ × Ω′ supplied with

product measure P̃ ⊗ P ′ and letting µ
(eω,ω′)
0 = µω′

0 depend only on ω′ while the
scaling system (pi, Si) just depends and operates on ω̃.
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