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Abstract

In this paper we extend the contraction mapping method to prove
various existence and uniqueness properties of (self-similar) random
fractal measures, and establish exponential convergence results for
approximating sequences defined by means of the scaling operator.
For this purpose we introduce a version of the Monge Kantorovich
metric on the class of probability distributions of random measures
in order to prove the relevant results in distribution. We also use a
special sample space of “construction trees” on which we define the
approximating sequence of random measures, and introduce a certain
operator and a compound variant of the Monge Kantorovich metric in
order to establish a.s. exponential convergence to the unique random
fractal measure. The arguments used apply at the random measure
and random measure distribution levels, and the results cannot be
obtained by previous contraction arguments which applied at the in-
dividual realisation level.

1 Introduction

Fractal sets and measures are mathematical models of non-integer dimen-
sional sets and “grey-scale” images satisfying certain scaling properties. This
gives an attractive theory with many applications to turbulence, dynamical
systems, computer graphics and to image and data compression; c.f. Barnsley
(1988) and Peitgen and Saupe (1988) and the references there. A mathemat-
ical fractal looks the same at all scales of magnification. This is an approxi-
mation to physical fractals which appear similar to the original object only
for a certain range of scales.
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Mandelbrot introduced the term fractal and developed the connection
between these ideas and a range of phenomena in the physical and biological
sciences; see Mandelbrot (1982) and the references there.

A theory of (self-similar) fractal sets and measures and the notion of
a scaling operator (iterated function system) was developed in Hutchinson
(1981). Existence, convergence and uniqueness results were based on contrac-
tion properties of the scaling operator with respect to the Hausdorff metric
for sets and the Monge Kantorovich metric for measures.

Important applications to computer graphics and connections with Markov
processes were introduced in Diaconis and Shahshahani (1984) and Barnsley
and Demko (1985), and later developed extensively by Barnsley and others.
Falconer (1986), Graf (1987), Mauldin and Williams (1986) and Cawley and
Mauldin (1992) investigated a theory of random fractal sets, and Arbeiter
(1991) and Olsen (1994) developed a theory of random fractal measures. See
also Zähle (1988), Patzschke and Zähle (1990) and the survey in Hutchinson
(to appear).

Arbeiter (1991) derived existence, uniqueness and convergence results for
random fractal measures under various conditions. Here we prove results
of this type under natural and general conditions, by an extension of the
contraction method used in the deterministic case. For this we introduce
two metrics, at the distribution and random variable levels respectively. This
leads to relatively elementary proofs, establishes exponential convergence in
terms of these metrics for certain approximating sequences, and leads to
quantitative estimates for the rates of convergence. Convergence of first
moments is also a consequence.

All the information about the random fractal measure and its distribu-
tion is coded in the distribution S of the associated random scaling law.
This could be useful if one needs for example, to compress images involving
background patterns of a stochastic nature for which a particular realisation
of the behaviour is not important.

Let (M,dMK) be the metric space of Radon measures on a complete
separable metric space (X, d), where dMK is the Monge Kantorovich metric.
A random measure µ is a random variable on the underlying probability
space (Ω,A, P ) with values in M . A random scaling operator S is a random
variable whose values are 2N -tuples (p1, S1, . . . , pN , SN) of weights pi ≥ 0
with

∑
pi = 1 and of Lipschitz functions Si : X → X. A random measure

µ∗ is called a random fractal measure self-similar w.r.t. S if µ∗ has the same
distribution as

∑N
i=1 piSiµ

∗(i) where the µ∗(i) are independent copies of µ∗ and
S is independent of the µ∗(i). (Note the assumption on the weights implies
that µ∗ and

∑N
i=1 piSiµ

∗(i) have the same mass.) The probability distribution
P∗ of µ∗ is called a fractal measure distribution, self-similar w.r.t. S.
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In Section 2 we develop the model example of a random Koch curve in
order to motivate the subsequent considerations.

In Section 3 we define the Monge Kantorovich metric d∗∗MK on the space
M1 of probability distributions of unit mass random measures with finite
expected first moment. We then apply a contraction mapping argument and
obtain a simple proof of the existence and uniqueness of a random fractal
measure distribution P∗ ∈M1 which is self-similar w.r.t. to S. Exponential
convergence in distribution of the iterative procedure beginning from any
initial unit mass measure µ0 and repeatedly applying independent copies of
the scaling operator S in an appropriate manner, is similarly established.

In Section 4 we utilise the metric d∗MK on the space IMI1 of unit mass
random measures with finite expected first moment defined over a certain
natural space of “construction trees”. Exponential a.s. convergence of the
above iterative procedure to a random measure µ∗, independent of µ0 and
having distribution P∗, is established by a contraction mapping argument
applied to a certain “non-constructive” operator defined on IMI1.

We next discuss the connection between the arguments and results here,
and those of other authors.

Contraction mapping methods for showing the existence and uniqueness
of (non random) fractal sets and fractal measures were first used in Hutchin-
son (1981). Falconer (1986) and Graf (1987) used contraction methods to
obtain random fractal sets, and Olsen (1994) used contraction methods to
obtain random fractal measures. In these three cases, one effectively applies
contraction arguments to each realisation of the (infinite) random process,
i.e. to each branch of the Construction Tree in Section 4 used to construct
the random fractal measure. Thus all maps Si(ω) are assumed to be con-
tractions. (Olsen, and other authors, also allow more general families of
contraction maps, “random geometrically graph directed self-similar multi-
fractals”, but this involves mainly technical complications from the point of
view of the mathematical development.) In the language of the present pa-
per, they assume that ri < 1 a.s. (see Olsen (1994; Sections 2.2, 2.3 and 4.2),
but it should be noted that the arguments of Olsen in fact can be modified
to apply under the weaker assumption that

∑N
i=1 piri < 1 a.s.

Here we make the much weaker assumption that E
(∑N

i=1 piri
)
< 1, but

this is natural in the random setting. However, it is now impossible to apply
contraction mapping arguments at the individual realisation level.

Instead, we first apply a contraction argument at the distribution level
for random measures, see Theorem 3.3. Since random measure distributions
are themselves measures (on a space of measures) one can define a Monge
Kantorovich metric, but the argument that the operator S is a contraction
map is now quite different from the non random case. The main point is that
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one must use the independence of µ(i), . . . , µ(N),S from Definition 3.1 of S
and take appropriate conditional expectations in the proof of Theorem 3.3.
This establishes existence and uniqueness at the distribution level of a self-
similar random fractal measure.

In Theorem 4.1 we prove a.s. convergence of the random iterative proce-
dure, applied to any initial measure, to the random fractal measure. We only
require E

(∑N
i=1 piri

)
< 1 and moreover exponential convergence is also estab-

lished. Again it is impossible to apply contraction arguments at the individ-
ual realisation level, and instead we define in (10) a certain non-constructive
operator S on the space of all random measures, show the connection be-
tween S and the constructive iteration procedure (see (11) ), and establish S
is a contraction map. Exponential and hence a.s. convergence of the iterative
procedure is a consequence.

Arbeiter (1991) also restricts considerations to contraction maps, but

much of his work does extend to the case E
(∑N

i=1 piri
)
< 1, and his results

then come closest to those in this paper. He also obtains many interesting
results on the dimension of random fractal sets. But he does not use con-
traction mapping arguments nor obtain exponential convergence, and the
arguments that are used are considerably more involved than those here.

The first author thanks Peter Wood for generating most of the graphics
in the paper, and both Jacki Wicks and Peter Wood for helpful discussions
on work related to the material here. Part of this work was supported by
grants from the Australian Research Council, and done while the first au-
thor was a visitor at the University of Freiburg supported by the Deutsche
Forschungsgemeinschaft.

2 A model example

For motivation we consider one of the simplest non-trivial examples, a ran-
dom Koch curve. Although this falls within the class of random fractal
measures which can be treated by considerations at the individual realisa-
tion level, it is easily modified as discussed later at the end of this Section,
to give examples which can only be analysed by fully probabilistic methods.

First recall that the deterministic (i.e. non-random) Koch curve K∗ can
be constructed as the limit in an appropriate sense (e.g. in the Hausdorff
metric) of the following sequence of compact sets (Kn)n≥0.

K0 K1 K2
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K3 K4 K10

Each Kn has the same two boundary points a1 = (0, 0), a2 = (1, 0) in IR2 and
is the union of 2n equal length line segments. The set Kn+1 is obtained from
Kn by replacing each line segment in Kn by a connected pair of segments
with the same endpoints and subtending an angle 2π/3. The replacement
segments point to the left or right (in the sense of the natural orientation) of
the segment they replace according as n is even or odd. Equivalently,

Kn+1 = Su1Kn ∪ Su2Kn =: SuKn

where Su = (Su1, Su2) and each Sui : IR2 → IR2 is a composition of a reflection
in the x-axis, a rotation about ai of π/6 if i = 1 and −π/6 if i = 2, and a
homothety centred at ai with Lipschitz constant 1/

√
3. (The map Sui is the

unique orientation reversing isometry fixing ai and mapping aj (j 6= i) to
(1/2, 1/(2

√
3)).) Passing to the limit K∗, one has

K∗ = Su1K
∗ ∪ Su2K

∗ =: SuK
∗

If C is the metric space of non-empty compact subsets of IR2 together
with the Hausdorff metric, it is easy to check that the operator Su : C → C
defined by

SuK = Su1K ∪ Su2K,

is a contraction map, see Hutchinson (1981). It follows that there is a unique
compact set K∗ invariant under Su; we say K∗ is a fractal set which is self-
similar with respect to Su. For any initial compact set K0 = E, the sequence
defined by Kn = SuKn−1 (= Sn(E0) in the next diagram) converges to K∗.

¥

¥

¥¥

+
E =

S2(E) =

S4(E) =

S7(E) =

+
¥

If, conversely to before, the new line segments determining Kn+1 from Kn

point right or left according as n is even or odd, then one obtains a sequence
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of sets obtained by reflecting the previous Kn in the x-axis. In this case

Kn+1 = Sd1Kn ∪ Sd2Kn =: SdKn

where Sd = (Sd1, Sd2) and Sdi is constructed as is Sui except that π/6 and
−π/6 are interchanged and (1/2, 1/(2

√
3)) is replaced by (1/2,−1/(2

√
3)).

Suppose now that at each stage in the construction the new line segments
point left or right with independent probabilities 1/2. For example, one
experiment may give:

K0
K1 K2

K3 K4 K10

There are two possibilities for K1, each with probability 1/2. Once K1 is
selected there are 4 possibilities for K2, each with probability 1/4, etc.

We write
K1 =

⋃
i

SiK0

where S := (S1, S2) is a random pair taking the two values Su = (Su1, Su2) or
Sd = (Sd1, Sd2) each with probability 1/2. In the previous diagram S = Sd.
Similarly,

K2 =
⋃
i,j

Si ◦ SijK0 =
⋃
i

Si

(⋃
j

SijK0

)
=:
⋃
i

SiK
(i)
1

where each Si := (Si1, S
i
2) is also a random pair taking values Su = (Su1, Su2)

or Sd = (Sd1, Sd2) with probability 1/2, and S1,S2,S are independent. In
the previous diagram, S1 = Su and S2 = Su (remember that Sd and Su

reverse orientation). Note for future reference that K
(1)
1 , K

(2)
1 have the same

probability distribution as K1 and are independent of one another and of
S = (S1, S2).

Likewise,

K3 =
⋃
i,j,k

Si ◦ Sij ◦ Sijk K0 =
⋃
i

Si

(⋃
j,k

Sij ◦ Sijk K0

)
=:
⋃
i

SiK
(i)
2

where the Sij := (Sij1 , S
ij
2 ) take values Su = (Su1, Su2) or Sd = (Sd1, Sd2) each

with probability 1/2, and the Sij,Sk,S are independent. In the previous
diagram, S11 = Sd,S12 = Sd,S21 = Su,S22 = Su. Analogously to before,
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the K
(i)
2 have the same probability distribution as K2 and are independent

of one another and of S. Similar remarks apply to K4, K5, . . ..
In the following diagram, three other possible limit sets (actually, sets at

the 10th stage of an approximation) are shown.

For each such (infinite) experiment ω, one obtains a limit set

K∗ = K∗(ω) =
⋃
i

Si(ω)K∗(i)(ω),

to which K10 = K10(ω) is here a reasonable approximation. The probability
distribution {1/2, 1/2} on {Su,Sd}, which we denote by S, induces a prob-
ability distribution P∗ := distK∗ on the set of K∗(ω). As one anticipates
from the previous discussion by passing to the limit,

P∗ = distK∗ = dist
⋃
i

SiK
∗(i) =: SP∗,

where the K∗(i) have probability distribution P∗, and S = (S1, S2) has dis-
tribution S, with K∗(1), K∗(2),S independent of one another. In this sense
we say that the probability distribution P∗ is a random fractal distribution
self-similar w.r.t. S. Loosely speaking, K∗ is the union of two sets S1K

∗(1)

and S2K
∗(2), each of which has—after applying the inverse of the appro-

priate component of the independent random map S = (S1, S2)—the same
probability distribution P∗ as K∗.

In Theorem 3.3 we establish that such a self-similar distribution P∗ is
unique and that the distributions of the Kn converge exponentially fast in
an appropriate metric to P∗. We use a contraction mapping argument on
a certain space of probability distributions. (Rather than random sets, we
consider random measures. This is more natural both mathematically and
in applications. For example, instead of Kn consider the unit mass measure
µn obtained by restricting to Kn a suitable normalisation of H1—Hausdorff
one-dimensional measure.)

In the next diagram we see a sequence of realisations of the experiment
where Su = (Su1, Su2) or Sd = (Sd1, Sd2) are chosen with probabilities .9 and
.1 respectively. Once again there is a unique associated self-similar random
fractal distribution, to which the distributions of the Kn converge exponen-
tially.

K0 K1 K2
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K3 K4 K10

In addition to the results concerning probability distributions, we will
see that Kn(ω) converges a.s. (and exponentially fast) to K∗(ω). Moreover,
the random measure K∗(ω) (as well as the associated distribution P∗) is
independent of the starting set K0. To establish this in general requires a
more careful analysis of the the construction process. In previous diagrams
we saw various steps in one realisation ω of an (infinite) construction process.
Fixing K0, ω is determined by a choice of either Su or Sd at each node in the
infinite two-fold branching tree shown below.

   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -     

   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

Identifying each ω with a tree of such choices, ω is then called a construc-
tion tree or tree of scaling laws and the sample space (Ω̃, P̃ ) will be the set
of all such ω together with the probability distribution induced from the
probability distribution S on the set {Su,Sd}. We define a certain “non-
constructive” operator S on the class of all random sets (actually, measures)
defined over Ω̃ with the property that Kn+1(ω) = SKn(ω). A suitable metric
and a contraction mapping argument then establishes the results concerning
a.s. convergence.

In the previous examples one has a random scaling law S = (S1, S2) where
the pair (S1, S2) takes one of two possible values, each with equal probability.
This gives a random fractal set K∗ = K∗(ω). Consider instead a more general
type of random scaling law S = (p1, S1, p2, S2) with weights p1 = p2 = 1/2
(surely) and (S1, S2) having the same distribution as before. For any unit
mass random measure µ in IR2, define the random measure

Sµ =
1

2
S1µ

(1) +
1

2
S2µ

(2)

where the µ(i) are independent of (S1, S2) and are independently and identi-
cally distributed copies of µ. Beginning from any initial unit mass measure
(non random or even random) this leads in an analogous manner to a random
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“Koch measure” with unit mass distribution “uniformly” distributed along
(realisations of) the random Koch curve.

The examples so far can all be obtained by contraction arguments applied
at the individual realisation level, as in Falconer (1986), Graf (1987) and
Olsen (1994). Next consider a distribution on 4-tuples (p1, S1, p2, S2) with
pi > 0,

∑
pi = 1, Si : IR2 → IR2, ri the Lipschitz constant of Si, E

∑
piri < 1

and E
∑
pi|Si0| < ∞. (The Si need not be contractions.) We establish

existence, uniqueness and convergence results for a corresponding random
fractal measure, although contraction arguments at the individual realisation
level do not apply unless

∑
piri < 1 a.s.

3 Construction of random fractal measures

Let (X, d) be a complete separable metric space and let M1 = M1(X) denote
the class of all Radon measures µ on (X,B), where B is the Borel σ-algebra
on X, with µ(X) = 1 and

∫
d(x, a) dµ(x) < ∞ for some a ∈ X. (In the

previous section, X = IR2.) For µ, ν ∈ M1 define the Monge Kantorovich
metric by

dMK(µ, ν) = sup
{ ∣∣∣∫ f dµ−

∫
f dν

∣∣∣ ∣∣∣∣ f : X → IR1, Lipf ≤ 1
}
. (1)

Contraction properties of dMK were used in Hutchinson (1981) to establish
existence and uniqueness of fractal measures.

Remarks: Note the following properties.

1. (M1, dMK) is a complete separable metric space. To show finiteness,
note that

∫
f dµ− ∫ f dν is invariant under shifts f 7→ f + c and so we

may assume f(a) = 0 in (1). Hence, if Lipf ≤ 1 and f(a) = 0,

dMK(µ, ν) ≤
∫
|f |dµ+

∫
|f |dν

≤
∫
d(x, a) dµ(x) +

∫
d(x, a) dν(x) < ∞.

2. dMK(µn, µ)→ 0 if and only if

(a) µn
w→ µ (weak convergence) and

(b)
∫
d(x, a) dµn(x)→ ∫

d(x, a) dµ(x) (convergence of first moments).

3. The same definition of dMK(µ, ν) can be used for Radon measures of
arbitrary mass on (X,B). It follows that dMK(µ, ν) =∞ if the masses
of µ and ν differ. Moreover,
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(a) dMK(αµ, αν) = αdMK(µ, ν) if 0 ≤ α ∈ IR,

(b) dMK(µ1 + µ2, ν1 + ν2) ≤ dMK(µ1, ν1) + dMK(µ2, ν2).

4. dMK(Sµ, Sν) ≤ ( LipS)dMK(µ, ν) if S : X → X, where LipS is the
Lipschitz constant of S.

5. dMK(δa, δb) = d(a, b) for a, b ∈ X, where δa is the Dirac unit mass
measure concentrated at a.

¤

Let (Ω,A, P ) be the underlying probability space. Let IMI denote the set
of all random measures µ on M1, i.e. random variables µ : Ω → M1, and
let IMI1 denote the subset of such µ with finite expected first moment, i.e.
EdMK(µ, δa) <∞ for some (and hence any) a ∈ X. LetM denote the set of
all probability distributions P of random measures µ ∈ IMI and M1 denote
the subset of probability distributions of random measures µ ∈ IMI1; thus
if P ∈ M1 then

∫
dMK(·, δa) dP < ∞ for some a ∈ X. (All fixed measures

here have unit mass and finite first moment; the subscript “1” refers to the
existence of a finite first moment condition at the individual measure, random
measure or probability distribution, level.)

The scaling properties of random fractal measures are described by scaling
laws.

Definition 3.1 A scaling law (p1, S1, . . . , pN , SN) is a 2N-tuple of real num-
bers pi ≥ 0 with

∑
pi = 1, and Lipschitz maps Si : X → X. A random scaling

law S is a random variable whose values are scaling laws. The distribution
of S is denoted by S. The corresponding scaling operator S : M → M is
defined by

SP d
=

N∑
i=1

pi Siµ
(i), (2)

where µ(i) d
= P, S = (p1, S1, . . . , pN , SN)

d
= S and µ(1), . . . , µ(N),S are in-

dependent.

Here Siµ
(i) is the image of µ(i) under Si (or the push forward measure)

and
d
= denotes equality in distribution.

Definition 3.2 Let S be a random scaling law with distribution S, and µ ∈
IMI be a random measure with distribution P ∈ M. Then µ is called a
random fractal measure self similar w.r.t. S, and P is called a fractal measure
distribution self-similar w.r.t. S (or S), if SP = P.
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The following is analogous to the process for sets described informally in
Section 2.

The Iterative Procedure Beginning with an initial measure µ0 ∈M1 one
can iteratively apply independently distributed scaling laws with distribution
S to obtain a sequence µn of random measures in IMI1, and a corresponding
sequence Pn of distributions in M1, as follows.

1. Select a scaling law S = (p1, S1, . . . , pN , SN) via the distribution S and
define

µ1 =
N∑
i=1

piSiµ0, P1
d
= µ1,

2. Select S1, . . . ,SN via S with Si = (pi1, S
i
1, . . . , p

i
N , S

i
N) independent of

each other and of S and define

µ2 =
∑
i,j

pip
i
jSi ◦ Sijµ0, P2

d
= µ2,

3. Select Sij = (pij1 , S
ij
1 , . . . , p

ij
NS

ij
N) via S independent of one another and

of S1, . . . ,SN ,S and define

µ3 =
∑
i,j,k

pip
i
jp
ij
k Si ◦ Sij ◦ Sijk µ0, P3

d
= µ3,

4. etc.

Since µn+1 =
∑
piSiµ

(i)
n where µ(i)

n
d
=µn

d
=Pn, S = (p1, S1, . . . , pN , SN)

d
=S,

and the µ(i)
n and S are independent, it follows that

Pn+1 = SPn. (3)

In the following theorem we establish the existence of a unique fractal
measure distribution P∗ ∈ M1 which is self-similar w.r.t. S and show that
Pn converges to P∗ (independently of the initial measure µ0). The approxi-
mation is described in terms of the Monge Kantorovich metric d∗∗MK defined
for P ,Q ∈M1 by

d∗∗MK(P ,Q) = sup
{
|EPF − EQF |

∣∣∣ F : M1 → IR, LipF ≤ 1
}

(4)

= sup
{
|EF (µ)− EF (ν)|

∣∣∣ F : M1 → IR, LipF ≤ 1
}
, (5)

where µ
d
=P and ν

d
=Q. We use the standard notation

EPF =
∫
F (·) dP =

∫
Ω
F ◦ µ dP = EF (µ).
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This is analogous to (1), and in particular (M, d∗∗MK) is complete and sepa-
rable and the analogue of Remark 2 is true.

For future reference note that

ESPF =
∫
F (·) dSP(·) =

∫
Ω
F
(∑

piSiµ
(i)
)

dP = EF
(∑

piSiµ
(i)
)
, (6)

where µ(i) d
= P , S = (p1, S1, . . . , pN , SN)

d
= S, and µ(i), . . . , µ(N),S are in-

dependent.

Theorem 3.3 Let S = (p1, S1, . . . , pN , SN) be a random scaling law with

(i) λ := E
(∑N

i=1 piri
)
< 1, where ri = LipSi,

(ii) Γa := E
∑N
i=1 pid(a, Sia) <∞, a ∈ X.

Then

(a) the scaling operator S : M1 → M1 is a contraction w.r.t. the Monge
Kantorovich metric d∗∗MK on M1,

(b) there exists a unique fractal measure distribution P∗ ∈ M1 which is
self-similar w.r.t. S,

(c) the sequence of probability distributions (Pn)n≥1 converges exponentially
fast w.r.t. d∗∗MK to P∗.

Proof: We first need to check that SP ∈ M1 for P ∈ M1. The fact that
SP has unit mass almost surely is clear.

To check the moment condition ESPdMK(·, δa) < ∞ for some a ∈ X

select µ(i) d
= P and S = (p1, S1, . . . , pN , SN)

d
= S where µ(i), . . . , µ(N),S are

independent. Then using (6) and Remarks 3–5,

ESPdMK(·, δa) = EdMK

(∑
piSiµ

(i),
∑

piδa
)

≤ E
∑
i

pidMK

(
Siµ

(i), δa
)

≤ E
∑
i

pi
(
dMK(Siµ

(i), Siδa) + dMK(Siδa, δa)
)

≤ E
∑
i

pi
(
ridMK(µ(i), δa) + d(Sia, a)

)
= λEPdMK(·, δa) + Γa < ∞.
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To compute d∗∗MK(SP,SQ) let F : M1 → IR with LipF ≤ 1. Again
using (6) and Remarks 3–5,

|ESPF − ESQF | =
∣∣∣EF (∑ piSiµ

(i)
)
− EF

(∑
piSiν

(i)
)∣∣∣

where the µ(i) and S are independent, as are

the ν(i) and S, and µ(i) d
=P , ν(i) d

=Q,

≤
N∑
j=1

∣∣∣∣EF(j−1∑
i=1

piSiν
(i) + pjSjµ

(j) +
N∑

i=j+1

piSiµ
(i)
)

− EF
(j−1∑
i=1

piSiν
(i) + pjSjν

(j) +
N∑

i=j+1

piSiµ
(i)
)∣∣∣∣

=
N∑
j=1

∣∣∣EGj(µ
(j))− EGj(ν

(j))
∣∣∣ ,

where

Gj(µ) := F
(j−1∑
i=1

piSiν
(i) + pjSjµ+

N∑
i=j+1

piSiµ
(i)
)
.

From Remarks 3(a) and (4) we see Gj is Lipschitz with Lipschitz constant

pjrj. Since µ(j) d
=P and ν(j) d

=Q, on taking the conditional expectation E∗

w.r.t. µ(j) and ν(j) given ν(i) (i 6= j), µ(k) (k 6= j) and S, and using (5), it
follows that

|ESPF − ESQF | ≤
N∑
j=1

E
∣∣∣E∗Gj(µ

(j))− E∗Gj(ν
(j))
∣∣∣

≤
N∑
j=1

Epjrj d
∗∗
MK(P ,Q)

= λd∗∗MK(P ,Q).

Taking the supremum over the class of F for which LipF ≤ 1, it follows
that S :M1 →M1 is a contraction with Lipschitz constant λ < 1. This im-
plies the existence and uniqueness of a fractal measure distribution P∗ ∈M1

and exponential convergence of Pn to P∗. ¤

4 Construction trees and a.s. convergence

The Monge Kantorovich metric d∗∗MK on the set of random measures used
in Section 3 describes weak convergence of the iterative sequence of random
approximating measures to a random fractal measure. In this section we
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consider a natural probability space Ω̃, the space of construction trees, and
deduce that the corresponding iterative process converges almost surely.

For this purpose, a “non-constructive” operator S : IMI → IMI is intro-
duced, where unless otherwise stated the underlying probability space is Ω̃.
The argument for a.s. convergence to some µ∗ ∈ IMI1 is based on a contrac-
tion argument for S with respect to a compound version dMK

∗ of the Monge
Kantorovich metric defined on IMI1 by

d∗MK(µ, ν) = EdMK(µ, ν), µ, ν ∈ IMI1. (7)

Note that ( IMI1, d
∗
MK) is a complete separable metric space. (The metric d∗MK

is “compound” in the sense that, unlike d∗∗MK , it depends on the underlying
probability space, and not just on the induced probability distributions.)

We now define the space of construction trees. Let C = CN denote the
N -fold tree of finite sequences from {1, . . . , N} including the empty sequence
Ø. For σ = σ1 · · ·σn ∈ C denote |σ| = n. If also τ = τ1 · · · τm ∈ C then σ ∗ τ
is the concatenated sequence σ1 · · ·σnτ1 · · · τm. A construction tree (or tree
of scaling laws) is a map ω : C → Υ, where Υ is the set of scaling laws of
2N -tuples. Let

Ω̃ = {w | w : C → Υ }
Denote the scaling law at the node σ of ω by

Sσ(ω) = (pσ1 (ω), Sσ1 (ω), . . . , pσN(ω), SσN(ω)) = ω(σ)

for σ ∈ C. Let P̃ be the probability measure on Ω̃ induced by selecting

iid random scaling laws Sσ
d
=S for σ ∈ C. Note that the distributions and

independencies of the Sσ are the same as in the iterative procedure described
in the previous section. In future, the underlying probability space for IMI
and IMI1 will be (Ω̃, P̃ ); this will not affect the final result, as noted before
Theorem 4.1.

We use the notation

pσ = pσ1p
σ1
σ2
pσ1σ2
σ3
· · · pσ1···σp−1

σp ,

S
σ

= Sσ1 ◦ Sσ1
σ2
◦ Sσ1σ2

σ3
◦ · · · ◦ Sσ1···σp−1

σp .

In particular pi = pi and S
i

= Si for 1 ≤ i ≤ N .
For a fixed measure µ0 ∈M1, define

µn = µn(ω) =
∑
|σ|=n

pσ(ω)S
σ
(ω)µ0.
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This is just the sequence defined in Section 3 with underlying Ω = Ω̃. In
Theorem 4.1 we show that µn converges a.s. to a fixed point µ∗ (∈ IMI1) of S
w.r.t. weak convergence of measures. An immediate consequence will be that

µ∗
d
=P∗, the unique fractal measure distribution in M1 which is self-similar

w.r.t. S.
For ω ∈ Ω̃ and 1 ≤ i ≤ N define ω(i) ∈ Ω̃ corresponding to the i-th

branch of ω by
ω(i)(σ) = ω(i ∗ σ), σ ∈ C.

One checks that

pi∗σ(ω) = pi(ω)pσ(ω(i)),

S
i∗σ

(ω) = Si(ω) ◦ Sσ(ω(i)).

(8)

Note that the branches ω(1), . . . , ω(N) of ω are iid with the same distribution
as ω and are independent of (p1(ω), S1(ω), . . . , pN(ω), SN(ω)). More precisely,
for any P̃ measurable sets E, F ⊂ Ω̃ and S-measurable set B ⊂ Υ,

P̃ ({ω | ω ∈ E }) = P̃ ({ω | ω(i) ∈ E }),

{ω | ω(i) ∈ E } and {ω | ω(j) ∈ E } are independent for i 6= j,

{ω | (p1(ω), S1(ω), . . . , pN(ω), SN(ω)) ∈ B } and {ω | ω(i) ∈ E }

are independent.

(9)

We now define the scaling operator S : IMI→ IMI by

Sµ(ω) =
∑
i

pi(ω)Si(ω)µ(ω(i)). (10)

It follows from (9) that Sµ is identical in distribution to the scaling operator
S applied to distµ. Moreover, from (8),

µn+1(ω) =
N∑
i=1

∑
|σ|=n

pi∗σS
i∗σ

(ω)µ0

=
N∑
i=1

pi(ω)Si(ω)
( ∑
|σ|=n

pσ(ω(i))S
σ
(ω(i))µ0

)

=
N∑
i=1

pi(ω)Si(ω)µn(ω(i)) = Sµn(ω). (11)

Thus the operator S is defined on all of IMI, and the sequence (µn(ω)) is
obtained by iteratively applying S to µ0.
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We can now prove the following theorem. The conclusions are probabilis-
tic ones, in that they concern only the (joint) distributions of the random
measures involved and otherwise are independent of the choice of sample
space. The proof however, and in particular the operator S, uses the specific
sample space (Ω̃, P̃ ).

Theorem 4.1 Let S = (p1, S1, . . . , pN , SN) be a random scaling law with

(i) λ = E
(∑N

i=1 piri
)
< 1,

(ii) Γa = E
∑N
i=1 pid(a, Sia) <∞, a ∈ X.

Let µ0 ∈M1.
Then there exists a random measure µ∗ ∈ IMI1, independent of µ0, such

that µ∗
d
=P∗ and such that µn → µ∗ exponentially fast w.r.t. to d∗MK, and in

particular a.s.

Proof: We claim that S : IMI1 → IMI1 and S is a contraction mapping w.r.t.
d∗MK . The fact that Sµ has mass one a.s. is immediate. The proof that Sµ
has finite first moment is very similar to the proof of the analogous fact in
Theorem 3.3, using the independence properties in (9) and the comments
which immediately precede it.

To show S is a contraction map, we compute, again using (9) and the
comments preceding it, that

d∗MK(Sµ,Sν) = EdMK

(∑
pi(ω)Si(ω)µ(ω(i)),

∑
pi(ω)Si(ω)ν(ω(i))

)
≤ E

∑
i

pi(ω)ri(ω)dMK

(
µ(ω(i)), ν(ω(i))

)
= λd∗MK(µ, ν).

Since λ < 1 it follows that S is a contraction mapping on IMI1 and so has
a unique fixed point µ∗. From (11) it follows that µn → µ∗, exponentially
fast w.r.t. to d∗MK , and in particular a.s. (for example, see the argument in
the following Remark (a)). Moreover, since Sµ∗ = µ∗, taking distributions

of both sides it follows that S distµ∗ = distµ∗ and hence µ∗
d
=P∗ by the

uniqueness result of Theorem 3.3. ¤

Remarks: (a) In fact the proof yields exponential a.s. convergence of
dMK(µn(ω), µ∗(ω))→ 0. To see this suppose 0 < λ < τ ≤ 1. Then

∞∑
n=1

P̃

(
dMK(µn, µ

∗)

τn
> ε

)
≤

∞∑
n=1

c

ε

(
λ

τ

)n
< ∞.
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This implies by the Borel-Cantelli lemma that

dMK(µn, µ
∗)

τn
→ 0 a.s. (12)

(b) If in the iterative procedure in Section 3 one replaces the fixed measure
µ0 by a random measure µ0 ∈ IMI1, or more generally one chooses µσ ∈ IMI1

for each σ ∈ C independently of the Sτ , then a similar result applies. For the
proof, use the probability space (Ω, P ) = (Ω̃, P̃ ) × (Ω∗, P ∗), where (Ω∗, P ∗)
is the probability space associated with the µσ.

(c) Both probability metrics introduced in this paper, d∗MK and d∗∗MK , are
useful tools for the study of convergence of random measures with normal-
ized mass. While d∗∗MK is a suitable simple metric to study convergence in
distribution, the metric d∗MK is of compound type. It needs therefore a spe-
cial underlying construction of the random measures (in our case the space
of construction trees). Then by the structure of this new type of metric one
obtains from contraction properties a.s. convergence of the iterative sequence
of random measures. ¤
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