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If we teach only the findings and products of science – no matter how useful and even inspiring 
they may be – without communicating its critical method, how can the average person possibly 
distinguish science from pseudoscience?  . . . Many, perhaps most, textbooks for budding 
scientists tread lightly here.  It is enormously easier to present in an appealing way the wisdom 
distilled from centuries of patient and collective interrogation of nature than to detail the messy 
distillation apparatus.  The method of science, as stodgy and grumpy as it may seem, is far more 
important than the findings of science. 

[Sagan 1997, The Demon-Haunted World, p. 26, Headline Book Publishing, London.] 
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Introduction 
 

In this case I believe much more could be done than is, in fact, done to prepare for the future 
scientific career.  For the logical principles of experimental design and of reasoning from 
experimental results are of great interest to post-graduate students, who would appreciate 
definite courses in this subject.  In fact however, and at present, the majority of scientific 
workers enter their careers without this preparation, and learn as they go, by their own mistakes 
and those of their colleagues. 

[Fisher, R.A. in Bennett, J.H. (ed.) 1989, pp. 343-346.  See chapter 9 references.] 
 
These notes address, at a preliminary level, broad planning principles that apply to 
many different areas of research.  Anyone who has a research degree should be aware of 
them, whether or not they arise in their own research.  They give, also, pointers that may 
help in getting a clear view of where the researcher’s project is headed. I will have been 
successful in my endeavour if I kindle in at least some readers interest both in the 
research process itself and in the examples. 
There are several reasons why researchers should take an interest in broad-ranging 
issues in research planning: 

1. The immediate research project may take twists and turns that are different from 
those for which earlier study has been a preparation.  This is especially likely for 
highly applied projects, which typically demand a range of diverse skills. 

2. Those who acquire a wide range of research skills are thereby better placed, after 
graduation, to turn their hand to tasks different from those for which their 
immediate research training has equipped them. 

3. Broad-based research skills will best equip researchers to respond to changing 
demands, as they move from task to task and from job to job in the course of 
their careers. 

Designing the instrument panel on a large aeroplane may appear like an engineering 
problem.  It has, also, a large human engineering component.  A layout that has the 
potential to confuse pilots may, in an emergency, be fatal1. 
I emphasize the critical and questioning role of scientific ways of thinking.  It does not 
much matter where you start practicing scientific thinking.  What is important is that 
you start.  As Sagan (1997) notes2: 

Because its explanatory power is so great, once you get the hang of scientific reasoning you are 
bound to start applying it everywhere. 

Criticism and questioning are in tension with the openness to imaginative insight that is 
equally important to the research process.  Data may be in tension with the theoretical 
insights that generated their collection. 
The issue of evidence is central.  There must be an assessment of the evidence in the 
literature that is the starting point for the research project.  There must be a research 
strategy that will bring together data that address the research question.  Statistical 
analysis will extract from the data evidence that relates to the research question.  
Finally, the new research evidence must be integrated into the body of earlier 
knowledge, creating a coherent account that will appear as a report or paper or thesis. 

                                                
1 Thus if a warning indicator does not indicate clearly which engine has experienced problems, the pilot 
may shut down the wrong engine.  An emergency may become a disaster. 
2 In The Demon-Haunted World, Headline Book Publishing, London, p. 279. 
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My examples range widely, from social science through to pure and applied biology and 
physical science, with medical and health examples strongly represented.  Most people 
are interested in their own health.  I am hopeful that such examples will be of wide 
interest to non-medical as well as medical researchers.  I have tried to find examples 
that are not unduly technical.  I have found it helpful, at various points, to draw on ideas 
from the approach to clinical medicine that has the name “Evidence-based Medicine 
(EBM)”.  For those who want to understand the practicalities of Evidence-Based 
Medicine, I recommend the book Smart Health Choices, subtitled How to make 
informed health decisions, by Judy Irwig and collaborators.  These ideas may assist 
researchers both with their health needs and with their research planning!   
The first drafts of this monograph were written for a course that introduced a series of 
short courses on statistical design and analysis.  Any statistical analysis must have a 
context.  Data collection and data analysis serve the wider aims of the research project.  
This requires a clear view of the project’s aims.  There are principles that should guide 
the design of data collection whenever this lies in the researcher’s control.  Where the 
researcher does not have this control, it is important to examine the processes that 
generated the data. Focusing attention back onto the contexts from which data have 
come is important both for use of the data that the researcher may already have, and for 
thinking about any future data collection. Data do not just happen! 
I will be glad to receive comments or corrections, or examples that illustrate points that 
I have made.  I am in debt to researchers from many different areas who over the years 
have brought me questions and data. 
Dr Harold Henderson, from AgResearch (New Zealand), has given me extensive help in 
removing errors and obscurities from these notes, and in drawing interesting examples 
to my attention.  Professor Susan Wilson, from the ANU Centre for Mathematics and its 
Applications, has made a number of useful suggestions.  Dr Gail Craswall, from the 
ANU Study Skills and Learning Centre, has helped with proofreading.  In no way are 
these individuals responsible for what I have made of their help! 
John Maindonald 
22 September 2000
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1. The Research Enterprise 
 
. . . at the heart of science is an essential balance between two seemingly contradictory 
attitudes — an openness to new ideas, no matter how bizarre or counterintuitive, and the most 
ruthlessly sceptical scrutiny of all ideas, old and new.  This is how deep truths are winnowed 
from deep nonsense.  The collective enterprise of creative thinking and sceptical thinking, 
working together, keeps the field on track.  Those two seemingly contradictory attitudes are, 
though, in some tension. 
[Sagan 1997, The Demon-Haunted World, p. 287. Headline Book Publishing, London.] 

 
There is an inherent tension between openness to new ideas, and the ruthless 
criticism to which the scientific research process insists (or should insist) on 
exposing every new idea.  As well as research principles and methodologies 
specific to particular disciplines, there are general principles and 
methodologies.  These notes will focus on these general principles and 
methodologies, and particularly on statistical methodologies, though avoiding 
any attempt at rigid prescription of acceptable scientific procedure.   In order 
to discuss research planning, we will establish a framework that is broad 
enough for most research projects.  The plan should include examination of 
existing knowledge, a decision on a research question or questions, a plan to 
follow in seeking answers, an analysis of the research data, and an eventual 
report. 

1.1 A Conflict that is at the Heart of Research 
There are two key components to any research activity.  Firstly, there must be 
generation of new ideas that may be worth investigation.  This requires openness to 
new ideas.  Secondly, there must be critical scrutiny of all ideas, whether they are an 
accepted part of knowledge or new.  There will be an eventual rejection of ideas that 
cannot withstand criticism.  These two components are in tension.  Failure in either 
may spell doom for the scientific enterprise.  If criticism comes on too strongly at too 
early a stage, good ideas may be squashed.  If it appears too late, there may be a huge 
waste of time from pursuit of unfruitful paths.  When ideas that have not received 
adequate critical evaluation become accepted knowledge, nonsense readily 
masquerades as science.   
Different types of study call for different approaches.  Unduly rigid prescription is 
undesirable.  Any adequate account of scientific method must allow room for the 
exercise of imaginative insight. It must also pay regard to checks on the unconstrained 
use of the imagination.  Unconstrained exercise of imagination leads to myth, fiction 
and to imaginative fiction that presents itself as science.  It has led, at worst, to 
supposed science that has been little more than a vehicle for individual and cultural 
prejudices.  Yet without productive forms of imaginative insight, science would 
stultify. 
Ideas may come in many ways, from working out the implications of existing theory, 
in reverie, from one’s reading, from brainstorming sessions, from dreams, as a by-
product of the process of critical scrutiny and testing, and so on.  What works for one 
person or for one research project may not work for another.  The origins of creativity 
are a deep mystery, part of the mystery of our humanness.  The study of creativity is 
itself a scientific study, one that has not yet advanced to the point where it can offer 
deep insights.  Creativity has its best chance when the research enterprise has captured 
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the imagination.  Researchers who find their task boring and uninspiring are unlikely 
to be very creative.  A sense of wonder is important. 
Generation of ideas is less the problem than the generation of ideas that have a good 
chance of withstanding scientific scrutiny.  There is a huge traffic in the generation of 
ideas that have been scientifically fruitless — iridology, palmistry, crystal balls, the 
star signs, sympathetic magic, augury, UFOs, and so on.  Ideas from these sources 
have been singularly unhelpful to the progress of science. When ideas appear, there 
must be mechanisms for deciding which are worth pursuing. Time and energy will not 
be well spent on the investigation of every crackpot idea.  But how does one know 
which ideas really are totally crackpot, and which are worth pursuing?  There can be 
no sure criteria.  Typically the researcher will stay away from lines of research that 
have proved unfruitful in the past.  There is a risk that in rejecting such sources out of 
hand, an important insight will sometime be missed.  It is a risk that most researchers 
think justified by their assessment of the trade-offs. 

Repeatability 
In many (but not all) areas of knowledge, it is appropriate to ask whether results can 
and have been repeated, by different workers in different places.  An effective way to 
silence would-be critics is to demonstrate that they can be repeated.  Results that have 
been obtained in one time and place, and that others elsewhere are unable to 
reproduce, cannot contribute to science.  To become part of the body of useful 
scientific knowledge, results must be repeatable.  Thus Fisher (1935, §7) argued that 

. . . no isolated experiment, however significant in itself, can suffice for the 
experimental demonstration of a natural phenomenon. . . . In relation to the 
test of significance, we may say that a phenomenon is experimentally 
demonstrable when we know how to conduct an experiment which will rarely 
fail to give us a statistically significant result. 

Tukey (1991) notes that: 
Long ago Fisher . . . recognised that . . . solid knowledge came from a 
demonstrated ability to repeat experiments . . . .  This is unhappy for the 
investigator who would like to settle things once and for all, but consistent 
with the best accounts we have of the scientific method . . . . 

Scherr (1983) uses more colourful language to make a similar point: 
The glorious endeavour that we know today as science has grown out of the 
murk of sorcery, religious ritual, and cooking.  But while witches, priests and 
chefs were developing taller and taller hats, scientists worked out a method for 
determining the validity of their results: they learned to ask Are they 
reproducible? 

The demand for repeatability applies with different force and in different ways in 
different areas of science.   
Where it is not possible to demonstrate a claim experimentally, what recourses are 
available?  There are other ways of gathering and using evidence, which however 
rarely give the secure knowledge that comes from a properly conducted experiment.  
The two examples in the next section will illustrate some of the issues. 

1.2 The Merging of Different Insights and Skills 
Planning should achieve a clear sense of where research is headed, and of how it will 
achieve its aims. How does one get the data and do the analyses needed for a 
convincing end result?  We begin with two historically interesting examples from the 
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nineteenth century.  The first is from the work of Florence Nightingale, and the 
second from the physician John Snow. 

Florence Nightingale’s Crimean War Data 
Fig. 1 is similar to a graph, drawn by Florence Nightingale, that is reproduced in 
Cohen (1984). 

0 5 10 15 20

Englishmen 

English soldiers 

Englishmen 

English soldiers 

Englishmen 

English soldiers 

Englishmen 

English soldiers 

Age 20-25    

Age 25-30    

Age 30-35    

Age 35-40    

Fig. 1: Florence Nightingale's data showing deaths per 1000 per annum,
for the general population and for soldiers living in barracks.

 
 
The clear message of Fig. 1 is that, at the time of the Crimean War, it was much more 
dangerous to be a soldier living in barracks in England than to be a male in the 
general population.  Note that the pattern is the same for all four age groups.  There 
were other important sources of evidence.  Evidence about poor sanitation and 
hygiene at army barracks supported what the data seemed to say. 
How much effort went into the collection of these data?  Was it straightforward, just a 
matter of tallying up readily accessible official records?  Or was it necessary to 
organise clerks to go out and collect it?  What was Florence Nightingale’s purpose in 
collecting it? 

John Snow’s Data on the London Cholera Epidemics 
Our second famous set of historical data is from John Snow (1855). He presented data 
that showed that Londoners were much more likely to die of cholera if, after 1853, 
they took their water from the Southwark and Vauxhall company rather than from the 
Lambeth company: 

Water Supply Company Death Rate (per 
household) 

Total 
Deaths 

Lambeth 5 per 10,000 14 
Southwark and 
Vauxhall 

71 per 10,000 286 

 
Often houses in the same street would get their water, some from one company and 
some from the other.  So the source of the difference did seem to be the different 
sources of water.  Snow noted that in 1853 the Lambeth Company had moved its 
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supply upstream to Thames Ditton, where the water was relatively uncontaminated.  
Snow wrote: 

It is extremely worthy of remark that whilst only 563 deaths occurred in the 
whole metropolis in the four weeks ending August 5th (1853), more than one 
half of them took place amongst the customers of the Southwalk and Vauxhall 
company and a great proportion of the remaining deaths were those of 
mariners and persons employed in the shipping on the Thames, who almost 
invariably drew their drinking water from the river. 

Shoe Leather 
Florence Nightingale and John Snow did much more than present data.  Florence 
Nightingale’s argument was of the kind: “Isn’t this what you would expect from the 
conditions that prevail in British army barracks. For Snow the evidence from the 1854 
epidemic clinched what he had begun to suspect on other grounds. Great cholera 
epidemics occurred in the British Isles between 1831 and 1866. There were 
competing theories as to the cause, with many blaming the air. Snow noted that 
cholera affected the intestines rather than the lungs, making it unlikely that it was 
spread as a poison in the air.  He noted that when a ship went from a cholera-free 
country to a cholera-stricken port, the sailors would get the disease only after they had 
landed or taken on supplies.  Exposure to the air was not enough.  Snow engaged in 
scientific detective work.  In one of the earliest epidemics he found the seaman who 
had been the first case, and noted that he had newly arrived from Hamburg, where the 
disease was active. Snow’s book is a classic for the way he builds his case from the 
variety of evidence. 
In a paper titled “Statistical Models and Shoe Leather”, Freedman (1991) describes 
how Snow tramped around London gathering his information.  Not just statistical 
analysis, but shoe leather, was crucial to the case that Snow finally made. It is always 
thus.   The context from which the data come is crucial to their use and interpretation.  

Statistical analysis, plus subject area insights 
In the design of data collection, and in interpreting results, subject area insights 
should mesh with statistical and data analysis insights in ways that will vary from 
study to study.  The researcher’s challenge is to put together all the evidence – 
evidence from the literature, from the analysis of the researcher’s own data, and less 
formal evidence that may not be amenable to statistical analysis, in a manner that 
presents a coherent story.  This demand for coherence will appear repeatedly in these 
notes. 
This monograph is written from the point of view of a practising statistician who has 
often been involved in the research of others.  A key emphasis is that there must be a 
marriage of statistical insights with application area insights.  There must be shoe 
leather as well as statistical analysis. 
Careful planning will greatly increase the chances that, when your data analysis is 
complete, there will be a compelling story to tell.  It is a fortunate researcher whose 
data tell a story that is as compelling as Florence Nightingale’s data, or as John 
Snow’s data.  Good planning of the project, and of the data collection, can greatly 
increase the chances of such good fortune. 
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1.3 A Framework for a Research Project 
The aim is to develop a framework that will be helpful in the later discussion of 
research projects.  It is impossible to get started at all unless there is a research 
question, or at least the beginnings of a research question. 

Asking the Right Question 
An unfortunate choice of research question gets the research off to an unsatisfactory 
start.  It gives an unsatisfactory basis for the planning of data collection.  The question 
may at first be phrased in very general terms.  A large part of the effort, initially, will 
then go into honing the research question, into giving it a clear focus.  Often there will 
be some refining of the research question during the preliminary stages of the 
research.   
Avoid questions that are unclear, or that do not give the research a clear focus, or that 
are too difficult to answer within the project’s time and resource limitations. It is often 
possible to get a research degree by answering a question that is different from the 
one you set out to answer, but do not bank too much on this possibility!  In 
government or industry, it may be pretty important to answer the question that was 
asked! 
Clear research questions keep the research focused, and are a safeguard against 
diversion of undue energy into bypaths.  One may have specific hypotheses, e.g. that 
two treatments for blood pressure are indistinguishable in their effect.   Or one may 
wish to estimate the effect of a particular treatment.  How does living at high altitudes 
affect the lung capacities of ten-year old children? 
Good research planning and execution has multiple components. It should bring 
together relevant insights and skills from all contributing disciplines.  This is a 
particular challenge for highly applied research, where there may be diverse multi-
disciplinary demands.   

Four Components of a Research Project 
It will be convenient to group the different components of a research project under the 
headings: 
1. assessment of the state of existing knowledge; 
2. generation and honing of ideas; 
3. the design and execution of research that will explore or test specific ideas; 
4. analysis, interpretation and presentation of the resulting data. 
In the next chapter, I will give a more detailed framework that has eight steps. 
While statistical ideas may not have much role in idea generation, they are certainly 
important in 1 (assessing existing knowledge), 3 (designing and executing research) 
and 4 (data analysis and interpretation).  I will put particular emphasis on the review 
of existing knowledge, an area where the insights of experienced statisticians are 
sorely needed.  Assessments of how effectively earlier workers have designed their 
study, and of how compelling their results are, may rely heavily on statistical insights.  
Even if the study design seems to stand up to critical scrutiny, the reader must ask 
whether the data interpretation is correct. Mistakes in the statistical analysis or in the 
interpretation of the analysis may lead to quite wrong conclusions, as in some of the 
examples that we give later. 
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What is the Current State of the Evidence? 
Researchers will be wise to attend closely to the efforts of earlier researchers.  That is 
why a literature review is often the starting point for new research. One wants to 
avoid re-inventing the wheel or pursuing what is already known to be a bypath. On 
the other hand, do not accept uncritically all claims made by earlier researchers. Their 
methodology may be inadequate, or they may have misinterpreted their data. 
There are lessons both in the successes of earlier workers and in their mistakes.  In 
order to learn from the mistakes, one needs to identify them.  One aim of these notes 
is to sensitise readers to some of the mistakes that occur.  What are the telltale signs 
that indicate that conclusions may not be securely based?   It takes experience and 
maturity, and often involves issues of statistical design or interpretation.  

What if the experts disagree? 
The “experts” may not agree among themselves.  If all sides agree that there is as yet 
no definitive evidence either way, and are taking different punts on what the future 
may hold, that is healthy.  Where both sides consider that the evidence supports their 
judgment, the problem is clearly more fundamental.  Underlying the disagreements 
are, as in the claimed link between salt consumption and blood pressure, differences 
of opinion on what is valid scientific evidence.  It is then insightful to contrast the 
different sorts of evidence on which the different protagonists rely. 

Examples 
Here are examples where there is disagreement: 

1. In members of the general population, does consumption of salt lead to an 
increase in blood pressure?  The experts disagree.  I have no doubt that any effect is 
small.  Taubes (1998) was a useful summary of the evidence as it stood at that time.  
Since that time, there have been further results.  Note in particular Sacks et 
al.(2001).  After reading these notes you may want to look at the Sacks et al. paper, 
and perhaps at the Taubes article.   You can then decide whether you agree with 
those who think that any effect is small, or with those experts who continue to 
believe that ingestion of salt, at levels that are typical in Western populations, leads 
to substantially heightened blood pressure. 
2. What is the best way to teach reading?  There are strongly conflicting opinions.  
You can read a careful summary of one set of opinions in McGuinness (1997).  She 
has strong views, for which she presents evidence, on what works and what does 
not.  Her arguments rely heavily on a detailed analysis of the processes involved in 
learning to read, in a manner that I find impressive.  I would be surprised if the 
competing schools of thought to which she refers give up easily.  I expect that they 
will stay around for a long time yet.  I am impressed by McGuinness's approach to 
the issues that arise in teaching reading.  This gives me confidence that the total 
case that she makes is, broadly, right.  Some claims, e.g. her apparent complete 
dismissal of dyslexia as a recognisable condition, may be too extreme.  Again, we 
will return later to a discussion of McGuinness's claims. 
3. What are the long-term psychological effects of a sudden and unexpected death 
of a child or spouse in a motor vehicle crash for which they appeared to bear no 
blame.  An important difference from the previous two questions is that the answer 
must rely on observational evidence.   But is it possible to gather observational data 
that will closely mirror the data that one might get from an experiment?  Lehman, 
Wortman and Williams (1987) identified 39 individuals who had lost a spouse, and 
41 individuals who had lost a child in a crash over a period of four to seven years 
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prior to the study.  They limited attention to crashes “which could happen to 
anyone”, i.e. they had not happened because of drugs or alcoholism or errant 
driving.  They matched exposed subjects with individuals who had not experienced 
a crash, based on gender, age, family income in 1976, educational level, number of 
children and ages of children.  Their evidence seems to indicate that the major 
symptoms of bereavement continue much longer than earlier workers had 
acknowledged. 
4. Classical economic arguments may view labour as a commodity for which 
demand will decrease as the price increases.  It then follows that increasing the 
minimum wage will hurt the very individuals that it is designed to benefit, by 
reducing employment for those who are on low wages, other things “being equal”.  
The theory relies on idealised assumptions that may or may not apply to real labour 
markets.  There have been various attempts to test the theory against data.  Card 
and Krueger  (1994) used a case/control study approach.  They compared 
employment in fast food restaurants in New Jersey, where there was a minimum 
wage increase in April 1992, with a control group of fast food restaurants in 
adjacent Eastern Pennsylvania.  Card and Krueger found no reduction of 
employment in New Jersey, relative to Eastern Pennsylvania.  Other researchers 
(e.g. Deere, Murphy and Welch 1995; Neumark and Wascher 1992) have used 
different methods, often relying on regression methods to partial out the effects of 
the various changes. Different researchers have obtained different results, some 
results seeming to support economic theory and some (such as Card & Krueger 
1994) challenging it.  The different  groups of researchers hold differing views on 
what are legitimate methodologies.  Who is right? 

Statistical insights are important for all these questions.  For the salt issue, there are a 
number of different types of study.  Some of those types of study provide reliable 
evidence.  Some do not.  One of my aims is to convey a sense of the advantages and 
traps of the different types of study.  
In discussing the teaching of reading, examination of data from studies that compare 
different methods is important, but not the only thing we ought to look at.  We would 
like to know, not just that some methods work and others do not, but why they work.  
What impresses me about McGuinness's study is that she presents both a rationale for 
why her methods work, and data from studies that seem to show that her methods do 
indeed work better than other methods. We have a theory, supported at many of the 
crucial points by experimental data, that lends support to her claims.  We do not 
always have a conjunction of scientific insight and statistical evidence that gives such 
coherence to the argument. 
The Lehman, Wortman and Williams study of the effects of sudden and unexpected 
loss differed from many previous studies because of its use of a control group.  It may 
therefore seem unsurprising that it reached different conclusions.  How can one assess 
the effects of traumatic loss, unless there is an adequate standard for comparison? 
The Deere, Murphy and Welch study of the employment consequences of minimum 
wage legislation does not directly contradict the Card and Krueger study.  Card  and 
Krueger examined employment in one industry only.  The strength of their study is 
that they tried, by their choice of a control, to isolate all effects except that due to the 
change in minimum wage.  They use a single instance to challenge a broad general 
theory.  Deere et al. rely instead on regression adjustments.  Their choice of 
explanatory variables is then open to question.  Changing the explanatory variables, or 
using a transformed scale, may lead to quite different conclusions. 
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A Framework for Interpreting Results 
Getting the scientific insight that will provide a framework within which to interpret 
the statistical results may be hard work. The data, and analyses, must be interpreted 
"in context".  In a paper that makes this point with force, David Freedman (1991) 
calls the scientific insight component "shoe leather".  He gives the example of John 
Snow, whose work we discussed above.  Snow tramped around London over the 
course of the great cholera epidemics between 1831 and 1866, gathering evidence on 
the causes.  "Remember that you also need shoe leather" is good advice for anyone 
who uses statistical methods. 
We need to look for possible biases.  When examining the work of other researchers, 
you may need to look in great detail at what they have done.  This can be a problem if 
they are not very explicit about their methodology.  When studies are designed to 
compare different reading methods, both the type of study and the design are 
important.  The methods must be compared under conditions that are fair - it is no 
good using enthusiastic well-trained teachers for one method, and unenthusiastic 
poorly trained teachers for the other. 

1.4 The Insights and Methods of Statistical Science 
Here we will make a brief detour that looks at the role and nature of statistical 
science.  Perhaps if we knew better what statistical science is, we would be better 
placed to comment on its role in research.   
Statistical science is the science of collecting, organizing, analyzing and presenting 
data.  This is a broad definition, much wider than the view of statistics that many first 
year statistics courses present.  Actually, one needs a definition that is as broad as this 
in order to get to grips with the role of statistical science in research.  I need a 
definition that is this wide in order to tell a coherent story!  Details of this broad view 
of the nature of statistics will unfold as the discussion proceeds. 
As data collection, analysis and interpretation are integral components of scientific 
research, it is scarcely surprising that statistical methodology often has a key role. 
Chapter 4 (pp.71-80) of  JMP Start Statistics (1996) has a more colourful statement: 

The discipline of statistics provides the framework of balance sheets and 
income statements for scientific knowledge.  Statistics is an accounting 
discipline, but instead of accounting for money, it is accounting for scientific 
credibility. 

…. Statistics is the science of uncertainty, credibility accounting, measurement 
science, truth-craft, the stain you apply to your data to reveal the hidden 
structure, the sleuthing tool of a scientific detective. 

This is well said.  A weakness is that it does not draw explicit attention to the large 
role of statistics in guiding data collection so that effort is directed where it will be 
most effective.  

The Design of Data Collection 
Faults in this department may be of many kinds.  At worst, the design may be so 
fatally flawed that the data are incapable of answering the question that is asked.  Or 
undue effort may go into getting information on features of the data that are irrelevant 
to the question asked.  For comparing storage treatments for fruit, with treatments 
applied to whole trays, should effort go into getting a large number of fruit.  Or is it 
the number of trays of fruit that are important?   Experiments that are too small, or are 
otherwise incapable of providing answers to the questions that are asked, are in 
general a waste of resources.  Experiments that are unnecessarily large, or that gather 
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large amounts of information at a level that makes little difference to the accuracy of 
the overall result, are also a waste of resources. 

There is a great deal more to statistics than p-values 
Discard any notion that statistics is all about hypothesis testing and p-values.  These 
perhaps have their place, but they should not have pride of place.  Researchers who 
are content with the calculation and presentation of an occasional p-value are setting 
their sights very low indeed.  They have forgotten that the aim is to gain insight on 
questions that are of scientific interest.  Often a reasonable aim is to develop a model 
that accurately describes the data, aids in understanding what the data say, and makes 
prediction possible.  Compared to the insight that such a model may provide, the 
rejection (or acceptance) of a null hypothesis is a minor achievement.   
Every study should address clear focused questions.  One way to give a study focus is 
to choose a hypothesis that is to be tested.  If there are many hypotheses, then focus is 
lost.  The statistical testing of multiple hypotheses gives a similar lack of focus to the 
analysis.  This point has especial force when there is an obvious good alternative, 
such as examination of a response curve. Researchers who find themselves presenting 
numerous p-values should rethink their analysis and/or their presentation. 
The questions that statistical analyses are designed to answer can often be stated 
simply.  This may encourage the layperson to believe that the answers are similarly 
simple.  These notes will repeatedly make the point that effective statistical analysis 
requires appropriate skills.  These skills are not acquired by taking one or two 
undergraduate courses.  They are gained from professional training in the use of 
modern tools for data analysis, and from experience in using those tools with a wide 
range of data sets. 

Influences on the modern practice of statistics 
Statistics is a young discipline.  Only in the 1920s and 1930s did modern ideas of 
hypothesis testing and estimation begin to take shape.  Many recent advances have 
resulted from a dawning understanding of the new possibilities that result from the 
power of modern computers and modern computing tools. Different areas of statistical 
application have taken these ideas up in different ways, some of them starting their 
own streams of statistical tradition that have separated from the mainstream of 
development of statistical ideas. Gigerenzer et al. (1989) examine the historical 
origins of these different currents of ideas, commenting on how they have influenced 
practice in different research areas.  
Both the statistical mainstream and many of these separate streams have placed an 
exaggerated  emphasis on tests of hypotheses.  Outside of the mainstream there has 
been a neglect of pattern, an all too common insistence on styles of analysis that are 
not insightful, a failure to take on board modern statistical analysis approaches and the 
policy of some editors of publishing only those studies that show a significant effect. 
Thus Nelder (1999) argues that  

… the practice of statistics has become encumbered with non-scientific 
procedures which perceptive scientists and experimenters are increasingly 
finding to be irrelevant to the making of scientific inferences. … The kernel of 
these non-scientific procedures is the obsession with significance tests as the 
endpoint of any analysis. 

Why do these procedures continue in use, if they are in fact of such little help in 
making scientific inferences?  Nelder has two targets of blame:  (1) editors who will 
not accept papers unless they follow these procedures, and (2) his perception that 
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many scientists pass through their training without getting any real insight into the 
methods of science.  Nelder is arguing that statistical science is a key component of 
scientific method. 

1.5 The Data Analyst’s Tools 

Graphs 
One picture is worth ten thousand words 
[Frederick R. Barnard, Printer’s Ink, 10 March 1927.] 

 
There is no good substitute for close scrutiny of the data.  Generally, graphs are the 
best way to do this.  It does, though, make a lot of difference what form of graph you 
draw.  Why is it so hard to detect, using numerical checks, features of data that are 
immediately obvious from examination of an appropriate graph? 
Every statistical analysis should be accompanied by graphs. You can and should see 
the analysis both ways, statistical text and graphics. Tight linkage between statistical 
analysis and graphical presentation  is the wave of the future.  The aim is to combine 
the computer’s ability to crunch numbers and present graphs with the ability of a 
trained human eye to detect pattern.  It is a powerful combination. 
Using and extending an analogy in the manual for JMP Start Statistics, statistical 
analysts require an attractive workshop, where you know just where to find each tool 
that you need, where the tools float back of their own accord into the right place after 
you’ve used them, and where going into the workshop to mend the rocking chair 
becomes a pleasure!  In this workshop, graphs are pretty important tools. 
There are some great books on the principles that should be followed in creating 
graphs.  See especially Cleveland (1985, 1993), Tufte (1983, 1990 and 1997), Wainer 
(1997) and Wilkinson (1999). 

Statistics and Mathematics 
Statistics is not mathematics, in spite of the impression that some statistics textbooks 
give!  Statistical methods rely heavily on mathematical theory. This is not a lot 
different from the way that quantum mechanics or relativity theory or other areas of 
theoretical physics have their own mathematical theory.  While there is much that one 
can learn without getting deeply into this theory, there are limits, and any attempt to 
treat statistical methodology from an elementary point of view must hit against them.  
The big advantage of statistics over applications of theoretical physics is that the 
output from a statistical analysis can more often be summarised in a few readily 
intelligible graphs. 

Statistical Software 
The interplay between computing power and theoretical development has made a 
huge impact on statistical methodology, both for design of data collection and for 
analysis. These developments have taken advantage of the increased power of 
computers and of the programs that drive them. We can do a much better job on many 
analyses than was possible ten years ago.  We have become much more aware of the 
benefits and traps of different analysis approaches.  Both the teaching and the practice 
of statistics need to change to reflect these advances.  Why continue to use makeshift 
methods that were necessary when statistical computing software was at a very early 
stage of development?   
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Influences from new research developments are obvious in the best of the statistical 
packages that have been designed or adapted for use in teaching statistics.  Examples 
are Data Desk3 and the more recent JMP (from SAS4).  Both have a fresh and modern 
style, have great graphics, and link data analysis closely with graphics.  The large 
packages that go back to the mainframe era of computers have often been slower to 
adapt.   
SPSS5 has been popular for the processing of data from large surveys.  It has been 
slow to incorporate the modern abilities that one finds in S-PLUS6, which I discuss 
below.  Minitab7, which at one time seemed the package of choice for use in teaching, 
now has a number of competitors in this market.  Each package has its own areas of 
strength and weakness. 
I have used S-PLUS, a system that is popular with professional statistical users, for 
the graphs that appear in this monograph.  It has been a common test-bed for the 
implementation of new statistical methodology.  It is strong on graphics, with a tight 
linkage between graphics and analysis. If an analysis is not already available, it is 
often straightforward to write a few lines of S-PLUS code that will do what is wanted.  
S-PLUS is built around an implementation of the S statistical language 
R8 implements a dialect of the same S language that is used in S-PLUS.   An 
attraction of R is that it is free. Development of R is a substantial international co-
operative effort.  R has spawned a variety of associated projects.  It is setting new 
directions for statistical software development, and will be highly important for the 
future of statistical computing.   
The Statistical Consulting Unit has had a tradition of using GenStat9.  GenStat handles 
hierarchical analysis of variance in a highly elegant manner.  Its windows interface is 
superior to that in S-PLUS, especially for novices.  Also it does better than S-PLUS at 
providing, by default, diagnostic output that users should examine as a matter of 
course. 
Particularly for medical applications, Stata10 is attractive.  It has a high quality of 
technical documentation.  Its web page is unusually helpful and careful in the 
documentation of known bugs and in the provision of fixes. 
All of these packages have the potential to be generally good vehicles for initial 
analysis.  None of them can be a substitute for expert knowledge or assistance.  For 
anything that is non-trivial, decoding and understanding the output is usually, also, a 
non-trivial task. 

Why not use Excel for data analysis? 
Excel is a convenient tool for data entry, and possibly for simple data checking.  Even 
for this purpose, there is need for care.  Excel will not object if you have spaces or 
non-numeric values in columns of supposedly numeric data.  You can use the sum 
icon, or the SUM function, to take the sum of such a column.  Blank cells, or any cell 
that contains a non-numeric value, are ignored.  Thus if you type 1O (one oh) instead 
                                                
3 http://www.datadesk.com 
4 http://www.sas.com 
5 http://www.spss.com  
6 http://www.mathsoft.com  (in Australia http://www.cmis.csiro.au/S-PLUS ) 
7 http://www.minitab.com  
8 To find out more about R, or to copy down the binaries (for the PC under Windows, for Unix or for 
Linux), go to the web site http://mirror.aarnet.edu.au .   My document that describes the use of R for 
data analysis and graphics is available from http://wwwmaths.anu.edu.au/~johnm/r/r4dat-gr.pdf  . 
9 http:// http://www.nag.co.uk/stats/tt/5thedition/new_5th.html 
10 http://www.stata.com 
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of 10, or 1l (one ell) instead of 11, the entry in that cell will be ignored11.  There will 
be no warning. 
Excel’s statistical features have severe limitations and traps.  To get the 2-sided 5% 
critical value for the normal distribution, one enters NORMINV(0.975).  To get the 2-
sided 5% critical value for the t-distribution with 20 d.f. one enters, inconsistently 
TINV(0.05, 20).  What Excel calls a histogram is in fact a barchart.  The function 
STEYX, which is supposed to return the “standard error of the predicted y-value in 
regression”, in fact returns the square root of the error mean square.  The data analysis 
toolkit has, for use in connection with regression, a so-called normal probability plot 
that is nothing of the sort.  It gives a line if the y-values are evenly spaced.  
Negotiating such traps may require professional statistical skills.  Professionals 
usually opt for more appropriate tools, that allow better scope for their skills. 
Anyone who wishes to work directly from an Excel spreadsheet to do simple analyses 
should consider ActivStats for Excel (Velleman 2000).  This fixes most of Excel’s 
errors and traps. 

1.6 Practicalities 
There are many important issues that are outside the scope of this monograph.  These 
include:  1) funding;  2) the use of libraries and other information resources;  3) 
computing equipment requirements;  4) sources of help; 5)  oral presentation of 
results; 6) intellectual property; and 7) job search.  You will find brief comments on 
all of these, and useful references, in Greenfield (1997.) 
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2 The Structure of a Research Project 
There are broad planning principles that apply across many different areas of 
research, and which are the subject of this monograph.  In addition there are 
insights and approaches that are specific to particular areas of research.   
Any effective research project must build on existing knowledge, and must ask 
pertinent and incisive questions.  Where new data are needed, data collection 
methods should be designed to ensure that they are accurate, relevant and 
interpretable.  The information in the data must be teased out in ways that will 
help answer the research question.  Finally this information must be 
communicated. 
Techniques for gathering, refining, systematising and interpreting information 
are a large part of research methodology.  Some techniques are highly 
specific to individual subject areas.  Others have a more general relevance 
that extends broadly to all research. Statistical techniques and insights may be 
needed at many different stages of a research project, starting with the 
overview of existing knowledge.  Different research areas may have very 
different demands. 

2.1 The Different Demands of Different Areas of Research 
There are broad planning principles that apply to many different areas of research.  
The manner in which they apply varies.  My examples will range widely, from social 
science through to pure and applied biology and physical science.  The differences 
between the dominant demands of these different areas are in 
1. the extent to which validity seems an issue.  Are the data what they seem to be; do 

they really measure, for example, well-being?  This is commonly a key issue in 
marketing or health social science.  It is often an issue in biology.  It is much less 
often an issue in physical science; 

2. the signal to noise ratio – commonly low in marketing or health social science and 
high in physics, with biology somewhere in between; 

3. the types of measurement instrument – whether questionnaires, visual assessment 
e.g. of a pattern on an agar plate, physical measurement, or a mixture. 

One result of these differences in predominant emphasis is that researchers who have 
been trained in one area may find it difficult to make the necessary adjustments when 
they move to another area.  For example, there are many areas of engineering where 
the signal to noise ratio is so low that it can, most of the time, be ignored.  Those who 
have come from this background of experience may have difficulty making the 
necessary adjustment when they come to work on engineering aspects of 
experimentation with fruit, e.g. the mechanics of bruising. 
Investigations that work very close to the limits of detectability require special care.  
Biases that are unimportant in more robust experiments can create havoc.  The 
techniques used to detect a few molecules of a trace chemical must be far more 
rigorous than those that one would use to detect concentrations of a few milligrams 
per litre.  
There are good reasons why you should be aware of the differing research demands of 
different areas of work.  There are large areas of research that cross disciplinary 
boundaries. There may be components of your research that will call for a style of 
research different from that for which your undergraduate training has prepared you. 
Increasingly engineers who design new systems must worry about human engineering 
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issues, whether or not these have been part of the their training.  Human engineering 
issues are for example crucially important in the design of aircraft instrument panels, 
in the design of aircraft fly-by-wire systems, and in the design of computerised 
systems for delivering precise doses of radiation.  Biologists and anthropologists may, 
for their work, need to use measurement or chemical assay devices. 
Many of those employed to do research on fruit storage or transport have been trained 
as engineers or chemists or physicists.  They thus move from an area where variability 
is commonly not a major issue to an area where everything varies.  The research 
demands are thus different.  Food chemists may find it hard to adjust to working with 
the subjective judgements provided by taste panels.  Engineers who move into 
management positions may be uncomfortable with market research methodology.  
Econometricians whose models of the total Australian economy cannot be rigorously 
tested may not be well attuned to the careful criticism and testing that is desirable in 
situations where this is a possibility. Models for use in hospital economics can and 
should be rigorously tested and criticised, in a manner that may not be possible for 
models of the Australian economy. 
So even if some of the discussion seems remote from the current demands of your 
own research, bear in mind that you may at some point move into an area of work that 
requires this knowledge. 

2.2 The Research Question 
Suppose that you have decided to do study on the teaching of reading.  There are 
several possible starting points 
1. Your supervisor(s) may have a very specific study for you to undertake. 
2. Your supervisor may tell you that he/she thinks that a specific topic requires 

attention, but you will need to make yourself familiar with the literature, decide 
just how much is already known, and come up with a research question that is 
reasonable within the resources and time that you have available. 

3. You may be left pretty much on your own to search out a research question within 
the general area of the teaching of reading. 

The likely extent to which the researcher will need to refine the research question 
varies from one area to another.  In health social science the refining of the research 
question may be a large part of the exercise, while in biochemistry or physical science 
the research question may already be tightly prescribed. 
Even if the research question seems to have been tightly determined, be prepared for 
surprises. It may turn out that the research question is not as clear, not as sharp as you 
had thought.  Or you may find that it has already, largely, been answered.  At the 
other extreme it may turn out to be impossibly difficult, so that you need to modify it 
to something less ambitious.  You may find that, because of questions that arise as 
you proceed, there is a whole new area of literature that you need to explore. 

2.3 Ways That Projects Differ 
In addition to differences in the nature of research questions, projects may differ: 
1. in the extent to which the researcher requires new knowledge, and in the extent to 

which that new knowledge is available from such `obvious’ sources as books and 
journal articles; 

2. in the methods that will be used for collecting data – experiment, published data, 
data archives, cross-sectional or longitudinal survey, etc.; 

3. in the extent to which you will need to develop new methodology or new 
measuring instruments; 



2 The Structure of a Research Project 

 20 

[It is possible to occupy a whole PhD with the development of methodology that 
other researchers can then use, perhaps a new method for estimating the amount of 
carbon in the soil, or perhaps a new health measurement scale.] 

4. in the extent to which the research will be an individual effort, or part of a co-
operative project. 

5. in the range and extent of multi-disciplinary demands. 
In all these areas, be prepared for surprises. Current measuring instruments may prove 
less adequate than you had expected, and you may have to develop your own.  The 
skill demands may be different, and/or more diverse, than what you had initially 
expected. 
Below, I will now set out steps that a research project might follow, and comment on 
the role of statistical insights and methods at each step.   
Question: For each of the criteria 1-4 above, where in the spectrum does your project fall?  Are there 
other special issues that arise for your research, that none of these criteria capture? 
[The answers you give to this question may affect the importance you attach to the steps that I describe 
below for a `typical’ research project.] 

2.4 Eights Steps in a Research Project 
My `typical’ research project has eight steps in all.  Some research projects will take 
the researcher right through the complete sequence.  Others will focus on particular 
steps within this sequence.  They may for example build heavily on the groundwork 
that other researchers have laid.  Or they may set in place a foundation on which 
future researchers can build.  The work involved in the earlier steps may be of such 
novelty or difficulty that all the effort goes into, for example, identifying the 
important issues that require study. 
The eight steps fall under four broad headings: 
1. assessment of the state of existing knowledge; 
2. generation of ideas; 
3. the design and execution of research that will explore or test specific ideas; 
4. interpretation of the resulting data. 
As you progress through to later steps, there is likely to be a fair amount of retracing 
of earlier steps.  For example, all the later steps will help your understanding of the 
research context for the study, which is the focus of step 1.  Following each step, you 
should review your progress to date, and revisit earlier steps as necessary. 
Statistical insights have large implications for the design of data collection (step 3), 
for analysis (step 4), and for presentation of results.  They may also have large 
implications for critical review of the existing literature (step 1). 

Eight Steps 
1. Search out the research context 
There are several facets to this.  It is necessary to know, as well as you can, the state 
of existing knowledge, what existing data may be available, etc. 
What is the state of existing knowledge?  
You will discover this by talking to any experts you can find, and by reviewing the 
literature. In a case where the experts disagree, or seem unable to give convincing 
reasons for their judgments, you should be careful about accepting at face value the 
opinion of any one expert.  You may, finally, need to make your own judgment. 
You may need to look critically at claims made in the literature.  This may include  
(i) looking critically at the experimental or sampling design that generated the data; 
(ii) critical examination of the data analysis; 
(iii) critical examination of the interpretation. 
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We will later give examples of the ways in which authors have got one or more of 
these wrong. 
What Existing Data are Available? 
There may be existing data that bears on the research question, but which have not 
been adequately analysed.  You then must make a judgment call on how much effort 
it is worth putting in to analyse the data.  The benefit is that it will cost you nothing to 
get the data.  A risk is that the data may not be as useful as at first appeared.  
Notwithstanding any assurances that you receive about the relevance and usefulness 
of the data, it may turn out that the data are of poor quality, relevant to a different 
question, without the documentation that you need to make any use of them, or 
otherwise not useful.  There may be good reasons why they have not been analysed 
and the results published.  I’ve had this experience.  So take care! 
2. Canvass for ideas and formulate specific questions 
Generation of a hypothesis, or of hypotheses, is not a statistical activity.  It requires 
some of the elements of what social scientists now call qualitative research.  In 
extreme cases, you may not, in the first project, get beyond the qualitative research 
stage. You may need to find ways to escape from current mindsets. Brainstorming 
techniques are often quite helpful. Many different people may have light to shed on 
the question at issue.  So the idea is to get them together in a setting where they feed 
off and stimulate each other’s thinking. 
Questions of the “What is going on here?” type may not lend themselves, in the first 
instance, to quantitative investigation.  The Ministry of Health in a developing 
country may be concerned to know why some medical services are used, and some 
are not.  Or a particular service may be used in one centre, but not in others.  It is 
necessary to talk to users, both of well-used and of under-used services, and to seek 
insight into what motivates people to use the services.  An apple transport trial in 
which I participated would probably have benefited from the insights of horticultural 
producers on the causes of apple damage when fruit were transported.  `Focus 
groups’, on which there is an extensive literature, are a structured technique for 
seeking the insight that I have in mind. 
3. Determine what type of study is needed 
The study may be an experiment, or a quasi-experimental study, or a sample survey, 
or an observational study.  You need to decide what kind of study is most likely to 
provide good answers to your research question.  What is important is that you use a 
form of study that is in principle able to answer the questions that you ask.  Here are 
some of the issues. 
i. Properly designed experiments allow clear cut answers.  If undertaken with proper 

care, there is often little room for argument. 
ii. It is not always easy to design an experiment so that results are unequivocal.  Thus 

human subjects know that their responses are being measured, and may change 
their behaviour.  Doing double blind trials that compare a group who consume 6 
gm of salt per day with a group who consume 10 gm per day has logistical 
problems.  Is it possible to ensure that participants and clinicians do not know 
which diet subjects are on?  How does one ensure that salt is the only difference? 

iii. Many important questions do not lend themselves to experimentation.  It is not 
ethical to expose different groups of human subjects to different levels of radiation, 
in order to develop a dose-response curve for the effects of radiation.  No-one 
would agree to an experiment in which one group of school leavers was randomly 
assigned to go straight into the workforce, while another were assigned  to go first 
to university, with the aim of seeing who gets the higher salary by age 30.  An 



2 The Structure of a Research Project 

 22 

imaginative government might however be able to mount an experiment in which 
different areas were randomly assigned  to different approaches to tackling 
unemployment.   

iv. In addition to the logistical problems of doing experiments, there are cost issues. 
Experiments in which large commercial buildings are randomly assigned to two 
different construction methods are, at the very least, unusual.  They’d need a 
wealthy and enlightened backer. [Experiments of this kind have however been 
undertaken to compare the effects of different insulation regimes.] An experiment 
in which, after construction, there was a destruction test to determine the strength 
of the building, would require a very wealthy backer! 

v. Observational or quasi-observational studies are typically much less expensive 
than experiments, and easier to mount.  One way to make the comparison between 
the two types of construction method is to compare buildings that have been 
constructed using the two different methods.  There will from time to time be 
earthquakes in one or other place that do an unplanned destruction test.  Are the 
data from this just as good as data from a planned experiment?  Are they even 
more useful? 

vi. Governments and organisations, by the changes they make, are all the time 
carrying out experiments, though usually they describe them as “reforms”.  These 
changes might often be better run, in the first instance, as formal experiments.  For 
example, Government might take five pairs of hospitals, with the two members of 
the pair carefully matched, then randomly assign one member of each pair to the 
current management regime and the other to the new management regime that is 
under trial. 

vii. In what is really a case-control study, every motor-cyclist and every tenth car 
driver are stopped on a freeway and asked whether they have had a serious 
accident, requiring hospital admission, in the previous 12 months.  The rate among 
car drivers is found to be twice that among motorists.  Motor-cycle accidents may 
more often be fatal.  Motor-cyclists who have serious accidents may give up 
motor-cycling and become car drivers.  There are `confounding’ effects at work 
here.  (Christie et al., 1987.) 

viii. In all studies that have an observational element, there is a potential for 
confounding.  In a case-control study, the two groups may differ in more than the 
exposure. 

Once again, what matters is that the study should in principle be able to answer the 
questions that are asked.  This is an issue of statistical design. 
4. Design the study 
There are large statistical issues here. For experiments, what are the treatment units, 
how large should they be, and how many of them are needed?  How can one avoid 
confounding? Would some form of blocking improve precision?  How will 
information be collected on each experimental unit (e.g. measure all plants, or just a 
sample), and how should it be collected?  
For sample surveys, what is your target population?  What sample design will give the 
best precision for a given cost?  How many primary sampling units are required, how 
many secondary sampling units, and so on?  Will you design your own questionnaire, 
or will you adapt an existing questionnaire?   How can you avoid questions that may 
puzzle respondents, loaded questions and/or ambiguous questions.  How will you 
handle non-response? 
Your design should include planning of the details of data recording.  Will you enter 
data onto a sheet, or directly into a computer?  If onto a sheet, do you need a specially 
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designed form or forms?  If into a computer, do you need a computer entry form that 
can be displayed on the screen.  How can you be sure that the data are entered 
correctly? 
In experimental work, photographs and/or video recordings may be useful as records 
of information that you may want to check on later. (We found them invaluable when, 
in the apple transport experiment, we needed to check back afterwards on the original 
labelling on some of the wooden bins.) 
5. Design and carry out a pilot study 
This provides a check that your planning has been adequate, and should lead to 
refinement of your study design.  The pilot study provides a check, of your general 
study planning, of the study design, of your measurement devices or instruments, and 
of practical aspects of data collection.  In deciding whether you need a pilot study, 
consider whether you could afford to repeat the study should something go wrong.  
The `piloting’ of a new form of questionnaire that is to be used as an `instrument’ for 
measuring e.g. hospital patient satisfaction or general sense of well-being, may be a 
long and demanding process. 
6. Carry out the study and collect the data 
This is where the quality of your planning is, finally tested!  Logistical, rather than 
statistical, skills are required at this point.  Be sure, however, to keep your eyes and 
ears open for evidence of problems, or for the unexpected.  A factor that you had not 
incorporated into your design may turn out to be important.  There may be 
implications for your later interpretation of the data. Thus in the apple transport 
experiment that I mentioned earlier, the intention was to compare the effect of two 
truck suspension systems (mechanical and air bag).  It turned out that the major 
source of damage was unstable bins!   We became aware of this when we noticed that 
one bin that showed unusually serious damage was rickety. 
An adjunct to the process of data collection must be careful checking and re-checking 
of data, to avoid errors.  It is often helpful to do initial exploratory data summaries as 
data are collected.  Any problems in the data can be investigated there and then. 
7. Analyse the data 
The data analysis has, broadly, two parts.  There is an exploratory data analysis where 
you examine various forms of data summary, both in case they have a message that 
you need to consider and in order to check whether the assumptions of the intended 
formal analysis seem reasonable.  Exploratory data analysis allows the data, as far as 
possible, to speak for themselves.  I referred earlier to an apple transport experiment.  
In that experiment the exploratory data analysis started when fruit were examined for 
transport damage.  Unusually heavy damage in a particular bin alerted us to the need 
to look for some major source of huge damage that had nothing to do with truck 
suspension. 
The formal data analysis directly addresses the issues that the study was designed to 
examine.  Following the formal analysis, there is further exploratory data analysis that 
one can and should do.  There can be more carefully targeted checks on assumptions.  
(After the smooth has been removed, you can see the rough more clearly.)    You can 
check whether there is anything that the analysis has missed. 
8. Write the report(s) and/or the paper(s) 
There are important issues here of statistical presentation.  One can debate whether 
they are specifically statistical issues. They are issues where statisticians will have 
comments and insights.  It is important to communicate results clearly and accurately.  
If those who need to assess or use the results cannot understand the exposition, the 
effort may have been largely wasted. 
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2.5 Effective Planning 
Planning should find a balance between thoroughness and attention to detail on the 
one hand, and leaving room for learning as you go along.  Here are points to keep in 
mind as you try to strike the right balance: 
1. Plan for review and re-evaluation after finishing one phase of your study and 

before you move on to the next phase. 
2. The results of the literature review may have big implications for planning.  So do 

not set plans in concrete until you know what the literature says. 
3. Wherever possible, use a pilot study to test the design, the techniques and logistics 

before proceeding with any major experimental or data collection exercise.  
Changes made to the design part way through an experiment or data collection 
exercise are a recipe for disaster. 

4. If it becomes obvious part way through that changes really are needed, talk to a 
statistician about whether this is possible without invalidating the design.  Ideally 
you should carry the current experiment through to conclusion, and then mount a 
new experiment with the changed plan. 

5. Plan your general approach to data analysis, and ensure that you will have access 
to the resources and skills that you need.  Unless you have been through the same 
type of analysis with the same type of data so many times that it has become 
routine, you should not try to plan the analysis in detail. The data may have a 
message for you about the details of the appropriate analysis. 

The Literature Review 
Books on statistics commonly focus on the role of statistics in the design of data 
collection and in analysis.  They have little to say about the role of statistics in the 
review of existing knowledge.  This is a deficiency. 
If there are a small number of key papers that provide the information you need with 
complete clarity, you are fortunate! Questions that may arise are 
1. Were there confounding factors; i.e. is it possible that the result is explained by 

something other than the factor assumed responsible for differences between 
groups? 

2. Is the statistical analysis adequate?  Is it correct? 
3. Have the results of the statistical analysis been correctly interpreted? 
Depending on the journal and on accidents of the refereeing process, published results 
are not always well analysed and/or presented.  Your assessment of current literature 
may depend quite crucially on issues of statistical design and analysis.  The standard 
of data analysis may vary from extremely cursory and inadequate to very careful.  
How does one tell the difference?  There is a more extensive checklist in Appendix I. 
Another issue is experimental precision.  Did the experimenter use precise equipment, 
and/or a precise experimental design? You need this information both in order to 
make a good assessment of those papers, and because of the implications for your 
own design and data analysis.  It is easier to be detached when you examine someone 
else’s experimental design. 
A further issue is bias.  Results may be highly repeatable, but they may have 
consistent and unknown biases.  The placebo12 effect, and the tendency of many 

                                                
12 The placebo effect is an improvement that occurs merely because the patient is receiving the 
attention of medical staff.  There may be an improvement from giving patients harmless and ineffectual 
tablets, e.g. made of glucose, to swallow. 
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medical conditions to improve over time, can operate in subtle ways to induce biases.  
It is necessary to ensure that the control group and the treatment group benefit equally 
from any placebo effect. 
These issues become even more important when you examine reports, or documents 
copied down from the internet.  Such material has often not been refereed at all, either 
by a subject area specialist or by a statistician. 

Designing the Data Collection 
Be sure to talk to a statistician!  There are two key issues – getting a design that is 
valid, and getting efficient use of experimental resources.  There can be a huge 
difference between a poor design and an efficient design in the amount of 
experimental material and/or effort.  You should ensure that the experiment has 
sufficient accuracy that it will in principle be able to detect effects of the magnitude 
that are of interest. 

Planning the Analysis 
You are strongly recommended to see a statistician and plan out the broad details of 
your analysis.  You should get a sense of what general style of analysis may be 
appropriate.  At the same time, leave room for messages, found in the data 
themselves, about what analysis may be appropriate. 

The Ethics of Planning, Execution and Analysis  
Research must conform to accepted ethical principles.  Fraud, involving the faking of 
results or the manipulation of data or results, is obviously a serious breach of ethical 
principles.  When it happens, or is suspected, it creates serious ethical problems for 
fellow-workers.  Indications of fraud are often evident in the data or in other forms of 
experimental evidence.  In studies that have a high profile, it is almost inevitable that 
fraud will in due course be unmasked. 
Researchers who work with animals or with human subjects must ordinarily seek 
ethical approval.  The Declaration of Helsinki13 sets out, in general terms, standards 
for medical research.  The requirements are wide-ranging.  They include: 

o Research must conform to generally accepted scientific principles. 
o There should be a careful assessment of the relative risks and benefits. 
o Published results should “preserve the accuracy of the results”. 
o The protocol should include a statement of ethical considerations. 
o There must be special caution where there may be environmental effects. 

The quality of the science is an ethical issue.  Flawed studies, if they carry any 
credence at all, may mislead.  One should not put patients at risk or inconvenience, in 
order to carry out a study that brings no benefit or may mislead.  For just these same 
reasons, there is a duty on researchers to fairly elicit and present the information that 
is in the data. These same issues arise, though perhaps less cogently, in other research.  
(Greenfield 1997, chapter 5.) 
Silverman (1998) includes extensive discussion of issues that relate to the conduct of 
clinical trials.  See especially chapter 13, pp.48-52. 
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3 Alternative Types of Study Design 
It is better to light a candle than to curse the darkness. 
[Ancient Chinese proverb.] 
 
It is better to curse the darkness than to light the wrong candle. 
[Notice to workers in a fireworks factory.] 

 
A first task must be to decide on a clear research question.  The type of study 
design will depend on what it is hoped to achieve, on what information is 
already available, and on available resources.  The study design will impose 
limits on the inferences that can be drawn from the data. Large studies may 
have components of two or more different types of study design. 

Structured methods for collecting data include experiments, censuses or sample 
surveys, prospective or retrospective longitudinal studies, case-control studies, 
cross-sectional studies, and various forms of structured observational study. 
Properly designed experiments or sample surveys are the most structured of all these 
approaches to data collection. 
My focus is on quantitative studies.  There are in addition various types of qualitative 
study.  Often, some mix of qualitative and quantitative approaches will be 
appropriate. 

3.1 The Question of Salt, Again! 
Since the 1970s there has been a widespread expert medical view that salt 
consumption is unhealthily high in many industrialised countries. Official guidelines 
from the National Heart, Lung and Blood Institute and the National High Blood 
Pressure Education Program, both in the U. S. A., recommend a daily allowance of 6 
grams, that compares with the current 10 gram American average.  The issue is highly 
controversial. A huge amount of effort has been expended to determine what the 
effect of salt really is.  Some answers have now, I believe emerged.  Not everyone 
agrees. 
An interesting aspect of the controversy is the variety of the approaches that have 
been used.  The main studies have been of the following types: 
1. Animal experiments, in the tradition of studies that Dahl (1972) conducted on rats; 
2. Inter-population studies, often called ecologic studies, that compare different 

populations; 
3. Intra-population studies that compare different individuals within the same 

population; 
4. Non-randomised Clinical Trials; 
5. Randomised Clinical Trials, but open to criticism because (i) they were not double-

blind, and/or (ii) they did not use placebo controls, and/or (iii) the changes in salt 
intake were accompanied with changes in other aspects of the diet. 

6. Randomised Clinical Trials that meet strict design requirements, i.e. `high quality’ 
clinical trials. 

Which of these sources of evidence do you consider reliable?  A major aim of this 
chapter is to draw attention to the strengths and weaknesses of these and other study 
designs. 
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The Science of Salt – Background 
Here is some further background to the salt controversy.  The initial evidence was 
quite insecure. One type of argument came from blood chemistry.  Increased salt 
consumption causes the kidneys to respond by excreting more salt.  There will be a 
temporary increase in blood pressure.  Might this not lead to a permanent increase?  In 
1972 Dahl bred a strain of rats that developed high blood pressure when fed large 
amounts of salt, suggesting that salt and blood pressure were somehow linked.   
Dahl had earlier (1960) presented evidence that seems to link differences in 
hypertension (blood pressure) in different populations with differences in salt intake.  
The most convincing evidence seemed to come from studies that compared 
indigenous populations with people in industrialised societies.  They found low salt 
and little hypertension in the indigenous societies, compared with high salt and much 
hypertension in industrialised societies.  
Fig. 2, using data from Intersalt Cooperative Research Group (1988) shows a plot of 
median blood pressure against median sodium excretion, from 52 populations.  (Each 
point is derived from 200 individuals; for each population researchers took a sample 
of 25 males and 25 females from each decade in the age range 20 - 50.) 
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Fig. 2: Plot of median blood pressure versus salt
(measured by sodium excretion) for 52 human
populations. Four results (open circles) are for
non-industrialised societies with very low salt intake,
while other results are for industrialised societies.  

 
There is a correlation of 0.43 between blood pressure and sodium.  However the graph 
makes it clear that there are really two clusters of results, one for the industrialised 
societies, and one for the non-industrialised societies.  For industrialised societies 
there is a slight negative correlation, that is not however statistically significant.  So 
what is one to make of these results?   
The arguments have always been controversial: 
• The body needs salt for proper functioning.  Too little salt may be dangerous.  

What is the optimum level?  Dahl’s rats developed hypertension only when fed 
huge amounts of salt. The human equivalent would be 500 grams per day. 

• Indigenous societies differ from industrialised societies in many ways, not just in 
their consumption of salt.   

It is now widely accepted that the most valid evidence comes from randomised 
controlled trials that meet strict protocols.  Intra-population studies are commonly (but 
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not universally) thought to be more valid than inter-population studies.  Here is a 
summary of the results from these different types of evidence: 
1. Some ecologic studies have shown big differences between populations, 

correlating with their salt intake.  [It makes a lot of difference which data one 
focuses on – witness the difference between non-industrialised and industrialised 
societies in Fig. 2.] 

2. Intra-population studies have generally been unable to show a link between salt 
intake and blood pressure. 

3. An overall analysis (meta-analysis) that included 30 randomised trials and 48 
unrandomised trials found a substantial effect.  This study has been criticised for 
failing to distinguish between randomised and unrandomised trials. 

4. A 1998 (Graudal et al.) meta-analysis (overall analysis) of randomised controlled 
trials showed a small effect, possibly too small to be of clinical importance.  If 
however attention is limited to cross-over trials, there is a more substantial effect. 

5. The Sacks et al.(2001) results seem to clinch the issue, in favour of a modest 
effect, greatest for individuals who do not improve other aspects of their diet.   

It is with good reason that ecologic studies are widely regarded as unreliable.  Almost 
inevitably, the populations differ in many respects.  Thus, in the salt studies, the 
populations almost certainly differ in the level of intake of fruit and vegetables.  Why 
focus on salt?  Pretending that one is seeing the effect of salt alone may just be 
wishful thinking.  A number of other effects are at work.  The effects are confounded, 
i.e. the data do not allow you to separate them.  One might say that confounding is a 
confounded nuisance!  Confounding is a very serious problem in observational 
studies. 
Societies that have high salt intakes are typically those that consume highly salted 
preserved foods. They consume these foods because they do not have access to fruit 
and vegetables. Thus, in the inter-population studies, the effects of salt are 
confounded with the effects of low levels of fruit and vegetable consumption.   
Recently the DASH (Dietary Approaches to Stop Hypertension) collaborative 
research group has reported on a series of trials that investigated the use of a diet rich 
in fruit, vegetables and low fat dairy products (Appel et al. 1997).  The blood pressure 
was reduced both for normal subjects and for mild hypertensives, slightly more for the 
latter.  There was no reduction in salt consumption.   
The most reliable evidence is undoubtedly that from carefully conducted clinical 
trials, conducted with controls. Such trials, on diet more generally as well as on salt, 
are now providing insight on the superficially contradictory results that have been 
obtained from other types of studies. Questions remain.  Should one limit attention to 
trials that are double-blind, i.e. neither the patients themselves nor the staff 
administering the trial know who is on which diet?  Are cross-over designs more or 
less reliable than the completely randomised design? As often, one has to sift out the 
more directly relevant and reliable sources of information, and use them to interpret 
less reliable and/or relevant sources of information. 
If you want to read up on the salt controversy, a good place to start is the Taubes 
(1998) article in the journal Science.  Taubes draws attention to the major overview 
studies, and presents the views of the main protagonists.  A fair summary of the 
evidence may be that in Sacks et al. (2001).  Graudal et al.’s (1998) meta-analysis of 
58 trials of persons with high blood pressure and 56 trials of persons with normal 
blood pressure had found that the effect is relatively small, and did not justify a 
recommendation, in the population generally, to reduce salt intake.  However the 
Sacks et al. study broke new ground by controlling for other aspects of the diet, 
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notably the intake of fruit and vegetables, and thus carries greater conviction than 
these earlier studies.  The effect of low sodium intake was, interestingly, greatest for 
those who did not control other aspects of their diet.  This may be an illustration of 
Fisher’s dictum that Nature will reveal her secrets only if we ask her more than one 
question at the same time.  She may refuse any answer on the question of effects from 
salt unless we ask her also about the intake of fruit and vegetables. 
In reviewing the literature you need to be aware of the strengths and weaknesses of 
different types of study.  In planning your own study, you need to know the strengths 
and weaknesses of the alternative designs that are available to you.  Additional issues 
arise when there are multiple studies. 

3.2 Different Types of Study – Further Examples 
The simplest kind of randomised experiment has a treatment and a control group, with 
a randomisation device used to make the assignment to treatment or control.  Natural 
events can create the conditions of a randomised experiment.  For example, in a local 
area of a city, buildings are constructed according to several different designs.  Some 
survive an earthquake, while some do not.  The only consistent difference between 
buildings that survive and those that do is in design. 
In the earthquake example, it was after the earthquake (a natural intervention) that the 
different treatments were identified.  In some instances it will be clear what aspects of 
building design or land features have favoured survival.  In other cases, it may not be 
so clear.  Is it the design of the foundations or of the superstructure that is crucial?  Is 
the local geology an issue?  There is rarely the same clarity of connection between 
effect and cause as in an experiment. Similar issues arise in studying the effects of a 
natural event or an accident on a wildlife habitat.  Also, rather than a natural 
intervention, there may be a government intervention – perhaps a change in 
management regime.  
Here are some of the possible types of study that investigate effects of an intervention 
on a wildlife habitat: 

1. Gather observational data from a number of sites, spanning a range of 
management regimes.  Use the data to determine conditions that lead to 
favourable outcomes. 

2. Before/After studies of effects of management or natural changes (e.g. 
flooding) or accidents (e.g. oil spills).   

3. Compare sites subject to natural changes (e.g. flooding) or accidents (e.g. oil 
spills), with comparable sites where they has been no intervention used as 
controls. 

4. Study experimentally induced changes, with different management regimes 
applied (by managerial choice) to different sites. 

5. Study experimentally induced changes, with different management regimes 
assigned (at random) to different sites. 

We noted earlier the study that compared employment effects in one state where there 
had been a change in the minimum wage requirements, with those in a neighbouring 
state where there had been no change.  The neighbouring state where there had been 
no change was used as a control.  But what if we have an intervention (a change in 
minimum wage requirements), but no control?  Can we mount a before/after 
argument?  Here are summaries of the range of possible studies, for the study of 
minimum wage legislation: 
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1. Use U. S. national monthly data to study the effects of increases in the Federal 
minimum wage on April 1 1980 and April 1 1981.  (Deere et al. 1995). 
[NB there was no control group.] 

2. Panel study of state minimum wage changes, 1973 – 1989. (Neumark and 
Wascher 1992). 
[Horizontal comparisons across states, at one time, rely heavily on analytic 
models and numeric adjustments.] 

3. Compare New Jersey (where there was a change in the minimum wage) with 
nearby Eastern Pennsylvania (where there was no  change).  (Card and 
Krueger 1994). 
[NB Control was chosen by the investigator.  We have only one comparison 
between `treatment’ and `control’.] 

In an example (Freedman 1999) from the early history of investigations into the 
health effects of smoking, cases were persons admitted to hospital after diagnosis with 
lung cancer.  Controls were patients admitted for other reasons.  In such case-control 
studies, it is the outcome (lung cancer or not) that determines who will be in the study.  
The investigator then peeks to see what treatment the patient received. 

3.3 The Eberhardt and Thomas Classification 
Eberhardt and Thomas (1991) have a comprehensive classification that is intended for 
ecological studies.  Their primary classification focuses on the level of control that the 
observer is able to exercise.  This control is greatest in an experiment.  Given that an 
experiment is planned, how will this control be exercised?  The most secure results 
are from various forms of randomised experiment, such as we will consider in later 
chapters. 
Where there has been a distinct perturbation, such as from  a natural event (a flood, or 
an earthquake, or a volcanic eruption), this may sometimes closely mimic the 
conditions of a randomised experiment.  Equally, it may not. Each case must be 
argued on its merits. 
The following is a modification of Eberhardt and Thomas’s classification: 
 
• Events controlled by observer 

⇒ Randomised experiment  
(with/without controls) × (with/without replication) etc. 

⇒ Unrandomised experiment (includes haphazard assignment) 
(with/without controls) × (with/without replication) etc. 

• Study of uncontrolled events 
⇒ Distinct Perturbation Occurs 

◊ Intervention analysis 
⇒ Distinct perturbation usually not evident 

◊ Domain of study restricted 
o Assessment involving that restricted domain 

(i.e. not a random or other sample from the whole domain 
of interest; sampling frame is not the whole of the target 
population) 

◊ Sampling over entire domain of interest 
o Analytical sampling 
o Descriptive sampling 
o Sampling for Pattern 
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There is a great deal more that might be said.  Sampling issues arise in experimental 
as well as in non-experimental studies. 

3.4 What Types of Study Should You Use? 
Here is a list of research questions.  What type of study would you use in each 
instance? 
1. Compare consumer perceptions of 30 different chocolate formulations.  
2. Assess the effectiveness of a method for ‘cleaning’ soil that is contaminated with 

heavy metals.  
3. You are considering two advertising strategies for a new product.  You want to 

determine which is likely to be more effective.  
4. Assess the likely effect of proposed changes to plant quarantine  requirements for 

produce imported to Australia. 
5. A farm advisory service wishes to compare the relative effectiveness of two 

training programmes for farm staff involved in handling agricultural chemicals.  
What type of study is likely to give a good comparison?   

6. A firm that offers metal turning services intends to mount a programme to 
improve the safety awareness of staff involved in handling lathes.  It has a large 
number of widely scattered small manufacturing units. It wishes to determine the 
best strategy? 

7. Assess the market, in the Canberra area, for a mass-produced small sailing craft. 
8. Determine market niches that present supermarkets in the Canberra area are not 

filling. 
9. You are a high school principal.  What statistical information for the school’s 

catchment area would be useful for your planning of the school’s future 
development?  How much of this information is available from school records or 
from official sources such as the Department of Education or the Department of 
Statistics?  What information could you usefully get from a survey?  Plan 
accordingly.   

10. Since 1987 the British government has installed closed circuit TV cameras in a 
number of city and town centres throughout Britain.  Set up a study that will 
determine whether these have been effective. [New Scientist, 23/30 Dec 1995, 
p.4].   

11. Assess how the pattern of demand for hospital services is likely to be affected by a 
proposed change to services offered by public hospitals. 

12. Set up a study to examine the implications of the varying prescription patterns of 
GPs for the quality of patient care and for medical costs. 

13. You have been asked for advice on a study for determining whether calcium 
antogonists reduce the risk of stroke in patients with heart disease.  How should 
you proceed? 

14. Are male sperm counts declining in Australia? How might you set up an 
Australian study? 
[See New Scientist, May 11 1996, p. 10]. 

15. Are home births any more dangerous than hospital births? 
[See New Scientist, May 11 1996, p. 5]. 

16. Bricks are to be fabricated from waste plastic and wood chip.  How would you 
determine the optimum particle size, baking temperature, baking time and % 
plastic? 

17. You are asked for advice on what sorts of studies are needed to decide once and 
for all the dietary effects of salt.  Is one individual study likely to be useful?  
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Should the focus be on careful evaluation of existing data, or on a new study?  
What advice would you give?  Bear in mind that most research to date has focused 
on effects on blood pressure.  Are there other effects of changes in dietary salt that 
ought to be a concern? 
[The answers are not at all obvious.  They are, though, good questions to think 
about.] 

18. You are asked for advice on the validity of the evidence that Dianne McGuinness 
(1997) presents in her book Why Our Children Can’t Read.  What would be a 
good way to proceed?  How long will you need?  What help will you need? 

19. A private health provider is responsible for 20 hospitals.  It plans to move to a 
new funding and management regime.  Before making the change, it wants to be 
sure that the changes will work and will be an improvement.  Would you 
recommend moving some of the hospitals to the new regime on an experimental 
basis? 

20. You have read the book Smart Health Choices (Irwig et al., 1999).  You applaud 
the encouragement that it gives to patients to ask clinicians probing questions 
about their treatment choices.  But will clinicians be able to respond well to such 
demands?  Design a study to answer this question. 

21. What are the pros and cons of screening for prostate cancer?  [See e.g. Irwig et al. 
1999; Moynihan 1998].  

22. Consider the design of a study of the effects of changing sociological and political 
forces on taxation regimes in the Commonwealth of Australia since Federation? 
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4. Experimental Design 
 

The statistical tools of experimental psychology were borrowed from agronomy, where they 
were invented to gauge the effects of different fertilizers on crop yields.  The tools work just 
fine in psychology, even though, as one psychological statistician wrote, “we do not deal in 
manure, at least not knowingly.”  The power of these tools is that they can be applied to any 
problem – how color vision works, how to put a man on the moon, whether mitochondrial Eve 
was an African – no matter how ignorant one is at the outset. 
[Pinker, S. 1997.  How the Mind Works, p.303. Norton, New York.] 
 
The methods of science, with all its imperfections, can be used to improve social, political and 
economic systems, and this is, I think, true no matter what criterion of improvement is 
adopted.  How is this possible if science is based on experiment?  Humans are not electrons or 
laboratory rats.  But every act of Congress, every Supreme Court decision, every Presidential 
National Security Directive, every change in the Prime Rate is an experiment.  Every shift in 
economic policy, every increase or decrease in funding for Head Start, every toughening of 
criminal sentences is an experiment.  Exchanging needles, making condoms freely available, 
or decriminalizing marijuana are all experiments.  . . . In almost all these cases, adequate 
control experiments are not performed, or variables are insufficiently separated.  Nevertheless, 
to a certain and often useful degree, such ideas can be tested.  The great waste would be to 
ignore the results of social experiments because they seem to be ideologically unpalatable. 
[Sagan 1997, The Demon-Haunted World, pp. 396-397. Headline Book Publishing, London.] 
 
Experiments may answer questions you never thought to ask!  Experiments 
teach by experience.  Receptive and trained minds will learn more.  Different 
applications have different needs. 
There is no more effective way to settle a disputed question than to do an 
experiment, when an experiment is possible.  When fire-walkers walk across 
hot charcoal and emerge unharmed, it demonstrates that such a thing is 
possible.  When one plant grows like crazy in a bed of compost, while its 
neighbour has no compost and wilts, it seems a convincing demonstration that 
compost helps growth. It seems convincing even though this is a rather poorly 
designed experiment. 
Not all questions lend themselves to experimentation.  There is an accordingly 
greater challenge to design a study whose answers will be compelling.  It will, 
usually, then be more difficult to reach firm conclusions.  Thought experiments 
may often help understanding.  
The aim of experimental design is to ensure that the experiment can detect the 
treatment effects that are of interest, uses available resources to get the best 
precision possible.  The choice of design can make a huge difference. 

 
The account that I give here will, as in the case of much else that this monograph 
touches on, be introductory.  My aim is to give the flavour of experimental design, as 
it applies to a number of different application areas. 
Francis Bacon (1561-1626) gives an early example of a controlled  experiment.  He 
applied five different treatments to wheat seeds – water mixed with cow dung, urine, 
and three different wines. The winner was urine, followed by the cow dung.  By the 
standards of modern experimental design, Bacon’s experiment was inadequate.  It was 
not randomised, i.e. he did not use a random mechanism for assigning seeds to 
treatments.  
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Very simple experiments vary just one factor at a time.  Indeed there are still 
experimenters who regard this as the proper strategy.  Where there are multiple 
factors, the one-factor-at-a-time approach makes it very difficult to detect interactions.  
If there are no interactions, it may work reasonably well, but is inefficient. 
Multi-factor experiments allow the detection of interactions.  Degrees of freedom that 
are associated with any interactions that prove to be negligible are available for 
improving the precision of the standard deviation estimate.  So the experimenter wins 
both ways. For purposes of estimating main effects, a single four-factor experiment is 
in general far more efficient than four single factor experiments.  It will give the same 
accuracy with a much smaller use of resources. 

4.1 Experimental Design Issues 
We wish to compare two technicians who will use a pressure tester to compare apple 
firmness.  How should we do the comparison?  Should we give the testers separate 
samples of perhaps twenty apples?  Or should we use one sample of twenty apples, 
with both technicians making firmness measurements on each apple? 
In a clinical trial that compares two different therapies for treating arthritis, right and 
left hand grip strength will be among the outcome measurements.  The measurements 
are highly variable.  Is it useful to increase the precision by making repeated grip 
strength measurements?  Or is the variation in measured grip strength for an 
individual patient of minor consequence relative to variation between patients?  If it 
turns out to be useful to make repeated measurements on individual patients, should 
the repeat measurements be made at the same session, or at different sessions that are 
separated by a few days or weeks?   
We plan an experiment in which trays of fruit are the experimental unit.  In each of 
several cool-stores, different treatments will be applied to different trays.  Should we 
opt for many trays with a small number of fruit on each, or for a small number of 
trays with a large number of fruit on each?  Which is the better design?  As the 
treatments are applied to whole trays, increasing the number of trays always increases 
the precision.  Increasing the number of fruit per tray may or may not make a useful 
contribution to increasing precision.  All depends on how fruit to fruit variation within 
a tray compares with between tray variation. 

4.2 Randomised Controlled Trials 
What makes it possible to write a long article on controversies in controlled clinical trials 
without writing a much longer article on uncontrolled trials or uninvestigated therapies?  
Essentially this paradox arises because in controlled trials we have a model of perfection and 
we can discuss departures from it with ease.  Without such a model, one tends to emphasise 
only major difficulties --- having swallowed a camel, why strain at a gnat?   
[Mosteller, Gilbert & Lewis, p. 14, in Shapiro & Lewis 1983.] 

 
Randomised controlled trials are a good setting in which to consider a number of 
elementary aspects of experimental design.  By contrast with agricultural 
experimentation, the design for a randomised controlled trial is often very simple in 
concept.  
Where there are two treatment groups, subjects are randomly assigned to one or other 
treatment, and the result determined.  Complications arise from the ethical and 
logistical difficulties of conducting a properly designed clinical trial. 
A minor elaboration of the two-sample trial arises when subjects are matched, or 
when treatment comparisons can be made within subjects. In this case it may be 
possible to perform the analysis on the difference between the responses or on 
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log(ratio) of the reponses, or on some other measure of the difference.  The analysis 
then reduces to a single sample analysis. 
There are numerous examples of interventions that were introduced without first 
doing an experiment, and where the intervention was later shown to be harmful. 
Hormone injections in pregnancy were at one time thought to prevent miscarriage.  A 
randomised controlled trial showed no effect, compared with placebo injections.  
Moreover this unproved therapy later proved to give an excess of cases of vaginal 
carcinoma and of breast cancer (Christie et al. 1987; Gehan & Lemak 1994, p.159).  
Section 5.1 gives initial data from this study. 
Randomised controlled trials where there is matching provide a simple example of a 
block design.  The individuals who are matched form a single block.  Another form of 
matching arises when the different treatments are applied, in turn, to the one patient.  
The issue of whether there is treatment carry-over is then important.  Also one has to 
design the trial so that changes over time can be distinguished from the treatment 
effect.   

4.3 A Simple Taste Experiment 
Consider a taste experiment, where a number of panellists assess the sweetness of two 
different milk products.   They mark off their responses on a so-called Likert scale, 
thus: 

Not sweet enough            Too sweet 
 1  3     x  5  7  9 

The investigator uses a ruler to read off the results.  One way to make this easy is to 
place the 1 at 10mm, the 30 at 30mm, and so on.  The `x’ is at about 36mm. A 
reasonable way to do the experiment is to give each person both products.  Here then 
is a set of results (shown as mm) from such an experiment: 
   Person 1  2  3  4   5  6   7  8  9 10 11 12 13  14 15 16 17  
4 units  72 74 70 72  46 60  50 42 38 61 37 39 25  44 42 46 56 
1 unit   58 69 60 60  54 57  61 37 38 43 34 14 17  54 32 22 36 
Diff.    14  5 10 12  -8  3 -11  5  0 18  3 25  8 -10 10 24 20 
 
Fig. 3 shows the data graphically 
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Fig. 3: Perceived sweetness for sample with four 
units of additive, versus perceived sweetness 
with one unit of additive  
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The diagonal line shows where the assessments for the two samples would be equal.  
Notice that tasters who give a higher assessment for the sample with one unit of 
additive also tend to give a higher assessment for the sample with four units of 
additive.  The differences in the two assessments are relatively consistent. 
The individual tasters have the role that blocks would have in an agricultural field 
design.  Each taster compares the two treatments.  In the field design, the two 
treatments are placed alongside in the one block.  The design can easily be extended 
to allow a comparison with, for example, milk with no additive.  There would then be 
three treatments per taster. 
Experimental design questions that one might ask include: 

1. What are the pros and cons of the above experiment, as against an experiment 
where 34 tasters were divided randomly into two groups of 17.  Tasters in the 
first group all received the milk with one unit of additive, while those in the 
second group received the milk with four units of additive. 
[This alternative experiment would be a very imprecise experiment.  
Differences between tasters would introduce unwanted noise into the 
comparison between amounts of additive.] 

2. What is the best way to improve accuracy?  It is easier and cheaper to get each 
taster to repeat the comparison a number of times, rather than to bring in new 
tasters.   
[If individual tasters are highly consistent from one occasion to another, 
relatively to variation between tasters, it will not help much to get each taster 
to repeat the comparison a number of times.  Increasing the number of tasters 
will always, in theory, improve the expected precision.] 

4.4 The Principles of Experimental Design 

The Three Rs 
Randomisation, replication and blocking are often identified as the three chief 
principles. We will take them in the reverse order.  Blocking, whereby within each 
block treatments are compared under conditions that are as similar as possible, is a 
device for reducing variability.  Pairing – for example one treatment might be applied 
to one leg of a patient and the other to the other leg – is a simple form of blocking.   
Replication reduces variability and ensures that there will be a valid estimate of 
experimental and other error.  Note the contrast between replication of experimental 
units and repeated measurements on the same experimental unit.  Repeated 
measurements on an experimental unit increase the accuracy for that unit.  One still 
has only the one experimental unit. 
Randomisation aims to balance out the effects of factors that are not amenable to 
experimental control.  It does this by making chances equal.  It does not ensure that 
treatment groups will be balanced with respect to these uncontrollable factors, only 
that the chances are equal. 

Multiple Measurements on Each Experimental Unit 
Consider an experiment where the individual apple is the experimental unit. 
Measurements of the amount of sugar (the “brix”) may be inaccurate.  So several 
measurements are taken on each apple.  Note that while this increases the precision of 
the result for each apple, it does not increase the number of experimental units!  There 
are no more apples than before! 
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The analysis can work with the means for each apple.  Note that once the variability 
in the mean for an apple is negligible relative to variation between apples, there is no 
point in taking additional measurements on each apple.  
This principle can be extended: 
1. The experimental unit is a tray of apples (they all go into the store together), and 

the experimenter wonders how many apples to put on a tray.  There’s no point in 
getting results from further apples once the accuracy for the tray is small relative to 
variation between apples. 

2. In a clinical trial, several clinicians may assess each patient.  The experimental unit 
is the patient, not an assessment on a patient.  Making more assessments on each 
patient is quite different from going out and finding further patients. 

The Role of Experiments 
Not all questions are suited to direct experimental investigation.  No-one has yet 
devised a way to directly compare the effects of releasing different amounts of CO2 
into the earth’s atmosphere. It is easy to imagine a fictional galactic empire where 
there are six earth-like planets that can, providing one books far enough in advance, 
be made available for climatological experiments.  For better or for worse, all we can 
do is imagine and write science fiction about such an empire.  In the world that we 
inhabit, we have just one planet at our disposal and controlled experiments are not a 
possibility. 
Even though data have not come from an experiment, they may be analysed as though 
they had.  Statistical models assume that data have been generated under ideal 
conditions that really only hold, if at all, in a very careful experiment.  It is helpful to 
think about what sort of experiment might have generated the data, what the 
limitations of that experiment are, and where the potential for bias lies.  Such thought 
experiments can help clarify assumptions. 
Do not expect that one experiment will settle all outstanding issues.  Experiments are 
a structured way to learn by experience.  As Fisher (1960, §12.1) said 

. . . . in learning by experience, or by planned chains of experimentation, 
conclusions are always provisional and in the nature of progress reports, 
interpreting and embodying the evidence so far obtained. 

Those who have a trained and receptive mind will learn more.  Experimenters will do 
well to be receptive to the possibilities that 
1. The experiment may challenge the assumptions that lay behind its design, perhaps 

even indicating that the research question was not entirely appropriate. 
2. Having learned from your initial experience, it may be possible to do a better 

experiment next time.  (So it is often unwise to blow all resources on one 
experiment!) 

An advantage of a carefully designed experiment is that it is likely to teach the 
experimenter something, even if the experiment asked the wrong question!  I have 
referred several times to an experiment that compared mechanical with air suspension 
on trucks used to transport apples.  We had asked a question that related to truck 
suspensions.  We learned instead about the damage due to unstable bins. 
Note finally that different areas of application may require quite different styles of 
experiment, and may raise quite different issues. 

The Language of Experimental Design 
Important ideas and distinctions are: 

o treatment units and measurement units.  They may not be the same! 
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o randomisation, especially as opposed to haphazard assignment of treatments 
o replication – genuine replication, effective replication and bogus replication 
o blocking and other forms of local control 
o levels of variation. 

We begin with brief comments on ideas of treatment unit, measurement unit and 
blocking.  A discussion of randomisation and replication will then follow. 

Multiple Levels of Variation – Blocks 
Multiple measurements on an experimental unit, e.g. multiple measurements on the 
one apple, increase the precision for the experimental unit.  They do not increase the 
number of experimental units – additional apples if treatments are applied separately 
to each apple or additional patients if treatments are applied separately to each patient.  
Observations can be grouped within an experimental unit. 
One can also group experimental units into blocks.  Blocks then become another, now 
higher, level of variation.  The simplest type of one-factor block design, the 
randomised complete block design, has one experimental unit from each of the 
treatment levels in each block, e.g. 

 Block 1 Block 2 Block 3 
Treatments A, B, C A, B, C A, B, C 
N. B. Treatments should be randomly allocated to experimental 
units, independently for each block. 

 
Also possible are block designs where a subset of the treatments appear in each block.  
For example, we might have  

 Block 1 Block 2 Block 3 
Treatments A, B B, C C, A 

 
One treatment has been left out in each block, in a balanced way.  This is a balanced 
incomplete block design.  I have used this type of design for comparing the readings 
of different firmness testing devices on the same fruit.  Each fruit was in effect a 
block.  We did two sets of two readings, one pair with each of the devices, on the one 
fruit. 
Block designs are widely used in agriculture, where the aim is to maximise the 
precision of treatment comparisons.  Thus each block is chosen to be as uniform as 
possible.  In the simplest form of randomised block design, all treatments occur once 
in each block.  Blocks should be sampled from the wider population to which it is 
intended to generalise results, so that they might be on different sites. 
In controlled climate chambers, each chamber may form a block, with one or more 
units from each treatment in each chamber.  Or if there are differences between trays 
in a chamber, each tray may form a block. 
In clinical trials blocks are more often used as a way of making it hard to predict 
treatment allocations for individual patients.  Allocation of treatments to patients is 
random within blocks, subject to devices that achieve a roughly equal numbers in the 
different treatments.  (ICH 1998, p.21).  Where a surgical trial involves several 
different surgeons, blocking may be highly desirable as a mechanism for controlling 
variation.  The patients that are allocated to a surgeon form a block, with random 
allocation to treatments within those blocks. 
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Randomisation 
Randomisation prevents intentional or unintentional favouring of one treatment over 
another.  It is also a way to ensure that observations are all drawn, independently, 
from the same distribution.  Haphazard allocation, where the experimenter allocates 
treatments in any unsystematic way that seems right, is not randomisation.   

Replication 
Genuine replication increases the number of treatment units. Where there are blocks, 
there is a choice between increasing the number of blocks, and increasing the number 
of experimental units in each block.  Increasing the number of observations on each 
experimental unit, while it is often a good idea, is not genuine replication. 

4.5 Confounding 
Experiments can and should be designed so that they are capable of revealing the 
effects of the factors and factor combinations that are of interest. In observational 
studies there may be such limited control over the design that it is impossible to 
separate effects out in this way.  Some confounding is almost inevitable. 
For example, two measuring instruments that are believed functionally identical may 
be set differently. If one instrument is used for measuring results from treatment A, 
and the other for measuring results from treatment B, the effect of the treatment is 
confounded with the effect of the instrument.  Or if one technician assesses results 
from treatment A, and another technician assesses results from treatment B, there may 
be a technician effect that is confounded with the treatment effect. 
The simplest form of experimental confounding occurs when two factors change 
together.  High correlations between pairs of variables, common in observational 
studies, provides an indication that it will be difficult to separate their effects.  
Contrast this with the way that experiments vary factor levels under the control of the 
experimenter, to ensure that they do not change together. 
Suppose we have two factors – level of lime, and level of phosphate. The following 
three designs illustrate the three different possibilities. An x indicates that a particular 
combination of factor levels is present. 
 

 Phosphate(kg/ha) Phosphate(kg/ha) Phosphate(kg/ha) 
Lime(kg/ha) 0 10 40 400 0 10 40 400 0 10 40 400 
0 x  x x x    x x   
1000      x   x x   
2500 x  x x   x    x x   
8000 x  x x    x   x x  

 No correlation Factors  confounded Correlation 
Table 1:  Three possible treatment allocations.  An x is used to denote a treatment 
combination that is included in the experiment. 

  
The first design is much preferable to the third. The same selection of levels of 
phosphate appears for each different level of lime. The second design does not allow 
any possibility for separating the effects of lime from those of phosphate. It is a 
hopeless design, unless one already knows the optimum ratio of phosphate to lime. 
In clinical trials, age or sex may be a confounding factor.  Suppose one has 

 Treatment A Treatment B 
Females 7 15 
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Μales 9  3 

 
Then gender is a confounding factor for purposes of making treatment comparisons.  
The treatment A results will be slightly biased to the results for females, while the 
treatment B results will be relatively similar to the results for females14.   

Other examples of confounding 
Why did doctors continue to practice bloodletting for so long?  Most conditions will 
get better of their own accord, given time.  In addition there was, for some patients at 
least, a placebo effect.  The effects of the bloodletting, that were often harmful, were 
confounded with the effect of time and with the placebo effect. 
We have already noted that confounding is the bane of observational data.  It may also 
be the bane of studies where there is an intervention, but no control group (with 
random assignment) with which to compare the treatment group. 
Was New Zealand’s introduction of iodised salt really the cause of a dramatic 
reduction in goitre problems?  Or would the problem have disappeared anyway 
because children had been getting iodine in school milk?  As everyone received 
iodised salt, once it was introduced, it is impossible to be sure.  Silverman (1985) 
gives numerous other such examples. 

4.6 Experimental Design – Books for Further Study 
The classical text is Fisher (1935), which has been through many editions.  It is 
elementary in style, and remains one of a small number of books that can be 
recommended to the non-specialist.  Other definitive texts are Cochran and Cox 
(1957), Cox (1958) and Box et al. (1978). 
Different application areas differ in the types of design that find predominant use.  In 
specific applications, there will be a range of practical issues that require attention.  
Robinson (2000) is attractive for the way that it combines attention to such practical 
issues with attention to the theory as and when it is necessary.  Examples are drawn 
from many application areas, with a focus on industrial applications.  For field 
experimentation, see Mead (1988), Petersen (1985), Pearce et al. (1988), and 
Williams and Matheson (1994).  See also the very brief discussion of experimental 
design in Maindonald (1992).  The manual for the statistical package Genstat (Payne 
et al. 1993) has helpful discussions of designs that are common in field 
experimentation.  For clinical trials, Piantadosi (1997) and Silverman (1985) are 
particularly good.  See also other books that are noted in the references. 
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5. Quasi-Experimental and Observational Studies 
As noted in the previous chapter, the only sure way to know the effect of one 
or other change is to make the change and see what happens, i.e. do an 
experiment. However there are severe practical and ethical limits on what 
experiments are possible.  Hence the various quasi-experimental methods that 
exercise non-experimental forms of control on the generation of data.  Or the 
conditions of an experiment may be created by an accident of management or 
of nature. 

Even though we do not have an experiment, is it sometimes (or often) possible to get 
data that we can treat, to a greater or limited extent, as though it had come from an 
experiment?  This section will explore several types of study that aim to do just that.  
As we will see, there can be severe obstacles to reliable inference from such studies. 
Data from quasi-experimental studies are commonly analysed as though they had 
been gathered under experimental control. If the mechanisms that generated the data 
closely mimic those of a genuine experiment, this makes good sense.  Where the data 
have few of the characteristics of experimental data, inferences that rely on statistical 
models are in general hazardous.  The literature offers guidelines, arising from work 
such as I will discuss below, that careful researchers will study and use.   
I will start with those types of study where there is the greatest potential to reproduce 
the conditions of an experiment, moving through to those farthest from the conditions 
of an experiment.  The examples are all from clinical medicine.  The following 
section discusses the use and limitations of regression modelling.  It uses examples 
from the economics literature.  Getting results that are credible and defendable, if this 
is possible, is not a simple matter of running data through a multiple regression 
program! 

5.1 Some alternative types of non-experimental study 

Accidents of Nature or Human Behaviour 
Occasionally, an accident of nature or of human behaviour – an earthquake or an oil 
spill – creates conditions close to those of an experiment.  There is a clear 
intervention.  In the case of the earthquake we might be interested in comparing new 
building design with the old design, where the old design may be regarded as the 
control.  For the oil spill, we will want to compare affected areas with comparable 
unaffected areas, preferably over a number of spills. 
We noted how that in 1853 the Lambeth company in London had moved its water 
supply upstream.  This was an intervention that closely mimicked a genuine 
experiment.  One problem is that other changes were very likely made at the same 
time.  Some pipes would have been replaced.  So the related observations that Snow 
made were an important part of his evidence. 

Cohort Studies (Longitudinal studies; retrospective studies; follow-up studies) 
A key feature of experimentation is the control that the experimenter exercises over 
the way that levels of the different factors combine to affect the response.  
Retrospective longitudinal and case-control studies retain some elements of this 
control.  At the same time, they have some of the features of an observational study. 
The health experience of one or more groups of people, often an exposed and a non-
exposed group, is followed over some period of time. For example, the aim may be to 



5. Quasi-Experimental and Observational Studies 

 45 

compare the health experience of doctors who smoked at the point of entry to the 
study with the health experience of those who did not.  The doctors were not 
randomly assigned to a smoking and a non-smoking group!  So there might be 
something different about the doctors who smoke, affecting both their health 
experience and their tendency to smoke. Much of the work on the health effects of 
smoking has been directed to ruling out such explanations. 

Case-control studies 
Again we wish to assess the effects of an exposure. Case-control studies aim, by the 
choice of 'cases', to exercise an 'after the event' control that as far as possible 
substitutes for direct experimental control.  Those subjects who have the disease are 
'cases', while the 'controls', chosen from the same population as the cases, do not have 
the disease.  We classify both cases and controls as exposed or unexposed.  The 
estimation of relative risk relies on cases and controls being representative of cases 
and controls in the community, with no regard to the likelihood of exposure or non-
exposure.  Depending on how subjects are selected, such associations are common.  
Persons known to have been exposed, and therefore thought more likely to be cases, 
may be more likely to find their way into hospital records. 
Occasionally, case-controls involving quite small numbers of patients provide highly 
convincing evidence.  Adenocarcinoma of the vagina in young women had been 
recorded rarely before it was diagnosed in eight patients treated in two Boston 
hospitals between 1966 and 1969. Each of the eight patients was matched with a 
female born nearest the time of the patient and from the same service. Seven of the 
eight mothers of patients with carcinoma had received diethylstilbestrol (DES), 
starting during the first trimester.  No control mother had been given the synthetic 
estrogen.  Thus we have 

 With cancer Without cancer 
 Mother had not taken 
DES 

1 8 

 Mother had taken DES 7 0 
 
In seven of the pairs, the mother of the daughter with carcinoma had taken DES, 
while the other mother had not.  In one of the pairs, neither mother had taken DES.  
The probability that there will be this discordance in seven or more pairs out of 8, if 
the split between No DES and DES is equally likely to go either way, is 0.004. 
(Gehan & Lemak 1994, pp.158-159.15) 

Cross-sectional Studies 
Essentially a cross-sectional study is a type of survey.  It shows a current reality – the 
prevalence of smoking or the prevalence of lung cancer.  It does not tell us incidence 
– the rate at which people are taking up smoking or getting lung cancer.  There is no 
time dimension.  Moreover there is a survivor effect – the only people who can be 
asked questions are those who are available to be asked. Christie et al. (1987) quote 
the (fictitious?) example of stopping all motor-cycle riders and every tenth car driver 
on a freeway and asking whether they have had a serious accident, requiring hospital 
admission, in the past 12 months.  The rate among car drivers is found to be twice that 
among motor cyclists.  Serious accidents may be more likely to kill motor-cyclists. Or 
                                                
15 It is not appropriate to apply a chi-squared test to the two-way table.  Such an analysis ignores the 
pairing, and would be wrong. 
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perhaps, following a serious accident, many motor-cyclists give up their motor-cycles 
and become car drivers. 

Case-Control versus Long-Term Follow-Up  An Example 
Table 1 illustrates a limitation of case-control studies.  It has data from a long-term 
follow-up study of patients who had undergone surgery for gastric cancer16.  Patients 
whose cancer was detected by mass screening are compared with an unscreened group 
who presented at a hospital or doctor’s surgery with gastric cancer. 

 Number 5 year 
mortality 

Unscreened 
Group 

352 41.9% 

Screened 
Group 

308 28.2% 

   
Table 1: Comparative 5-year mortality, 
between screened and unscreened groups, of 
patients who had undergone surgery for 
gastric cancer. 

 
The data suggest a better prognosis for the group whose cancer is detected as a result 
of screening.  However there are at least two differences between the screened and the 
unscreened group: 
1. It is possible that some in the screened group would never have presented at a 

clinic; some of these cancers may stay dormant; 
2. The screening will detect cancers at an earlier stage. Even without treatment these 

patients should survive longer than those whose cancer is detected, almost 
inevitably at a more advanced stage, when they present at a medical service. 

Because the process that led to the detection of cancer was different between the 
screened and unscreened groups, the two groups are not comparable.  The method of 
detection is a confounding factor.  The screening may lead to surgery for some 
cancers that would otherwise lie dormant for long enough that they would never 
attract clinical attention. 
One needs a longitudinal study that compares all patients in a screened group with all 
patients in an unscreened group.  Table 2 presents results from such a study (c.f. 
Hisamuchi et al. 1991) 

 Number Mortality over 
1960 - 1977 

Unscreened 
Group 

2683 95/100,000 
p.a. 

Screened 
Group 

4325 45/100,000 
p.a. 

   
Table 2: Comparative 5-year mortality, 
between screened and unscreened groups, of 
patients who had undergone surgery for 
gastric cancer. 

 

                                                
16 The data appeared in Sugawara et al.(1984), in Japanese, in a paper of which I have no other details. 
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Evidence for Bias in Non-Experimental Studies 
Earlier I drew attention to evidence that if clinical trials do not follow accepted 
standards for randomisation and concealment, then biases will result.  Non-
experimental studies offer even greater opportunities for bias.  Petitti (1994, p.76, Fig. 
6.1) refers to a study by Stampfer & Colditz that compared different types of study of 
post-menopausal estrogen use and coronary heart disease. Hospital case-control 
studies gave a higher relative risk than other types of study.  The next highest risk 
estimates came from population case-control studies.  Cross-sectional studies, and 
various prospective control studies, gave the lowest risks.  See also Andersen (1990). 

Experimental versus non-experimental studies 
Non-experimental studies are useful in drawing attention to possible associations.  
Their results are in general compelling only when two or more of the following 
conditions are satisfied (1) the conditions closely mimic those of an experiment or (2) 
the effect is large and has no other plausible explanation (3) there are multiple 
confirmatory sources of evidence. 
Smoking was blamed for lung cancer because most cases occurred among individuals 
who smoked.  Many doctors, impressed by this evidence, then gave up smoking.  This 
was followed by a large decrease in lung cancer rates among doctors, thus seeming to 
confirm that tobacco smoke was indeed the culprit.  It is unusual to get such clear 
evidence from observational data.  Various forms of corroborating evidence soon 
appeared.  There is an excellent brief summary in Freedman (1999).  Section 14.5 has 
further discussion of the evidence on health effects of smoking. 

*5.2 Studies that rely on regression modelling 
I have attached an asterisk to this section because it discusses difficult technical 
issues.  These issues are however crucial for studies where conclusions rely on the 
interpretation of coefficients in a regression model that has several covariates. 
Here one drops any pretence that there is a closely matching control group.  All 
relevant variables are entered into a multiple regression equation.  Consider Neumark 
and Wascher’s (1992) investigation of the effect of minimum wage requirements in 
U. S. states.  For 22 states, data covered the years 1973-1989, while for remaining 
states it covered the period 1977-1989. They derived a large number of equations.  
The estimated equation that they defend as an accurate model for teenagers is: 

E = a - 0.17 [SE 0.07] × MW - 0.31 [SE 0.07] × PUE - 0.75 [SE 0.03] × PA + 
S + Y 

Here E = estimated employment to population ratio, MW is a measure of the 
minimum wage, PUE is the prime-age male unemployment rate, PA is the proportion 
of the age group in school, S is a state effect and Y is a year effect.  
The equation seems a fair representation of Neumark and Wascher’s data.  It predicts 
that if other variables are held constant, then increasing the minimum wage by 10% 
will reduce employment by about 1.7%.  (The 95% confidence interval is 0.3% to 
3.1%.) 
There are various difficulties with this equation.  Perhaps the most serious is that the 
proportion of the age group in school (PA) is directly correlated with E.  If PA goes 
up and other variables are held constant, there are fewer young people available for 
employment.  If one omits PA, the apparent effect of minimum wage changes 
disappears. 
Earlier we noted the Card and Krueger study that compared the fast food industry in a 
state that introduced a minimum wage (New Jersey) with a neighbouring state 
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(Pennsylvania) that did not.  The advantage of this approach is that it allows a direct 
comparison, without regression adjustments. 

Lalonde’s comparison between experimental and regression results 
An important study, in any discussion of how far it is reasonable to press the use of 
regression methods, is Lalonde (1986), revisited more recently by Dehejia and Wahba 
(1999).  Its point of departure was a randomised experiment that examined the effect 
of a US labour training program on post-intervention income levels.  Individuals who 
had faced economic and social hardship prior to the program were randomly assigned, 
over a 2-year period, either to a treatment group that participated in the labour training 
program or to a control group.  The results for males, because they highlight 
estimation problems more sharply, have been studied more extensively than the 
corresponding results for females.  Male 1978 earnings increased, relative to those in 
the control group, by an average of $886 [SE $472]. 
Lalonde’s idea was to replace the experimental control group with two non-
experimental groups that had been studied extensively, then using regression methods 
to estimate the effect on earnings.  The results are discouraging.  The estimate 
depends strongly on the form of regression adjustment.  Even more disturbingly, it 
was in every case negative, and different for the different comparison groups. The 
closest agreement was a decrease in earnings of $1844 [SE $762] when the analysis 
used one non-experimental control group, and a decrease of $987 [SE $452] when it 
used the other non-experimental control group.  The figures improved slightly, i.e. 
became less negative, when comparisons were with subsets of the non-experimental 
control groups that more closely matched the characteristics of the treatment group. 
Dehejia and Wahba (1999) revisited Lalonde’s study, using his data.  They used the 
propensity score methodology, as expounded e.g. in Rosenbaum and Rubin (1983).  
Here is a simplified description of the approach, as used by Dehejia and Wahba 
(1999).  A propensity is a measure, determined by covariate values, of the probability 
that an observation will fall in the treatment rather than in the control group.  Various 
forms of discriminant analysis may be used to determine scores.  Comparison of 
treatment and control groups then uses only those observations whose propensity 
scores lie within the overlapping parts of the ranges of treatment and control groups.  
Comparison of treatment and control group then proceeds using the propensity score 
as the only covariate.  Dehejia and Wahba (1999) used this methodology to 
reproduce, in comparisons using the non-experimental control groups, results that 
closely matched the experimental results.  The task is not as hopeless as Lalonde’s 
study seemed to indicate.  It does however require a careful and subtle use of a 
methodology that is adapted for handling non-experimental comparisons.  A 
straightforward use of regression methods will not work. In general Dehejia and 
Wahba’s methods require extensive data.  A key requirement is that the data must 
include information on all relevant covariates. 
This work warns that coefficients in regression equations can be highly misleading.  
Regression modelling places two demands on the coefficients. They must model 
within group relationships acceptably well, and in addition they must model effects 
that relate to differences between groups.  Even where the groups are reasonably well 
matched on relevant variables, the methodology may not be able to reconcile these 
perhaps conflicting demands.  Where the ranges of some variables are widely 
different in the different groups, the task is even more impossible. 
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5.3 Knowledge Discovery in Databases (KDD) 
The bringing together of different sources of data-based evidence may be highly 
useful.  It may also present a confusing picture, as when the different claimed sources 
of evidence on the link between salt and blood pressure seem to tell a different story. 
We have noted that it is careful sifting and analysis of the different sources of 
evidence that seems needed. 
Many different groups are now working to link data from museum collections into 
large databases.  This raises interesting issues.  There are extensive data on the 
locations of organisms that were collected for taxonomic purposes, but relatively little 
data on abundance.  What use can we make, for estimating abundance, of information 
that a particular organism was collected in a taxonomic field excursion at a particular 
location on a particular day?  What do we know about the collecting practices of the 
taxonomists who made the records?  Did they lose interest in a species once they had 
seen more than two or three of them?   Were they more interested in some species 
than in others?  (Yes!)   Efforts to use data from taxonomic field excursions to make 
inferences about species abundance seem fraught with hazards.  There is no good way 
to calibrate across from the taxonomic field data to abundance estimates. 
Knowledge of the sources of the data, and of the purpose for which they were 
collected, will be crucial for making such use as is defensible of the data now being 
collected into databases.  Often, as in the attempt to use taxonomic data to estimate 
abundance, any estimate must be hedged about with so many caveats that the 
usefulness of any inference must be questioned. 
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6. Sample Surveys, Questionnaires and Interviews 
It must be stressed that fact-collecting is no substitute for thought and desk research, and that 
the comparative ease with which survey techniques can be mastered is all the more reason 
why their limitations as well as their capabilities should be understood.  Sound judgement in 
their use depends on this.  It is no good, for instance, blindly applying the formal standardized 
methods generally used in survey or market research enquiries to many of the more complex 
problems in which sociologists are interested. 
[Moser and Kalton 1971, p.3] 
 
Sampling is ubiquitous.  A person buying a sack of potatoes will use a small 
sample of the potatoes as a basis for assessment of the contents of the sack.  
Auditors who are checking for mistakes or fraud will examine a sample of a 
firm’s accounts.  This chapter focuses on sample surveys that use samples to 
gain information on a human population.   
Important concepts are target population and sampling frame.  Probability 
based sampling schemes help avoid sampling bias and allow estimates of 
accuracy.  Simple random sampling is the simplest such scheme.  More 
complex schemes combine simple random sampling with cluster sampling 
and/or stratified sampling.  Non-response is the bane of surveys of human 
populations.  It may introduce serious bias. 
Human sample surveys typically work with questionnaires.  An inappropriate 
choice of questions, and/or poor overall design of the questionnaire, can bias 
responses.  What strategies and checks can ensure that responses do genuinely 
answer the questions that were in the researcher’s mind? 
Qualitative approaches should often complement quantitative approaches.  
Qualitative investigation may help indicate what forms of quantitative 
investigation may be helpful and useful.  It may shed light on what 
respondents intended by their answers. 

 
A cook takes a spoonful of soup from the cooking pot to determine whether the 
amount of salt is right.  From the taste of the spoonful, the cook generalizes to the 
whole pot of soup.  Wine tasters taste a sample of the wine in a bottle, and on that 
basis make a judgment about the whole bottle.  Auditors are not able to examine all 
transactions in the accounts that they scrutinise.  Instead they take a sample of the 
accounts, and base conclusions on the sample.  All the time we sample. 
In an experiment, it may be necessary to take a sample from the experimental unit.  If 
the experiment is a clinical trial that collects data on how the treatment affects the 
patients’ blood, any measurement must be made on a sample of the blood!  Results 
from the sample are taken as indicative of all the blood in the patient’s body.  In an 
experiment where trees are the experimental units, measurements of the amounts of 
calcium in the apples will be taken on a sample of the apples. 
Survey data are widely used for decision and policy making. Unlike an experiment, 
the aim is not to study the effect of change, but to learn what is! While surveys may 
sometimes be used to gather data that will be used to evaluate the effects of contrived 
change, this is not a necessary or predominant survey context.  Decisions on whether 
and how to market a new product, on the effects on government finances of changes 
in tax rates, or on priorities for new housing development, may rely crucially on 
information from surveys. 
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In this chapter the focus is on studies where samples are used to survey a human 
population, typically using questionnaires to elicit information.  Many of the points 
carry over to surveys of organizations, or of animal or plant populations. 

6.1 The Planning of Questionnaire Based Sample Surveys 
Planning should be based around a clear idea of the purpose that the survey is 
intended to serve.  There will be an initial set of steps that identify the research 
question or questions, identify any relevant information that is available from existing 
sources, and establish that a questionnaire-based sample survey really is the most 
appropriate way to go about getting the new information. 
Respondents are likely to be more co-operative if they can be persuaded that the 
questionnaire addresses important concerns.  There should be a preamble at the 
beginning of the questionnaire, or that goes out with the questionnaire, that sets out 
the purpose.  It should explain how results will be used, and address confidentiality 
issues.   
Survey planners become keenly aware of the demands that the conduct of the survey 
places on them.  But remember that the survey is also an intrusion on those who 
respond.  The survey planner has a duty to respondents to carry out the task in a way 
that makes their effort worthwhile.   
Once the research question is clearly identified and it is agreed that a questionnaire-
based sample survey will be effective in providing the answers, what then?  There are 
logistical issues, there are sampling design issues, there are questionnaire design 
issues, and there are data analysis issues.  I will make brief comments under each of 
these headings. 

Logistical Issues 
The logistics of carrying out the survey must be planned.  Will responses be obtained 
by interview, post, telephone17, or by some other method?  Face to face interviewing 
can allow relatively subtle forms of questioning, and can give a good response rates.  
Effective conduct of interviews does however require skills that, for most individuals, 
take time and experience to develop.  With postal and other forms of self-completion 
questionnaires, some form of motivation to respond is almost essential.   There may 
be a reward.  Even then, it will almost certainly be necessary to send reminders, or 
even phone or visit non-respondents, in order to get a reasonable response rate.  
Failure to follow up non-respondents can wreck an otherwise well-conducted survey.   
Surveys of official agencies, or of organizations, will require the co-operation of the 
relevant officials or managers, people that Lynn (1996) calls “gatekeepers”.  
Processes must be followed that may be specific to each organization.  Negotiating a 
way through these processes can be frustrating and time-consuming. 
Detailed logistics cannot be worked out until sampling design issues are resolved. 
What are the different tasks that are involved?  Who will perform these various tasks?  
In a major survey, there are huge planning demands.  For further discussion see e.g. 
Duoba and Maindonald (1988), Moser and Kalton (1971). 

Sampling Design 
1. What is the target population, i.e. the population about which information is 

required? 

                                                
17 Issues that arise in telephone surveys are discussed in Collins (1999). 
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2. What is the sampling frame, i.e. the population from which individuals will be 
sampled?  While this should ideally be the same as the target population, some 
compromise is usually necessary.  In a simple survey design, this may be a list of 
names and addresses, or names and phone numbers. 

3. What method will be used for selecting the sample?  Ideally the sample should be 
chosen using a probabilistic sampling scheme, of which the simplest is simple 
random sampling.  Non-probabilistic methods, e.g. including in the sample 
whoever one can most readily find, have a serious risk of bias.  Self-selected 
samples, e.g. where people who are interested ring in to give answers to questions 
that have appeared in a magazine, may be very seriously biased. 

4. What steps will be taken to ensure high levels of response?  What efforts will be 
made to follow-up non-respondents? 

Developing the Questionnaire 
Careful researchers will look carefully to see what they can learn from their 
predecessors.  This may extend to using and adapting a well-tested questionnaire that 
was used by one or more earlier researchers.  The survey researcher gets the benefit of 
the earlier testing, and of what can be been learned from previous use.  Because the 
same or a very similar questionnaire was used, results bear direct comparison this 
those from previous research. 
There are standard forms of questionnaire that have been developed to address 
particular types of question – mental health, feelings of physical health, and so on.  
These questionnaires have acquired the status of research instruments.  Examples are 
the Beck Depression Inventory, the Minnesota Multiphasic Personality Inventory and 
the Personality Research Form18.  Even with such existing and apparently well-tested 
questionnaires, users must check, to the extent that they can, that the questionnaire 
does its task well in the new setting.  Be aware that the questionnaire may not live up 
to all the claims that have been made for it.   
However good the questionnaire, responses will depend to an extent on the wording 
of the questions.  Questions should be clear, not open to misinterpretation, and have 
the same meaning for respondents as for the designer of the questionnaire.  This is an 
impossible ideal.  There are however common and recognisable possibilities for 
misinterpretation that should be investigated and avoided. 
Where no existing questionnaire is available, there are (at least) two different styles: 
1. There are questionnaires that seek specific factual information.  For example, the 

aim may be to discover how people spend their money, how much on food, how 
much on sport, how much on entertainment, and so on.  There are surveys of what 
people eat. 

2. There are questionnaires that investigate opinions, attitudes or feelings.  What is 
the attitude of year seven students to science?  The subject is complex and clearly 
has a number of different facets.  The need is for questions that together capture 
something of the different and complex responses of the students to science. 

For item 1, the general nature of the questions is clear.  The problem is to express 
them in clear and unambiguous language.  The questionnaires that are described in 
item 2 offer the greatest challenge.  A good strategy is to identify a small number of 
themes, then center the questions around those themes.  What are the appropriate 
themes?  For each theme, what are appropriate questions?  These will be 

                                                
18 These are discussed briefly, with references, in Streiner and Norman 1995. 
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supplemented with questions that provide any necessary background information on 
the respondents – age, sex, etc. 
Here are suggested steps for developing the questionnaire.  They will be explained in 
more detail below.  Relative to common practice, they may seem unusually careful.  
But how, otherwise, can the questionnaire designer be confident that what 
respondents understand is similar to what he/she intended? 
1. Make a draft of the questionnaire.  Check that it has a clear coherent structure. Be 

sure to include a short preamble that explains the purpose of the questionnaire, 
what will happen to the results, what has been done to ensure confidentiality, and 
so on. 

2. Get someone who is experienced with questionnaires to look over it with a critical 
eye.  Make any necessary revisions. 

3. Seek the co-operation of 10-15 potential respondents.  Administer the 
questionnaire verbally.  Note, using the headings in section 6.3, the behaviours that 
each question elicits. (Behaviour coding).  

4. This is a follow-up to step 9.  Once each set of results is complete, ask the 
respondent to explain their answers in a sentence or two. (Probing). 

5. Make any necessary revisions. 

For a large survey, the main survey should be preceded by a pilot survey with a 
substantial number (perhaps 30-100) respondents.  After entering the data and 
carrying out a summary analysis, there should be a review both of the questionnaire 
and of the conduct of the survey. 

The Analysis of Data from Sample Surveys 
When there are a small number of questions that directly address points of interest, 
analysis is straightforward.  Consider a neighbourhood sample survey directed to 
determining the extent of support for an intended beachfront development.  If there is 
no quibble over the form of the question that was asked, if 70% of respondents oppose 
the development while 40% support it, if the sample size was several hundred, and if 
the response rate is more 90%, all that remains is to comment on the accuracy of the 
result. 
Few surveys are so simple. Structuring questions around a small number of themes, in 
the manner that I suggested above, facilitates analysis.  Individual summaries of data 
from 30 or 40 questions are rarely very insightful, especially if the sample is quite 
small.  Summaries of what has been learned about each of 5 or 6 themes are much 
more comprehensible. 
Another way to put structure into the summary is to classify questions according to 
the response they have elicited.  For No/Yes questions, there may be questions that 
get very few “yes” responses, questions where “no” and “yes” are fairly evenly split, 
and questions where most responses are “yes”.  With 100 respondents anywhere 
between 40% and 60% will be consistent with a 50/50 split.  With 400 respondents 
the range narrows to 45% - 55%19. 
Responses for each individual question will often be on a five or seven point Likert 
scale.  An example is (in a survey of year seven students): 

How interesting do you find science?  Circle your choice: 

                                                
19 For random samples, these are the ranges that are consistent with a 50/50 split, as assessed by a 95% 
confidence interval for the population proportion.  In practice, because simple random sampling has not 
been used, and because of non-response bias, these ranges may realistically be much wider than stated. 
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1: Not at all 2: Not very 3:Somewhat 4:Quite 5:Very 
interesting interesting interesting interesting interesting  
 

This is a five-point Likert scale.  “Not at all interesting” rates as 1, “Not very 
interesting” rates as 2, and so on.  There may be four or five questions that focus 
around this same theme of attitudes to science, with high ratings indicating positive 
attitudes and low ratings indicating negative attitudes to science.  A simple way to get 
an overall “attitudes to science” score may be to add the scores from the four or five 
individual questions20.  If this seems inappropriate, one might use principal 
components analysis to determine scores21.  It may even be possible to combine 
results from several themes into a single score. 

6.2 The Language of Sample Surveys  

Target Population and Sampling Frame 
There must be a clearly defined target population.  The target population is the 
population about which you would like information.  Ideally your sample frame, i.e. 
the list of individuals from which you sample, should consist of all members of the 
target population.  This is often difficult or impossible.   
Suppose for example you want to conduct a survey of all residents in the ACT who 
have reached voting age.  An attractive sampling frame is the electoral role.  Use of 
this as the sampling frame will miss out on residents who are not Australian citizens 
and thus not registered to vote. 
A famous historical example (Gallup 1976) illustrates the potential effect of an 
unfortunate choice of sampling frame.  In 1936 the Literary Digest  used around 2.4 
million responses from lists of telephone owners, magazine subscribers and car 
owners to predict the result of the US Presidential election.  It estimated that 
Roosevelt would get 43% of the vote, where in fact he received 62%.  George 
Gallup’s survey organization was then just starting up.  Gallup made two estimates, 
which did not get the same publicity as the Literary Digest poll: 

o Using a sample of 50,000 he predicted Roosevelt’s victory, though with 56% 
of the vote rather than 62% 

o Using a sample of 3000 from a sampling frame similar to that used by the 
Literary Digest, he predicted that the Digest poll would give Roosevelt 44% of 
the vote! 

Even Gallup’s sample of 50,000 was enormously larger than polling organizations 
would use today.  Even in very well conducted sample surveys, non-sampling biases 
typically become more important than sampling error once the sample size is more 
than one or two thousand.  In less well conducted surveys, or where the tradition of 
experience has been too short to allow the honing of the methodology, the cross-over 
point may be a few hundred or less. 

                                                
20 I am unconvinced by arguments that the ratings are not on an interval scale and should not be added. 
What is the alternative?  The scores have to be combined somehow, formally or informally.  The scale 
should have been chosen so the distance between “Not at all” and “Not very” is intuitively similar to 
that between “Somewhat” and “Not very”.   This is not to deny a need for caution. 
21 Principal components analysis determines a weighted combination of the scores, designed to account 
for as much of the variability as possible in the individual scores. 
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The Sample Selection Plan 
Having decided on a sampling frame, there will need to be a sample selection plan, 
and a plan for handling non-response.  We will discuss the non-response problem 
later, i.e. people who do not respond or cannot be found.  For now, note that a low 
response rate, perhaps 50% or less, damages the credibility of results.  The 50% who 
responded may give quite different responses to the 50% who did not respond.  A 
difference in willingness to respond probably means that there are other differences 
also. 
The simplest sample survey design uses simple random sampling.  The sample frame 
is made up of all individuals who might potentially be in the sample.  The sample 
surveyor takes a random sample from the sample frame.  For example, a random 
sample might be taken from all names on the electoral role.  We will discuss 
elaborations of this simple scheme in the next section. 

Non-sampling Errors 
Non-response is one of several types of non-sampling error.  Other non-sampling 
errors may arise because the questions have been misunderstood, or have been 
interpreted differently from the way that the survey planners intended.  The next 
section will examine implications for questionnaire design.  Comments in Moser & 
Kalton (1971, p.482) are apt: 

There is incongruity in the present position.  One part of the survey process (the sampling) is 
tackled by a tool of high precision that makes accurate estimates of errors possible, while in 
the other parts errors of generally unknown proportions subsist.  This incongruity has a double 
implication.  It means, first of all, that the survey designer is only partly able to plan towards 
his goal of getting the maximum precision for a given outlay of money, since the errors (and 
even costs) associated with the various non-sampling phases cannot be satisfactorily estimated 
in advance.  And secondly, so long as these errors cannot be properly estimated from the 
results of a survey, the practitioner is in a position to give his client an estimate of the 
sampling error only, not of the total of all kinds of error. This is a weakness, and there is here 
a field of fertile research for students of research methodology. ... The operation of memory 
errors, the kinds of errors introduced in informal as opposed to formal interviewing, the 
effects of length of questionnaire on errors, the errors associated with different kinds of 
question, the influence of interviewer selection, training and supervision, the errors introduced 
in coding and tabulation --- these are but a few of the many fields in which ... there remains 
scope for research. 

In a carefully conducted mail survey, there will be a second mail-out that will seek a response 
from those who did not respond to the first mail-out.  In telephone surveys, it will often be 
necessary to make several calls in order to contact some of those in the sample.  Respondents 
should then be classified according to the ease with which it was possible to contact them, and the 
response compared.  If differences are greater than statistical error, this will suggest that non-
respondents may be even more different. 

Quota Sampling 
Many commercial market research organizations use this as their preferred method.  
Its principal advantage is reduced cost, though technological change may now be 
changing the relative costs.  There are serious, and usually unknown, risks of bias. 
Quota sampling is not usually carried out in a manner that allows a realistic estimate 
of error from any individual sample.  This may perhaps be acceptable where the aim 
is to get ballpark indications only.   
There are mechanisms that may help calibrate results from quota sampling.  Error 
may be estimated by examining the results of repeated quota samples.  Bias can be 
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estimated by making occasional comparisons with a probabilistic sample that is 
conducted in parallel. 
Question: Do quota sampling and other non-probabilistic sampling methods have a role?  If so, when 
are they appropriate? 

Self-selected Samples 
For example, readers of a magazine may be asked to write in and give their opinion.  
These are the most hazardous of all.   
Question: What other planned ways are there to collect data, apart from experiments, sample surveys, 
longitudinal studies, and case-control studies?  What are the different challenges of these other 
approaches for the statistical analyst? 

*6.3 Sample Survey Design 
In the discussion above, we introduced  the terms 
• target population 
• sample frame 
• non-response 
In addition we introduced the idea of simple random sampling.  An example was the 
choice of names at random from an electoral role. 

Stratified random sampling compared with cluster sampling 
In addition to simple random sampling, there are two further basic types of sampling 
systems: 
1. In stratified random sampling the sample frame is divided up into relatively 

homogeneous strata.  A random sample is then taken from within each stratum.  
For any given sample size, this should, if the strata are well chosen, improve 
precision. 

2. In cluster sampling, the sampling frame is divided up into clusters, often clusters of 
people who live in the same general locality.  The sampler then takes a random 
sample of clusters, though perhaps making the probability that a cluster will be 
chosen proportional to cluster size.  For a given total sample size, cluster sampling 
generally gives reduced precision.   

Clusters and strata both group together members of the population.  In stratified 
sampling we sample from within all strata.  In cluster sampling, we take only a 
sample of clusters.  Stratification should improve precision.  Cluster sampling usually 
results in lower precision for a given sample size, and we need to compensate by 
taking a larger sample. 
We have noted that cluster sampling generally gives, for a fixed total sample size, 
reduced precision.  The reason is that individuals in a cluster – in the same locality or 
in the same school – are likely to be relatively similar.  Each new person in the same 
cluster contributes less additional information than someone newly taken at random.  
But even though one needs to increase the sample size in order to get the same 
precision, the cost may still be lower than for a simple random sample. It is often 
easier and less expensive, especially in remote areas, to contact a number of people 
who all live together in the same location, rather than to select the same number of 
individuals according to a totally random scheme.  
The combining of stratified random sampling and cluster sampling in various ways 
leads to a huge variety of possible sampling designs.  Dalenius (1985) distinguishes 
three basic sampling systems  (i) element sampling, (ii) cluster sampling, and (iii) 
multi-stage sampling. These may be used individually, or combined, to provide a 
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sampling system. The sample scheme determines how sample elements or clusters are 
chosen. Options are simple random sampling, stratified sampling, and various 
sampling schemes that give unequal probabilities of selection. In multi-stage sampling 
this choice is available at each stage. 
Question:  Compare experimental design with sampling.  What are the points of contact between the 
theories that apply in the two cases?  What are the differences?  Does the idea of hierarchical strata of 
variation have a counterpart in survey design? 
Question:  Compared with a simple random sampling scheme, and assuming a fixed total sample size: 
  (i) How does cluster sampling typically affect the accuracy of the sample mean? 
  (ii) How does effective use of stratified random sampling affect the accuracy of the sample mean? 

Multi-stage sampling 
Cluster sampling can be mixed with stratified sampling to give stratified cluster 
sampling.  Instead of using simple random sampling within each cluster, one uses 
cluster sampling.  More generally, the sample procedure may be multi-layered, 
leading to multi-stage sampling.  At each stage the method used may be stratified 
random sampling, or cluster sampling, or a mixture of the two. 

Stratified Random Sampling – The Choice of Strata 
Suppose the aim is to estimate the distribution of household expenditure on restaurant 
meals in the ACT, over a two-week period.  The sampling frame might be a list of 
street addresses.  It might be necessary to use the sample itself to estimate the number 
of households living at each address.  Accuracy might be improved by stratifying 
regions of Canberra according to socioeconomic status.  The argument is that 
expenditure will be higher in regions with high socioeconomic status.  For 
stratification to be effective one needs a variable, positively correlated with the 
outcome that is of interest, that can be used to define the strata. 
If we already had good information on where the patrons of restaurants lived, we 
would use that information.  There might for example be an earlier survey that 
provides this information.  Another way to proceed might be to conduct a preliminary 
survey of restaurants, asking patrons where they live. 
Question:  What might be good stratifying variables for surveys that 
1. estimate the total number of wombats in New South Wales? 
2. estimate the total dollar amount of accounting mistakes, over the course of a year, in the customer 

invoices of a sheet metal supplier? 
[The total amount of each invoice, the customer and the date, can be determined from computer 
records.  Other information must be extracted manually.] 

3. estimate the annual expenditure per household, in New South Wales, on overseas holidays? 
4. estimate expenditure per household, in New South Wales, on holidays in Greece. 
5. estimate amount spent per household, in New South Wales and the ACT, on boats and related 

pleasure craft? 
Finally:  Can you think of methods, better than surveying the whole population, for getting any of the 
above information? 

6.4 Questionnaire Design 
Research questions must translate into a set of questions, and into a 
questionnaire, that will provide answers to the questions to which you as a 
researcher want answers.  What steps will help ensure responses that will give 
reliable and valid answers to the research question? 

Here we take up in more detail points that were raised in section 6.1.  We discuss 
some recent ideas on approaches to checking and testing questions, and we list the 
types of problems that may occur. 
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Behaviour Coding 
Where an interviewer administers the questionnaire, coding of respondent behaviour 
may be used to identify actual or potential problems.  The problem behaviour code 
categories used in Oksenberg et al. (1991) were 

1. Respondent interrupts initial question-reading with answer. 
2. Respondent asks for repeat or clarification, or otherwise indicates 

uncertainty about the meaning of the question. 
3. Respondent answers question as asked, but adds a qualification. 
4. Answer is inadequate. 
5. Respondent gives “don’t know” or equivalent answer. 
6. Respondent refuses to answer. 

Questions that frequently elicit one of these behaviours are problem questions. 

Probing 
Respondents answer to the question as they understand it.  This may differ from what 
the researcher intended.  So a facet of the pre-testing is to follow administration of the 
questionnaire with probing designed to discover how the respondent understood the 
question.  Oksenberg et al.(1991) quote as an example:  

“During the past twelve months, that is, since January 1 1987, about how many 
days did illness or injury keep you in bed for more than half the day.” 

Most respondents took this to mean not getting up in the morning and staying in bed 
till about noon or later.  Others had in mind lengths of time, as little as 2-4 hours or as 
much as 12 or more hours.  Another issue was whether staying in bed because they 
felt they were coming down with something would count as illness.  About two thirds 
would have included this, while the other third would not. 

What sorts of problems occur with questions? 
The following classification of problem questions is adapted from Presser and Blair 
(1994, pp. 96-101) 

1. Leading or loaded question 
“Did you spend at least 8 hours doing physical exercise last week?” 
[Should I have been doing a bit more exercise?] 

2. Information overload  (Question too long or intricate) 
3. Unclear structuring of words or ideas 

“Before you got married, how long did you live in Canberra after you 
graduated from University?” 
[Marriage, living in Canberra and graduation are juxtaposed in a manner that 
will confuse many respondents!  Do interrupted periods of residence count?] 

4. Flow between questions 
“How satisfied are you with the schools in your neighbourhood”, then 
“How satisfied are you with the grocery stores in the neighbourhood where 
you work?” 
[An alert is needed that the question will refer to a different neighbourhood.] 

5. Confused Boundary Lines 
“How long have you lived in Canberra?” 
[Some who have moved in and out may count the most recent time; others the 
total time.] 



6. Sample Surveys, Questionnaires and Interviews 

 60 

6. Common term is not understood 
“Do you separate aluminium cans from your regular garbage?” 
[What is regular garbage?  Is there an irregular kind?] 

7. Double-barrelled question 
“Please indicate how you rate the job that the police and the courts do?” 
[The police are fine.  I see a problem with the courts.] 

8. Recall/response is difficult 
“How many times did you go to the movies in the past 12 months?” 
[I went a lot.  It could have been 20 times or 50 times.] 

9. Recall/response is impossible 
“How many kilometres did you drive in the last year?” 
[Few people will know this.] 

10. Question seems a repeat of the previous question 
“How many times did you start your car’s engine yesterday?” 
“How many times did you stop your car’s engine yesterday?” 
[I’ve just told you!] 

11. Inappropriate assumption 
“How many times did you drive over the speed limit on the way to work?” 
[I came by bus.] 

12. Overlapping response categories 
“Which range is your salary in   $0-$30,000, $30,000-$60,000, or 
>$60,000?” 
[I get $30,000.  Which box do I tick?] 

13. None of these 
“Did you take this course for professional development or out of personal 
interest?” 
[Neither.  My tutor told me I needed to come.] 

14. Response categories too finely drawn 
“Please rate your tutor’s ability to stimulate interest on a scale of 0 to 100, 
where < 50 is unfavourable and > 50 is favourable.” 
[What does a 75 mean?] 

15. Response categories not appropriate to question 
“Do you drive to work?  NO   YES  CARPOOL” 
[What has carpooling got to do with it?] 

16. Sensitive questions 
“How many sexual partners did you have in the past year?” 
[Some will refuse to answer.  Others will be uncomfortable.] 

17. Awkward syntax (an especial problem when an interviewer has to read the 
question out.) 
“The Department of Social Security has information in its files about census 
items like date of birth and sex for nearly everyone.  Would you favour or 
oppose giving this information to the Bureau of Statistics for use in the 
Census?”] 
[You surely don’t mean “sex for nearly everyone”.  You mean the DSS holds 
information on everyone’s date of birth and sex.] 

18. Open question 
“Did you have any special difficulties when you were a first-year student?  If 
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you did, please describe them.” 
[Open questions have their place.  They can be hard to code.] 

“Cognitive laboratory methods” is a collective name for methods that try to tease out 
the thought processes that led to a particular response (Forsyth and Lessler 1991). 

6.5 Questionnaires as Instruments 
As noted in section 6.1, a particular form of questionnaire may be refined to the point 
where it becomes a recognised social science "instrument'', widely used by different 
researchers.  A key issue is: "What does the instrument actually measure?'' 

Content Validity 
Does the statistical data connect strongly with the problem in which we are 
interested?  Issues of content validity arise with particular force in psychometric 
testing.  Do IQ tests really measure intelligence?  Perhaps, if we knew what 
intelligence was, we could say. Note Nunnally's (1978, p. 94) comment: 

In spite of some efforts to settle every issue about psychological measurement by a flight into 
statistics, content validity is mainly settled in other ways.  Although helpful hints are obtained 
from analyses of statistical findings, content validity primarily rests upon an appeal to the 
propriety of content and the way that it is presented. 

Even apparently hard factual questions may measure something different from what 
we think they measure.  Questions about sexual and other practices where there are 
strong social constraints are particularly difficult. 

Face validity 
Broadly, this has to do with the extent to which those who work in the area find the 
measure a credible instrument for its claimed purpose.  Of course, researchers may be 
wrong. 

New Glosses on Old Words 
Surveyors use measuring tapes and theodolites.  Social scientists use questionnaires as 
major measuring instruments.  Is the analogy accurate and useful?  I believe it is. 
The measuring instruments that social scientists propose do not have the obvious 
directness of a measuring tape.  As Nunnally (1978, p.109) says: 

A construct is only a word, and although the word may suggest explorations of the internal 
structure of an interesting set of variables, there is no way to prove that any combination of 
those variables actually measures the word. 
...  
New measurement methods, like most new ways of doing things, should not be trusted until 
they have proved themselves in many applications.  If over the  course of numerous 
investigations a measuring instrument produces interesting findings and tends to fit the 
construct name applied to the instrument, then investigators are encouraged to continue using 
the instrument in research and to use the name to refer to the instrument.  On the other hand, if 
the evidence is dismal in this regard, it discourages scientists from investing in additional 
research with the instrument, and it makes them wonder if the instrument really fits the trait 
name that has been employed to describe it. 

Streiner and Norman (1995) has a helpful review of literature on the design of 
questionnaires.  Although they focus on health measurement scales, their critique has 
wider application. 
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Food Frequency Questionnaires 
It has long been suspected that a high nutrient fat intake increases the risk of breast 
cancer.  A number of large prospective cohort studies that have looked for such a link 
have found nothing.  Other types of study, which however are open to objection for 
other reasons, do suggest an increased risk.  See section 14.6 for further discussion. 
The favoured instrument for assessing fat intake has been a food frequency 
questionnaire (FFQ).  Does failure to find a link mean there is no link, or is the 
problem with the measuring instrument?  Kipnis et al. (1999) suggest that the problem 
may lie with the measuring instrument, at least to the extent that its properties require 
much more careful investigation than they have received to date.  Specifically, they 
show that a person-specific bias in the recording of fat intake might explain the failure 
to find an association between nutrient fat intake and breast cancer risk.   
There will now be studies that will allow estimation of the distribution of any person-
specific bias.  If the person-specific bias proves substantial, this will seriously 
undermine the use of the food frequency questionnaire as a measuring instrument in 
studies where relatively fine discrimination is required. 

6.6 Qualitative Research 
The structuring of information so that it can be collected by a questionnaire, or 
derived from an experiment, places severe constraints on what can be learned.  There 
are large areas of knowledge which we can access only by allowing respondents 
opportunity both to determine the range of information and to structure its content in 
ways that make sense to them.  This takes us outside of the bounds of the formal data 
collection approaches so far discussed.  The term “qualitative study’’ is used without 
prejudice to the possibility that it may later be possible to place a quantitative 
structure on some part of the information that is gathered. 
Moreover quantitative studies start with qualitative judgements.  There must be some 
judgment on which ideas are worth pursuing, on what the research question is to be.  
Where there is little previous research on which to rely for guidance, the over-riding 
initial demand may be for qualitative information that will provide clues on the 
questions that it is appropriate to ask. 
Qualitative studies may be especially appropriate, as a first step, in getting started on 
studies where human interaction has a large role.  For example, trained but often 
relatively inexperienced village midwives, intended to replace traditional birth 
attendants, were a major initiative of a former Indonesian government health minister.  
Why were some midwives accepted by villagers, and used in deliveries, while other 
midwives were not?  What were the important considerations: attachment to 
traditional ways, medical competence, social standing, experience, knowledge of the 
local context, personal qualities, or what?  Substantial insight into the likely social 
dynamics, which may well differ between villages, seems required before mounting a 
quantitative study. 
The term `qualitative study’ has been used by social scientists. Researchers in 
industry, or in the physical sciences, are more likely to speak of `idea generation’, and 
the `refining and honing of ideas’.  Thus the Scholtes (1988) monograph on industrial 
problem solving speaks of generating and honing ideas. 
Qualitative studies may be treated as complete in themselves, or they may be 
explicitly intended to complement a quantitative study.  In either case, there are often 
aspects of the study where it is helpful and appropriate to use quantitative methods.  
Thus graphical presentation, various forms of statistical summary, and clustering 
methods, have application to some quantitative studies.  These approaches are used 
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for summary and the illumination of pattern, not for statistical inference.  Anyone 
who conducts a qualitative study must however understand the different purposes and 
uses of these two different types of study.  Results do not allow the same secure 
generalisation to a wider population that may be available from a carefully conducted 
quantitative study. 
Qualitative studies may be used to generate questions that can then be addressed in 
follow-up quantitative studies.  Sample selection issues, though less critical than in 
quantitative studies, are still important.  Representativeness may be more important 
than the use of a sampling scheme that allows calculation of standard errors for any 
quantitative information. 
When qualitative studies aim or claim to provide insights that stand on their own, it is 
important to know the extent to which results generalize to the relevant target group.  
Just as in quantitative studies, sample selection is a key issue.  Any available checks 
on consistency with other evidence should be applied. The term `triangulation’ has 
entered the social science jargon.  Often an interpretative scheme or theory is imposed 
on the data.  Are the data also consistent with other competing interpretative schemes? 
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7 Sample Size Calculations 
Sample size calculations may be needed for many different types of study.  
Researchers should know roughly what precision they can expect from their 
study.  How large a difference between treatments is detectable?   
Sample size issues should be considered alongside, and be subordinate to, 
sample structure issues. It is good design that is needed, not necessarily a 
large sample size. 

In a randomised controlled trial with control and treatment groups, a decision is 
needed on how many will be in the control group, and how many in the treatment 
group.  Or if there is a limitation on the available numbers in the two groups, the 
researchers will want to know the implications for the accuracy of the result.  A 
sample size calculation relies on various assumptions.  A provisional model is needed 
for the data.  Often it is possible to make a stab at the information that is needed.  
Where research breaks totally new ground, getting a good guesstimate may be more 
difficult. 

7.1 Issues for sample size calculation 
In the randomised controlled trial example, the effect size will be the difference 
between results for treatment and control.  It is common to specify the effect size, and 
ask what size of experiment or sample is needed to detect an effect of that size.   
At this point we focus on principles.  There are details of how to do simple sample 
size calculations in the next section.  Remember that sample size calculations, where 
they seem helpful, should be an adjunct to other aspects of planning.  Do not allow 
preoccupation with sample size issues to distract attention from these other aspects.  
Here are reasons why sample size calculation may be helpful: 
1. A sample size calculation requires either a clearly specified hypothesis or a clearly 

specified estimation problem.  Insistence on a sample size calculation may help 
ensure a reasonably precise statement of the research question(s).  

2. The attempt to specify large numbers of perhaps complicated hypotheses will 
create problems for sample size calculation.  If the attempt at sample size 
calculation helps force this point on the researcher, all to the good.  Numerous 
hypotheses, or hypotheses that are overly complicated, may indicate that the 
research does not yet have a clear focus.  More work is needed in teasing out the 
main research questions. 

3. The attempt to use results from the literature as a basis for sample size calculation 
may help draw attention to problems with the studies themselves, or with the 
reporting of results. 

The importance and relevance of sample size calculations will vary from study to 
study.  Here are points to note: 
1. Researchers should certainly have a rationale for the size of their study.  Size, i.e. 

number of replicates, is just one of several issues that call for attention.  It is 
important that the research effort is used to maximum effect. 

2. Where improvements in study design allow improved precision, this is usually 
preferable to increasing the sample size.  They may help avoid the huge logistical 
problems that large or very large sample sizes can create.  There may be a need to 
incorporate new factors into the design, e.g. individual operator effects when blood 
pressure measurements are taken. 
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3. Each new study should be seen as part of a total learning process.  The key issue 
for the researcher is how the new study can best contribute to the total learning 
process, given the state of existing knowledge. 

4. In highly exploratory studies, the effort put into trying to get high precision may be 
largely wasted.  The initial study will often provide information that calls for 
substantial modification of the initial design. Such studies have the character of 
pilot studies. The priority should often be the collection of information that will 
assist in the design of later studies, rather than high precision. 

5. Sample size calculations have received a huge amount of attention in such studies 
as medical case-control studies and clinical trials.  Here, generally, they do have a 
useful role.  However as with other studies, sample size is only one of a number of 
important design issues.  It has too often been treated as the one issue of major 
importance. 

6. If a study is to stand on its own, then sample size is highly important.  If it is one in 
a series of studies that will finally be analysed together, then the sample size in that 
individual study may have more limited consequence.   

7. There is an urgent need for mechanisms that will foster co-operation between 
different researchers who are working on similar questions, so that their work 
meets similar standards and can finally be evaluated in a single overall analysis.  
Questions of sample size in individual studies should be addressed in this wider 
context.  This is a particular issue for clinical trials. 

8. The aim should be accurate estimation of variability, and ensuring there are enough 
degrees of freedom to do this, rather than replication as such. 

9. Once the study has been conducted, the initial sample size calculation has no 
relevance.  The analysis will provide information on the accuracy of the estimated 
effects, and it is this that is of interest. 

Strong assumptions may underlie sample size calculations.  If the assumptions are not 
satisfied, then the answer may be seriously astray.  If the same faulty assumptions 
underpin the eventual analysis, that will be wrong also. 

Information Required for Sample Size Calculations 
A useful side-effect of the demand for sample size calculations is that it forces a 
search for information that may be more widely relevant to understanding the 
scientific context and to the design of data collection.  If it is impossible to find 
information based on sampling from a precisely similar population, then it will be 
necessary to canvass more widely, looking for a broadly similar population. 
For comparing proportions, a conservative (i.e. erring on the large side) estimate is 
obtained by assuming that the population proportion is 0.5. 
If no information on standard errors can be found, then an approach is to reformulate 
the comparison as a comparison of proportions.  Comparisons based on comparing 
continuous variables typically have greater power than comparisons based on a 
comparison of proportions.  So this is a conservative procedure, i.e. it will tend to 
over-estimate the sample size. 

The Right Sample Structure 
We have so far assumed that it is obvious what the sample units are.  It is not always 
that simple.  Suppose that two different devices for measuring fruit firmness are to be 
compared.  A sample of fruit will be taken, with half then randomly assigned to one 
instrument and half to the other.  The instrument used for any particular fruit will 
make two measurements.  Note that even though two measurements are made on each 
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fruit, it is the number of fruit that is crucial.  The experimental unit is an individual 
fruit.  (A better design would of course be one where each instrument makes one or 
more assessments on the same fruit.)   
This discussion is deliberately brief. Several computer programs that will handle 
straightforward types of sample size calculation are now available from the internet.  
See Brown et al. (1996), Thomas and Krebs (1997).  Researchers are advised to use 
one of these programs for any sample size calculations or, better still, to consult a 
statistician who is knowledgeable about such matters. 
Unless one is unusually fortunate in the information that is available from earlier 
trials, it will be necessary to guess at the standard deviation that should be plugged 
into the formula.  There is often some arbitrariness in the choice of effect size.  So the 
number that comes out at the end can be a rough guide only. 

The Limitations of Power Size Calculations 
Johnson (1998) argues against the use of power calculations in clinical pyschiatric 
trials.  The aim should instead be to recruit at least 100 patients in each treatment 
group, and preferably 200.  These are the numbers that are typically required to 
distinguish clinically significant effects.  While smaller trials may sometimes be 
useful, they risk capturing the characteristics of an idiosyncratic subgroup of patients. 
Johnson’s advice is specific to clinical trials, and perhaps to psychiatric trials.  In 
other areas, there will be different norms. 

*7.2 A Common Form of Sample Size Calculation 
A wide class of sample size calculation formulae has the form 
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where !  is the smallest difference that it is desired to detect, SD is the standard 
deviation of the difference for a sample of one in each group, and for a test at the 5% 
level t!  = 1.96.  If all that is required is a 50:50 chance of finding a difference, then 
t!  = 0.  For 80% power, t!  = 0.84, while for 90% power t!  = 1.28.  The formula 
applies also to confidence intervals, where now `power’ is the desired probability that 
the confidence interval for the difference of interest will have a half-width of less than 
! . 
Here are some special cases: 
1. For a one-sample t-test, SD is the standard deviation s.  Thus for matched samples, 

s is the standard deviation of differences between sample pairs and n is the number 
of sample pairs. 

2. For a two-sample t-test with s the pooled standard deviation, SD is √2 s. 
3. For a two-sample t-test, with different standard deviations s1 and s2 for the two 

samples, SD 2
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4. For a comparison of a proportion with a given fixed proportion, SD )1(2 pp != , 
where p is the proportion under the null hypothesis.  More accurately, replace 
( )t t SD! "+  by t p p t p p! "2 1 10 0( ) ( )# + # , where p0 is the proportion under the 
null hypothesis and p is the sample proportion. 

 
The above formulae make more approximations than may often be desirable.  
However they are adequate for giving an indication of how the sample size formulae 



7 Sample Size Calculations 

 68 

function.  In practice, you may prefer to use one of the sample size calculation 
programs that are available. 

Clustering Effects 
The formulae we have given assume that there is no clustering.  In situations where 
there is clustering, the between cluster variance will often dominate the variance of 
estimated totals or means or differences of means.  The number of clusters, not the 
total number of individuals, may be crucial.  This is equivalent to the insight, in the 
experimental design context, that the number of experimental units is crucial. 
A simple case, which however illustrates the general principle, arises when all clusters 
are the same size m.  The variance (or its estimate) can be partitioned into a within 
cluster component, i.e. 2

w
s  between individuals in the same cluster, and a between 

cluster component 2

b
s , i.e. between individuals in different clusters.  Then the 

variance of the mean of a sample of size m from a randomly chosen cluster 
is 2

b
s + ms

w
/

2 .   For a given cluster size m, one can estimate SD2 = 2

b
s + ms

w
/
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the square root of this, multiplied by 2  if the interest is in differences, as a standard 
deviation to plug into the formulae given above.  The formula will give the number of 
clusters that are required. 

Detecting Change 
Given a statistic and a standard error estimate for it, one can adapt the above 
methodology.  Thus in a straight line regression calculation that assumes independent 
and identically distributed errors with variance that we estimate to be 2

s , the variance 
(= SE2) of the slope estimate is: 
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7.3 Rules of Thumb 
In a random sample of 100, proportions between 30% and 70% can be estimated with 
an accuracy, as measured by a 95% confidence interval, of ±10%.  Thus if the sample 
proportion is 57%, the true proportion may lie between 47% and 67%.  The difference 
between the proportions from two independent samples of size 100 can be estimated 
with an accuracy (here measured by the half width of the 95% confidence interval) of 
about 14%. 
For proportions outside of the range 30% - 70%, accuracy will be better than 
indicated by the above formula. 
Multiplying the sample size by a factor of 10 improves the accuracy, from ±10% to 
±3%, approximately.  The half width of the 95% confidence interval is reduced by a 
factor of √10, which is about 3.2, i.e. not all that different from 3. 
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In complex sample surveys it is customary to speak of the design effect.  This is the 
number by which the size of a simple random sample must be multiplied in order to 
get the same accuracy in the complex sample survey.  Thus a design effect of 1.5 
implies that a sample size of 1500 will be required to give an accuracy, in an 
estimated proportion that is not too different from 50%, of  ±3%.  Design effects in 
the range of 0.75 to 2 are common. 
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8 The Rationale of Scientific Research 
The aim of science is to seek the simplest explanation of complex facts . . . seek simplicity and 
distrust it. 
[A. N. Whitehead] 

 
Both scepticism and wonder are skills that need honing and practice.  Their harmonious 
marriage within the mind of every schoolchild ought to be a principal goal of public 
education. 
[Sagan 1997, p. 289.] 

 
Any adequate account of the scientific method must allow for the exercise of 
imaginative insight.  It must also place checks on the unconstrained use of the 
imagination. There must be a mechanism for distinguishing claims that can be 
substantiated from claims that cannot be substantiated. 
It must allow a role both for data and for theory.  Any collection of data pre-
supposes some notion that these particular data are likely to be interesting 
and useful.  In this sense, science is driven by theory.  It is the genius of 
science that data may challenge and even destroy the theory that guided their 
collection.  This is the means by which science places a check on unbridled 
exercise of the imagination. 
Theory works with models.   Our special interest is in statistical models.  A 
good model captures those aspects of a phenomenon that are relevant for the 
purpose in hand. A model is, inevitably, an incomplete account of the 
phenomenon.  The reward for simplifying by ignoring what is irrelevant for 
present purposes is that the model is tractable – we can use it to make 
predictions. 

 
I use the word science in a broad sense, not much different from the word knowledge.  
Scientific research is directed to gaining new knowledge.  

8.1 Balancing Scientific Scepticism with Openness to New Ideas 
The methods of science stand in strong contrast to belief systems — religious 
systems, cults of every description, popular prejudices, political ideologies of both the 
left and right, those claiming magical or other powers of healing, the claims of much 
commercial advertising, faith healers, promoters of new therapies who resist the 
rigours of scientific testing, and so on.  Scientific claims are open, at least in principle, 
to rigorous objective testing.  Admittedly, science does not in practice always live up 
to these high ideals.   
There is a strong contrast with systems of ideas that resist rigorous testing.  These 
systems readily generate, or more often rehash, ideas that are away from current 
mainstreams of scientific knowledge.  They have rarely shown much interest in 
rigorous testing.  They typically spurn scientific standards, even as an ideal.  
Standards of evidence are weak. 
Theory is a fruitful source of ideas.  Ideas may come from methodically working 
through the implications of current theory.  There may be a bold and imaginative 
extension or adaptation of existing theory.  Or the challenge may come from a new 
theory that questions existing notions.  Whatever their source, ideas should never have 
an automatic claim to credence.  They must stand on their merits. There must be 
reality checks at key points along the way — does it happen as claimed? Occasionally 
a theoretical insight may seem so compelling that there is no need to check further.  
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Previously inexplicable facts now make perfect sense. Even here one has to proceed 
with caution, keeping in mind our capacity for mistake and self-deception, and our 
proneness to jump to conclusions.  Scepticism, directed at current assumptions as well 
as at any new theory, must be the order of the day.  There are many case-histories that 
demonstrate the need for caution.   
There are by contrast well-known instances where the scientific community refused to 
take seriously, on the grounds that there was no mechanism, an idea that had strong 
empirical support.  Or important and significant results may be dismissed out of hand.  
The examples that follow illustrate, in turn, these two possibilities. 

Continental drift 
My discussion pretty much follows the account the very readable account in Hallam 
(1989).  Wegener (1880-1930) presented a range of evidence in support of his theory 
that the present continental land masses had formed from the splitting apart of older 
continental masses.  He pointed out that the Western coast of Europe and Africa fits 
fairly well the contours of the Eastern seaboard of the Americas.  He argued that 
former land bridges between continents explained important features of the present 
distribution of fauna and flora.  But geologists had a long tradition of mechanistic 
explanation. Prominent and influential figures denounced Wegener’s ideas, creating 
an intellectual climate where any young and bold spirit who took up these ideas 
thereby placed their career at risk.   
Biologists were more sympathetic.  They had rarely been lucky enough to find 
detailed mechanisms for the phenomena that they studied, and were more willing to 
live with the idea that an understanding of mechanisms would have to come later.  At 
the same time, they respected the prevailing judgment of geologists that such splitting 
and moving of land masses was impossible.  The opposition to Wegener’s ideas 
remained strong through into the 1950s.  The highly respected geophysicist and 
mathematician Harold Jeffreys (1891-1989) was especially vocal in his opposition to 
Wegener’s ideas.   

A further impossible hypothesis has often been associated with hypotheses of 
continental drift and with other geological hypotheses based on the earth as 
devoid of strength. . . . In Wegener’s theory, for instance . . . the assumption 
that the earth can be deformed indefinitely by small forces, provided only that 
they act long enough, is therefore a very dangerous one, and liable to lead to 
serious error. 
[Jeffreys 1926, p.261] 

A group of younger researchers who revived Wegener’s ideas, still without much idea 
of the mechanism involved, thereby risked their careers.  One of those younger 
researchers – Edward Irving – took a position at the Australian National University.  
Australia provided, at that time, more fertile ground for his ideas.  Far from leading 
geologists into serious error, the theory has been the point of departure for huge 
advances in the understanding of earth history.  It is a cornerstone in a unified 
framework for the interpretation of data from biogeography, geophysics and geology. 

Clues to the Functioning of the Immune System 
The bursa of Fabricus is a small sac at the tail end of the digestive tract in birds.  In 
the 1950s two graduate students, Glick and Chang, discovered that this organ has a 
vital role in the production of antibodies. Glick, who had been unable to find any 
effect from the removal of the organ, gave his chickens to Chang for a class 
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demonstration of the production of antibodies.   The demonstration failed, a result of 
the surgical removal of the bursa while the chickens were still very young.  A paper 
that described their finding was rejected by the journal Science as “uninteresting”.  It 
finally appeared in the journal Poultry Science, where it went unnoticed for many 
years.  After it did finally come to attention, it became in due course the most quoted 
paper ever to appear in that journal (Clark 1995, p.42.)  It marked the beginning of 
fundamental discoveries regarding the immune system. 
There are many reasons why a good idea may be slow to gain acceptance.  The forces 
of conservatism can act just as strongly in scientific communities as in other 
communities.  The word of one dominating and influential figure may be enough to 
prevent a hearing.  “How dare you challenge my authority?”  While it is the force of 
the argument that should prevail, not the pronouncements of elder statesmen, this may 
not be what happens. 

8.2 Data and Theory 
Science is different from many another human enterprise – not of course in its practitioners’ 
being influenced by the culture they grew up in, nor in sometimes being right and sometimes 
wrong (which are common to every human activity), but in its passion for framing testable 
hypotheses, in its search for definitive experiments that confirm or deny ideas, in the vigour of 
its substantive debate, and in its willingness to abandon ideas that have been found wanting.  
If we were not aware of our own limitations, if we were not seeking further data, if we were 
unwilling to perform controlled experiments, if we did not respect the evidence, we would 
have very little leverage in our search for truth. 
[Sagan 1997, The Demon-Haunted World, p. 252. Headline Book Publishing, London.] 

Data 
Data are crucial to science.  Up until the 20th century a prevailing view was that 
science was generalisation from data.  The name given to this process of 
generalisation is induction, which contrasts with deduction as used in mathematics 
and logic.   
The view of science that emphasised induction and generalisation from data was 
strongly influenced by Francis Bacon, who in 1620 published a book that argued for a 
new method of research that, as he claimed, gave ‘True Directions Concerning the 
Interpretation of Nature’.  In Bacon’s ‘improved’ plan of discovery, laws were to be 
derived from collections of observations.  (Silverman 1985.) 

Theory 
Scientists do not collect any old data.  They collect the data that seem most useful.  
How do they get this sense that some data will be helpful, and other data of little use?  
For example a study of the effects of passive smoking is likely to look for specific 
effects, most likely effects that are known to be a result of active smoking.  One 
would not expect to find that passive smokers have an unusually high number of 
ingrown toenails!  So we will not waste effort on gathering data on ingrown toenails.  
We will examine the occurrence of lung cancer, bronchitis, heart disease, and so on, 
but not ingrown toenails.  There’s no theory to suggest that smoking of any kind 
might cause ingrown toenails. 
For studying the health of children living in some area of New Guinea, one might 
collect data on age, sex, height and weight.  Hair colour and eye colour are unlikely to 
be of interest, for this purpose.  It seems obvious that height and weight are important 
indicators, but that hair and eye colour are unlikely to be relevant.  It is assumed that 
some measures are useful and some are not.  There is an extensive literature that 
provides guidance on what measures other workers have found useful, which sets out 
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“theory” that anyone who now undertakes collection of data on the health status of 
one or other human group will want to note22.  Those who initiated work in this area 
had to make their own judgments on measures that seemed useful indicators of health 
status. 
Any adequate understanding of science must have regard both to theory and to data.  
Researchers do not collect any data.  Data collection is driven by a judgement of what 
is worth collecting.  It is in this sense that theory drives scientific research.  None of 
the great scientists have followed Bacon’s prescription.  Typically they showed 
unusual insight, aided sometimes by good fortune, in the data that they collected.   
Data may carry within themselves the power to challenge and perhaps destroy the 
theory that guided their collection.  It is this that gives science its power.  Statistical 
insights and approaches have a key role both in data collection and the extraction of 
information from data.  They assist in the efficient choice of data, in teasing out 
pattern from the data, and in distinguishing genuine pattern from random variation.  
The pattern may be as simple as a difference between the means of two treatment 
groups, or a linear relationship between two variables. 
This is a convenient place to introduce the idea of a ‘model’.  This is an important 
idea, both in science generally and in statistics. 

8.3 Models 
Consider the formula for the distance that a falling object, starting at rest above the 
earth’s surface, moves under gravity in some stated time.  The formula is: 
 2

2

1 gtd =  
where t is the time in seconds, g (≈ 9.8 m/sec/sec) is the acceleration due to gravity, 
and d is the distance in metres.  Thus a freely falling object will fall 4.9 meters in the 
first second, 19.6 meters in the first two seconds, and so on.  This formula describes 
the way that objects fall.  
Observing the fall of a stone (especially if you happen to be underneath) is a different 
experience from encountering the formula on a piece of paper.  There are important 
aspects of the fall about which the formula tells us nothing.  It gives no indication of 
the likely damage if the stone were to strike one’s foot.  The formula can tell us only 
about the distance traversed in a given time, and other information that we can deduce 
from distance information. 
Watching the stone fall and making measurements is different from doing calculations 
using the formula.  The results will not be quite identical, if only because of the limits 
of accuracy of the measurements.  The formula is a model, not the real thing.  It is not 
totally accurate – it neglects the effects of air resistance.  For the limited purpose of 
giving information about distance fallen it is, though, a pretty good formula.  As 
Clarke (1968) says: “Models and hypotheses succeed in simplifying complex 
situations by ignoring information outside their frame and by accurate generalization 
within it.” 
A good model captures those aspects of a phenomenon that are relevant for the 
purpose in hand. A model is, inevitably, an incomplete account of the phenomenon.  
The reward for simplifying by ignoring what is irrelevant for present purposes is that 
the model is tractable – we can use it to make predictions. 
There are also non-mathematical models.  An engineer may build a scale model of a 
bridge or a building that is to be constructed.  Medical researchers may speak of using 
some aspect of mouse physiology as a model for human physiology.  The hope is that 

                                                
22 See for example chapters 7 and 8 in Little and Haas (1989). 
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results from experiments in the mouse will give a good idea of what to expect in 
humans.  As those who know the history of such research understand all too well, 
animal medical models can be misleading.  At best, they provide clues that must be 
tested out in direct investigation with human subjects. 
The model captures important features of the object that it represents, enough features 
to be useful for the purpose in hand.  An engineer can use a scale model of a building 
to show its visual appearance.  The scale model might be useful for checking the 
routing of the plumbing. The model will be almost useless for assessing the acoustics 
of seminar rooms that are included in the building. 

8.4 Regularities (Law-Like Behaviour) 
Mathematical models describe law-like behaviour, i.e. one can use the model to 
describe or predict.  The falling object formula predicts distances. 
We take a variety of regularities for granted in our everyday lives. We expect that the 
sun will rise in the morning and set in the evening.  We expect that fire will burn us, 
and so on.  These expectations have nothing to do with logic.  They are based on our 
experience of the world. We take such regularities for granted.   
There is no logical reason why what has happened in the past will continue to happen 
in the future. There is no logical reason why the sun should continue to rise.  
Fortunately for humans, it does!  Indeed, it is impossible to carry on our lives unless 
we do take such regularities for granted.  We speak of law-like behaviour.  The 
process by which we generalise from our experience of the world to rules that tell us 
what will happen in the future is called induction. Inductive science looks for 
regularities in phenomena. 
The natural sciences look for very wide regularities. They have found a huge range of 
phenomena, many of them outside of the range of our everyday experience, that 
exhibit law-like behaviour.  There has been more limited success in finding law-like 
regularities in the biological sciences.  In the social sciences there has been very 
limited success in finding law-like behaviour.  
The nature of the social sciences makes law-like behaviour hard to find.  The 
phenomena are more complicated.  Consider the complicated processes that are at 
work to make some people criminals, and some law-abiding citizens.  The relatively 
simple falling object equation is a striking contrast with our incomplete understanding 
of the `forces’ that work to make some people criminals.  Typically there are many 
effects at work.  It is impossible to do experiments or make observations that separate 
these effects out individually. The processes are almost certainly different for 
different individuals.  While it is possible to say that children who suffer severe 
neglect or abuse are much more likely to become criminals, this is just one of many 
different factors that are at work. We cannot explain why criminal behaviour is a 
much greater problem in some societies than in others.   

8.5 Statistical Regularities 
Statistical regularities rely on probabilistic forms of description that have wide 
application over all areas of science.  In studying how buildings respond to a 
demolition charge, there will be variation from one occasion to another, even for 
identical buildings and identically placed charges.  There will be variation in which 
parts of the building break first, in what parts remain intact, and in the distance and 
direction of movement of fragments.  
Deterministic models, i.e. models that do not use probabilistic or statistical forms of 
description, have a place, especially in the physical sciences.  Statistical variability is 
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often so small that it can be ignored.  In the natural sciences however, statistical 
variation is ubiquitous and statistical forms of description are generally essential.  No 
two animals or plants or humans are identical. 
Statistical models typically have at least two components.  One component describes 
deterministic law-like behaviour.  In engineering terms, that is the signal.  The other 
component is noise, i.e. statistical variation.  Here is an example.  Different weights of 
roller are rolled over different parts of a lawn, and the depression noted23.  What we 
find is:  
 

 Weight (t) Depression (mm) Depression/Weigh
t 

 1    1.9          2 1.1 
 2    3.1          1 0.3 
 3    3.3          5 1.5 
 4    4.8          5 1.0 
 5    5.3         20 3.8 
 6    6.1         20 3.3 
 7    6.4         23 3.6 
 8    7.6         10 1.3 
 9    9.8         30 3.1 
10   12.4         25 2.0 

Table 3:  Depression, and Depression/Weight Ratio, for 
different weights of lawn roller. 

 
We might expect that depression would be proportional to roller weight.  That is the 
signal part.  The values for Depression/Weight make it clear that this is not the whole 
story.  Rather, we have  
 Depression = b × Weight + Noise 
Here b is a constant, which we do not know but can try to estimate.  The Noise is 
different for each different part of the lawn.  If there were no noise, all the points 
would lie exactly on a line, and we would know the line exactly.  In Fig. 4 the points 
clearly do not lie on a line.  We therefore explain deviations from the line as random 
“noise”, at least until some more insightful explanation becomes available. 

                                                
23 Data are from Stewart, K.M., Van Toor, R.F., Crosbie, S.F. 1988.  Control of grass grub (Coleoptera: 
Scarabaeidae) with rollers of different design.  N.Z. Journal of Experimental Agriculture 16: 141-150. 
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Fig. 4: Lawn Depression, for Various Weights of Roller,
showing one possible line. The line is one of many that
are consistent with the data.  

 
We need a model for the noise also.  We’ll leave the details till later.  Anyone who 
has done a first year course in statistics will expect to hear words such as normal and 
independently distributed used to describe the noise components.  For now, let’s call 
it a random term without spelling out the details.   
It is a feature of statistical models that they have a signal component and a noise 
component.  In some data the signal is strong and the noise small.  In other data noise 
may dominate the signal. Fig. 5 illustrates the range of possibilities: 
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Fig. 5: Different positions along the horizontal axis correspond to
different mixes of signal and noise.  At the left extreme, there is
only signal, while at the right extreme there is nothing except noise.
Statistical models lie somewhere between these extremes.

 
We would prefer to get rid of the noise altogether.  That is not a totally silly idea.  
While we cannot get rid of the noise altogether, we may be able to reduce it.  There 
are several ways in which we might be able to do this: 
1. By using more accurate measuring equipment. 
2. By improving the design of the data collection. 
A skilled experimenter will get as near as is reasonably possible to the extreme left in 
Fig. 5.  That is where every experimenter would like to be.  
Question:  In the lawn roller experiment, how might one reduce the noise, i.e. reduce the scatter about 
the line or other response curve? 

8.6 Imaginative Insight 
How do radically new theories arise?  No doubt generalisation from data, i.e. 
induction, has a role.  At most it can be only part of the explanation.  There is a large 
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element of imaginative insight – the recognition that looking at the phenomena in 
some new way will perhaps simplify the description, or explain former anomalies. 
Trying to understand imaginative insight may not be much different from 
investigating the psychology of scientists.   
There are however styles of investigation that provide fruitful ground for the exercise 
of imaginative insight, and styles that are likely to confuse and derail it.  Thus a 
carefully conducted experiment usually provides much better raw material for the 
exercise of imaginative insight than does unsystematic experimentation and poor 
design.  In the former case anything that is unusual or unexpected will stand out as 
different and demand investigation, while in the latter case unexpectedly large or 
small values may have a multiplicity of explanations.   
An apple transport trial in which I participated (Maindonald 1986) illustrates how 
careful design helps highlight anomalous results.  The trial had sufficient elements of 
careful design that those few crates where there was heavy bruising stood out as 
anomalous.  We found that they were unstable, shearing first to one side and then to 
the other as the truck negotiated bends in the road.  Our design had neglected what 
turned out to be the most important factor affecting apple bruising.   Nonetheless, 
because we had controlled for other factors such as the condition of the apples, the 
effects of bin instability stood out clearly. 

8.7 Science as Hypothesis Testing 
. . . in learning by experience . . . conclusions are always provisional and in the nature of 
progress reports, interpreting and embodying the evidence so far accrued. 
[R. A. Fisher] 

Imaginative insight readily creates worlds of its own that may have little connection 
with reality.  There is a place for imaginative drama, fiction, legend and myth, but not 
as part of science.  So there must be severe checks on the exercise of imaginative 
insight.  How do we keep imaginative insight in check, ensuring that what we claim to 
find is real rather than the product of a fertile imagination.   Why should we believe 
scientific explanations for patterns in the frost, rather than the claim that “the fairies 
did it”?   The difference, according to Karl Popper, is that genuinely scientific theories 
can be tested.  Instead of starting with data, Popper starts with a theory. Popper has 
little to say on where scientific theories come from. 
There must be a motivation for collecting data.  There must be a sense that some data 
are worth collecting and some are not.  Researchers who are unclear why they are 
collecting data, and are not selective about what data they collect, typically end up 
with data that are of little use.  Effective researchers are highly selective about the 
data they collect.  They seek data that will address the questions that are of interest to 
them.   
Any legitimate scientific theory will make predictions.  For example, Newton’s 
gravitational theory predicts that the earth and other planets will move around the sun 
in elliptical orbits.  This prediction seems to be born out by the observed facts.  So 
Newton’s theory survives that particular test24. 
A scientific theory will not be rejected just because it cannot explain particular 
observations or results from a particular experiment. Kuhn (1970) argues that for a 
new theory to replace an old theory two conditions must be satisfied 

                                                
24 It almost survives it.  Later work found small anomalies in the orbit of the planet Mercury.  
Einstein’s theory of relativity is required to give a completely accurate description of the orbit of 
Mercury. 
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1. There must be serious cracks in the old theory, i.e. important facts that the old 
theory does not explain. 

2. A new theory must be available. 
Why replace a theory, even one that has evident flaws, unless something better is 
available with which to replace it? 
There are further issues: 
3. When observations or an experiment give results that are contrary to a well-

established theory, is it the theory or the experiment that is mistaken?  There may 
have been a flaw in the experimental procedure.   

4. Flaws in experimental procedure are especially common when one is working at 
the limits of experimental technology.  It may be at these limits that theory has its 
most extreme test. 

5. Often, a small modification to the theory may be enough to accommodate a newly 
discovered anomaly. 

6. Scientists may be so deeply wedded to the existing theory that they refuse to accept 
the new theory.  This is particularly likely if the new theory is itself incomplete, i.e. 
many of the theoretical details have not been worked out.  There are many 
examples of this. 

8.8 Strategies for Managing Complexity 
Complex systems defy ready understanding.  Easily the most successful scientific 
strategy has been to restrict attention to limited aspects of a system where simple 
models may work.  Once the subsystems are well enough understood, the hope is that 
it will be possible to bring the separate pieces of information together to give a useful 
account of the total system. 
This reductionist approach has been spectacularly successful in physical science, 
biology and medicine.  As Wilson (1998, p.58) says, “Reductionism is the search 
strategy used to find points of entry into otherwise impenetrably complex systems.”  
In the end however, the aim is to describe and explain the rich complexity of the 
systems under investigations.  There is no virtue in naïve simplicity unless it leads, 
finally, to insights that enable us to get a handle on the complexity.   
In practical applications of science, this complexity may extend far beyond the 
specific issues that motivated the scientific study.  As an example of this complexity, 
consider the salinity that has affected or is threatening huge areas of Australian 
farmland.  There are a large number of scientific issues that bear on this problem, 
some of which I list below.  However none of the studies that one might conduct 
under these individual headings will, on their own, give the information needed to 
address the problem.  Somehow the information from these various sources must be 
brought together. 

An Example – The Desertification of Australian Land 
Over large areas of Australia the destruction of forests has removed the trees that 
formerly soaked up water in the soil, leading to a rise in the water table.  Salts are 
naturally present in the soil, in some places in substantial quantities.  Irrigation brings 
in further dissolved minerals.  These remain after the water has evaporated and build 
up slowly, adding to what is already in the soil.  As long as the water table is well 
below the surface, rain will wash any salts down into the ground water, where they 
are not a problem.  Once the water table rises to close to ground level, it brings the 
salts with it.  Trees that have been left standing, and other vegetation, die off.  In the 
end, the land becomes unusable.  Coram (1998) quotes an estimate of 120,000 
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hectares of land in New South Wales that was affected by dryland salinity in 1996, 
with a further 5 million acres considered to be at risk. 
There are many individual components to any study of this salinity problem. 

1. Extent of the problem:  What is the present and expected future size of the land areas that 
are affected? 

2. Vegetation Effects:  What is the extent of continuing damage from new clearing of 
vegetation?  What is the potential remediation role of new tree plantings?  Is it possible to 
find tree species that will grow and survive in saline soil? 

3. Irrigation practices:  How much of the problem is the result of past and current irrigation 
practices?  How might changes in irrigation practices assist remediation?  How effective 
(and cost-effective) would it be to use bores to replace the use of water from irrigation 
channels?  

4. Groundwater draining and pumping:  Is draining and/or pumping of groundwater a viable 
potential remediation strategy in some areas?  Which areas? 

5. Engineering of irrigation channels: What effects (e.g. damage to adjacent roads from the 
build-up of salt in the soil and/or from waterlogging) arise from loss of water from 
irrigation channels?  What engineering solutions (e.g. better lining of channels) are 
available?  

6. Land use strategies:  What changes in patterns of land use might assist remediation.  The 
replacement of agriculture by forestry can be highly effective. Those crops are preferable 
that do not require heavy irrigation. 

7. Flow-on effects:  How much of the problem in one or another area is the result of 
practices in other areas, perhaps more elevated or perhaps upstream? 

8. Ecology:  What are the effects on fauna and flora?  How would alternative remediation 
strategies affect fauna and flora? 

9. Social issues:  What steps will ensure that remediation measures do not unduly 
disadvantage individual communities? 

Also open to scientific study are political and economic consequences, flowing both 
from the present degradation of land and from proposed remedies.   
There must be strategies for gathering whatever information is needed under each of 
these headings, and for creating from them an integrated plan of understanding and 
action.  Questions worth considering are: 

1. Are there changes that would be easy and cheap, and that would make 
substantial inroads on the problem? 

2. What changes, ignoring for the moment their costs, would make the largest 
inroads? 

Questions: Why is it hard to get action on the degradation of Australian land that is a result of salinity?  
Are there no good strategies?  Or is the problem an inability to implement the strategies that are 
available?  Is the needed co-operative action too difficult for our society’s political and economic 
structures? 

8.9 Cause and Effect 
It is one thing to establish a correlation between two variables.  It is another to 
establish a causal link.  The direction of causation is sometimes obvious.  It is rain 
that causes the wheat to grow, not growth of wheat that causes the rain.  Heavy 
drinking causes the subsequent hangover.  But what is the relationship between hard 
work and business success.  Does success come first, leading people to work hard to 
maintain and improve their position?  Or does hard work come first.  Often, both 
variables are driven by a third variable.  Weight and height are strongly correlated, but 
it makes no sense to claim that one causes the other.  These issues have generated 
fierce continuing debate in the social science literature.  References in Freedman 



8 The Rationale of Scientific Research 

 80 

(1999, p.248) represent a range of perspectives.  See also pp.78-80 of Greenhalgh 
(1997). 
Cause and effect issues have appeared at several points earlier in these notes.  Does 
salt in the diet cause high blood pressure?  Does an increase in the minimum wage 
cause reduced employment?  What long-term effects flow from sudden and 
unexpected traumatic loss? 
Claims of causation are convincing when there is a cogent theory that establishes the 
causal chains of connection.  Where the theory is complex, built from many 
individual components, those components must be open to testing.  Complex theories 
must often rely on computer modelling to link the separate components.  One example 
is the extensive body of theory that is designed to predict the global climatic impacts 
of human activity.  Some might argue that it is a complex of theories rather than a 
single theory.  This is a matter of definition. 

8.10 Computer Modelling 
Many of the new biological challenges are of the “how do we put the pieces back together” 
type.  Those problems are horrendously difficult for our current approaches. 
[Wilson, 1998, pp.91-92.] 

Human impacts on climate change are a serious issue for our time.  For science it is a 
huge problem of the “how do we put the pieces back together type”.  Many different 
sources of information and evidence must come together.  Computer modelling seems 
the only viable approach. 
Increased atmospheric levels of carbon dioxide and other implicated gases25 increase 
the effectiveness of the earth’s atmosphere as a heat shield.  Much of the focus has 
been on increases in carbon dioxide levels that have resulted from increased use of 
fossil fuels.  A 0.5°C average global increase in the temperature of the earth over the 
past century seems in part due to this and other human activities.  Schneider (1996) 
reports an assessment of tree-ring and other evidence for temperature change in the 
past ten thousand years that suggests that such a large 100-year change has been 
unusual over this time, occurring no more than once in a thousand years.  See also 
Crowley (2000). 
Projections drawn up by the Intergovernmental Panel on Climate Change predict an 
average global warming of between 1.0°C and 3.5°C over the next century, a greater 
rate of climate change than at any earlier time in the past 10,000 years.  Predictions 
are that sea levels will rise, some low-lying areas will be covered by sea, there will be 
loss of vegetation, farmers may need to change to new crops that are viable in the new 
climatic conditions, weather patterns will be less stable, and tropical diseases will 
affect many sub-tropical regions. 
How were these figures obtained?  It is not sensible to try to project current 
temperature trends into the future. The world’s climate has changed continuously over 
time, making short-term trends a poor guide to what may happen in the future.  Rather 
the evidence comes from computer modelling.  The predictions from this modelling 
are unequivocal – present rates of release of CO2 into the earth’s atmosphere will lead 
to a temperature increase.  If these rates continue to increase at about 1.5% per annum 
as in the recent past, the temperature increase over the next 100 years will be 
correspondingly larger. 
Atmospheric and ocean currents are the moving parts of a huge engine that is driven 
by the sun’s heat. The blanketing effect of the atmosphere, itself affected by life 
processes on land and in the sea and by human activities that include the use of fossil 
                                                
25 Other gases that are implicated are methane, nitrous oxide and hydrofluorocarbons. 
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fuel, are a part of the engine’s control mechanisms.  Understanding of the functioning 
of the individual components seems adequate for the building of computer models 
that make gross predictions, always assuming that ocean (and air) currents continue to 
follow pretty much their current patterns of movement. A worrying aspect of potential 
large temperature changes is that they may cause the engine to reconfigure itself.  
Changes in the flow of major ocean currents, such as have happened in past 
geological times, would bring changes in climate patterns that would be even more 
traumatic. 
Computer models must accommodate, as best they can, all these different effects.  
Statistical methodology has a clear role in checking the predictions of individual 
components against experimental and observational data.  Checks that model 
predictions over several years for different regions of the earth’s surface agree with 
observation are encouraging, but not clinching evidence.  By the time that clinching 
evidence of the accuracy of model predictions is available, the damage will be 
irreversible.  Hence the importance of close critical scrutiny of the separate 
components of the models, of the way that those components are linked and of 
sensitivity analyses that check how predictions would change if there were changes to 
those model assumptions that are open to challenge. 
Scientists from many different disciplinary backgrounds have critically scrutinised the 
computer models.  There has been extensive refinement of the details.  Qualitative 
model predictions have withstood these criticisms remarkably well.  The most 
persistent criticism has come from those with a political axe to grind, usually in 
defence of inaction!  Such critics have the option, and the challenge, to build and offer 
for scientific scrutiny models that give predictions that are more to their taste. 

8.11 Science as a Human Activity 
I know that most men, including those most at ease with problems of the greatest complexity, 
can seldom accept even the simplest and most obvious truth if it be such as would oblige them 
to admit the falsity of conclusions which they have delighted in explaining to colleagues, 
which they have proudly taught to others, and which they have woven, thread by thread, into 
the fabric of their lives. 
[Tolstoy, quoted in Gleick, 1988.] 

[Scientific theories] . . . are constructed specifically to be blown apart if proved wrong, and if 
so destined, the sooner the better.  “Make your mistakes quickly” is a rule in the practice of 
science.  I grant that scientists often fall in love with their own constructions.  I know, I have.  
They may spend a lifetime vainly trying to shore them up.  A few squander their prestige and 
academic political capital in the effort.  In that case – as the economist Paul Samuelson once 
quipped – funeral by funeral, theory advances. 
[Wilson, E.O., 1998, p.56] 

 
Humans are not inherently rational creatures.  Much of what passes for reasoned 
argument is rationalisation – the use of reason to defend positions that we hold for 
other reasons.  An attitude of mind that judiciously balances openness to new ideas 
with rigorous critical scrutiny does not come easily to our human nature.  Prejudice 
readily takes precedence over the demands of rationality.  Scientists are not inherently 
different from other humans who are prey to idiosyncratic belief systems and spurious 
claims.  Gilovich (1991) is one of many books devoted to the discussion of our 
irrational foibles. 

Fallible Scientists 
Scientists are not immune from the tendency to rationalise.  Thus craniology – the 
measurement of the brain capacity, often with the aim of relating brain capacity to 
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racial differences – became a popular subject of study in the nineteenth century.  Not 
surprisingly, much of this work collected and used data in ways that reflected the 
racial and sexual prejudices of the scientists who undertook it.  Gould (1996), in a 
highly readable book, discusses this and other similar examples.  Fortunately the 
processes of scientific criticism and re-evaluation do in the course of time tend to 
expose and correct such abuse.  (Gould’s book has itself attracted accusations of bias 
from academic critics.) 
Still today, rationalisation and prejudice compromise science.  New prejudices and 
new rationalisations have arisen to replace those that we hoped to have conquered.   
Such rationalisations find it especially easy to establish and retain a foothold in those 
areas where there is a dearth of external checks on the exercise of imaginative 
reconstruction. Dogma easily masquerades as science. 
Researchers may become more concerned about maintaining their funding or their 
position within the profession than about truth. Science easily degenerates, in some 
times and some corners, into pseudo-science.  There is self-deception, there is an 
often exaggerated deference to authority, there is deliberate manipulation, and there is 
a yielding to self-interest.  There is a challenge to devise ways of funding and 
directing scientific research that reduce opportunity for manipulation, for deviousness, 
and for prejudice and dogma that masquerade as science. 
Different scientists have different qualities.  Some may be receptive to new ideas, but 
not good at criticism.  Others may be good at criticism, but not receptive to new ideas. 
They may apply high standards of criticism in their own area, but make idiosyncratic 
judgments when the scientific demands change.  They may be hypercritical, not 
understanding the different nature of the evidence that the new and unfamiliar area 
demands.  Or, failing to note the different opportunities for self-deception that this 
new area offers, they may be unduly credulous.  There are few who can examine 
claims in medicine or social science or physics with more or less equal critical 
incisiveness.   

Dominant authorities 
As in all communities, there are some whose pronouncements carry especial weight, 
or whose positions give them special authority.  They may be editors of major 
journals, or have a large influence in the decisions of funding agencies.  There are 
practical reasons for listening to the voices of such dominant figures.  Their 
judgments can be effective in weeding out ideas that are not worth pursuing.  At the 
same time they may weed too ruthlessly, their own speculative notions may acquire 
the force of dogma, and they may resist anything that they find too novel.  This may 
be a particular danger if there are just one or two dominant figures — individuals who 
occupy the sort of position that Harold Jeffreys occupied in geophysics in the 1950s.  
It is healthier if the dominant figures do not altogether agree among themselves. 
Jealously and backbiting also flourish.  Other scientists may be seen, not as partners in 
a common endeavour, but as threats to one’s own enterprise who must be cut down by 
any means available.  Political concerns may influence scientific judgements.  Even if 
such attitudes are not overt, they may lurk below the surface.   Perhaps we should be 
surprised that the demands for scientific rationality do so often prevail over these 
human influences. Only an overarching insistence on rigorous criticism can keep 
science from becoming prey to irrationality.  There will never be total success.  There 
is however plenty of scope for improvement on the way that science is now 
conducted.   
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The Logic of Science and the Sociology of Scientific Communities 
Above I noted conditions that, according to Kuhn, must be satisfied before a new 
theory can replace an existing theory.  There must be serious cracks in the existing 
theory, and a new theory must be available. 
However Kuhn goes further.  He argues that science is driven by powerful social 
forces, akin to those that drive other human activities.  An objective examination of 
the history of science shows much that confirms Kuhn’s claim.  A weakness in 
Kuhn’s account is that he does not maintain a clear distinction between the logic of 
scientific discovery and the sociology of scientific communities26.  Science has an 
inherent logic that does often, in the course of time, prevail against the sociological 
forces that drive one or another scientific community.  At least in the physical and 
biological sciences, it is unusual for reactionary attitudes to hold back progress for 
more than a decade or two.  Individuals who show unusual insight may be denied 
their PhDs.  Their ideas, if they withstand critical scrutiny, do however finally prevail. 
This is a remarkable feature of scientific discovery.  A science that was wholly the 
product of social forces would be ineffective. 
The sociology of scientific communities often works against really good science.  I 
will criticise unhelpful practices, in data collection, in data analysis and in the 
reporting of results, that are undesirable outgrowths of the sociology of particular 
scientific communities.   My complaint is that they are contrary to the inherent logic 
of science.  Some common failings are: 
• uncritical reliance on expert opinion 
• exaggerated expectations of what can be learned from observational data 
• failure to marry subject area insights with results from statistical analysis 
• deficiencies in data-based overview 
• unwillingness to bring in other skills when these are clearly required 
• deference to pressures from commercial interests. 

Reductionist Scientists? 
Scientists who wish to publish extensively and advance in their chosen research area 
will do well to limit their attention to a narrow range of problems that seem likely to 
yield easily to their skills.  This narrowness of focus, which can be beneficial in 
making initial progress in a closely defined area of research, does not give the breadth 
of view needed to tackle “big issue” questions.  Determining the structure of an 
organic chemical compound found in the river water, or using radio-isotopes to trace 
its progress through the river system, does not of itself give the breadth of view 
needed to tackle such “big picture” problems as dry land salinity.   
Wilson (1998, p.40) has apt comments: 

The vast majority of scientists have never been more than journeymen prospectors.  That is 
even more the case today.  . . . They acquire the training needed to travel to the frontier and 
make discoveries of their own, and as fast as possible, because life at the growing edge is 
expensive and chancy.  The most productive scientists, installed in million-dollar laboratories, 
have no time to think about the big picture and see little profit in it. 

The skills of a “journeymen prospector” may serve well those who expect to join 
multi-million dollar research laboratories.  A narrow training focus seems clearly 
inappropriate for anyone whose work is likely to demand skills different from those of 
their Ph.D. or other research degree, or who is likely at some time to work on “big 
picture” issues. 

                                                
26 For a recent wide-ranging critique of Kuhn’s views, see Fuller (2000). 
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Commercial Pressures 
Money speaks volumes.  Commercial pressures may be a potent influence.  Wilkinson 
(1998) offers a series of case studies that highlight some of the issues.  Edmeades 
(2000) is an interesting study of the aftermath to a celebrated defamation claim that 
occupied the New Zealand High Court for 135 days.  What were the rights and duties 
of fertiliser scientists who wished to make the results of their research available to the 
farming community that they had a responsibility to serve? 

The Uses of Controversy 
Controversy can be helpful in drawing attention to areas of weakness in the science.  
It offers an interesting window both into the sociology of scientists and into the logic 
of scientific discovery.  It is an advantage when the different parties to the 
controversy come from different disciplines, and accordingly offer different 
perspectives.  Novice researchers sometimes find themselves caught, uncomfortably, 
between the different sides of a controversy.  From time to time the views of a PhD 
examiner will, in spite of care in the choice of supervisors and examiners, be seriously 
at odds with the ideas and insights that shaped a smaller or larger part of the thesis.  It 
is with these points in mind that I will now comment on controversies that have 
surrounded the study of human abilities and human nature. 

8.12 The Study of Human Nature and Abilities  
Know then thyself, presume not God to scan, 
The proper study of mankind is man. 
[Alexander Pope (1688-1744): An Essay on Man.] 

 
The scientific study of human nature and abilities is a sensitive area, for all sorts of 
reasons.  Are humans able to pursue such studies objectively, with the detachment 
that science demands?  Supposed scientific objectivity readily becomes a vehicle for 
particular prejudices. 

The Heritability of IQ 
Studies of the genetic basis of IQ have had a long and tangled history.  A key and 
greatly overplayed concept has been the heritability coefficient, the proportion of 
variation (measured using the statistical variance) that is due to genetic variation.  The 
heritability coefficient has been widely used in animal and plant breeding studies, 
where the outcome variable of interest has been weight or milk production.  A high 
heritability suggests a potential to get further improvements from breeding.  
Comparison between heritability coefficients from different trials makes sense only if 
environmental variation is comparable.  This may be reasonable if, as in many animal 
and plant breeding studies, conditions are similar across different trials. 
Studies of twins, both identical and non-identical and including separated pairs, have 
been the main source of evidence for the heritability of IQ in human populations.  As 
one might expect, the two members of a separated pair are often reared in very similar 
circumstances, more similar than for two randomly chosen members of the 
population.  Thus the studies tell us nothing about heritability in a section of the 
population where the range of social disadvantage is large.  Lewontin (1979) has 
argued, rightly in my view, that 

. . . there is no way in human populations to break the correlation between genetic similarity 
and environmental similarity, except by randomised adoptions. 
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One would need to randomly assign adoptees to the whole range of social 
circumstances to which it was intended to generalise results.  Such an experiment is 
surely out of the question. 
There is a further issue.  Twins share a common maternal environment.  Daniels et al. 
(1997), in a meta-analysis of more than 200 studies, estimate that the shared maternal 
environment of twins accounts for 20% of the total variance.  The ignoring of this 
component in earlier analyses of data from twin-adoption IQ studies led to a 
substantial over-estimate of heritability. Assigning to the wrong source a component 
that turns out to be 20% of the total is perhaps excusable in the initial tentative 
investigations.  Long before one has the 212 sets of results that Daniels et al. 
analysed, this surely has acquired the status of a fundamental biological error!  This 
analysis still leaves large questions unanswered.  What is the relevance of these 
studies, if any, to a wider population where the range of environmental effects may be 
far larger than those typically experienced by the separated twins? 
IQ tests capture a small part of the rich texture of human abilities.  Mental and other 
abilities continue to change and develop through into old age.  Mind Sculpture 
(Robertson 1999) is the title of a book that discusses evidence on how our brains 
develop and change as a result of demands placed on them.  The emphasis should 
perhaps move from the study of mental testing to the study of mind sculpture. 

Sociobiology 
In his 1975 book Sociobiology: The New Synthesis, Wilson defined sociobiology27 as 
“the systematic study of the biological basis of all social behaviour”.  Wilson hoped to 
find a genetic basis for behaviour.  Sustained controversy followed its publication.  
While most of the book was devoted to the study of animal and especially insect 
societies, the final chapter speculated on genetic influences on human behaviour.  
Why all the fuss?  The discussion that now follows draws at several points on the 
account in Segerstråle (2000).   
Any initial foray into an area that is as complex as genetic effects on animal 
behaviour must over-simplify.  But what if the simplifications that seem required are 
precisely those that readily feed into racial, sexual, national and other such forms of 
prejudice?  Wilson was aware of the risks of the area into which he had ventured, and 
took care to protect his words from such misuse.  His critics were not satisfied, either 
with his science or with the care that he had exercised.  Criticisms were of several 
different types: 

o Wilson was charged with specific scientific errors. 
o Notwithstanding the generally liberal tenor of Wilson’s views, it was argued 

that they lent support to those opposed to steps that would ameliorate the 
position of socially and economically disadvantaged groups. 

o Criticism of Wilson’s book became a convenient starting point for promoting 
wider scientific and political agendas.  In some instances statements were 
taken out of context, charging Wilson with views that were at variance with 
specific statements in the surrounding text. 

There is a succinct statement of the criticisms in Rose et al. (1984).  Segerstråle 
attempts to disentangle the various strands of this controversy.  It is worth noting that 
a wide spectrum of political views is found both among those who emphasise genetic 

                                                
27 Note also the more recent term evolutionary psychology, used to describe an area of study that has a 
large overlap with sociobiology. 
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influences on human behaviour and abilities, and among those who emphasise 
environmental effects.    
The first tentative steps in a new area of study may use overly simplistic models, 
which will be refined as understanding advances.  Problems arise when there are 
perceived implications for the way that we regard or treat fellow humans.  There is a 
long history of misusing claimed scientific results that is the theme of Gould’s The 
Mismeasure of Man28.  Where such implications are perceived, it behoves scientists to 
tread with extreme care, to acknowledge obvious limitations in their models, and to 
acknowledge the tentative character of their results.  This may conflict with the 
motivation that researchers feel to persuade themselves and others of the importance 
and significance of their work.    
One outcome of the controversies in sociobiology has been a closer scrutiny of the 
scientific methodology than has been common in other areas of biology that rely 
extensively on observational data.  This scrutiny needs to go further.  Such statistical 
methodologies as regression are too often used uncritically, without regard to traps 
such as were discussed in section 5.2.  Even if the models are correct, estimates of key 
parameters may be wrong.   
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9. Critical Review 
 

To give a basis for independence of judgement it is, I believe, of far more importance than is 
generally supposed that the worker should allot a considerable fraction of his working time to 
making himself acquainted with the published literature.  . . . The student’s reading may have 
been well directed, but it has covered almost certainly only a small fraction of the published 
researches bearing on his problems.  The junior worker should receive encouragement, and his 
duties should allow him to read, with adequate care, far beyond the limited series of papers 
which his chief may indicate to him as necessary for the work of his department.  The object 
should be to familiarise the reader with the stages whereby current opinions have been 
developed, and to train him, by scrutinising the results of past experimentation, to exercise his 
own judgement on the value of the experimental evidence available on different disputable 
points. 
[Fisher, R.A., in Bennett 1989.] 

 
Critical review of previous research is the appropriate starting point for a 
new study.  The aim is, as far as possible, to start from what is already known.  
New research should build on and learn from what others have or have not 
done. Look also for other ways of getting a research consensus, such as 
talking directly to `experts’. 
The principles of critical review have wide application.  They are pretty much 
those of evidence-based medicine.  One can apply them to the use of medical 
advice, and one can apply them to research. 
Statistical insights are often crucial in assessing the literature.  Not all studies 
are of equal quality. It is necessary to decide, as objectively as possible, which 
studies are relevant and of high quality.  This requires careful and critical 
scrutiny of each individual study.  Watch for confounding, i.e. more than one 
explanation is available for an observed effect. Ask about possibilities for 
bias?  Ask whether the study had sufficient precision to detect the effects that 
are of interest.  Influences on precision include measurement instruments, 
experimental or sampling design, and sample size. Inadequate description of 
methodology may be a warning sign of methodological inadequacies.  Do not 
automatically give authors the benefit of the doubt. 
Some researchers must contend with a large number of papers bearing on 
their chosen topic.  A first step is to determine whether someone else has 
already done a thorough competent critical overview.  If one or more 
overview studies are available, how careful and reliable are they?  Are studies 
that show a clear effect more likely to be represented?  What are the 
possibilities for bias?  Is it possible that an effect that has shown up in a data-
based overview is the result of a similar bias that has affected all studies? 

Before starting one’s own research, there should be a good sense of what other 
workers have achieved. It is well to be sure than any new piece of research has a good 
chance of providing new, relevant, information.  In some instances the research 
supervisor may provide a research question that he/she is sure is unworked ground.  
At the other extreme, it may be impossible to decide on a sensible research question 
until one has canvassed the state of existing knowledge, and examined openings for 
new research. 
The examination of existing data may be a desirable preliminary to the gathering of 
new data.  A first step will be to examine the highly summarised data that appear in 
published papers.  If access is then needed to original data, this may not be easy to 
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get.  In rare cases, the data may already be available from an internet site.  Some 
researchers are meticulous in keeping their data on file, while some are not.  Some 
make their data freely available to other workers, while others may not. 

9.1 A Springboard for New Research 
Canvassing the state of existing knowledge may involve reading and digesting a small 
number of relevant papers.  Or it may require getting a grip on a huge literature.   If 
the amount of literature is large, then one needs to look for ways of getting quickly to 
the nub of the matter.  Even dealing with the highly summarised data that appear in 
the published literature may be a major task. 
All studies are not of equal quality. One must decide, as objectively as possible, 
which studies are relevant and of high quality?  One needs to strike a balance between 
undue scepticism and taking at face value everything that appears in the published 
literature.  Watch for vagueness in the description, and for claims that are made 
without giving the rationale.  Inadequate description of methodology is often a 
warning sign of methodological inadequacies.  Do not automatically give authors the 
benefit of the doubt. 
If an experiment, do the authors describe their experimental design?  Do they describe 
the manner in which the analysis reflects the experimental design?  Do they describe 
their sampling design?  Do they describe the steps that they took to minimise non-
response?  Do they describe their analysis in enough detail that anyone with the 
appropriate competence could repeat the analysis?  Does their analysis reflect the 
sampling design? 
If the authors of a report on a clinical trial are vague about how they handled the 
randomisation, or how they handled dropouts, it may be that the protocol was 
inadequate in these respects.  Carefulness in giving complete information, on study 
design, execution, sample sizes, relevant effect sizes and relevant standard errors, may 
be matched by carefulness in other aspects of the study.  Vague descriptions of the 
experimental design and field layout in agricultural field trials may likewise be an 
indication that design issues have not been thought through and hence that the design 
may have been inadequate. 
Careful authors will give graphs that demonstrate that models are a reasonable 
description of the data.  They will check, to the extent that current technology allows 
this, whether covariates really do have a linear effect.  They will give an assessment 
of effect sizes and standard errors.  They will be careful to say which other factors or 
variables are held constant for purposes of this assessment. 
I have found a surprising number of instances where authors have fitted straight lines 
to data that are clearly non-linear.  They may present a graph from which the reader 
can draw his/her own conclusions.  Or they may give data that the reader can use to 
draw his/her own graph. 
The use of correlations in place of regression lines, and of R2 when one would really 
like to know the accuracy of prediction, are bad signs.  Extensive quoting of p-values 
is sometimes a recourse when authors cannot think what else to do.  What are the 
statements that these p-values support?  Are these points of consequence?  Consider 
whether there should have been some global test of significance, rather than many 
individual p-values. 
Be sceptical of meta-analyses that do not examine trial quality, and/or that lump 
together results from different types of trials.  Have the authors been meticulous in 
their search for all relevant papers?  Have they searched for unpublished studies? 
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The skills that are needed for critical evaluation of published research papers are not much 
different from the skills needed for critical evaluation of what you read in the newspapers.  
Try practicing those skills when you read the daily paper or watch reports on television! 
Appendix I has a checklist for use when reading published papers. 

9.2 Is Salt Bad for Health? 
In chapter 3 we made extensive reference to an overview of the evidence that 
appeared in Science (Taubes 1998). It is unlikely that a novice researcher would 
directly tackle the question: “Is salt consumption of around 10gm/day bad for blood 
pressure?”  One might however tackle a more limited question, aimed at teasing out 
some related issue that existing studies have not settled.   
Points that emerge are: 
1. Different experts have held very different views. 
2. These different views are, in part at least, a result of reliance on different types of 

study. 
3. The statistical analyses that are used in at least two of the overview studies to 

which Taubes refers have been challenged as seriously flawed. 
The Taubes article highlights, in a severe form, the problems that can be involved in 
coming to terms with the existing literature and with existing expert opinion.  Few 
beginning researchers will find themselves faced with such a plethora of deeply 
entrenched opinions, all able to claim the support of their own preferred choice of 
research evidence.  On the other hand, few beginning researchers will have such a rich 
resource of existing literature and review papers on which to draw.  One cannot have 
it all ways! 

9.3 The Importance of Overview 
Too often, statistical analysis fails to place the analysis of data in context.  Where 
multiple sets of data are available that bear on the same question, they are analysed 
separately.  If results are to be generalised, it follows that they must be valid for 
multiple sets of data.  Ehrenberg (1990) makes this point forcefully. It is thus 
important to design data collection so that we can demonstrate repeatability, a point 
made in Lindsey and Ehrenberg (1993).  Hubbard and Armstrong (1994) found that 
replication had been unusual in the published marketing literature.  In the few 
instances where there was an attempt to replicate, over half the results contradicted 
the original study.  Chatfield (1995) makes the comment: “If a result is not worth 
replicating, it is not worth knowing”. 
These are the sorts of reasons why multiple studies, and the use of data overview to 
form an overall assessment of their evidence, have become highly important in 
clinical medicine.  Is it beneficial to inject albumin into patients who come into 
critical care, in order to stabilise them?  Among the many studies that bear on this 
question, some seem to support injection with albumin, and some to argue against it.  
The weight of the evidence is that albumin increases the risk of death.  (See Cochrane 
Injuries Group Albumin Reviewers 1998.) 
Researchers who contend with a large number of papers bearing on their chosen topic 
must somehow get an adequate overview.  Overview may be informal, largely 
supported by qualitative judgements.  Or it may follow approaches that have been 
developed by specialists in the art of overview, and may be supported by quantitative 
analysis.  In either case the file drawer problem is a concern; how complete a sample 
does the published literature provide of the evidence?  Typically, studies that show an 
effect are over-represented among those that find their way to publication. Also, with 
high apparent precision available from the meta-analysis of a large number of trials, 
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any systematic bias that affects a large number of the trials becomes important.  Any 
reviewer needs to pay attention to possibilities for bias. 
You may find that one or more overview studies are already available in the literature. 
You then have the task of assessing the quality of this work.  What have the authors of 
any overview studies done to attend to the difficult issues noted in the previous 
paragraph?   

The Demand for Data-Based Overview (Systematic Overview) 
Data-based overview places the individual studies under critical scrutiny, and places 
them in context.  Here is an example from field crop studies.  In a recent review of 
yield-density studies on green asparagus, Bussell et al. (1998) found large differences 
within the same locality.  Based on commercial experience, it is likely that fertilizer 
and soil effects, and variety, were the main factors explaining yield differences 
between trials. Information on relevant factors was so incomplete that it was 
impossible to draw from the trials themselves any certain inference on factors 
affecting yield.  Two only of the 15 trials gave any information on climate, irrigation 
and terrain.  Four trials gave no information on soil type.  The trials give benchmarks 
against which growers in a local region can compare their own yields. This aside, 
none of the recent trials have added anything of consequence to what commercial 
growers already knew – use a modern variety on a sandy or light silt loam soil, plant 
at the highest density that is practical, and use a fertilizer that is at least as effective as 
farmyard manure! 
Above, I noted the problems that the ‘file drawer’ problem creates for data-based 
overview.  Results from a proportion of research studies do not find their way through 
to publication; they remain in the file drawer. Unless a register is kept of all studies, 
as happens in some jurisdictions, it may be difficult or impossible to identify relevant 
studies.  For those studies that are identified, it may be difficult or impossible to get 
access to raw data.  In such areas as clinical medicine, an insistence on some form of 
international registration of trials at the time of commencement seems desirable.  This 
would allow ready identification of all trials relevant to a particular overview study. 

Data-based Overview – An Example 
Human albumin solution has been used in the treatment of critically ill patients for 
over 50 years.  There have been three recognised indications for its use  emergency 
treatment of reduction in blood volume as a result of shock, acute management of 
burns, and clinical situations associated with loss of protein from the blood.  There are 
medical physiological reasons why administration of albumin might assist survival.  
But does it really help? 
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Fig. 6: Summary of results from 24 randomised controlled
trials that compared an albumin treatment group with a
control group.  The diameter of the circle is proportional
to the standard error for that trial.  If there is no treatment
effect, points will scatter about the line y=x.  

 
Here we discuss results from a data-based overview (Cochrane Injuries Group 
Albumin Reviewers 1998).  Fig. 6 presents results from the 24 trials in which there 
was at least one death, in either or both of the treatment or control group.  These 
represent 1204 patients in all.     The authors were thorough in their searching for 
information on randomised controlled trials.  They searched various trials registers as 
well as international journals.  They identified 30 trials (1419 patients) that met their 
criteria, and for which mortality data were available.  There were two further trials (44 
patients) where the mortality data were not available.  All compared an albumin 
treatment with a control that did not involve albumin.   
Fig. 6 suggests that, contrary to previous expectation, albumin may actually be 
dangerous to patients.  Most trials, and almost all of the larger and hence more 
accurate trials, have points that lie above the line y = x, i.e. mortality was higher in the 
treatment group than in the control group.   
A meta-analysis indicates that giving human albumin to patients in critical illness 
increases the risk of death, by around 1 death for every 17 critically ill patients29 who 
receive albumin.  The results of this study go against what had been received medical 
wisdom.  They build a picture that was not available from any individual trial.  
Theoretical justifications for the use of albumin, based on its presumed ability to 
restore blood volume, have yielded to hard data. 
The authors checked several possibilities for bias, to the extent that the data allowed 
it. Most of these were small trials; all except two had less than 40 patients.  Small 
trials are not always conducted to the same standards as larger trials.  Strict adherence 
to a pre-determined protocol is a necessity for a large trial, where in a smaller trial 
there may be less stringent planning and procedures.  If this were a consideration here, 
one would expect the effect size to change with the size of the trial. It does not.  Even 
so, the small size of most of the trials is a reason for interpreting results with caution.   

                                                
29 The 95% confidence interval was 9 – 32.  This is a Number Needed to Harm (NNH) form of 
presentation of the results, which makes better intuitive sense than relative risk. The estimated relative 
risk from using albumin rather than an alternative was 1.68 (95% C.I. 1.26 - 2.23).   



9. Critical Review 

 93 

A further issue is that, in some of the trials, allocation concealment was inadequate or 
unclear.  Is it possible that some clinicians did not follow the protocol strictly, giving 
albumin to more seriously ill patients?  In order to check this, the reviewers did an 
analysis that excluded trials where the protocol may not have been strict.  Exclusion 
of such trials made almost no difference to the estimates of relative risk. 
There is now evidence that albumin has a variety of effects, some perhaps unhelpful.  
Interestingly, cohort studies that have measured the levels of albumin in the blood of 
seriously ill patients have shown that the risk of death reduces with increasing levels 
of albumin.  Fig. 6  suggests that it is dangerous to add to the albumin that is already 
present. 

Systematic Overview in Medicine 
In clinical medicine, systematic review is a name for data-based overview.  It has been 
a strong emphasis in Clinical Epidemiology and related areas of medicine.  Its 
approaches to the summarization of evidence are useful models for other areas. 
Systematic Overview is a key methodology for the conduct of studies such as are 
fostered by the Cochrane Collaboration (Sackett and Oxman 1994), and for Evidence-
based Medicine (Sackett at al. 1997; ScHARR 1998; Moynihan 1998, pp. 213-241).  
Smith (1996) asks how an ‘evidence-based’ human society would conduct its 
business.  Cochrane type evidence bases are required in many other areas than 
medicine. 
Lessons from experience with medical databases are highly relevant to efforts now 
under way to collect other types of data, often from disparate sources, in large 
databases.  Draper et al. (1990) describe areas where data-based overview is 
important. An interesting application is to the estimation of physical constants.  Data-
based overview seems especially important when the literature is extensive, uneven in 
quality and different biases may be associated with different types of study.  
The advice and insights of evidence-based medicine are in the first instance directed 
towards medical clinicians.  The publisher’s blurb for the journal Evidence-Based 
Medicine, directed to clinicians, argues: 

With 2 million new papers published each year how can you be sure you read 
all the papers essential for your daily practice, and how can you be sure of the 
scientific soundness of what you do read? 

Researchers have the same interest as clinicians in getting a sense of the conclusions 
that ought to be drawn from studies to date, as a starting point for their own research. 
Systematic overview identifies secure knowledge and highlights gaps in research-
based knowledge.   
A particular widespread gap in clinical medicine is in evidence that would assist in 
tailoring treatments to the special requirements of individual patients.  Some papers 
may have no information on a key covariate, e.g. baseline blood plasma zinc levels in 
a zinc supplementation trial.  Too many papers focus on single end-points where the 
interest should be in the response profile, i.e. in the pattern of response over time. 
There may be several overview studies from which to choose.  Just as some papers are 
so flawed that they merit scant attention, so also for overview studies. Advice and 
training is needed that will help discriminate the good from the bad.  Sackett et al. 
(1997) and Greenhalgh (1997) emphasize this point, and give advice on the critique of 
overview studies. See also Chalmers and Altman (1995).  If no up-to-date and clearly 
authoritative study is available, the researcher’s first step must be to attempt his or her 
own overview. 
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The demands of data-based overview studies that meet Cochrane Collaboration 
standards are severe.  It may be easier, though less useful, to do a new study than to 
undertake a fully adequate overview of existing studies.  The technical demands are 
such that Cochrane Collaboration studies have so far covered only a small proportion 
of health care.  The conduct of overview studies requires special skills that are 
different from or additional to those of subject area experts.  There is evidence that 
subject area experts do a poorer job than non-experts with experience and skills in the 
conduct of overview studies (Oxman and Güyatt 1983.)   
The perspectives of evidence-based medicine, and the importance of Cochrane 
Collaboration type studies, seem not to be widely recognized outside of medicine.  
Pressures for change may come from three sources: 
1. Researchers in e.g. psychology or education who work on the borderline of clinical 

medicine may get direct exposure to the ideas and insights of evidence-based 
medicine. 

2. Funding bodies may demand evidence that researchers are following an ‘evidence-
based’ approach. 

3. The logic of this general approach to marshalling research evidence is compelling. 
Kuhn (1970) and others have argued that research traditions change only when the 
pressures for change are overwhelming.  The inherent logic of the approaches of 
evidence-based medicine and of the Cochrane Collaboration studies will not, on its 
own, be enough to bring about widespread adoption of these ideas and insights.  
Experts whose authority relies on the use of more traditional informal means for 
assessing the weight of evidence may feel their authority threatened. 

The File Drawer Problem (Publication Bias) 
Studies with human and animal subjects now require, in most countries, approval 
from an Ethics Committee.  It is then possible to follow up all studies that have 
received approval, to see how many are published.  One such investigation 
(Easterbrook et al. 1991) found that of 285 studies submitted, 52% had been 
published.  Clinical trials were more likely to be published than were observational 
and laboratory based studies.  Studies with statistically significant results were more 
likely to be published, as were studies with large sample size.  Publication bias 
increases the likelihood of detecting treatment effects when there are none. 

The Bias to Noise Ratio 
The combining of data from a number of trials will reduce the effect of noise on the 
mean.  If however there are consistent biases, it will make no difference to the biases.  
Thus inter-population studies of the link between salt consumption and blood pressure 
are susceptible to biases that arise because differences in salt consumption are likely 
to be linked with other dietary differences.  Combining data from different studies 
may reduce the noise, but leaves any consistent bias unchanged.  Not only the signal 
to noise ratio, but also the bias to noise ratio increases. 
In an analysis of data from salt reduction trials Law et al. (1991) include data both 
from randomised controlled trials and from cross-over trials.  In a cross-over trial, 
patients receive, first one diet, and then the other.  There may be more than one cross-
over.  There are no details on how these cross-over studies were conducted, though 
more detailed information is available by reading the original papers.  What is 
interesting is that the cross-over designs (where subjects receive first one diet and 
then the other) show a much larger effect for the difference between the low and high 
salt diets than does the randomised design.  Swales (1991) argues that there is a bias 
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in this use of data from cross-over designs, so that putting all the different results 
together into a meta-analysis only highlights the bias.  In the light of results reported 
in Sacks et al.(2001), it now seems that the it was the cross-over designs that had the 
precision needed to detect effects from salt intake.  Randomised controlled trials may, 
unless there is control for other dietary factors, be too inaccurate to detect the effects 
that were under investigation. 

The Neglect of Data Overview 
There are many reasons for the past relative neglect of data overview issues.  One is 
that these studies have traps for the unwary, of the type discussed above.  No amount 
of pooling of information that is biased in one direction can remove the bias.  There 
are severe problems in deciding how to weight the separate sources of evidence.  How 
does one deal with issues of trial quality?  Should trials of a type that are thought to 
yield poor quality evidence be ignored?  
Note that these technical difficulties are difficulties for any use of the data.  It is a 
helpful side effect of systematic overview that it brings them to light.  Historical 
reasons, rather than such technical difficulties, are probably the main reason for the 
neglect of data overview.  Some form of data overview, formal or informal, is 
inevitable when research results are brought together and their implications for 
practical decision-making assessed. 
An adequate statistical theory, for use in data-based overview, was slow to develop.  
For a long time there was more than adequate challenge to theoretical skills from 
developing a theory that would handle data from an individual field site or from an 
individual clinical trial.  Scientists have often been protective of their experiments and 
their data, which they may believe should stand on their own independently of the 
work of other scientists.  The tradition of analysing separately data from each field 
experiment or each trial became firmly established.  It remains firmly entrenched in 
horticulture, and in other research areas also. Experimenters who have worked on 
different sites may each claim the other is ‘wrong’, where it is unclear whether the 
difference is a geographical effect, or perhaps due to differences in experimental 
procedure.  

Data-Based Overview – Examples and Further Comment 
1.  There are numerous instances where the relative weighting of different sources 
of evidence and the pooling of evidence are key issues.  The Taubes study, quoted 
earlier, was an example.  There are a number of medical examples that are modern 
re-runs of the discovery that blood-letting, so far from making you better, is (for 
the great majority of conditions) actually dangerous. 
2. Many of the agricultural fertilizer trials that were conducted in New Zealand 
over several decades prior to the 1980s were for a long time not analysed. Not until 
the 1980s did a series of papers appear in the New Zealand Journal of Agricultural 
Research that provided the first careful overall quantitative evaluation of evident 
major effects.  They highlighted areas that had been over-researched, and identified 
remaining gaps.  There was an inevitable and implicit criticism of individual trials.  
Nowadays, a reasonable expectation is that such data will feed into a fertilizer 
database, with data analyses regularly updated to take account of data from new 
trials. 
3. McGuinness (1997) provides evidence of several different competing schools of 
thought, each convinced it is right, on the teaching of reading.  This may be an area 
where theory has grown like a weed, too little constrained by data from 
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experiments that follow strict protocols such as are now demanded for medical 
clinical trials. The book is a careful overview of the current evidence, though 
perhaps overstating the case for her own approach. She rightly criticises the quality 
of much reading research, to the extent that there has been no direct comparison 
with competing approaches or that claims have been based on loaded comparisons 
that have not used appropriate controls. McGuinness’s account has some of the 
elements of the thorough data-based overview that is required. 
McGuinness uses research evidence to identify a range of sub-tasks that must all be 
mastered if children are to learn to read.  There is an inexorable logic to the 
approach that she defends, which includes tests for identifying failure in any sub-
task. A key insight is that children should be able to identify the 43 or 44 sounds of 
spoken English before learning letters or letter combinations that represent these 
sounds. The attempt to work in the other direction, from letter combinations to 
sounds, introduces too many complications.  There are too many letter 
combinations to master quickly.  The theory that she develops seems compelling, 
because it seems relatively complete and is backed up at key points by research 
evidence.  She presents limited research evidence that shows that her methods 
work. 
While her arguments are persuasive, they do not quite clinch her case.  Much of the 
research that will show the efficacy of her methods has still to be undertaken.  The 
jury seems to me still out in respect of her more extreme claims.  
4. Meredith Wilson, a Ph.D. student in Archaeology and Anthropology at the 
Australian National University, is using published information to undertake an 
overview of rock art in the Pacific. An inventory of rock art sites found in this 
region was initially compiled by Specht (1979) and later added to by Ballard 
(1992). Wilson is drawing on this inventory to specifically conduct a comparison 
of rock art motifs.  How should one group the sites and districts that are 
represented?  What insight does the art, and the groups into which art items fall, 
shed into historical cultural connections in the region? 
Her study has the potential to make, from relatively disconnected items of 
published information at a site level, a coherent account.  As well as forming the 
building blocks of that account, those individual published site reports will surely 
have a more regional relevance and meaning within the framework of her account.  
Moreover, better understanding of the chains of connection between the art at the 
various sites must lead to better understanding of the individual motifs. 
Just as with other types of overview, there have been reporting inadequacies that 
create difficulties for the study.  Future studies of individual sites will do well to 
note those criticisms. 

9.4 The Historical Sciences 
There are broad principles that apply across different areas of research.  There are also 
issues that are specific to particular areas of research.  The historical sciences – 
including history, archaeology, evolutionary biology, and geology – raise issues that 
rarely arise in physics and chemistry.  Obviously there is a use of the technical 
methods from chemistry and physics.  Archaeologists may need to do chemical 
analyses of soil samples, and to measure the amount of radiocarbon in fragments of 
wood.  The questions that are of interest go well beyond chemistry and physics.  How 
does one use the results of these tests to make inferences about events that took place 
ten or twenty thousand years ago? 
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Data will enter in different ways into different forms of research synthesis. Historians 
and archaeologists can learn from the methods of physical scientists, biologists and 
experimental educationalists, but they will not be able to take them over as they stand.  
While the study of patterns of human history can learn from the methods of the 
physical sciences, the research approaches must be different. 
In his book Guns, Germs and Steel Diamond (1997) seeks to explain striking 
differences between the long-term histories of peoples on different continents and 
islands in the past 13,000 years. The book is in a sense a sequence of data-based 
overview studies that are welded into a splendid continuous narrative.  The data that 
he quotes are broad brush – numbers of plant and animal species domesticated in 
different geographical locations, differences in land area and population size, 
differences between continents in the diffusion rates of crops and artefacts that seem a 
result of their different geography, one-sidedness in the transfer of diseases between 
Europe and the Americas,  and a variety of archaeological and phylogenetic data.  He 
limits attention to data that seem to have a clear and relatively unequivocal story to 
tell.  He is not afraid to criticise his sources.   
As is inevitable in a book that is intended for a wide audience, the casual reader must 
largely take Diamond’s facts and figures on faith, accepting that they are adequately 
accurate for his purpose.  Specialist readers will wish to refer to his sources, described 
in a chapter by chapter list of references.  There is a brief commentary that makes 
clear the relevance of each of the books and articles that he cites. 
Diamond concludes that environmental and resource differences explain the striking 
differences between the long-term histories of different peoples, and not innate 
differences in the peoples themselves.  Why?  There have been, historically, 
numerous experiments in which individuals from one environment have migrated to 
another environment – European farmers to Greenland or the Great Plains, farmers 
stemming ultimately from China to the Chatham Islands, the rain forests of Borneo, or 
the volcanic soils of Java or Hawaii.  Depending on the environments and what they 
had brought with them, the ancestral peoples either ended up extinct or returned to 
living as hunter-gatherers, or went on to build complex states.   It was no trivial 
matter, and in some cases impossible, to transplant existing farming practices to the 
new environment.  It is similarly interesting to note how Aboriginal Australian 
hunter-gatherers became hunter-gatherers with an unusually simple technology once 
in Tasmania, in South Australia became canal builders running a productive fishery, 
and ended up extinct when transplanted to truly appalling conditions on Flinders 
Island. 
Diamond identifies four groups of factors that help explain inter-continental 
differences affecting the different technological patterns of development of different 
human societies.  They are: 
1. Wild plant and animal species available for domestication 
2. Factors affecting rates of diffusion and migration within continents. 

[Most rapid in Eurasia.] 
3. Factors affecting movement between continents. 

[Easiest from Eurasia to sub-Saharan Africa.] 
4. Differences in area or total population size. 

[A large area or population means more innovations and potential inventors, more 
competing societies, and more pressure to adopt and retain innovations.] 

Diamond presents evidence on the way that each of these types of factors has affected 
the different histories of the different peoples living on the different continents.   
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Thus, in respect of the first point above, he presents a table that compares the 
distribution of large-seeded grass species, that once domesticated might have 
provided food crops: 

 Number of Species 
West Africa, Europe, North 
Africa 

 33 

      Mediterranean zone 32  

      England 1  

East Asia  6 

Sub-Saharan Africa  4 

Americas  11 

      North America 4  

      Mesoamerica 5  

      South America 2  

Northern Australia  2 
 
Diamond defines a mammalian candidate for domestication as a species of terrestrial, 
herbivorous or omnivorous, wild mammal weighing on the average over 100 pounds.  
This is the basis for another list: 

 Continent 
 Eurasia Sub-

Saharan 
Africa 

The 
Americas 

Australia 

Candidates 72 51 24 1 

Domesticated 
species 

13 0 1 0 

% of candidates 
domesticated 

18% 0% 4% 0% 

 
Diamond discusses the characteristics of species that were suitable for domestication, 
and argues that there were good reasons why none of the African species were 
domesticated. 
In regard to point 2, he argues that diffusion will happen most readily along lines of 
similar latitude, i.e. between regions with similar climate and able to grow similar 
types of plant species.  So one expects that diffusion of domesticated plants and 
animals, and of human populations, will be more rapid in Eurasia than along the 
predominant longitudinal axes of the Americas and sub-Saharan Africa.  He discusses 
such archaeological data as are available on rates of diffusion.  He handles points 3 
and 4 in much the same way, making general points and backing these points up with 
whatever archaeological and evidence is available. 
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The Future of Human History as a Science 
Particularly relevant to my discussion is Diamond’s last chapter, on “The Future of 
Human History as a Science”.  Diamond proposes a research programme that would 
gather quantitative information intended to test his major claims, and that would 
provide more accurate quantitative estimates of e.g. the different diffusion rates of 
crops, artefacts, etc., in the different continents. Diamond’s research synthesis sets the 
scene for an ongoing research programme.  This leads into a wide-ranging discussion 
of ‘historical science’. There is an overlap of interest with the historical content of 
astronomy, climatology, earth science and evolutionary biology.  A view that sees 
history as a series of ‘natural experiments’ can be illuminating and insightful.  We 
have referred to the experiment, frequently repeated in the past 13,000 years, involved 
in taking people from one continent and culture and placing them, with quite different 
environmental resources, on another continent.  It is important to look at those 
movements where migrants have not been able to take with them any substantial new 
plant or animal or other material resources from the country from which they have 
come. 
Imaginative reconstruction and synthesis readily gets out of hand. Hence the 
importance of using all available data-based reality checks, and all sources of 
evidence, that we can summon. Hence also the importance of using sources critically, 
recognising their limitations.  One should not base elaborate reconstructions on 
individual pieces of shaky evidence.  Diamond critically evaluates evidence from 
archaeological artefacts, plants, animals, linguistics, and genetics. He brings together 
multiple sources of evidence for his major claims, to create a coherent account.  His 
research synthesis has wide-ranging implications that further research can check.  He 
looks for a confluence of evidence. 
Why do I consider that Diamond is broadly right, but reject the elaborate imaginative 
historical reconstructions of Immanuel Velikovsky, which Sagan (1979) dissects?  
Velikovsky makes individual items of shaky evidence the basis for elaborate 
reconstructions.   One does not find a confluence of different sources of evidence. 
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10 Styles of Data Analysis 
 

A cautious investigator will use existing data, or data collected from a pilot 
study, to determine the form of analysis that is appropriate for the main body 
of data. In all studies, it is necessary to check for obvious data errors or 
inconsistencies. In addition there should be checks that the data support the 
intended form of analysis.   
Exploratory data analysis is both a methodology for examination of data, and 
a collection of techniques for data exploration. Exploratory data analysis may 
be especially important for data from a project with which you have had little 
previous contact. 
The data may contain information on more than just the research question 
that was under investigation.  The information may for example suggest 
fruitful new lines of research. Even if this information does not directly relate 
to questions that were in view at the beginning of the study, it is undesirable to 
lose it. 
The validity of formal data analysis depends crucially on the choice of a 
model that accurately describes the data.  The model should reflect relevant 
theoretical understanding, the design of data collection, and what has been 
learned from exploratory data analysis. How does one decide which model 
assumptions matter, and need careful checking?  Where normality is assumed, 
how close to normality is adequate?  

 
One is presented with a new set of data. There may be very limited clues from 
examining what other researchers have done with similar data.  Or there may be 
obvious inadequacies in published analyses.  What is the best way to begin?  What 
forms of data exploration will draw attention to obvious errors or quirks in the data, or 
to obvious clues that the data contain.  What are the checks that will make it plausible 
that the data really will support the intended analyses.  What mix of exploratory 
analysis and formal analysis is appropriate? Should the analysis be decided in 
advance, as part of the planning process? To what extent is it legitimate to allow the 
data to influence what analysis will be performed? 
This chapter will cover general issues relating to the approach to data analysis.  They 
are issues that you should keep in mind when you plan your study, well before you do 
the analysis or bring the data for analysis.  Questions that the data analyst should ask 
include: 

1. What is the research question?   
2. What has been measured, and how does it bear on the research question?  
3. What was the design of data collection?  Was a randomised design used? 
4. What is the structure of the data?  What are the explanatory variables?  Which, 

if any, variables were under experimental control?  What are the outcome 
variables? 

5. What are the sources of variability?   
6. What is the population to which it is hoped to generalise results?  Have the 

data been collected in a manner that allows this generalisation?  What are the 
implications for data analysis? 

7. Is there prior information, data-based or theoretical, about likely effects or 
about the form of the likely response? 
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It will, finally, be necessary to give a clear and lucid report of results. Keep this in 
mind from the beginning.  Start practicing the report, verbally and in writing, as soon 
as possible. 

Windfalls 
Often data contain information different from what they were designed to provide.  A 
careful data analyst will watch out for such information.  It may be more interesting 
than the information that the data were intended to collect, perhaps suggesting new 
lines of research.  It does not follow that the design of data collection is unimportant 
to the usefulness of the data.  On the contrary, such windfalls are likely only if data 
have been collected according to a strict design.  It matters less than one might think 
that the design would have been optimal for getting this different and interesting 
information. 

The Different Demands of Different Studies 
In an experiment or study where the outcome is to an extent predictable, it should be 
possible to plan the analysis in advance.  This reduces room for preferring the analysis 
that gives a result that conforms to expectations or preferences!  Even so, preliminary 
graphical checks of the data should precede formal analysis. 
Where there is no previous experience of working with data that are entirely 
comparable with the data from the current investigation, it is essential to take a careful 
preliminary look at the data.  One should examine 

1. whether there are outliers; 
2. whether, aside from outliers, data for each treatment group are roughly normal; 
3. whether a transformation of the data might be helpful, e.g. in order to make 

them more symmetrically and normally distributed; 
4. whether there are clusters in the data; 
5. whether any of the pairwise scatterplots show evidence of clustering or of 

unexpected patterns; 
6. whether variances are homogeneous, i.e. similar for different groups; 
7. whether there are unanticipated time trends associated, e.g. with order of 

collection. 

Standard forms of analysis assume that observations are independent.  Consider 
whether this is a plausible assumption for your data.  Diagnostic plots are in general 
not much help in checking for independence. 

10.1 Exploratory Data Analysis 
Exploratory Data Analysis (EDA) is a name for data display techniques that are 
intended to let the data speak for themselves, prior to or as part of a formal analysis.  
EDA looks for what may be apparent from a direct, careful and (as far as possible) 
assumption-free examination of the data. An effective EDA display presents data in a 
way that will make effective use of the human brain's abilities as a pattern recognition 
device. 
In all studies, checks against obvious errors or quirks in the data are essential. Also, 
researchers will not want to miss obvious clues that the data contain.  So all data 
analyses should have some elements of exploratory data analysis.  Extensive use of 
exploratory data analysis may be essential where the research breaks radically new 
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ground, or where the data are different in character from that of earlier workers. 
Alternatively, there may be obvious inadequacies in published analyses that make the 
analyses carried out by earlier researchers poor models to follow.  The burden of 
rectifying the deficiency then falls to later researchers.  One result of a need to put a 
relatively heavy reliance on EDA is that research results are less definitive than one 
might have hoped.  

Exploratory Data Analysis – More Detailed Comments 
There are helpful discussions of exploratory data analysis in 

JMP Start Statistics: chapters 5 (85-114) and 13 (299-318) 
SPSS for Windows Base System Users’ Guide: chapters 9 (pp.181-199),  16 
(291-301) and 27 (553-567). 

EDA has at least three roles: 
 1. EDA examines data, leaving open the possibility that this examination will 

suggest how data should be analysed or interpreted. This use of EDA fits well 
with the view of science as inductive reasoning.   

 2. An exploratory data analysis may however go further, challenging the 
theoretical understanding that guided the initial collection of the data.  EDA 
then acquires a more revolutionary role. It has become the catalyst, in the 
language of Kuhn (1970), for a paradigm shift. 

 3. EDA allows the data to influence and criticise an intended analysis.  EDA 
gives checks on assumptions, needed so that subsequent formal analysis can 
proceed with confidence.  EDA formalizes and extends the use that 
competent statisticians have always made of graphs to check their data. 

Diagnostic statistics and graphs carry careful data scrutiny over into an examination 
both of the model used and of output from the analysis.  They allow an 'after the 
event' form of EDA. 
There is a risk that data analysts will see things that are just a result of looking hard. 
That is why the tools of conventional statistical analysis remain important.  (Under 
torture, the data have confessed.)  Inferences from an analysis that has been chosen to 
suit the data should be scrutinised with more than ordinary care.  Where possible, 
significance levels and/or standard errors should be adjusted to take account of the 
extent to which the analysis has been chosen from some wider class of analyses.  If 
doubt remains the only recourse is to try the analysis on new data, preferably from a 
new experiment. 
An effective data analyst will use both EDA and conventional data analysis.  Careful 
practical statisticians have always made extensive use of graphical displays.  The 
main change brought by EDA is that ideas on how data should be explored prior to 
formal analysis have become more systematised.   
Even if data have not been collected in a way that makes them suitable for formal 
statistical analysis, exploratory data analysis may give useful clues.  The analyses will 
however be no more than suggestive.  Results must be checked in more carefully 
designed studies.  

The Merging of EDA into Mainstream Statistical Analysis 
Areas where there have been big advances in recent years, cutting across both EDA 
and more conventional styles of analysis, include the analysis of counts, and data 
smoothing.  Methods that check for and accommodate non-linearity are becoming 
pervasive.  Another class of methods use the data for extensive sampling experiments 
that provide the information needed for testing hypotheses or estimating confidence 



10 Styles of Data Analysis 

 105 

intervals. Many of the new methods are “computer intensive”; they would be 
unthinkable without modern high speed computers. 
A smooth curve that estimates the pattern of the relationship may be a useful aid to 
interpreting a scatterplot. The methodology does not insist on a particular 
mathematical form of curve. Where a mathematical curve is available that seems 
satisfactory, it may be useful to compare it with the curve given by the data smoothing 
routine. 
Among several relatively new types of graphical display that have been associated 
with EDA, perhaps the most widely used is the boxplot.  Note also the stem and leaf 
display, which we consider first. 

10.2 EDA Displays 

The Stem-and-Leaf Display 
The stem and leaf display is a finer grained alternative to a histogram, for use in 
displaying a single column of numbers.  It provides a good place to start, in order to 
discuss modern approaches to displaying data.  It provides a ready way to get medians 
and quartiles. I demonstrate a simple form of stem and leaf diagram, for the data that 
appear in the boxplot below.  After sorting from smallest to largest, the numbers are:  

-8.4, -6.0, 0.7, 1.0, 1.8, 2.0, 2.9, 3.0, 3.5, 3.6, 5.1, 6.1, 7.0, 7.5, 9.3 
Here is the stem and leaf diagram: 

N = 15   Median = 3 
Quartiles = 1, 6.1 
 
Decimal point is 1 place to the right of the colon 
 
 -0 : 86 
 -0 : 
  0 : 11223334 
  0 : 56779 

 
[The numbers have been rounded to one decimal place.  Then the first 8 is a -8, the 6 
is a -6, and so on.] 

Boxplots 
How does one summarise, in a useful and readily assimilable way, the information 
that is presented in a histogram?  The boxplot strikes a good balance between the 
coarse summary and fine detail.  It picks on particular features of the distribution of 
data, and shows those.  Fig. 7 gives information needed to interpret a standard form of 
boxplot. 
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Fig. 7: The Interpretation of Boxplots.  The boxplot shows the distribution of 
differences of heights of cross-fertilised and self-fertilised plants. (n =15).  
Data are from Charles Darwin.  

The Scatterplot – The Challenger Disaster 
The scatterplot, of which Fig. 8 is an example, is an indispensable exploratory tool.  
We will see frequent examples of its use.  An extension of the scatterplot is the 
scatterplot matrix, which shows plots of every variable against every other variable in 
a scatterplot layout. 
On January 28 1986 two large rubber O-rings on the space shuttle Challenger leaked, 
leading to an explosion and the death of the seven astronauts.  The rings (on the 
booster rockets) had lost their resiliency because of the low temperature – around 0ºC 
(32ºF).  The engineers, from Morton Thiokol Inc, had recommended delaying the 
flight.  Their argument was not persuasive, and the launch proceeded. 
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Fig.  8 :  Total O-ring incidents versus temperature, in shuttle 
flights prior to the Challenger disaster of January 28 1986. 
Points have been jittered slightly, to separate noverlapping 
points.  Circles points are for data that were presented in 
one of the 13 pre-launch charts.

 
Fig. 8 shows the data from earlier shuttle flights.  What is the correct way to interpret 
the data?   Would you have advised proceeding with the flight? 
Note:  There were two main types of damage – erosion and blowby damage.  Blowby 
damage occurred when hot gas leaked through and burned, causing blackening of the 
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O-ring.  This was not supposed to happen. The gap occupied by the rings expanded as 
pressure built up in the rocket.  The rubber needed to expand fast enough to close the 
gap.  It seems obvious that temperature will have a large effect on the resilience of the 
rubber.  There should have been experiments to find, for various temperatures, how 
fast the rubber expands.  Feynman, as a member of the committee investigating the 
disaster, did a simple experiment during the hearing that checked out the response of 
the rubber at 0ºC.  He put the rubber in a clamp, then left it in cold water for a while.  
On undoing the clamp it did not spring back.  (Feynman 1988.)  As a demonstration 
this was highly effective.  However there was no standard with which to compare the 
outcome of Feynman’s demonstration.  How hard did Feynman clamp the rubber?  
What happens at intervening temperatures?  This would not rate well as a scientific 
experiment, but might serve well enough as part of the preliminary investigation. 
Tufte (1997) has a fairly complete discussion of the Challenger disaster, emphasising 
the importance of clear and accurate presentation of information.  See also Wainer 
(1997). 

10.3 What is the Appropriate Scale? 
Figs. 9a and 9b plot brain weight (gm) against body weight (kg), for a number of 
different animals.   
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Fig. 9: Brain weight versus body weight, for different animals.  
 
Fig. 9(a) is almost useless.  We need scales that spread the data out more evenly.  We 
can do this by choosing a logarithmic scale.  Multiplication by the same factor (e.g. 
for the tick marks in Fig. 9(b), by a factor of 10) always gives the same distance along 
the scale.   If we marked points 1, 5, 25, 125, … along an axis, they would also lie an 
equal distance apart. 
Quantities for which a logarithmic scale is appropriate change in a multiplicative 
manner.  If cells in a growing organism divide and produce new cells at a constant 
rate, then one will get multiplicative growth. Random changes in the growth rate, 
following perhaps a normal distribution, will produce adult organisms such that the 
logarithm of the size (height or weight, or another measurement) is normally 
distributed. 
The logarithmic transformation is so commonly needed that I have felt it necessary to 
introduce it at this point.  Biologists, economists and others need to be comfortable 
working with it.  As I have indicated, there are many circumstances in which it makes 
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good sense to move to working on a logarithmic scale, i.e. to use a logarithmic 
transformation.  A transformation is often necessary when working with percentages. 

10.4 Data Mining and Exploratory Data Analysis 
Data are a valuable resource.  As such, perhaps one can mine the resource for its 
nuggets of gold. In part the interest in data mining has been driven by individuals and 
organizations who find themselves with large data holdings, that they feel ought to be 
sources of valuable information.  They may have little idea what to do with them.  
Hardware and software computer vendors, looking for new market niches, have 
fanned the interest.  “Data mining” is a term that has been used to sell an idea – that 
large data bases may hold information additional to what was in mind when they were 
collected.  
There is no firm distinction between data mining and statistics. Any adequate attempt 
at data mining will use statistical insights.  Much commercial data mining activity 
uses relatively conventional statistical methods.  A difference is that data miners may 
be working with quite huge data sets. Hence Friedman’s (1998) definition of data 
mining as the “computer automated exploratory data analysis of (usually) large 
complex data sets.”  A data set with values of twenty or thirty variables for each of 
several hundred thousand records is, in the context of commercial data mining, small. 
Some data mining approaches are fairly specific to individual research areas, such as 
astrophysics at one extreme or business data processing at the other.  
A simple example of ‘exploratory’ data mining is the use of medical practice 
variations as a starting point for questions about operating or prescribing practices.  
McPherson (1990) quotes standardised rates for hysterectomy that were six times as 
high in the United States as in Norway.  Such a huge difference calls for investigation 
and comment. In a classical statistical sense, the data miner is looking for outliers. 
Detection of fraud, in large clinical trials, or in business records, provides another 
example.  What sorts of unusual patterns might make closer scrutiny desirable? 
The exploratory form of data mining applies a search process to a data set, often a 
very large data set, and looks for interesting associations.  While the data may initially 
have been collected to answer some primary question or questions, the expectation is 
that there will be other interesting and potentially useful information in the data.  
Most experienced statisticians have at some time encountered unexpected and 
interesting results when, as a prelude to the main analysis, they have set out to do a 
careful exploratory analysis.  Is it possible to set up automatic processes that may 
bring such results to attention?  Jorgensen and Gentleman (1998) cite examples of 
data sets where there is bound to be unmined interesting information – fisheries data 
collected by Australian and New Zealand agencies over a number of years, secondary 
information in databases on clinical trials, and databases of routinely collected 
business information.  
Much of the focus of data mining research has been on ways to find views of data that 
highlight ‘interesting’ or unusual features – a search for what statisticians would call 
‘outliers’.  Friedman (1997) lists a number of approaches.  Exploratory Data Analysis 
is in the spirit of Friedman’s description of data mining.  Research on data 
visualization is in this same tradition. 
In spite of the huge size of the data sets, there are the usual problems of knowing what 
information will generalise to future data and what will not.  This is true even if the 
data sets that are mined are in some sense complete.  We will say more about this in 
the chapter on data structure. 
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10.5 Formal Analysis 
Planning the analysis is one aspect of planning the research study.  The formal 
analysis should be planned in advance, but with the possibility of limited changes as a 
result of the exploratory analysis. The best situation is where you are able to find data 
similar to what your study will provide, and can practice the intended analysis on that.  
The information from this practice analysis may be invaluable for designing your own 
study. 
This is one of several reasons why research data ought to be archived in such a way 
that later researchers can access it.  Published results rarely provide the particular 
information that is needed for designing later studies. 
What sorts of departure from the plan are acceptable, and which are not?  If the 
exploratory analysis makes it clear that a transformation is needed to achieve 
normality, then you should use the transformation. There is too much risk that the 
untransformed data will yield misleading results.   

Selecting the Variables 
On the other hand, substantial variable selection, especially using stepwise or best 
subset regression, may introduce huge biases.  You should specify in advance which 
covariates you will use.  Any investigation of other covariates may be undertaken as 
an exploratory investigation, a preliminary to your next study.  If for example you 
have 100 observations, and 40 explanatory variables, variable selection is a hopeless 
task.  You may be able to use all explanatory variables to get an equation that you can 
use for prediction, but you will not know which explanatory variables make the 
prediction work. 
One way to demonstrate the problem is to set up a regression where all 40 variables 
are random noise. Selection of the best three explanatory variables, then evaluating 
the result with no allowance for selection effects, will most often give an equation in 
which two out of the three variables appear significant at p<0.05.  The use of variable 
selection procedures without allowance for selection effects is tailor made to generate 
spurious associations.  The p-values that regression programs provide assume that 
there has been no selection of the variables. 

10.6 Inference – Asking the Data Specific Questions 
The questions we ask of data may be simple:  “Does increasing the amount of an 
additive in milk make it seem sweeter? If so, by how much does its sweetness 
increase?” 
Or they may be questions about relationships:  “What is the relationship between the 
stretch of a rubber band that we hold over the end of a ruler and the distance the 
rubber band moves when it is released?  How accurately can we predict the distance?” 
Here again are the taste experiment data that first appeared in section 4.3: 

   Person 1  2  3  4   5  6   7  8  9 10 11 12 13  14 15 16 17  
4 units  72 74 70 72  46 60  50 42 38 61 37 39 25  44 42 46 56 
1 unit   58 69 60 60  54 57  61 37 38 43 34 14 17  54 32 22 36 
Diff.    14  5 10 12  -8  3 -11  5  0 18  3 25  8 -10 10 24 20 

 
We may wish to ask how much the assessment of sweetness changed when we went 
from one unit of additive to four units.  The mean difference is 7.4, with an SD of 
10.9 .  The SE of this difference is thus 10.9/ 17 = 2.74 .  There are now several 
ways to report this: 

1. The mean change is 7.4 [SE 2.74].  (One should report this anyway.) 
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2. The t-statistic is t = 7.4/2.74 = 2.66, on 16 degrees of freedom.  In other 
words, the difference is 2.66 times the standard error. 

3. A 95% confidence interval for the change is (7.4 - 2.12 × 2.66, 7.4 + 2.12 × 
2.66),  
i.e. (1.7, 13.1). 
[The multiplier, equal to 2.12, is the 5% two-sided critical value for a t-
statistic on 16 (= 17 -1) degrees of freedom.] 

4. We reject the null hypothesis that the true mean difference is 0 (p =0.02). 
[The two-sided p-value for t = 2.66 on 16 d. f. is 0.02] 

 
Item 1 is simple.  Often, and especially if the difference is more than four or five 
times the SE, it is all we need.  Item 2 gives us a rough way to compare the change 
with its standard error.  If t is more than about 2, we can begin to worry whether the 
95% confidence interval in item 3 contains 0, or (equivalently) whether the p-value in 
item 4 is less than 0.05 . 
Many researchers find significance tests are hard to understand.  Misunderstandings 
are common in the literature, even among mature researchers.  A p-value does not 
allow the researcher to say anything about the probability that either the null 
hypothesis or its alternative is true.  We will pick this point up below.  So why use 
them?  Perhaps the best that can be said is that hypothesis tests often provide a 
convenient and quick answer to questions about whether effects seem to stand out 
above background noise.  But if all that emerges from an investigation are a few p-
values, one has to wonder what has been achieved. 
Because of these problems, there are strong moves away from hypothesis testing 
(item 4) and towards confidence intervals (item 3).  Formal hypothesis testing 
(significance testing), which at one time had become almost a ritual among 
researchers in psychology, is now generating a huge controversy, reflected in the 
contributions to Harlow et al. (ed. 1997).  Krantz (1999), which is a review of the 
Harlow et al. book, is an interesting guide to the controversy.  See also Gigerenzer 
(1998). 

Examining Relationships 
The examination of pattern and relationship is much closer to the central themes of 
science, and hence to what ought to be central themes of statistics, than is hypothesis 
testing.  So consider an experiment where a rubber band is pulled over the end of a 
ruler that is held at an angle of 20° to the ground, and let go.  How does the distance 
travelled by the rubber band change with the amount of stretch?  Fig. 10 shows data 
from such an experiment. 
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Fig. 10: Distance moved by rubber band, versus amount of
stretch.  

 
This is much more informative than doing repeated trials, some with a stretch of 
44mm and some with a stretch of 54mm.  With the data we have, it would be daft to 
do a significance test to compare, for example, stretches of less than 47mm with 
stretches of more than 47mm.  Our data allow us to do a lot better than that.  We can 
study the relationship and ask whether a line is an adequate description.  We can ask 
how we could change the experiment so that we can get a more accurate line.  [For 
greater precision, we can increase the range of values of “Amount of stretch”.] 

10.7 The Limits of Confidence Intervals and Hypothesis Testing 
Formal statistical hypothesis testing should not be used when there is strong prior 
information.  Criminal investigations and diagnostic tests offer two examples.  In 
contexts where there is strong prior information, the reporting of a p-value that 
ignores this information can be highly misleading. 
Suppose a diagnostic test for HIV infection has a specificity of 0.1%.  This implies 
that, for every 1000 people tested, there will on average be one false positive.  (This is 
a very high specificity.  Even though a test may be able to do as well as this with 
highly skilled operators, such a high specificity may be beyond less skilled and 
careful operators.)  Now suppose an adult male who does not belong to any of the 
recognised risk categories has the test, with a positive result.   
Using the hypothesis testing framework, take the null hypothesis H0 to be the 
hypothesis that the individual does not have HIV.  Given this null hypothesis, the 
probability of a positive result is 0.001 .  So the null hypothesis is rejected. 
But wait!  There is strong prior information.  The incidence of HIV in adult Australian 
males (15-49 years) may be 1 in 10,000.  Assume that 10,001 people are tested.  One 
will, on average, have HIV and test positive.  (We assume 100% sensitivity, i.e. 
everyone who has HIV will test positive.)  Among the remaining 10,000 who do not 
have HIV, we expect that 10 will test positive.  So if we incorporate the prior 
information, the odds that the person has HIV are 1:10, i.e. less than 10%.  Pinker 
(1997, p.348) considers examples of this type, in the context of a discussion of human 
abilities with probabilistic reasoning: 
 

Not Infected Infected 



10 Styles of Data Analysis 

 112 

10,000 × 0.001 = 10 (false) 
positives 

1 true positive 

Table 1: Expected Numbers of Positives, in a Population of 10,001 that 
includes one true positive. 

 
In serious criminal cases the police may examine 10,000 or more potential 
perpetrators.  Suppose there is a form of incriminating evidence that occurs for one 
person in 1000.  One will net 10 suspects.  Suppose one of these is later charged.  The 
probability of such incriminating evidence, assuming that the defendant is innocent, is 
indeed 0.001, which is the relevant probability for a test of hypothesis.  
However assuming that the police screening of 10,000 potential perpetrators is 
guaranteed to net the perpetrator, the police screening will net around ten innocent 
people along with the one perpetrator.  This evidence leads to odds of 1:10, i.e. less 
than 10%, that the defendant is guilty.  On its own, it should be discounted.  If the 
police screening is not guaranteed to net the perpetrator, the odds of guilt are lower 
still. 

Not the Perpetrator The Perpetrator 
10,000 × 0.001 = 10 (false) 
positives 

1 true positive 

Table 2:  An example from forensic screening that illustrates how the 
probability of matching incriminating evidence must be weighed 
against the extent of any searching that has led to the identification of a 
match. 
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11. Statistical Models 

Models are to be used, not believed. 
[Henri Theil, Principles of Econometrics, 1971. Wiley.] 

Models underlie all analyses.  Unless there are model assumptions, an 
analysis is impossible.  As one makes stronger model assumptions, the 
chances of getting clear results improve.  There is a price for stronger 
assumptions – if the assumptions are wrong then results may be wrong. 

Some assumptions are fairly harmless.  We say that the method used is robust against 
those assumptions.  Other assumptions matter a lot.  How do we know which is 
which?  Much of the art of applied statistics comes from knowing which assumptions 
are important, and need careful checking.  There are no hard and fast rules. 
Ideas of what model is appropriate stay somewhat in the background in initial efforts 
at exploratory data analysis.  The choice of model is of crucial importance for the 
main analysis.   I will comment below on considerations that, together with what has 
been learned in the exploratory data analysis, should influence the choice of model. 
Research planning should include a provisional assessment of the model that the data 
are expected to follow. Any sample size calculation will work from this provisional 
assessment. But unless the initial assessment was based on acquaintance with closely 
comparable data, it may be necessary to revise the assessment following exploratory 
data analysis on the new data.  It is often necessary to move between exploratory data 
analysis and formal analysis. 

11.1 Rough and Smooth 
Many models have the form30 
 Observed value = Model Prediction + Statistical Error 
In electrical engineering terminology, the model prediction is the “signal”, while the 
statistical error is “noise”.  The model prediction that we get from statistical analysis 
is an estimate, which we might call the “smooth”.  The differences between observed 
values and model predictions are the residuals, which we might call the “rough” 
In Fig. 11, the points predicted by the straight line (the `smooth’) are shown as circles, 
while the residuals (the `rough’) are shown as dotted vertical lines.  The residuals for 
points that lie above the line are positive, while residuals for points that lie below the 
line are negative. 
 

                                                
30 Mathematically, one may write 
 Y = µ + ε 
(Often µ is a function of explanatory variables.) 
The model prediction (µ) is the `smooth’.  The statistical error (ε) is the `rough’. Using the 
mathematical idea of expected value, it is usual to define µ = E(Y), where the E(Y) denotes `expected 
value of Y’.  The expected value generalises the idea of mean. 
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Fig. 11: Lawn Depression, for Various Weights of Roller,
with fitted straight line.  Positive residuals are shown with
dashes, while negative residuals are shown dotted.  

 
An alternative is to fit a smooth curve.  This may help indicate whether a straight line 
really is appropriate.  In Fig. 12 the smooth has been obtained using a general 
“smoothing” algorithm. 
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Fig. 12: Lawn Depression, for Various Weights of Roller.
Also shown is a Fitted Curve that used the S-PLUS
Loess Smoothing Routine.  

Note that there is just one point that seems to be causing the line, and the fitted curve, 
to level out.  So even if this effect had approached statistical significance, it would not 
be convincing. 

11.2 Why Models Matter 
Routine “black box” analysis of data, with no regard to data structure, can lead to silly 
results.  In the two examples that I give below, the structure comes from factors other 
than those examined in the initial faulty analysis. 

An Example from Bowling Averages in Cricket 
In the 1st innings bowler A takes 4 wickets, for 40 runs.  Bowler B takes 5 wickets for 
70 runs. 
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The 2nd innings is much less happy for the bowlers.  Bowler A takes 6 wickets for 240 
runs.  Bowler B takes 1 wicket for 50 runs. 
Here is how the averages total up: 
Bowler A Bowler B 
First Innings Second Innings Overall First Innings Second Innings Overall 
40 runs 240 runs 280 runs 70 runs 50 runs 120 runs 
4 wickets 6 wickets 10 wickets 5 wickets 1 wicket 6 wickets  

 
One can look at the table this way 
Bowler A Bowler B     
First Innings Second Innings Overall First Innings Second Innings Overall 
10 r/w 40 r/w 28 r/w 14 r/w 50 r/w 20 r/w 
4 wickets 6 wickets 10 wickets 5 wickets 1 wicket 6 wickets  

 
Notice that bowler A did better than bowler B in both innings, but ended with a 
poorer average overall.  This is because bowler A did more of the bowling when the 
going was tough. 
From an experimental design point of view, this is a block design, with innings as a 
'block'. The issue is how we should combine results from the two innings.  The usual 
method, which adds up wickets and runs, weights runs/wicket according to the 
number of wickets!  It thus favours bowlers who, when there is a feast of runs, are not 
used! 
From a modelling point of view, adding up wickets and runs ignores the effect of the 
pitch.  The model is incomplete, and hence the answer it gives is misleading.  It is 
essential to piece the separate pieces of evidence together in ways that truly reflect the 
data structure.  An effective model will encapsulate all those features of the data 
structure that are important for the inferences that are to be drawn.   
A reasonable model is 
 Runs/wicket = Mean for innings + Effect Due to Bowler 
                           = Overall Mean + Effect Due to Innings + Effect Due to Bowler 
The 2 by 2 table of runs per wicket information is: 

 Innings 1 Innings 2 average (Total runs / total 
wickets) 

A 10 40 25 (28) 
B 14 50 32 (20) 

averag
e 

12 45 28.5  

 
We might summarise results thus: 

Overall mean 28.5 = 0.5 × (12 + 
45) 

Effect due to Innings 
1 

-16.5            = 12 -  
28.5 

          Innings 2 +16.5            = 45 -  
28.5 

Effect due to Bowler 
A 

-3.5 = 25 - 28.5     

          Bowler B 3.5 = 32 - 28.5 
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Why Models Matter – Adding up Contingency Tables 
The following contrived example shows admission patterns in two separate faculties 
 

Engineering Sociology Total 
 Male Femal

e 
 Male Femal

e 
 Male Femal

e 
Admit 30 10 Admit 5 10 Admit 35 20 
Deny 30 10 Deny 15 30 Deny 45 40 

 
Because both the admission rates and the gender balance of applicants differ between 
the two faculties, simple addition of the numbers gives a misleading result. 
This is an example of Simpson’s paradox.  The method that is needed is the Maentel-
Haenzel method, which combines the odds ratios for the admission rates.  (The odds 
of admission in each faculty are the same for the two sexes.  Hence the odds ratios, 
with gender as the classifying factor, are 1:1 in both faculties.) 
The data do highlight different male:female application rates, and different overall 
admission rates, in the two faculties. 

Choosing the Model 
Factors that should influence the choice of model include: 
1. Scientific understanding, e.g. a well-tested theory that predicts what to expect. 
2. Previous experience with similar or broadly similar data. 
3. Indications from the exploratory data analysis. 
4. Diagnostic information from your first tentative model fits. 
There may be a well-attested theory that fits or approximately fits the experimental 
facts.  In that case the theoretical relationship may be a useful starting point, even if 
some modification is necessary so that it accurately describes real data. 
Other researchers may be able to give useful pointers. Question other researchers 
closely about reasons for their choice of model.  Do not automatically assume that 
they are using correct models.  For example there has been widespread incorrect use 
of probit models in disinfestation research, especially for time-mortality data.   
It is particularly important to check that the model is capable of reproducing the major 
features of the data.  It should also be consistent with theoretical knowledge of the 
qualitative behaviour of the system that has generated the data.  If there is a clash 
between the behaviour predicted by the theory and clear features of the data, then the 
data must win, unless the data are flawed.  All models are approximate and tentative.  
They should be modified if the data demand it.  New data will often call for some 
rethinking of the model.   
This may in part be a sample size issue.  Data from six seals does not allow one to say 
much about the relative growth rates of different organs.  Data from 30 seals is likely 
to present a markedly different picture, just because of the more adequate sample size.   
In the next section I discuss common model assumptions. 

11.3 Model Assumptions 
All models make assumptions.  It is a nice point of judgement to decide when 
departures from assumptions are serious. We discuss common assumptions. 
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Normality of the Error Distribution or Distributions 
Approximate normality is enough.  This assumption is, typically, less crucial for large 
samples than for small samples.  In large samples, a process of averaging may move 
the distribution of statistics that we wish to examine close to normality.  There is a 
key theorem, known as the “Central Limit Theorem”, that describes what happens to 
the distribution of the mean as the sample size increases. 
The problem is sometimes with a small number of outliers that seem to come from a 
distribution different from that for the main body of data.  Of particular concern are 
observations that, as well as being outliers, are highly influential in the model fit.  
When fitting a line, points at the two extremes have the greatest influence.   It is the 
same effect that one gets on a see-saw; sitting as far as possible away from the pivot 
gives the maximum leverage. 

Independence 
Failure of independence assumptions is a common source of wrong statistical 
inferences.  For example, the assumption of independence is violated when there is 
clustering in the data. Within a cluster, responses are correlated.  Whenever possible, 
statisticians like to avoid clustering and other forms of non-independence by 
gathering data in such a way that the independence assumption is guaranteed.  This is 
why randomisation is so important in designed experiments, and random samples are 
so important in designed sample surveys. 
Tests for independence may be of little use unless one has some idea of how the 
assumption may have failed, and the sample is reasonably large!  So failure of the 
independence assumption is not only serious, it can be hard to identify. 

Homogeneity of Variance 
We’ll say more about this as the discussion proceeds.  Is the variation about predicted 
model values the same for all predicted values?  Plots of residuals against fitted values 
may give useful clues on whether the variance really is homogeneous.  For example, 
residuals may tend to fan out as fitted values increase, giving a “funnel” effect.  This 
would indicate that the variance increases as fitted values increase. 

Nonparametric Statistics 
Nonparametric statistics such as the Wilcoxon tests or rank tests are not the answer to 
every problem of failure of assumptions.  They still make assumptions, and one still 
has to worry whether the assumptions are realistic.  In addition nonparametric 
statistics are generally much better suited to hypothesis testing than to estimation and 
model-building.  They may give little insight. 
The price for making weaker assumptions may be a reduced sensitivity to effects of 
interest.  Often, reasonably strong parametric or other assumptions are necessary in 
order to find the effects that are present.  For example, tree-based regression may be 
unsatisfactory in small or medium sized data sets where there is a parametric 
regression type structure. 

11.4 Model Validation Issues 
Model validation involves checking model assumptions, to the extent that this is 
possible.  It also involves checking on the extent to which model estimates are 
affected by a small number of influential observations.  The problem with highly 
influential observations is that, because they are so influential, any lack of fit is 
unlikely to show up when the usual diagnostics are used. 
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In very small data sets, e.g. with less than 10 or 15 data points, checks will reveal only 
gross departures from assumptions.   Unless previous experience with similar data 
provides confidence that assumptions will be satisfied, inferences from such small 
data sets may be hazardous. 
There are even more serious problems when the number of explanatory variables or 
factors is large relative to the number of observations.  Broadly, there should be at 
least ten times as many observations as explanatory variables.  (For any qualitative 
factor, subtract one from the number of levels, and count this as the number of 
variables contributed by that factor.)  If there is no other basis for pruning down the 
number of variables and factors, it may be necessary to make an informed guess. 

11.5 Broad Principles of Model Construction 
Model structure must reflect data structure.  Broadly, it must reflect all relevant fixed 
and random sources of variation.  Elementary statistics courses typically emphasise 
fixed effects, assuming that there is a single random source of variation.  In practice, 
multiple random sources of variation are the rule rather than the exception. 
Consider as an example a study on the weight and other physical features of custard 
apples that treats different regions (North Queensland, Central Queensland, Southern 
Queensland, New South Wales) as fixed effects.  Sources of variability may be 
differences between orchards, differences between trees within any one orchard, and 
differences between fruit within any one tree.  Thus the model may be 
 y = region effect + orchard effect + tree effect + fruit effect 
For purposes of comparing regions, comparisons must stand up relative to variation 
between orchards.  So we want multiple orchards to be selected at random within each 
region.   
In order to simplify the analysis we can use the mean for each orchard as the data.  If 
there were 2 randomly chosen orchards in each of the 4 regions there would be 8 data 
items.  The use of a convenience sample of orchards would invalidate the analysis.  In 
addition issues of normality, which are not amenable to testing when the sample is so 
small, become important in such very small samples. 

References and Further Reading 
Chatfield, C. 1988.  Problem Solving.  A Statistician’s Guide.  Chapman & Hall, 
London. 
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12. Types of Data Structure 
The statistician is no longer an alchemist expected to produce gold from any worthless 
material offered him.  He is more like a chemist capable of assaying exactly how much of 
value it contains, and capable also of extracting this amount, and no more. 
[Fisher, R.A., quoted in Bibby 1983: Quotes, Damned Quotes, and .  . . Demast Books, 
Halifax, U.K.] 

Data structure is in part determined by the way the data are collected, by the 
design. The design should be chosen to give results that are as accurate as 
possible. The statistical Design of Experiments, and Sampling Design, provide 
principles that should guide data collection.  The analysis that one performs, 
if it is to be valid, must then reflect the data structure.  It is a concern with 
observational data that the data structure may not be totally clear. 
Data structure has both a fixed and a random component.  The structure of the 
random component, although frequently an issue for the analysis of real data, 
typically gets little or no attention in introductory statistics courses. 

It is scarcely possible to over-emphasise the importance of data structure issues.  Yet 
elementary textbooks commonly ignore them.  The ignoring of these issues is a 
common reason for faulty analyses.  The central ideas can be understood without 
mathematics. The reverse is also true.  It is possible to understand the mathematics 
without understanding the practical implications!  Understanding the ideas and 
mastering the mathematics, while not totally separate activities, are not the same. Of 
course, those who want to get into the theory will find it essential to master the 
mathematics.  For now, we can circumvent it. 
We need to speak of fixed and random effects.  Consider clinical trials.  Experimental 
treatments are fixed effects.  Any overall effect from age, in an experiment with 
humans or animals, is a fixed effect.  Variation between subjects is a random effect; 
we want to generalise from the subjects in the trial to the wider population.  In a 
multi-centre trial, there will be random effects associated with centres.  We will want 
to generalise results to all centres that might have been chosen to participate in the 
trial. 
The simplest case is where all effects are fixed, and errors can be neglected.  We have 
a deterministic model. The result can be predicted so accurately that there is no need 
for statistics.  Claims for such accuracy must of course be open to testing and 
checking.  Some experimenters can be grossly over-optimistic about the accuracy of 
their equipment. 
We will begin with an example that illustrates a simple but important aspect of data 
structure. 

12.1 Example 
Ten apples are taken from a box.  A randomisation procedure assigns five to one 
tester, and the other five to another tester.  Each tester makes two firmness tests on 
each of their five fruit.  Firmness is measured by the pressure needed to push the flat 
end of a piece of rod through the surface of the fruit.  Here are the results, in N/m2: 

 Fruit 1 2 3 4 5 
Tester 1 6.8, 7.3 7.2, 7.3 7.4, 7.3 6.8,7.6 7.2, 6.5 
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 Fruit 6 7 8 9 10 
Tester 2 7.7, 7.7 7.4, 7 7.2, 7.6 6.7, 6.7 7.2, 6.8 

 
For comparing the testers do we have five results from each tester, or ten?  The 
answer is that we have five experimental units for each tester.  One way to do a t-test 
is to take means for each fruit.  We then have five values (means) for one treatment, 
which we can compare with the five values for the other treatment. 
What happens if we ignore the data structure, and compare ten values for one tester 
with ten values for the other tester?  This pretends that we have ten experimental units 
for each tester.  We will get results that suggest that the treatment means are more 
accurate than is really the case. We get a pretend standard error that is not the correct 
standard error of the mean.  We may (though it does not happen for these data) 
underestimate the standard error of the treatment difference. 

12.2 Fixed Effects, and a Simple Form of Error Structure 
In the lawn roller example, the roller weight was a fixed effect.  Earlier we discussed 
an experiment where Francis Bacon applied five different treatments to wheat seeds: 
water mixed with cow dung, urine, and three different wines.  These five treatments 
were fixed effects 
We do not need to spend much time discussing such experiments.  Anyone who has 
done any kind of course on statistics probably feels that they understand the idea of a 
fixed effect.  Problems arise when a fixed effects analysis, assuming independent and 
identically distributed errors, is used for data that have a more complex structure. 
What are “independent and identically distributed errors”?  Recall again the lawn 
roller experiment.  There is an error term that has a different value for each different 
roller.  We assume that there is no correlation between the error terms for different 
rollers, and no tendency for the size of the error term to change with changing roller 
weight.  If for example one started with the smallest roller on one side of the lawn, 
and moved systematically across the lawn as the roller became heavier, the 
independence assumption is unlikely to hold.  The compressive strength of the soil 
may change systematically as one moves from one side to the other. 

12.3 Two or More Nested Random Components 
In the example that used a pressure tester on apples there were two levels of random 
variation – between measurements on the one fruit, and between different fruit. In that 
example we were able to calculate a mean for each fruit.  This meant that we could 
forget about variation between different measurements on the one fruit.  Matters get 
more complicated when the number of measurements is different for the different 
experimental units.  It is then necessary to find a computer package that can handle 
such calculations.  Fortunately, most reputable packages do now have such routines. 
In the apple example, one level of variation (between measurements on the one apple) 
was nested within the other (between apples).  Situations where the two levels are not 
nested are more complicated to handle. 

Several Random Components 
We might for example have variation between orchards, variation between trees 
within an orchard, variation between apples on the one tree, and variation between 
measurements on the one apple.  A complication is that some of the variation on the 
tree, for example between the side most exposed to the sun and the side that is most 
shaded, may be systematic. 
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Several levels of random variation are common in survey data.  For example, we may 
have multiple hospitals, multiple specialists within a hospital, and multiple patients 
for each specialist.  Often an important issue is: To what population does one want to 
generalise?  If the aim is to generalise to other hospitals, then hospitals must be 
treated as random.  The hospital is the primary sampling unit. 
Suppose that we calculate means for several primary sampling units.  Then variation 
between those means is affected by components of variation at the primary sampling 
unit level and at all lower levels. In any analysis, greatest importance attaches to 
modelling variation at the primary sampling level.  Failure to model variation at lower 
levels of the hierarchy of variation has effects that are much less serious. Variation at 
lower levels is important for the way that it affects variation at the primary sampling 
unit level. 

12.4 Time Series Data 
An example may be midday temperatures on successive days, over several years.  
There will be seasonal effects that will be more or less constant from year to year.  
There is likely to be a strong correlation between temperature for one day and 
temperature for the next. 
Bivariate time series require special treatment.  It is in general wrong to use ordinary 
least squares regression to regress one variable on the other, ignoring the time series 
structure.  Fig. 13 plots all-Australia rainfall and (in the lower panel) the Southern 
Oscillation Index (SOI), for 1910-1992.  (Data are from Nicholls et al. (1996). These 
data are discussed further in Chapter 14 Section 4.  The Southern Oscillation Index is 
the difference in sea barometric pressure at sea level between Tahiti and Darwin.) 
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Fig. 13: All-Australian rainfall versus year, and Southern Oscillation Index versus year, 
for 1910-1992.  

 
As can be verified by the appropriate analysis, figures for later years are correlated 
with results for earlier years.  This complicates investigation of the relationship 
between All-Australian rainfall and the Southern Oscillation Index.  There are further 
plots, and further discussion of these data, in section 14.4. 
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12.5 Repeated Measures Data 
Fig. 14 is an example31.  The points that are joined are the weights for one rat.  Each 
rat has its own profile.  Clearly there are overall trends for each treatment group.  
Weights at successive time points are likely to be correlated, with the correlations 
decreasing as points move further apart.  An analysis that assumes independent rat 
weights at different times may be misleading. 
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 Fig. 14: Rat weight versus time, for alternative diet regimes.

 
 
Repeated measures data have a time-dependent component to their error structure, just 
as for time series data.  A difference is that in repeated measures there may be many 
short series, while in most time series problems there is just one series32.  In technical 
language, there may be many realisations in repeated measures, whereas in time series 
there is typically just one realisation. 

12.6 Data Mining and Data Structure 
Earlier, in chapter 10, we presented data mining as a form of exploratory data 
analysis.  In practice, data mining may be a mix of exploratory data analysis and 
analyses that are concerned with predictive accuracy. A difference between data 
mining and traditional statistics is that data miners may have quite huge data sets. A 
data set with values of twenty or thirty variables for each of several hundred thousand 
records is, in the context of commercial data mining, small.  Data structure is just as 
important with these large data sets as with smaller data sets.  One has to ask: 
• What are the major sources of variability? 
• Relative to the population to which results are to be generalised, how well are 

those sources of variability represented?  [How big a sample do we really have?] 
• What is the likely potential for bias? 
Because of their limited sampling of major sources of variability many physically 
large datasets are, from a statistical point of view, small.  Data from a huge number of 
patient records from just ten hospitals may have a sample size n =10, for purposes of 
                                                
31 Data appear in Box, G.E.P. 1950.  Problems in the analysis of growth and wear curves.  Biometrics 
6: 362-387. 
32 The series may however be multivariate, i.e. there may be measurements on several variables at each 
time point. 
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generalising to all hospitals. Worse, if this is a convenience sample, e.g. selected 
because these were the hospitals that made least fuss about making their records 
available, this may be an extremely biased sample. The sample population consists of 
those hospitals of which these ten might plausibly be a random sample, while the 
target population is all hospitals. Results may not generalise to other hospitals. 

Methods for Analysing Large Data Sets 
Standard statistical methods cannot, often, be used directly with very large data sets.  
There will almost inevitably be substantial structure in the data.  Methods that ignore 
this structure, and that ignore the relationship of the sample population to the target 
population, will give optimistic estimates of the predictive accuracy of estimates.  The 
wider population of hospitals may not give results similar to those from the selected 
ten. 
If we know the data structure (which is not always the case), then in principle we 
could model it.  The sheer size of the calculations that are required may make this 
problematic or impossible.  One answer is to work with summary data. I will pursue 
the hospital example. In a first pass of the analysis, we might calculate relevant means 
or medians for each of the ten hospitals.  These means or medians would then become 
the data for further analysis.  Our massive data set has suddenly become rather small! 
A more common approach may be to use estimation or classification methods that 
ignore major aspects of the data structure.  Because major aspects of the data structure 
have been ignored, one cannot use classical methods to estimate predictive accuracy, 
even when they are available.  So the approach is to develop the predictive model on a 
subset of the data, which is called the training set.  The remainder of the data, the test 
set, is kept in reserve to use to get an estimate of the predictive accuracy of the model. 
How should the test set be chosen?  Consider those hospitals again.  For generalising 
to the population from which the hospitals have been taken, we need data from a 
different set of ten hospitals.  If we intend to apply our results to those same ten 
hospitals, then the test set might be a randomly chosen subset from the data from all 
ten hospitals, with the remaining data making up the training set. 

The Targeting of Data Collection 
It is typical of data mining exercises that they search for information different from 
what the data were collected to provide. This will often reduce the chances of finding 
useful information.  Where data mining or other forms of exploratory data analysis do 
provide evidence of valuable ancillary information, it is likely that better targeting of 
the data collection process would yield even better information. Data mining exercises 
are far more likely to yield useful information if data collection has regard to the 
information that data miners may hope to get from it. 
Questions: 1. An insurance company is developing a model for predicting fraud. It has a large database 
on insurance claims, going back fifteen years, with known fraud cases identified.  What sorts of 
structure would you expect to find in the data?  How would this affect your choice of training set and 
test set? 
2. A petroleum exploration group has a large data set on sites that contained oil-bearing geological 
structures, and on superficially similar sites that turned out to contain no oil.  What structure would you 
expect to find in the data?  How might you choose your training and test sets? 

Testing Predictions on New Data 
This is the crucial test, however the estimates and associated accuracy assessments 
have been made.  Internal assessments of accuracy should be regarded as provisional, 
pending this decisive test.  For further discussion, see Chatfield (1995). 
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12.7 Outliers 
Outliers are data values that seem anomalous.  Often they stand out, in a graph, as 
quite separate from the rest of the data.  Or a check for outliers in the course of an 
analysis may identify certain data values as outliers. 
The first step should be to check whether a mistake has been made in measurement, or 
in recording or transcribing data.  If there has not been a mistake, and nothing in the 
way that the data were collected explains the anomaly, the value must stand.  
However it is important to ensure that a few aberrant values do not unduly distort the 
analysis.  It is often reasonable to separate outliers from the rest of the data, and 
examine them separately. 

The Thinning of the Ozone Layer over Antarctica 
This is an interesting example of the message that outliers may have for us.  It warns 
us that noise in the data, from a variety of sources, may obscure their message. 
Ozone (O3) is an extremely reactive gas that is present in small quantities in the 
stratosphere, the region between about 10 km and 50 km above the earth.  Ozone 
molecules are formed from the action of ultraviolet radiation from the sun on 
molecules of oxygen.  They are in turn destroyed as they absorb ultraviolet radiation 
at slightly longer wavelengths.  This filtering is fortunate, because longer wavelength 
ultraviolet radiation that reaches the earth’s surface breaks down DNA and other 
complex molecules that occur in living organisms.  The severe depletion of the ozone 
layer first came to the attention of the scientific world in 1985.  It is largely a result of 
the escape into the earth’s atmosphere of CFCs (complex fluorocarbons) used in 
refrigerators and aerosol spray cans. 
Since the launch of the Total Ozone Mapping Spectrometer aboard the Nimbus-7 
polar orbiting satellite in 1978, NASA has provided daily high-resolution maps of 
global ozone levels.  NASA scientists noticed and began examining unusually low 
ozone values from the October 1983 data in July 1984.  Up until 1983 no reliable 
measurement of ozone had been flagged that was lower than 180 Dobson Units 
(DU33).  For this reason values less than 180 DU were flagged as outliers.  The 
October 1983 data showed a sudden increase in the number of flags for values under 
180 DU.  Since this could have been the result of an instrument error, they checked 
their result against data from the Amundsen-Scott ground station at the South Pole.  
Unfortunately this station was, because of an error, reporting values of around 300 
DU when the satellite instrument was reporting values under 180 DU.  However they 
could find nothing wrong with the satellite data and finally, in late 1984, decided to 
submit it for reporting at a meeting that was held in Prague in August 1985. 
In the meantime, Japanese and British scientists had been studying data from their 
ground stations.  The Japanese published preliminary results from their Syowa station 
in a little read journal in December 1984. The NASA scientists do not seem to have 
had access to these data.  An article reporting the anomalously low results from the 
British Halley Bay ground station appeared in Nature in May 1985, and quickly 
attracted wide attention. 
Folklore has grown up around these events, suggesting that the NASA scientists had 
programmed their computer to ignore the low readings.  In fact, it seems that they 

                                                
33 Amounts of ozone are measured in Dobson Units (DUs).  One imagines that all the ozone above an 
area on the earth’s surface brought down to the surface and spread evenly across the area, at standard 
temperature and pressure.  Then 1 DU is a 0.01 mm thickness.  The layer is about 260 DU at the 
tropics.  Historically, it has increased in thickness as one moves to polar regions. 
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took the steps that one would expect from careful scientists when confronted with 
anomalous results.  Their difficulty was that they were confronted with conflicting 
data.  It took some months to sort out the anomaly.  Komhyr et al. (1986) describe the 
mistake made with the data from the Amundsen-Scott ground station. 
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13. Presenting and Reporting Results 
 
It is easy to lie with statistics.  It is hard to tell the truth without statistics. 
[Andrejs Dunkels] 
The setting out of conclusions in a way that is vivid, simple, accurate and integrated with subject 
matter considerations is a very important part of statistical analysis. 
[D. R. Cox 1981.] 
 
Keep in mind from the beginning the required style and content for the 
eventual report, paper or thesis.  This will help plan and structure your 
project.  It is a good idea to include a provisional list of chapter or section 
headings in the research plan. This outline can be filled out and modified as 
the project proceeds.   
Much of the focus of this chapter is on the presentation of statistical results.  
Efficient and cost-effective collection of quality data, and analysis that gets 
from the data all the information that is reasonably available, are central to 
research.  The endpoint is the presentation of clear and coherent results. How 
does one present the message so that it accurately reflects the data, so that it 
is clear, and so that it will be heard and used?   
Appendix II has a checklist for the authors of reports.  Appendix III has a 
checklist of statistical presentation issues for the use of authors and referees.  
These supplement the comments in this chapter. 

13.1 Keep the End Result in Clear Focus! 
Right from the beginning of your study it is helpful to keep in view the required style, 
framework and content for the final report or thesis. Include a provisional list of 
chapter or section headings in the research plan. This skeleton framework will then be 
filled out and modified as the project proceeds. While changes may be needed, it is 
much more satisfactory and productive to modify a well-considered framework than 
to start careful planning only when something goes wrong! 
Think carefully about the details of the information that will be presented, perhaps 
preparing provisional templates for the entry of data summaries as they become 
available.  Along with these data summaries, there should be annotations that explain 
in detail the sources of information, details of instruments used, and other background 
information.   
Depending on the specific research project, reporting serves several types of user.  
Busy professionals will wish to get quickly to the nub of what is presented, and may 
pay little attention to the details. Research peers or supervisors will look for a 
presentation that assists critical review.  If a commercial organization has 
commissioned the report, their interest will be in knowing the key conclusions or 
recommendations.   
Always, demonstrate that conclusions are soundly based.  This may require a modest 
level of technical detail.  In a report for a commercial client it is often best to consign 
technical detail to an appendix.  Research theses may include substantial appendices. 
Try to put yourself in the shoes of a reader of your report or thesis.  Does it start with 
a summary that presents the major insights and conclusions?  Does it present a clear 
coherent story?   Does your report read well?  Is the supporting evidence in place?  
Does the text focus on the major issues? 
The next two sections are largely adapted from Maindonald (1992).  The advice is set 
out in a pithy tutorial style.  It is intended as a basis for consideration and debate. 
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13.2 General Presentation Issues 
Here I set out broad principles.  For published papers, it is necessary to follow the 
style that is laid out in a set of Instructions to Authors.  Individual university 
departments may have their own preferred style for theses. 
Summary Details 
In a report, start with a half or one-page summary that sets out the main conclusions 
in a clear concise form.  The abstract at the beginning of a published paper serves the 
same purpose.  A research thesis may have an extended summary. 
Scientific Background 
Describe the scientific background and the rationale both for the study design and for 
the analysis.   
Critical Comment 
Acknowledge sources of information.  Try to demonstrate that you have taken 
reasonable steps to find all relevant sources of existing information, and that you have 
evaluated it fairly and critically. 
Major Patterns 
Ensure that your presentation highlights the major patterns or effects evident from the 
data. Begin with a brief lucid summary that gives the main conclusions. 
Models for your own Presentation 
For a paper, critically examine papers that others have published in that journal.  For a 
thesis, critically examine a well-regarded earlier thesis.  If there is a scholarly book 
that canvasses themes similar to yours, examine how it is structured.  It may serve as a 
starting point for developing a layout for your own work. 

13.3 Statistical Presentation Issues 
Substantial or Scientifically Important Effects 
Focus first on the effects that are substantial and/or have special biological interest.  
Give the magnitudes involved in the text as well as in the tables, perhaps with a note 
on statistical significance given in parenthesis.  Be sure to give standard errors, if 
available.  These may be supplemented with tests of significance, if this seems 
necessary. 
If less important though perhaps statistically significant effects are discussed at all, 
leave them till last.  A reference to tables may be adequate. 
Avoid unnecessary complication 
It is not necessary to take the recipients of your report through the whole tortuous 
chain of reasoning that you have followed yourself. With hindsight, the argument can 
be simplified and streamlined. The graphs that you used to explore data may need 
substantial modification, if they are appropriate at all, when you come to present the 
data.  Output from computer packages is rarely suitable for direct use – you will need 
to modify and adapt it. 
Scientific Interpretation 
Interpret all statistical results, as far as possible, in subject matter terms.  Use the 
statistic that translates easily into subject matter terms in preference to a statistic that 
does not easily translate. Translate regression coefficients into rate of change terms 
whenever this seems helpful. Instead of reporting the relative risk of two medical 
treatment regimes, it is often more meaningful to report the number needed to treat 
(NNT) to avoid one death. 
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Translate all transformed values back into meaningful units for presentation.  On 
graphs you may wish to plot using transformed units, with the axes labelled using the 
original units. 
Economic Implications 
It is often helpful to give an assessment of economic implications.  But be realistic 
about uncertainties and limitations.  Present calculations of economic return in such a 
way that it is straightforward to work out how results would be different under 
different economic conditions.  
Scientific models 
Analyses that use models that are motivated by scientific understanding are in general 
more insightful than analyses that use ad hoc and/or empirical models.  Use any 
scientific understanding that is available to help direct the study design and the 
analysis.  At the same time, be sensitive to questions that the data may raise for 
current scientific perceptions.  Allow the data to speak for themselves. 
Description of the design 
Describe the study (experiment, sample survey, . . .) accurately and fairly.  Be careful 
to identify experimental or sampling units and the units on which measurements were 
made.  Where experimental data are reported describe the blocking structure, the 
exact form of randomisation, and other details of the experimental design.  Explain 
the reasons for your choice of design. In field experiments either provide a drawing of 
the field layout, or else describe it in sufficient detail that the reader can sketch a 
diagram. 
Describe realistically and accurately the population to which results apply. 
Measures of Precision 
Include SEs or SEDs (or their equivalent) and sample sizes wherever relevant.  Where 
there are multiple error strata, be sure to quote the SE that is relevant to the 
comparison that is made.  If results do not have the replication that would allow 
determination of the relevant SE, note this. 
Note sources of variability that have been excluded in determining standard errors. 
If the data allow it, present one SE rather than different SEs for different groups. 
Curve fitting 
When estimating a particular point on a fitted curve (eg. time to 99% mortality, or a 
maximum), it is crucial that the curve fits well in the neighbourhood of that point.  If 
necessary, the fitting procedure should omit points that are at one (or both) extreme(s) 
from the point that is of interest. 
Consider the use of a smoother as an alternative to the use of a curve that follows a 
specific mathematical form. 
Measures of Relationship 
The standard Pearson product-moment correlation is a measure of straight-line 
association.  Use it only if you can justify restricting attention to linear association.  
Scatterplots will highlight gross departures from linearity.  In addition there are 
statistical methods for testing linearity against specific curvilinear forms of response. 
Correlation and regression calculations should ordinarily be supported by relevant 
plots. 
Reserve multiple or adjusted R2 for comparisons across similar experimental or 
sampling designs.  Use adjusted R2 in preference to multiple R2. 
Note that a high correlation or multiple R2 does not automatically imply that the 
relationship is adequate.  The size of R2 must be judged against the scatter in the data.  
If there is little scatter, it will require a correspondingly high R2 to justify the claim 
that the fitted curve adequately captures the data. 
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Unless experience with earlier comparable results has shown what magnitude of R2 to 
expect, do not rely on R2 as a measure of model adequacy.  Instead use a graphical 
check, perhaps backed up with a formal test for absence of systematic departure from 
the assumed form of response. 
Significance Tests 
Use p-values, if appropriate, to back up what you see as the major points that you 
have to make.  Otherwise be abstemious in the use of p-values.  Be sensitive to 
alternative ways of presenting the data that may reveal its major patterns. 
Highlight the Trends 
Where effects are quantitative use a trend curve or response surface analysis in 
preference to individual tests of significance.  Multiple range tests are not appropriate 
for structured data. 
Overall Analyses 
Where work is widely extended in space and time, present an overall analysis that 
captures the major results.  This extends to results that have been obtained by 
different workers, but carrying out closely related studies.  Such analyses will identify 
how, after allowing for systematic effects due eg. to geography and soil type, local 
results stand up against site to site variation. In the absence of such an overview the 
effort that has gone into the individual trials may be largely wasted. 
Consider the relevance of results to those who may use them. Farmers and 
horticulturists are interested in effects that apply to their farm or orchard.  They can be 
confident in using results that have appeared consistently over different locations and 
years. Doctors are interested in results that apply to their patients. 
Studies that have not yielded statistically significant results must be included in 
overview analyses. 
Graphical Presentation 
Put major conclusions into graphical form.  Make captions comprehensive and 
informative.  Use appropriate graphical presentations to reduce reliance on tables and 
on verbal description. 
The best statistical software links statistical analysis closely with graphical 
presentation.  Effective presentation of data and of statistical results will similarly link 
the results of the analysis with graphical presentation. 
Design graphs to make their point tersely and clearly, with a minimum waste of ink.  
Avoid distracting irrelevancies. Label as necessary to identify important features.  Use 
scatterplots in preference to e.g. bar graphs whenever the horizontal axis represents a 
quantitative effect. Keep the information to ink ratio in mind. 
Use graphs from which information can be read directly and easily in preference to 
those that rely on visual impression and perspective. Thus in scientific papers contour 
plots are much preferable to surface plots or two-dimensional bar-graphs. 
Draw graphs so that reduction and reproduction will not interfere with visual clarity. 
Explain clearly how error bars should be interpreted — ± SE limits, ± 95% 
confidence interval, ± SD limits, or ....  You must explain what source of error is 
represented.  It is pointless to present information on a source of error that is of little 
or no interest. 
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14. Critical Review – Examples 
The popular impression that disproof represents a negative view of science arises from a 
common, but erroneous, view of history.  . . . In this view, any science begins in the 
nothingness of ignorance and moves towards truth by gathering more and more information, 
constructing theories as facts accumulate.  In such a world, debunking would be primarily 
negative, for it would only shuck some rotten apples from the barrel of accumulating 
knowledge.  But the barrel of theory is always full; sciences work with elaborated contexts for 
explaining facts from the very outset.  . . . Science advances primarily by replacement, not 
addition.  If the barrel of theory is always full, then the rotten apples must be discarded before 
better ones can be added. 

[Gould, S. J.  1981. The Mismeasure of Man, pp. 321-322.  Penguin, London.] 

 
Typically, a paper will present summary information from an analysis of the 
data.  You must assess whether the data really do address the research 
question, whether the analysis is correct, and whether the results support the 
interpretations that are placed on the results. Thus large questions of 
statistical design and interpretation may arise in reviewing of the literature, 
before you start on your own research. 
 

Examples will illustrate issues that may arise in examining the results of other 
workers.  Some demonstrate serious faults.  Others are included because they 
illustrate interesting and important points. 

14.1 Inadequate or Faulty use of Data 

Straight Line or Curve? 
Clutton-Brock et al. (1999) were interested in how the percentage of time that adult 
meerkats spent on guard varied with the size of the group.  
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Fig. 15: Mean % of foraging time spent by adult meerkats
on guard in groups of different sizes.  The fitted straight
line is clearly inappropriate.  

Fig. 15 reproduces a straight line that, in that paper, was fitted to the data.  I have 
fitted the dashed curve, for group sizes of two or more.  The dashed curve seems an 
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accurate summary, for groups of more than one.  It is entirely plausible that animals 
that are isolated from other adults will spend a much larger proportion of their time on 
guard.  It is hard to understand why these authors have insisted on fitting a line, and 
surprising that it escaped Science’s editorial processes. 
 

Roots of Kiwifruit Vines 
Reid and Petrie (1991) compared the root system of a waterlogged vine with the root 
system of a vine that was not waterlogged.  The authors had a large number of 
samples from each vine. However, because each set of results is from one vine only, 
there is no way to know how much of the difference was due to differences between 
the vines and how much to the waterlogging.  This is an example of what is 
sometimes called pseudo-replication.  Elsewhere (Maindonald 1992) I suggest that it 
would be better called Clayton’s replication, i.e. replication that is not really 
replication. 
The 0.3m x 1.6m acrylic window of an observation chamber or rhizotron gave a view 
of the vertical section of the part of the root system that bordered on to the window.  
Over time, some roots will die, and some new roots will appear.  Tracings of the root 
system, taken at intervals of between 1 and 15 days, were used to identify the dates at 
which roots were first and last observed.  Counting ceased when 80 roots had been 
observed at each time point.  This made it possible to estimate, at each time, an 
approximate age for each root then visible.  Here are results: 

Average root 
age (days) 
on 

 
`Control’ Vine 

 
`Waterlogged’ 
Vine 

9 Jan 36.7 ± 4.5 38.2 ± 4.0 
30 Jan 45.6 ± 4.7 42.7 ± 4.5 
9 May 100.4 ± 9.4 72.9 ± 7.63 
Table 1: Comparison between roots on waterlogged 
vine and roots on control vine. Results are given as 
mean ± SEM, in each instance based on n = 80 roots 

 
The paper is vague on how the roots that were observed at each time were made up to 
a total of 80.  How were roots selected?  It appears that the authors used a 
“convenience sample”, taking whatever roots were at hand until the total reached 80. 
In fact the root systems of eight vines were visible from the rhizotron. Focusing all the 
measurement effort on just two vines therefore appears a poor use of resources.  Less 
accurate information on all vines would surely have been far more useful.  The 
authors are aware that variation between vines may be huge.  In another paper they 
document this large variation. At some sites vines took two months to show adverse 
symptoms, while at others vines showed stress within a few days of flooding and died 
within a month.  So how useful is detailed information that is based on the response of 
just one vine? 

Custard Apples 
Here is part of a table from the 1996 biennial review of the Horticulture Postharvest 
Group in the Queensland Department of Primary Industry: 
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 CQ NQ SEQ NSW 
Weight 423 a 451 a 425 a 451 a 
Days to eating 
soft 

5.8 a 7.2 b 5.1 ac 4.5 c 

Woodiness (0-5) 3.1 a 1.6 bc 2.1 b 1.5 c 
Pointiness (1-3) 1.4 ab 1.5 a 1.2 bc 1.0 c 

Table 2: Data are for mature “African Pride” custard apples, 
harvested from two farms in each of the production areas Central 
Queensland (CQ), North Queensland (NQ), Southeast Queensland 
(SEQ), and Northern New South Wales (NSW). 

 
The letters (a, b, c) are presumably designed to allow an assessment of statistical 
significance at the 5% level.  Means that are identified with the same letter cannot be 
distinguished.  It is however unclear whether this is a comparison-wise significance 
level or an experiment-wise significance level, i.e. whether the least significant 
difference has been adjusted to the number of comparisons that are to be made.  
(Often the letters are called `Duncan’ letters.  Duncan was the originator of various 
versions of a widely used multiple comparison test.) 
There are two levels of variation that need to concern us here – between fruit within 
any orchard, and between orchards.  If results are to apply to all orchards in a 
production area, then we need a random sample of orchards.  If the same size of 
sample is taken from each orchard, then the correct analysis can be based on orchard 
means. There is a question whether this is how the analysis was done, or whether 
results from individual fruit were treated as replicate values. 
Let us however assume that the analysis was done correctly, assuming random 
sampling of orchards.  There are then two values per production area.  Were the 
orchards really chosen randomly from a list, or were two orchards that were close at 
hand used as a convenience sample? 
Finally, how close to normal is the distribution of orchard means?  With such a small 
sample of orchards, the normality assumption becomes important? 
The bottom line is that a sceptic can find a number of reasons for not taking these data 
too seriously.  At this point there can be no firm judgement on how custard apples 
differ between regions. 

Allometric Relationships 
In animal growth studies, there is an interest in the rate of growth of one organ 
relative to another.  For example, heart growth may be related to increase in body 
weight. As the animal must be sacrificed to get the weights of organs, it is impossible 
to get data on growth profiles for individual animals.  For seals and dolphins and 
some other protected marine species, the main source of information is animals that 
have died, often snared in trawl nets, as an unintended consequence of commercial 
fishing.  For each animal, the data provide information at just one point in time, when 
they died.  At best, if conditions have not changed too much over the lifetimes of the 
animals in the sample, the data may indicate the average of the population growth 
profiles.  If for example sample ages range from 1 to 10 years, it is pertinent to ask 
how food availability may have changed over the past ten years, and whether this may 
have had differential effects on the different ages of animal in the sample. 
Allometric growth implies that, for any two measurements x and y 
 y = a xb 
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where x may for example be body weight and y heart weight.  It may alternatively be 
written 
 log(y) = a + b log(x) 
i.e. y' = a + b x', where y' = log(y) and x' = log(x).  If b = 1, then the two organs (e.g. 
heart and body weight) grow at the same rate. 
Thus we have an equation that can be fitted by linear regression methods.  As we will 
consider below, it is doubtful whether it is the regression relationship that we really 
want;  this allows us to predict values of y' given a value for x'.  I will return to this 
point later. 
Gihr and Pilleri (1969, p. 43) present such data for particular species from the genera 
Phocaena (porpoises), Stenella (a seal genus) and Delphinus (dolphins).  Fig. 16 
shows the plot of heart weight against body weight for 17 individuals from the species 
Phocaena phocaena. 
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Fig. 16: Heart weight versus body weight, for 17 members 
of the species Phocaena phocaena.

 
Although the estimate of the exponent b (= 1.055) differs from 1.0 by less than a 
quarter of the standard error, Gihr and Pilleri state that heart weight is increasing more 
rapidly than the body weight.  They make comparable “increasing more rapidly than” 
and “increasing more slowly than” statements about other organs, for this and for 
other species. 
Now in fact these authors present extensive calculations  that include (Table 10 on pp. 
40-41) details of the standard errors of regression coefficients.  There are coefficients 
for seven organs, in most instances for each of three species. They present p-values 
for a test of significance that the coefficients are zero.  Even though the focus of the 
discussion in the text is on the comparison with 1, they seem uninterested in  whether 
this difference is statistically significant or even whether it is more than SE[b].  
Having demonstrated that a coefficient is statistically different from zero, they then 
treat it as, to all intents and purposes, exact. 
Of the twenty coefficients that they present, only two differ from 1 by more than 
statistical error (p=0.05).  Both of these are much less than 1, and are for small 
samples (n=11).  One of these has b=0.042, and is anyway not significantly different 
from zero.  In passing, note that where there is large scatter about the line, estimates 
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of b will be biased down. In small samples there will sometimes be large variability 
about the regression line just as a result of chance.  
Gihr and Pilleri have not distinguished what is likely to be an accident of this 
particular sample from features that are less readily explained as accidents of 
sampling variation.  They have thus failed in what is surely a major responsibility of 
the writer of any paper, to draw to the reader’s attention those scientifically interesting 
features that may be independent of the accidents of sampling. 
We return to the issue of how the equation is to be estimated.  There are in fact two 
regression relationships, one for predicting Y given X, and one for predicting X given 
Y.  These coefficients may be dramatically different.  Here, using related data, is an 
example.  For liver weight in Delphinus delphis, the regression slope for log(liver 
weight) on log(body weight) is 0.043.  If on the other hand one regresses log(body 
weight) on log(liver weight) and turns this around to express log(liver weight) in 
terms of log(body weight), the coefficient is 17.   Neither coefficient is meaningful, as 
Fig. 17 makes clear.  
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Fig. 17: Plot of liver weight versus body weight, both on log scales, 
for 11 members of the species Delphinus delphinus. The solid line 
is the regression of log(liver weight) on log(body weight), while the 
dashed line is for log(body weight) on  log(liver weight). Neither line 
is meaningful.  

 
By comparison with Fig 16, observe that there is a much more restricted range of 
body weights.  The range of body weights is not wide enough to allow detection of 
the relationship (if any) between liver weight and body weight. 
A plausible point of view for the present application is that there is an underlying 
functional relationship.  The analysis assumes that observed values of log(organ 
weight) and log(body weight) differ from the values for this underlying functional 
relationship by independent random amounts.  The line for the underlying functional 
relationship will lie between the regression line for Y on X and the line for X on Y. 

An Insect Disinfestation Experiment 
A formal target for research aimed at developing treatments that will remove insect 
pests from export fruit (disinfestation) is to design a treatment that will allow the 
survival of at most one insect in 30,000.  This is equivalent to a mortality of 
99.9968%.  There are broadly similar standards in many different countries.   
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Experiments that are of modest size, e.g. 300 insects at each of seven or eight 
treatment times or doses, are used to predict a treatment that will achieve this very 
high mortality.  This prediction usually involves a large extrapolation from the 
experimental data.  The estimate is then tested out in a large-scale trial, perhaps with 
100,000 insects.  If more than one insect out of 100,000 survives in this large-scale 
trial, this is taken to indicate a lack of assurance that no more than 3.3 in 100,000 
would on average survive.  The large-scale trial must be repeated, using a higher 
treatment time or dose. 
Jessup and Baheer (1990) give fruitfly mortalities after various times in low 
temperature storage.  Around 200 larvae were used at each time point. They quote an 
estimate of 29.4 days for the time to 99.9968% mortality.  The authors then undertook 
a large-scale experiment in which they tested out a storage time of 12 days.  Clearly 
they did not believe the analysis that they presented.  One must assume that they 
examined the graph directly, then making a guess that 12 days would be adequate. 
It appears that these authors fitted a straight line to the plot of the probit of `treatment 
induced’ mortality against log(time) that is shown in Fig. 18.  

Days in storage

Fig. 18: Probit model fitted to first instar data of Jessup 
& Baheer (1990).

1 2 4 8 16 32

0.5

0.8

0.9

0.99

0.999

0.9999

M
o
rt

a
lit

y

.999968

25.2

 
 
The plot makes it clear the response is far from linear. Extrapolation exaggerates the 
effect of the bad fit.  My estimate, from extrapolating the straight-line, of the time to 
99.9968% mortality is 25.2 days.  This assumes equal numbers of insects at each time 
point.  The discrepancy with Jessup and Baheer’s estimate of 29.4 days most likely 
arises because the authors used estimates, not presented in the paper, of total numbers 
for each time point.   
The authors give results for three further insect stages.  The LT99.9968 is the time 
required to kill 99.9968% of the relevant insect stage.  The table below gives the 
LT99.9968 estimates for eggs and the three fruit fly stages: 
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Stage LT99.9968 95% CI 
Egg 17.3 days 17.7-18days 
1st instar 29.4 days 28-30.9 
2nd instar 14.4 days 13.8-15.1 
3rd instar 24.4 days 23.2-25.7 

Table 3:  LT99.9968 estimates for eggs 
and the three fruit fly stages of 
Queensland fruit fly (Dacus tryoni). 

 
The plots for the egg, 2nd instar and 3rd instar are in fact not too far from linear, so that 
for those instars the main reason for complaint is that there is a huge extrapolation.  
Thus we have one LT99.9968 that is based on a line that does not fit, and three 
LT99.9968s derived from huge extrapolations of lines that fit moderately well.  On 
the basis of the longer estimated time to 99.9968% mortality for the 1st instar, the 
authors claim that the first instar is more resistant to low temperature storage than the 
second and third instars34.  
Such inappropriate fits seem a commonplace in the disinfestation literature.  Few 
authors present evidence that their data are consistent with the assumed form of 
response.  It has been common to assume, without further investigation, a straight line 
relationship between the probit of mortality and either log(x) or x, where x is either 
dose or time.  Disinfestation experiments often use huge numbers of insects, and a 
plot will readily show serious departures from the assumed form of response.   
In part, these practices may reflect the history of dose-mortality studies. Conventional 
animal dose-mortality experiments typically used relatively few animals, in the tens or 
twenties.  Systematic departures from the assumed form of response did not stand out 
against the scatter in the data. 

Confused and Erroneous Claims 
Articles in the Journal of Economic Entomology which demonstrate statistical 
misunderstanding are disturbingly common.  Thomas and Mangan (1997) is 
astonishing in this respect.  First note that the tolerance distribution plots the expected 
mortality against dose or exposure.  The population mortality curve that corresponds 
to the points in Fig. 18 plots mortality against number of days in storage. 
Thomas and Mangin claim that sample size affects the tolerance distribution.  As the 
tolerance distribution is a property of the population of insects, how could it?  One 
incorrect formula is correctly derived from another incorrect formula. They suggest, 
wrongly, that a lognormal tolerance distribution makes it appropriate to assume a logit 
or complementary log-log distribution.  They misrepresent results that are presented 
in authors from whom they quote.  They claim, wrongly, that a model that gives a 
narrower prediction interval should be preferred to one that gives a wider prediction 
interval.  (If the model is wrong the prediction interval will also be wrong, and may 
well be too narrow.)  They claim to use the Maentel-Haenzel test for testing goodness 
of fit to an assumed tolerance distribution, an entirely inappropriate use.  This is an 
incomplete list. 

                                                
34 The argument is then that effort can be focused on developing a treatment that is effective with the 
“most resistant stage”, that any treatment that is effective for the “most resistant stage” will be equally 
or more effective with later stages.  
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This paper is unusual in the extent of its errors and confused statements.  If a paper 
seems to make nonsensical claims, one should not rule out the possibility that they are 
indeed nonsensical.  The literature places a huge burden of discrimination on the 
reader. 

A Claimed Link Between Fluoridation and Cancer 
Yiamouyiannis and Burk (1977)35 compared the pattern of cancer death rates for the 
10 largest fluoridated cities in the United States with the ten largest cities not 
fluoridated in 1969, but with a cancer death rate of 155 per 100,000.  Fig. 19 shows 
the comparison.   
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Fig. 19: Cancer rates in the ten largest fluoridated US
cities, compared with cancer death rates in ten large
unfluoridated cities. The ten largest unfluoridated cities
were chosen that had comparable cancer death rates
(>155 per 100,000) in 1953.  

 
In the fluoridated cities, fluoridation began in one of the years 1952-1956.   
Yiamouyiannis and Burk suggest that this led to the subsequent divergence between 
the cancer rates in the two groups of cities.  This divergence occurred over 1955-
1970.   
Because fluoridated cities were not randomly assigned to one or other regime, the 
divergence in crude death rates of itself proves nothing.  Other changes were taking 
place at the same time.  There were large changes in the population age structure in 
both sets of cities, as might be expected given the changes in total population in the 
two sets of cities. 
Subsequent discussion focused on comparing 1970 with 1950.  Yiamouyiannis and 
Burk acknowledge that the age structure of the two sets of cities changed in different 
ways over 1950 - 1970.  They then made the comparison separately for the age groups 
0-24, 25-44, 45-64 and 65+.  There was no difference in either of the under 44 age 
groups, but large differences in the 45-64 and 65+ groups.   

                                                
35 The journal (`Fluoride’) in which this paper appears is not a recognised scientific journal.  It provides 
a vehicle for articles which support an anti-fluoridation point of view.  However to the extent that the 
arguments are soundly based on reliable data, they must be taken seriously. There are, as we will see, 
serious flaws in their argument.  Teasing out what is wrong with their arguments requires a fair amount 
of subtlety. It is not hard to find articles in mainstream scientific journals where there are comparable 
faults. 
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They are aware that these differences may be due to differences in the sex, age and 
racial breakdown within these groups.  They then proceed as follows 
1. They check the age distribution within these 45-64 and 65+ categories.  They argue 

that because the percentages never differ by more than about 3%, the age 
distribution within these groups is “virtually identical” for fluoridated and 
unfluoridated, both in 1950 and 1970. 

2. They note also that there is a greater percentage of non-whites in the fluoridated 
than in the unfluoridated group.  They then regress age-corrected  (i.e. corrected 
for the broad categories) mortality rates against % non-white population in each 
city.  None of the correlations were significant. 

3. They did the same regression, but now limiting attention to the 45-64 age group.  
Again the correlations were not significant. 

The “virtually identical” claim of point 1 will not do.  Examination of Fig. 20 will 
show why. 
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Fig. 20: Age specific death rates from malignant neoplasms
(cancer).  Note the different patterns of mortality for white
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Observe how mortality increases with increasing age.  A slight shift towards more old 
people, and especially towards more older males, may lead to a large increase in 
cancer rates.  By comparison, changes in the age structure for the under 30s will have 
almost no effect. 
There are two problems with use of correlations as in points 2 and 3 above: 
1. We are dealing with time series, not with independent data values.  So the “usual” 

tests for significance are not valid. 
2. Even if these tests of significance were valid, they would not be relevant. There is 

a difference in the population structure of the two sets of cities (fluoridated and 
unfluoridated).  We want to know whether the differences in population structure 
can explain the different cancer mortality rates, not whether the difference is in 
some sense statistically significant.  While this may appear a subtle point, it is an 
important one, that may trip up statistical neophytes. 

The way to find out whether the differences in population structure can explain the 
different cancer mortality rates is to calculate the cancer mortality rates that would 
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apply to some specific mix of ages, sexes and races.  Oldham and Newell (1977) did 
exactly that, and found that the difference all but disappeared. 

Apparent Biological Activity at Impossibly Low Dilutions 
In June 1988 the journal Nature published a report, by Davenas et al., which appeared 
to demonstrate the biological activity of solutions that initially contained anti-IgE 
antibodies, but at dilutions so extreme that most of the diluted solutions should 
contain no antibodies.  A later issue published a report, by Maddox et al. (1988), that 
gave the report of a team that had visited the laboratory where these experiments were 
performed. 
By the usual standard of laboratories for pharmacology and allergy, Davenas et al. 
may have carried out their experiments with care.  They were however looking for 
effects where very minor and ordinarily unimportant contamination will invalidate 
results.  Possibilities for contamination that were identified by the investigators 
included:  possibly misplaced test-tube stoppers, slight contamination of unintended 
wells during the pipetting process, and general laboratory contamination that may 
have arisen because experiments were carried out on an open bench.  Wells were not 
counted in duplicate. 
The investigating team also carried out their own double blind experiment, following 
their own very strict protocol.  Results turned out negative, i.e. no effect was found. 
In investigations at or near the limits of scientific detectability, biases (here sources of 
contamination) that are ordinarily unimportant may vitiate results. 

Other Examples 
Other examples of poor or erroneous statistical analyses are discussed in Andersen 
(1990), Chanter (1981), Gardner et al. (1983), Gates (1991), Maindonald and Cox 
(1984), Padak (1989) and Thomas (1978). 

14.2 Probing the Reasons for Differences in Results – An Example 

Penetrometer and Operator Effects in Measuring Fruit Firmness 
It often happens that some researchers find a claimed effect.  Others do not.  Who 
should one believe?  Where the evidence is experimental, an important issue is 
whether some experiments were inherently more precise than others.  Precision is 
affected both by the measurement instruments and by the statistical design. 
Here is an example, from research (Harker et al. 1996) that compared different 
instruments for measuring fruit firmness.  In addition there was interest in possible 
operator effects.  There were four measurements on each kiwifruit.  On apples more 
than four measurements should be possible, but none of the papers I have seen uses 
more than four. 
The following types of experimental design are possible:  
1) Use just one device and one operator per fruit, so that fruit to fruit variation affects 

comparisons both between operators and between devices.   
a) Devices are compared, but not operators (Abbott et al. 1976) 
b) Both devices and operators  are compared (Blanpied et al., 1978). 

2) For each fruit, compare multiple devices.  Use one operator per fruit.  (Bongers 
1992; Lehman-Salada 1996). 

3) For each fruit, compare multiple operators.  Use one device per fruit.  (Lehman-
Salada 1996, in a further experiment). 
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4) For each fruit, compare multiple device-operator combinations  (Harker et al. 
1996).  

Harker et al. (1996) document the extent to which, in their study 
1) Comparisons made on the same fruit are typically much more accurate than 

comparisons that use different fruit for different devices etc. 
2) The gain is much larger for fruit at harvest (when they are firm) than for fruit after 

storage, when they are relatively much softer. 
So another issue is whether the different studies used harvest fruit or storage fruit.  
Harker et al. used both storage and harvest fruit, as did Lehman-Salada.  Blanpied et 
al. seem to have used storage fruit.  Others used storage fruit. 
These various pieces of information give us a context in which to interpret the results.  
Where comparisons are made within fruit, one expects relatively good precision.  
Where comparisons use the between fruit level of variation, we expect relatively poor 
precision.  Thus, it is not surprising that Bongers et al. found no differences between 
operators. 

14.3 Instructive Examples 

Fickle Mice 
A standard approach in mice studies investigating a suspected behavioural role for a 
gene has been to knock the gene out, then investigate the effect on the behaviour.  
There have however been frequent cases where later researchers have been unable to 
reproduce published claims for a gene/behaviour association, or have even found an 
effect that goes in the other direction.  This was the impetus for a study, reported in 
Crabbe et al. (1999) where researchers in three laboratories tested six mouse 
behaviours simultaneously, using exactly the same inbred strain and one null mutant 
strain.  Stringent precautions were taken to ensure identical test apparatus, testing 
protocols and animal husbandry.   
For some behaviours the authors report consistent effects across all three laboratories.  
For others there was no consistency.  In one of the strains tested a receptor for the 
neurotransmitter molecule seratonin was knocked out.  In one location there was more 
maze activity than for controls with intact receptors, in another there was less activity, 
while in the third location the loss of the receptor appeared to make no difference.  A 
weakness of the study is that the experimental procedure was not repeated at the three 
separate laboratories.  A fully adequate replication at a laboratory would require, as 
well as repeating other aspects of the experimental setup, the use of separate and 
different operators. 

An Interesting Case of Confounding 
Cohen (1996) describes a trial where researchers were looking for a difference 
between two analgesic drugs.  An alert reviewer spotted that some of the treatment 
groups contained more women than men, and proposed a re-analysis to determine 
whether this accounted for the results.  In fact, almost the whole effect could be 
ascribed to sex differences in the response. 
Other related work by the same researchers can be used to illustrate the effect.  Here 
is the allocation of subjects: 

 Pantazocine + 
Placebo 

Pantazocine + 
Baclofen 

Females 7 15 
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Μales 9 3 
 
Treatment A was Pantazocine plus placebo, while treatment B was Pantazocine plus 
Baclofen.  The difference in the two treatments is between Placebo and Baclofen.  
Suppose we do an analysis that ignores the sex effect.  Any difference we find may be 
a difference between Baclofen and Placebo, or it may be due to the greater 
preponderance of females in the Baclofeb treatment group.  Fig. 21 shows the 
separate results, as a function of time after administration. 
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Fig. 21: The effect of pentazocine on post-operative 
pain, with (circles) and without (squares) preoperatively 
administered baclofen.

 
Fig. 22 shows how, if we ignore the gender effect and combine the two sets of results, 
the Baclofen result is weighted towards the result for females. 
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*14.4 Bivariate Time Series 

Southern Oscillation and Australian Rainfall 
The plots in Fig. 23 are reproduced from data in Nicholls et al. (1996)36.   
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Fig.  23 :  All-Australia mean rainfall versus Southern Oscillation Index.
Scatterplots, with fitted lines, are shown separately for 1910-1972 &
1973-1992.  

 
The authors were looking for a relationship between the Southern Oscillation Index 
(SOI) and climate information.  They present a time series of the All-Australia 
spatially averaged rainfall, and for the SOI values.  (In addition they give all-Australia 
maximum temperatures.)  Fig. 23 shows separate plots of rainfall versus SOI, for 
1910-1972 and 1973-1992.  The two plots follow a relatively similar pattern.  There 
are several objections to their analysis. 

1. There seems no justification, independent of the data, for fitting a different 
response line for 1972-1992. 

2. The graphs suggest that the relationship is curvilinear rather than linear. 
3. Their analysis did not allow for the sequential correlation structure in the data. 

I have done an analysis that attempts to account for the time-dependent structure in 
the data.  This suggests that a clearer relationship between rainfall and SOI than the 
least squares analysis indicates. 

14.5 Multiple Papers, and the Task of Overview 
This is an important issue for, among others, medical researchers. For example, 
suppose you want to study the effect of zinc supplementation on the growth of 
children.  How does one start?  A careful critical overview, if you can find it, is likely 
to be the best place to start.  You should look for indications that the paper has 
weighed the reliability and usefulness of the evidence that is presented in the different 
papers, and has provided a summary that gives greatest weight to the most complete 
and reliable sources.  Overview papers along the lines: “I’ve read all these different 
papers, and here is my assessment” ask you to put a lot of faith in the judgement of 
the reviewer.  You may be getting little more than another opinion to set alongside the 
opinions that are expressed in the various papers.  Chalmers and Altman (1995) is a 
good summary of the uses and hazards of systematic reviews.  Sackett et al. (1977) 
press very strongly the merits of well-conducted systematic reviews. 
Chapter 13 of Linus Pauling’s 1986 book How to Live Longer and Feel Better 
reviewed evidence on the claimed benefits of  Vitamin C in preventing colds.  For all 
                                                
36 Dr Nicholls kindly supplied me with a copy of the data. 
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his scientific prowess, Pauling did a poor job of systematic review.  He says nothing 
about the design of his survey of Vitamin C trials.  It is unclear how he chose the 
particular trials that he included, whether methodological quality was assessed 
without knowledge of the outcome.  It is not clear how he decided whether the result 
of any trial was positive, negative or indecisive.  A more recent study, that of 
Kleijnen, ter Riet and Knipschild (1992), has addressed these deficiencies.  They did a 
thorough literature search and systematic review.  Their conclusion was that Vitamin 
C, even in gram quantities per day, will not prevent a cold.  Once one has a cold, a 
large dose of Vitamin C may however slightly reduce its duration and severity. 
In their review of the quality of medical overview papers, Oxman and Güyatt (1983) 
found that content expertise was inversely related to the quality of the review.  
Moreover there was poor agreement among content experts on the methodological 
quality of reviews.  The implication may be that the conduct of systematic reviews 
requires skills that must be learned.  This is true as much for content experts as for 
those who have no special content expertise. Sackett (1983) gives a more extreme 
view. 

Smoking and Health 
Physicians first noticed an apparent increase in death rates from lung cancer in the 
1920s.  Initially there seemed a possibility that it might be an artefact of 
improvements in diagnosis.  By the 1940s there was general agreement that the 
increase was real, and investigators began to focus on a search for possible causes.  
Smoking was one of several theories.  Pearl (1938), in a report that was widely 
criticised, compared death rates of smokers with those of non-smokers, finding that 
heavy smokers had higher death rates than non-smokers.   
The first reports on two studies that had a major impact appeared in 1950, one in the 
UK and one in the USA.  The UK study, by Doll and Hill, was a hospital-based case-
control study.  Cases were persons admitted to hospital after diagnosis with lung 
cancer.  Controls were patients admitted for other reasons.   The investigators then 
classified both cases and controls according to whether or not they smoked.  Here is 
what they found: 

 Cancer diagnosis 
(case) 

Other diagnosis 
(control) 

Smoker 1,350 1,296 

Non-smoker 7 61 
 
Notice that non-smokers are rare in both groups, much rarer than in the population at 
large, where at least 40% (more women then men) would have been non-smokers.  
The key point is that lung cancer is nearly 5 times more common among smokers 
(1350/(1350+1296) = 51%), than among non-smokers (7/(7+61)=10.3%).  If 
hospitalised patients without lung cancer were a random sample from the general 
population, it would follow37 that the relative rates are much greater than 5. 
Patients are not hospitalised at random.  Nevertheless the results had troubling 
implications, whatever their relevance to the wider population.  There was a 
                                                
37 In the population cancer is a (relatively) rare disease, both among smokers and non-smokers.  One 
can then argue that the smokers/non-smokers odds ratio, i.e. 1350/7/(1296/61) ≈ 9, should be the same 
as in the general population.  Odds ratios for rare events approximately equal the relative rates.  It then 
follows that smokers in the general population were nine times as likely to get lung cancer as non-
smokers. 
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formidable list of critics, including the statisticians Berkson (in a paper published in 
1955) and Fisher (in a book published in 1959).  Fisher (himself a smoker) proposed 
that there was a genotype that led both to a predisposition to smoke and to a 
predisposition to lung cancer. 
Other results were soon obtained that pointed in the same direction.  Doctors, 
impressed by the evidence on the health effects of smoking, gave up smoking in large 
numbers.  Between 1951 and 1965, about half of the doctors who used to smoke gave 
up.  Rates of lung cancer among UK doctors dropped from 60 to 37 per 100,000 
between a 1953-57 study and a 1962-65 study.  In the general population the rates 
increased slightly, from 113 per 100,000 to 120 per 100,000. 
To refute Fisher’s genetic hypothesis, Finnish epidemiologists (Kaprio and 
Koskenvuo 1989) studied smoking-discordant monozygotic twins, i.e. twins where 
one smoked and the other did not.  Limiting attention to the 22 instances where one 
twin had died, the smoking twin died first in 17 cases out of 22.  Looking now at 
cause of death, here is what they found: 

 Smokers Non-smokers 
Coronary Heart 
Disease 

9 0 

Lung cancer 2 0 
Other causes 6 5 

 
These results make it hard to maintain the genetic hypothesis. 
The strength of the case against smoking comes from its coherence.  Many different 
sources of evidence, including laboratory studies that have directly demonstrated that 
tar in tobacco is a carcinogen, all point in the same direction.  They are coherent in the 
following ways (Freedman 1999; Evans 1993, pp. 186ff): 

1. There is a dose-response relationship, with the risk of disease greatest for 
heavy smokers. 

2. The risk increases with the duration, i.e. with the number of years that a 
person smokes. 

3. Ex-smokers have a risk that moves closer to the risk for non-smokers as the 
time from quitting increases. 

Assessing the Performance of Surgeons 
Heart surgery is undoubtedly effective.  However a good outcome depends on high 
levels of skill, both from the surgeon and from supporting staff.  It is very unusual for 
data on the success rates of such operations to become public.  That is however 
exactly what happened in New York state in 1991.  A newspaper used the Freedom of 
Information Law to gain access to the 1989 data, broken down by surgeons.  There 
were surprising outcomes.   
Chassin et al. (1996) give summary data for coronary artery bypass grafting (CABG).  
The data showed that the low-volume heart surgeons, those doing less than one 
operation a week, had higher than expected mortality rate.  Here are two sets of 
figures: 

Risk-Adjusted Mortality Rates for CABG: 1990-1992 
27 low volume surgeons 
(1990 until contract terminated) 

11.9%  [of ~18 thousand patients] 

All New York State 2.9% (4.2% in 1989; 2.5% in 1992) 
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One hospital had unusually high death rates for one specific groups of patients, those 
requiring CABG on an emergency basis.  Here are the figures: 

Risk-Adjusted Mortality Rates for Emergency CABG Patients 
St Peter’s Hospital, Albany 27% 
All New York State   7% 
 
Inevitably, there was an investigation into the source of the problem.  It turned out 
that steps taken to stabilise patients before surgery were inadequate.  From 7 deaths 
from 42 patients in 1992 the hospital went to no deaths from 54 patients in 1993. 
There are several points: 
1. One can only make such comparisons if there are very large numbers.  This study 

was effective because it could compare one hospital with hospitals as a whole, and 
an individual surgeon or groups of surgeons with surgeons as a whole.  It is 
terribly important to bring all the data together, and to study it in context. 

2. If one pools data from low-volume surgeons, there are enough data to make useful 
comments. Only where individual low-volume surgeons had an exceptionally high 
mortality rates could one argue that an individual surgeon was not performing 
well. Some of the low volume surgeons might actually have been quite good. 

3. The true long-term figure, for an individual surgeon who performed 50 operations 
over the 3-year period and had a 6% mortality rate, might be anywhere between 
1.4% and 22%.  We have very little idea, with such scant data, as to how good that 
surgeon really is.   
[I have given a 99% confidence interval.] 

4. It was essential to make adjustments to allow for the higher number of high risk 
patients operated on by some surgeons and in some hospitals.  Use of the figures 
without such adjustment would have been an abuse of statistics. 

These sorts of comparative figures are open to serious abuse.  If two surgeons have 
each performed 200 operations, one with 5 deaths and the other with 10 deaths, it 
would be wrong to try to make anything of the difference. Some reporters focused on 
just these sorts of differences when the data were first reported.  The New York State 
Department of Health started a program to educate reporters on how to interpret the 
figures, leading to huge improvements in reporting standards.   

Example – Meta-analyses of Trials Studying the Link Between Salt and Blood 
Pressure 
Law et al. (1991) is a paper in three parts.  The first paper examines observational 
data from 24 communities – twelve from undeveloped countries and twelve from 
developed countries.  They developed equations that predict, for a subject of a given 
age who makes some given change in salt consumption, the change in blood pressure. 
They then use these results to predict expected changes, by age, in 14 sets of within 
population data. They `correct’ the within population data for random error in the 
sodium (salt) measurements.  The correction is needed because the random error is 
uncomfortably close to the total population variation.  With this correction, they claim 
that predictions from the between population study match the within population 
results well enough. 
Finally, they use the between population results to predict changes from low to high 
salt diet in 78 sets of clinical trial data.  Again, they claim fair agreement. 
I have a number of comments: 
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1. Between population studies are, as I have argued repeatedly, susceptible to serious 
biases. While it may be reasonable to examine whether they can be made to agree 
with within population studies, the use of results from such studies to interpret data 
from clinical trials is surely the use of a highly suspect instrument to check out a 
much more trustworthy instrument. 

2. It is not clear how the 14 within population studies were chosen. 
3. About 60% of the numbers in the within population studies were derived from one 

large and rigorous Scottish study.  On its own, the Scottish study showed no effect 
when confounding factors were taken into account.  Law et al. add another 13 
studies, almost certainly less rigorous, and claim to find an effect.   They did not 
adjust for confounding factors.  So their result may reflect the effects of 
confounding factors that the Scottish study adjusted for. 

4. There is evidence (Easterbrook et al. 1991) that small studies are less likely than 
large studies to find their way through to publication.  Thus the inclusion of all 
these smaller studies (one with as few as 58 subjects) has the potential to increase 
publication bias. 

5. Law et al. combine data from different types of trials, from crossover trials as well 
as from randomised controlled trials.  Even when the order of treatments in a 
crossover trial is randomised, interactions between the successive treatments (here 
the high and low sodium diets), or differential interactions between the washout 
period and the immediately following treatment, have the potential to give spurious 
effects.  This may explain why, when the difference between high and low sodium 
is calculated separately for the two types of trial, the crossover trials gave a 
difference that was about twice that for the randomised controlled trials. 

6. Law et al. do not seem to have looked in detail at quality issues.  It is unclear 
whether the crossover trials were all conducted to similar standards of care, and 
indeed unclear whether the order of the diets was randomised.  There may well be 
more than two types of trial. 

7. Law et al.’s clinical trial data combined 21 trials for subjects with normal blood 
pressure with 57 trials for subjects with high blood pressure.  It assumes that blood 
pressure increases linearly with salt intake.  Their interpretations of the data rely 
strongly on this linearity assumption, which may well be wrong. 

Clearly Law et al.’s analysis raises many different issues.  Their approach to the 
analysis of this data, and their lumping together of disparate studies, surely introduces 
more confusion than light. 

14.6 Measuring Instrument and Study Type Issues 
Diet surely is an influence in the onset of some diseases.  Attempts to nail the 
connection down precisely seem fraught with difficulty, at least for studying the effect 
on incidence of relatively rare diseases.  Thus dietary fat is thought to be important.  
A standard approach has been to get people to write down details of what they eat.  
Unfortunately, such records are liable to be notoriously inaccurate.  There are 
methods that seem more accurate, but they are too expensive for use in the large 
studies needed to investigate any link with such relatively rare diseases as breast 
cancer. 
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Diet and Breast Cancer – Nutrient Fat Measurement 
For some time, it has been suspected that nutrient fat intake promotes breast cancer.  
Women who have a higher fat intake may be more likely to develop breast cancer.  
Here is a summary of the evidence, for and against: 

o Direct manipulation of diets shows this effect in animal studies  
o When breast cancer rates are compared between different countries, there is a 

clear correlation between nutrient fat intake and breast cancer rates 
o Breast cancer rates, which are low (though rising) among Japanese women in 

Japan, increase over a period of time to U.S. rates when they move to the U.S.  
This is thought to be a result of their increased fat intake. 

o Meta-analysis of case-control studies shows a nutrient fat intake effect on 
breast cancer. 

o (Against)  There have in addition been prospective cohort studies that 
maintain records both of dietary behaviour and of breast cancer history.  None 
of these studies has ever found a statistically significant effect of nutrient fat 
intake on breast cancer. 

 
None of the evidence for a link between nutrient fat and breast cancer is conclusive.  
The animal results do not necessarily carry across to humans.  Countries differ in 
many ways, not just in nutrient fat intake.  Case-control studies are susceptible to a 
variety of forms of bias.  Nevertheless the confluence of these different sources of 
evidence does create a prima facie case for a link.   
The problem with the prospective studies is that fat intake is hard to measure.  With 
minor exceptions, every large prospective study has used a food frequency 
questionnaire (FFQ).  These have large and acknowledged errors.  Are the errors so 
large, or of such a nature, that it is altogether to be expected that the prospective 
studies will fail to show an effect? 
There are two keenly contested points of view: 

1. The confluence of the different sources of evidence does create a prima facie 
case for a positive association between fat intake and breast cancer, at least to 
the extent that the issue warrants a search for more conclusive evidence.  The 
evidence from prospective studies should be discounted because their 
measuring instrument (FFQ) is unreliable. 

2. The evidence from prospective studies is compelling.  It is consistent over 
different studies.  While the FFQ has problems, they are not large enough to 
explain the consistency of the failure to find an association. 

The search for more conclusive evidence has led to the huge expensive randomised 
clinical trial, extending over ten years, that is being conducted as part of a National 
Institutes of Health WHI (Women’s Health Initiative) study in the U.S..  Women in 
the `treated’ group will be counselled to undertake a healthy diet, involving as one 
component a large reduction (from 35% to 20% or less) in the proportion of calories 
coming from fat.  We will have to wait ten years or more for the answers. 
Of more immediate interest is work that examines sources of error in the use of FFQ 
information to estimate nutrient fat intake.   Everyone acknowledges that there are 
large errors in the estimates of fat intake.  The effect of these errors is to flatten the 
regression line, and make it more difficult to find statistical significance.  The effect is 
not strong enough, if one assumes that errors for any individual average out over time, 
to explain the consistently negative results from prospective trials. 
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Suppose however that there are individual-specific biases.  Some people consistently 
over-report their fat intake, while others consistently under-estimate it.  The model is 

FFQ = fat intake + person-specific bias + measurement error 
We now have a model where there are two sources of error.  One is individual-
specific and will be assumed to vary randomly between individuals, while the other 
will be a source of occasion to occasion variation within individuals. 
None of the available data allow estimation of a person-specific bias.  The effect of 
the person-specific bias is to further flatten the regression slope.  Kipnis et al. (1999) 
have investigated the magnitude of the effect, for a range of possible values of the 
person-specific bias.  It is at least possible that this explains the negative results from 
prospective studies. 
Perhaps the most important point that emerges is that it is impossible to know too 
much about one’s measuring instrument.  Apparently harmless assumptions can have 
large consequences.  Investigations are now under way that will collect data that 
should allow estimation of the distribution of the person-specific bias. 
There are better alternatives to the FFQ.  They are however so expensive that it is not 
feasible to use them in the very large numbers of participants that are required for 
prospective studies.  For example, breast cancer rates in Australian women aged 50-
60 are of the order of a few per thousand.   Such studies require, at a minimum, some 
hundreds of thousands of participants. 
Investigations into the characteristics of the FFQ can get useful results from relatively 
small numbers of subjects, of the order of a hundred or two.  In such studies it is 
possible to use more expensive alternatives to the FFQ as benchmarks against which 
to compare FFQ estimates. 
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15. The Research Process 
 

The map of the material world, including human mental activity, can be thought a sprinkling 
of charted terrain separated by blank expanses that are of unknown extent yet accessible to 
coherent interdisciplinary research. 
[E.O. Wilson, 1998, p. 299.] 
 
The scientific community is not good at looking critically at its own processes.  
Few journals conduct regular critical evaluations of all papers that have 
appeared over a period of a year or two.  Even fewer publish the results of 
such review.  Publication or archiving of data should ordinarily be 
mandatory, allowing other workers to impose their own checks on the analysis 
and/or on the data.  This would ensure access to the data for use in planning 
or in overview studies.  Few journals have clear and adequate standards for 
the reporting of data summaries, so that the completeness of information in 
published papers varies widely, even within the one journal.  There are 
particular inadequacies when research demands skills that are outside of the 
primary areas of expertise that the journal represents.  In all these respects, it 
is reasonable to expect eventual change and improvement.  Many different 
forces are driving change, not all of them benign. 

 
Research is paid for by public organizations, by business and industry, and rarely by 
individuals.  All these demand varying degrees of control over the research they fund.  
Funding bodies will continue to look for ways, not always well-conceived, to get 
better value from the research dollar.  We should have no doubt that there will be 
change, particularly in publicly funded research, and not all for the better.  The 
research community has been slow to initiate, from within its own ranks, changes that 
would genuinely improve the research process.  I have hinted at some desirable 
changes earlier in these notes.   
An examination of changes of the past two decades gives clues on how research 
demands may change in the next two decades.  We should expect future changes of a 
similar or larger magnitude.  Some changes will arise from the attempt to fix 
problems with our current approaches. Some will be driven by technological advance.  
Some will be demand driven. 

Publication Pressures 
One direction of change in the past two decades ought to be reversed.  Pressures to 
publish fill the literature with increasing quantities of trifling verbiage.  Disturbingly 
often, this material is buttressed by shoddy statistical analysis38.  The rewards too 
often go to those who pay as much attention to publishing the inconsequential as to 
results of substance.  This places a huge burden of discrimination on the reader. There 
are particular problems when authors stray into areas that are outside of their 
specialist discipline or disciplines. 

                                                
38 See Andersen (1990) for a wide-ranging account of problems in the medical literature. 
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Openings for Improvement 
Notwithstanding these various pressures, the standards of the best research are 
improving all the time. Some of the most interesting innovations that affect the use of 
scientific data have been in clinical epidemiology and clinical medicine.  
A good starting point is to examine changes in those areas (such as clinical 
epidemiology) where in the past twenty years there have been large advances in 
approaches to the design of data collection and data analysis, then consider the 
implications of these changes for other research.  These trends can then be 
extrapolated a limited distance into the future.  This is the motivation for the 
following list.  We might expect: 
1. Requirements to place data and supporting documentation in the public domain, 

inviting scrutiny and facilitating incorporation, where this is pertinent, into 
overview studies. 

2. Identification of skill gaps that compromise research that otherwise demonstrates 
high levels of technical skill. 

3. Development in other areas of mandatory reporting standards comparable to those 
for randomized controlled trials that are set out in the CONSORT statement (Begg 
et al. 1996). 

4. In medicine, health and education, the development of mechanisms that will 
replace multiple small trials by large carefully co-ordinated multi-centre trials. 

5. The establishment of international registers for major studies in specific areas, 
making it easier for anyone who is conducting an overview study to identify 
relevant studies. 

6. Except where they break radically new ground or where experimental approaches 
are impossible for ethical or other practical reasons, there may in clinical medicine 
and related areas be an increased reluctance to fund non-experimental studies. 

7. Insistence, where appropriate, that researchers use qualitative and quantitative 
approaches to complement each other. 

There is urgent need for items 1-3.  Items 1 and 2 could be implemented without 
making any substantial change to refereeing processes.  There are existing models for 
both these steps.   Moves to collect data into data bases that operate as commercial 
entities (Transborder 1998) may to a greater or lesser extent work in the other 
direction to item 1, restricting access to data.  Clinical medicine has made limited 
progress with items 4-7. 
Attention to potential skill gaps in ancillary disciplines is more than ever important as 
we respond to the seductions of new technology  molecular biology, informatics, 
machine learning, data mining, and so on.  The use of a new technology, or of an old 
technology under a new name, should not be a new opening to dispense with the 
complementary disciplines needed for an effective study. 

Insights from Evidence-Based Medicine 
Evidence-Based Medicine aims to base clinical practice, as far as possible, on the best 
research evidence. Its methods and insights have far-reaching implications for 
research, both in medicine and in other areas.  They are a good point of departure for 
discussing how research approaches and research training ought to change.  They 
provide a perspective from which to assess the contribution that new computing and 
other technologies may be able to make to research.  A key issue for Evidence-Based 
Medicine is to distinguish the data and associated interpretation that merit attention 
from what is valueless or of substantially inferior worth. 
Three key developments have been: 
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1. the Cochrane Collaboration (Sackett et al. 1994), an international network that 
facilitates the conduct of systematic overview studies that provide expert 
assessments of the available evidence on particular medical issues; 

2. Initiatives (Sackett et al. 1997) that aim to identify established research results, 
make them accessible to clinicians, and get clinicians using them.  Guidance on 
ways of getting quickly to the most useful and relevant evidence has been an 
important thrust; 

3. the Consort statement (Begg et al., 1996) that sets standards for the reporting of 
clinical trials. 

Clinicians do not have time to wade through and assess a mountain of papers, in order 
to decide on the best treatment for each and every condition.  Nor do they have the 
skills needed to decide between rival claims.  They require a reliable and up to date 
research consensus, expertly done.  The Cochrane Collaboration, and other similar 
initiatives, provides such a consensus.  
Other areas of science might with advantage take on board the approaches and 
insights of the Cochrane Collaboration studies, and of evidence-based medicine. The 
researcher’s need to use an assessment of existing knowledge as a point of departure 
for new research is not greatly different from the clinician’s demand for a research 
assessment on which he/she can base clinical decisions.  While the researcher may 
finally need to wade through some part of the mountain of paper, it is a huge help to 
have guidance on what is there. 
Unless authors explicitly report all relevant details of their procedures, it is difficult or 
impossible to judge the quality of the work, to assess its specific contribution to the 
total body of evidence, and to assess the relevance of the research for clinical practice. 
This is the motivation for the attention that the Consort statement (point 3 above) 
gives to reporting standards.  Again the point applies with equal force to other areas of 
science. 

Cost-Benefit Analysis 
Funding agencies increasingly demand cost-benefit or other economic analyses.  In 
principle this is useful.  A serious deficiency is that these analyses may focus on the 
costs of a narrow group of stakeholders, ignoring spill-over environmental or social 
effects that do not incur an immediate financial cost.  There are typically major 
benefits and losses that are not costed!  Assumptions may be simplistic.  It is 
important to keep assessments of medical benefit separate from economic 
assessments, allowing other investigators to vary the cost structure.  

The Relevance of Information Technologies 
There should be demands to gather better data, to gather more comprehensive data, to 
organize data better, and to make better use of the data we then have. While 
computing has from its beginnings carried with it the promise to address these 
concerns, computing technologies are not the most appropriate place to start in trying 
to address such demands.  Changes should be driven by the demands of the research 
process itself. 
Areas where information technologies seem relevant are: 
1. There have been huge advances in the methodology for data analysis, taking 

advantage of advances in computing hardware and software.   Statistical packages 
differ greatly in the extent to which they have taken up these methodological 
advances. 
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2. There has been a large emphasis on methods for Exploratory Data Analysis.  There 
is an overlap with the methods and approaches of Data Mining. 

3. There have been substantial advances, again taking advantage of the increased 
power of computing systems, in the methodology for analysing data from overview 
studies. 

4. Database technology, already a powerful tool for storing and accessing data, has 
extended to the networking of physically separate databases.  There is a new 
emphasis on the key role of data aggregation for the scientific enterprise. 
Statisticians, while rightly emphasizing the hazards of making inferences from data 
that are from disparate sources, have been slow to take this new emphasis on 
board. 

5. New data analysis challenges arise from the sheer size of some databases. 
6. The computer science perspective seems appropriate for attempts at automating the 

task of making data based inferences.  To date, these attempts have had very 
limited success. 

There has been a large growth in methodologies that require a pooling of the skills of 
computer scientists, statisticians and subject area specialists.  It is important that the 
demands of the research process should drive the use of computer technology, that the 
research process should not be driven by technology.  There is further discussion of 
these issues in Maindonald (revised 2000). 

Access to Data 
A serious impediment to scrutiny or further use of published results is that the data are 
rarely readily accessible.  It may turn out, when a request is made, that the data have 
been lost or misplaced.  Requests for access to data may not be well received, in some 
instances because authors do not want to risk exposing their own analyses to scrutiny.  
One author that I contacted agreed to make the data available on the condition that 
they were not used to reach a conclusion different from that in the published paper!   
Unless there are strong ethical or privacy reasons, all data that are the basis of 
published results ought to be archived and placed in the public domain.  Placing data 
of suitable interest and quality in the public domain should of itself count as a 
publication.  This is needed for reasons that, in total, are surely compelling: 

1. It allows various forms of post-publication scrutiny of results. 
2. The skills needed for undertaking the research that generated the data are 

different from those needed for design of data collection and for data analysis.  
3. Separation of the analysis task from the main research task that generated the 

data would often result in more effective eventual use and interpretation of the 
data.   

4. If data are of sufficient value, the work that led to their collection should be 
rewarded, independently of any attempt at analysis and interpretation. 

5. The data are then available to other scientists who may want to use them as a 
basis for planning their own studies. 

6. The data are available for inclusion in overview studies. 
7. Fraud is then harder to hide.  In investigations into fraud (e.g. Hagmann 2000) 

a first step may be to ask for the original data. 
Published analyses should often be treated as preliminary assessments, pending more 
definitive analysis. 
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Inter-disciplinary Research 
Often large advances take place at the boundaries between disciplines.  Physicists 
who had moved into biology did most of the early work on bacteriophages.  Crick, the 
co-discoverer of the structure of DNA, was trained as a physicist.  Crick and Watson 
relied heavily on the X-ray data of the chemists, Rosalind Franklin and Maurice 
Wilkins (Drlica 1994.)   
The funding of work that spreads across current disciplines might therefore seem a 
priority.  Present funding systems have difficulty with inter-disciplinary research.  
While the problem is widely recognised, little seems to be done by way of remedy.  
The following comment is from a U.S. report on the mathematical sciences (Senior 
Assessment Panel 1998).  It notes that interactions between mathematicians and other 
groups are often  “obscured by the inward focus of mathematics and science 
departments”.  It goes on to argue: 

The structure of universities mitigates against interdisciplinary research.  
While the above finding criticizes mathematical scientists for not collaborating 
more actively with other scientists and engineers, part of the fault lies with the 
organization and culture of universities, here and abroad, which restrains 
collaboration across scientific boundaries.  The academic award system does 
not encourage collaboration; in fact, individuals who straddle fields reduce 
their chances of tenure. … 

Evaluation of the Research Process 
A good principle is that, until they have been subjected to peer review, scientific 
claims should be treated with extreme caution.  Forms of commercial secrecy that 
interfere with this scrutiny can readily become cloaks for incompetence.  The peer 
review process does not however guarantee quality.  The quality of the review process 
varies greatly from one area to another and from one journal to another.  Even after 
peer review, scientific claims must be closely scrutinised.  The process requires much 
better evaluation than is currently common.  Review of the papers that have appeared 
in one or other journal over the course of a year or two seems unusual.  Why?  
Maintenance of quality, over all the skill areas that are relevant to papers that appear, 
is surely desirable if journals are to serve their presumed primary function as 
repositories of the results of research.  There should be checks on rejections as well as 
on acceptances. 
Journals have acquired another function that has partly displaced their primary 
function.  They have become a vehicle by which researchers can demonstrate their 
academic worth.  Review and maintenance of quality, over all skill areas relevant to 
papers that appear, is likewise necessary if they are to perform this function credibly. 
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Appendix I: Checklist for Use with Published Papers 
Aims and Purpose 

1. Do the authors explain their scientific reasons for undertaking the study? 
2. Is there a clear statement of what they aimed to achieve? 
3. Did the authors review current knowledge, before embarking on their study? 

 
Data Collection  

4. How were the data obtained?  Some of the possibilities are Sample, Experiment, 
Informed opinion, Guess. 
[How many tens of thousands of people did the papers say marched across Sydney 
Harbour Bridge?  Did someone count them all?  Was the number a stab in the dark?] 

5. Do the data make sense; are they free of apparent serious anomalies? 
[Some numbers may be impossible?  Or, e.g., a height/weight ratio may be 
impossible.] 

6. Do any of the claims go beyond what the data could support? 
7. Do the data answer the research question? 
8. Are the measurements/questions clear? Or is there ambiguity? 

[e.g. using data from a limited local study to support claims that relate to another 
geographical location.] 

9. Are the data valid for the intended use? 
10. In a study of human subjects, who had contact with the participants and how? 
11. Who/what was studied and what was the selection process? 
12. Are the data sampled from the population to which the researchers wish to 

generalise?   
[A sample of Sydney-siders is not a good basis for generalising to what Canberra 
residents think.] 

13. Was the study capable of detecting effects of a magnitude that were of interest?  
[Influences on precision include measurement instruments, experimental or 
sampling design, and sample size.] 

14. What biases may have been present in the data? 
[Consider, measuring instrument bias, observer bias, selection bias, etc.] 

15. Where groups are compared are there extraneous differences? 
[e.g., in clinical trials, differences that have nothing to do with the treatment.] 

Data Analysis 
16. Is the arithmetic correct? 
17. Does the analysis take account of data structure (fixed effects, random effects, 

clustering, etc.) 
18. Is the description of the method of analysis clear and complete, with a reference 

given if the methodology is at all non-standard? 
19. Has account been taken of clear grouping (e.g. males/females, different species, etc.) 

in the data?  If results were combined across groups, is justification given? 
20. Is statistical significance distinguished from practical significance? 
21. Do the authors present graphs or tables that allow the reader to assess agreement 

with the assumed model? 
Interpretation and Presentation 

22. Do the authors give a clear statement of what they claim to have achieved? 
23. Do the data support the claims that are made? 
24. Do the authors distinguish substantial effects from effects that, even if perhaps 

statistically significant, are insubstantial? 
[Large studies may detect effects that are of little practical consequence.] 

25. Do authors seem to rely uncritically on the claims of other authors? 
26. Are the interpretations plausible?  Do the data support them?  Do the data rule out 

other interpretations? 
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Appendices III and IV have more detailed checklists, with greater attention to technical 
statistical issues, for use in evaluating the statistical presentation in published papers.  See 
also the checklists in Greenhalgh (1997).  References appear at the end of Appendix III. 
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Appendix II – A Checklist for Authors 
This is primarily directed to the writing of reports and theses.  Most of it is also 
relevant to the writing of scientific papers.  Note however that each journal has its 
own style, which papers published in that journal need to follow. 
Here is the checklist: 
1. Did you begin with a brief intelligible summary that gives the main conclusions? 
2. Have you given a clear description of the research question? 
3. Have you given clear information on the technical background that explains why 

the project was needed, gives technical information that will help understand your 
report, and places your report in context? 

4. Have you given a clear description of the design of data collection, and of special 
difficulties that arose in implementing the design? 

5. Have you given a brief clear explanation of your methods of analysis? 
6. Are your statistical analyses appropriate?  Are they correct?  Are they reasonably 

complete?   
7. Do you highlight the main points that emerge from your analyses?  Do detailed 

technical information and the details of computer output, where these seem 
necessary, appear in an appendix? 

8. Is your discussion of results clear, critical and incisive? Do you focus on the key 
issues? 

9. Have you used clear and appropriate forms of graphical and tabular presentation?  
Is all the material that you include pertinent? 

10. Have you included references that will assist readers who want more information 
on technical background and methods of analysis? 

11. Have you used a consistent style (e.g. the Harvard style) for all references? 
12. Have you addressed potential challenges to the interpretation of results, including 

challenges that may arise from inadequacies in the design of data collection? 
13. Is the layout and general presentation attractive? Consider page margins, 

headings, line and other spacing, type fonts, graphs, division into sections and 
paragraphs. 

 
Points that will quickly attract the casual reader’s attention appear in italics.  In a 
report for a commercial client, these will often be the main focus of attention.  They 
may become important to a commercial client (and to the report writer) when claims 
made in the report are challenged, when the report goes to other consultants for 
review, or when other specialists make use of information in the report. 
Other points relate more directly to statistical or other professional concerns.  They 
are intrinsic to doing a thoroughly professional job. In a research thesis these are 
likely to be the major focus of attention.   
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Appendix III – Checklist for Presentation of Statistical 
Results. 
This checklist may be useful both to authors and to referees 
 
1. Is the objective (purpose) of the study sufficiently described? 
2. Is an appropriate study design used, having this objective in view? 
3. Is the study design adequately described?  If an experiment, is it clear  
     i how the experiment was laid out?     
 ii what were the experimental units, and what measurements were made or 

samples taken within experimental units?     
 iii how treatments were assigned to experimental units?     
 iv what sources of variability were represented – different error strata etc?   
  
4. Is all information given that is relevant to analysing or assessing results? 
       i Is the standard error of mean or of difference or of other statistics given when  

appropriate?     
 ii Are standard errors or other measures of variability based on the appropriate 

source of variation?     
 iii Where standard errors are not available or not appropriate, are there other 

indications of precision?     
 iv Are results presented to an appropriate numerical accuracy? 

(Thus means should be given to around 10% of the SEM.) 
 5. Were there sufficient replicates to give the precision that was desirable? 
 6. Were trend or response surface methods used when the data required this? 
 7. Do the statistical analyses connect closely to points that are of scientific interest?     
 8. Are the statistical methods used appropriate? 
 9. Are there statements describing or referencing all statistical tests or estimation 

methods?     
10. Does it seem that the validity of the statistical methods – e.g. homogeneity of 

variance or the form of response curves – has been adequately checked?  
11. From your examination of (i) text, (ii) tables and (iii) figures determine  
      i Is there an adequate overview of the data?      
 ii Is the focus on effects that are substantial and of major interest?       
 iii Is the presentation of statistical material clear? 
 12. Is an appropriate/correct conclusion drawn from the statistical analysis?      
 13. Are results translated, as far as possible, into subject matter terms? 
 14. Do graphs convey information  tersely and clearly, avoiding irrelevant and/or 

distracting features?      
 i Are graphs adequately labelled?      
 ii If there are multiple standard error bars, are they all necessary?  (But take 

care that when there clearly are standard errors that are very different, this is 
reflected by the use of the requisite number of error bars.)   

 15. Is assistance with the design and/or statistical analysis and/or interpretation 
acknowledged by  

     i authorship?     
 ii acknowledged help?  
 16. From the statistical viewpoint is the paper of acceptable standard to be published? 
 17. Comment on any points not covered by the above questions. 
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[Adapted from the checklist on page 1486 of Gardner, Altman, Jones and Machin 
(1983).] 
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