
55

Part XII

Linear Discriminant Analysis vs Random
Forests
Package: randomForest

For linear discriminant analysis, we will use the function lda() (MASS package). Covariates are
assumed to have a common multivariate normal distribution. It may have poor predictive power where
there are complex forms of dependence on the explanatory factors and variables. Where it is effective,
it has the virtue of simplicity.

The function qda() weakens the assumptions underlying lda() to allow different variance-covariance
matrices for different groups within the data. This sets limits on the minimum group size.

Where there are two classes, generalized linear models (glm()) have very similar properties to
linear discriminant analysis. It makes weaker assumptions. The trade-off is that estimated group
membership probabilities are conditional on the observed matrix.

With all these “linear” methods, the model matrix can replace columns of covariate data by a
set of spline (or other) basis columns that allow for effects that are nonlinear in the covariates.
Use termplot() with a glm object, with the argument smooth=panel.smooth, to check for hints of
nonlinear covariate effects. Detection of nonlinear effects typically requires very extensive data.

A good first check on whether these “linear” methods are adequate is comparison with the highly
nonparametric analysis of the function randomForest() (randomForest package). Random Forests
may do well when complex interactions are required to explain the dependence.

Here, attention will mostly be limited to data where there are two groups only.

1 Accuracy for Classification Models – the Pima Data
Type help(Pima.tr2) (MASS package) to get a description of these data. They are relevant to the
investigation of conditions that may pre-dispose to diabetes. All the explanatory variables can be
treated as continuous variables. There are no factor columns, or columns (e.g. of 0/1 data) that
might be regarded as factors.

1.1 Fitting an lda model

First try linear discriminant analysis, using the model formula type ∼ .. This takes as explanatory
variables all columns of Pima.tr except type.

A first run of the calculations has CV=TRUE, thus using leave-one-out cross-validation to to predic-
tions class membership and hence get an accuracy estimate. The second run of the calculations has
CV=FALSE (the default), allowing the use of predict() to obtain (among other information) discrim-
inant scores.

> library(MASS)
> PimaCV.lda <- lda(type ~ ., data=Pima.tr, CV=TRUE)
> tab <- table(Pima.tr$type, PimaCV.lda$class)
> ## Calculate confusion matrix from cross-validation
> conCV1 <- rbind(tab[1,]/sum(tab[1,]), tab[2,]/sum(tab[2,]))
> dimnames(conCV1) <- list(Actual=c("No", "Yes"),
+ "Predicted (cv)"=c("No","Yes"))
> print(round(conCV1,3))

Predicted (cv)
Actual No Yes

No 0.864 0.136
Yes 0.456 0.544

1 ACCURACY FOR CLASSIFICATION MODELS – THE PIMA DATA 56

> ## Now refit the model and get prediction scores
> Pima.lda <- lda(type ~ ., data=Pima.tr)
> ## Get a training set accuracy estimate; can be highly optimistic
> Pima.hat <- predict(Pima.lda)
> tabtrain <- table(Pima.tr$type, Pima.hat$class)
> conTrain <- rbind(tab[1,]/sum(tab[1,]), tab[2,]/sum(tab[2,]))
> dimnames(conTrain) <- list(Actual=c("No", "Yes"),
+ "Predicted (cv)"=c("No","Yes"))
> print(round(conTrain,3))

Predicted (cv)
Actual No Yes

No 0.864 0.136
Yes 0.456 0.544

Notice that, here, the two accuracy measures are the same. In general, the training set accuracy
can be optimistic.

Now plot the discriminant scores. As there are two groups only, there is just one set of scores.

> library(lattice)
> densityplot(~Pima.hat$x, groups=Pima.tr$type)

A function that calculates the confusion matrices and overall accuracy would be helpful:

> confusion <- function(actual, predicted, names=NULL,
+ printit=TRUE, prior=NULL){
+ if(is.null(names))names <- levels(actual)
+ tab <- table(actual, predicted)
+ acctab <- t(apply(tab, 1, function(x)x/sum(x)))
+ dimnames(acctab) <- list(Actual=names,
+ "Predicted (cv)"=names)
+ if(is.null(prior)){
+ relnum <- table(actual)
+ prior <- relnum/sum(relnum)
+ acc <- sum(tab[row(tab)==col(tab)])/sum(tab)
+ } else
+ {
+ acc <- sum(prior*diag(acctab))
+ names(prior) <- names
+ }
+ if(printit)print(round(c("Overall accuracy"=acc,
+ "Prior frequency"=prior),4))
+ if(printit){ cat("\nConfusion matrix", "\n")
+ print(round(acctab,4))
+ }
+ invisible(acctab)
+ }

1.2 The model that includes first order interactions

Is the outcome influenced by the combined effect of covariates, e.g., by whether they increase or
decrease together. A check is to include the effects of all products of variable values such as npreg*glu,
npreg*bp, etc. In this instance, it will turn out that this leads to a model that is over-fitted.

The model formula (a+b+c)^2 expands to a+b+c+a:b+a:c+b:c. Note the following:

• a:a is the same as a.

1 ACCURACY FOR CLASSIFICATION MODELS – THE PIMA DATA 57

• If a and b are (different) factors, then a:b is the interaction between a and b, i.e., it allows for
effects that are due to the specific combination of level of a with level of b.

• If a is a factor and b is a variable, the interaction a:b allows for different coefficients of the
variable for different levels of the factor.

• If a and b are (different) variables, then a:b is the result of multiplying a by b, element by
element.

Exercise 1
Try adding interaction terms to the model fitted above:

> ## Accuracy estimated by leave-one-out CV
> PimaCV2.lda <- lda(type ~ .^2, data=Pima.tr, CV=TRUE)
> confusion(Pima.tr$type, PimaCV2.lda$class)
> ## Now estimate "Accuracy" on training data
> Pima2.hat <- predict(lda(type ~ .^2, data=Pima.tr))$class
> confusion(Pima.tr$type, Pima2.hat)

Observe that the training set measure (resubstitution accuracy or apparent accuracy) now substan-
tially exaggerates the accuracy. The model that includes all interactions terms is in truth giving
lower predictive accuracy; it overfits.

1.3 Proportion correctly classified

Consider the fit

> PimaCV.lda <- lda(type ~ ., data=Pima.tr, CV=TRUE)
> confusion(Pima.tr$type, PimaCV.lda$class)

Overall accuracy Prior frequency.No Prior frequency.Yes
0.755 0.660 0.340

Confusion matrix
Predicted (cv)

Actual No Yes
No 0.864 0.136
Yes 0.456 0.544

The overall accuracy is estimated as 0.755. If however we keep the same rule, but change the prior
proportions of the two classes, the overall accuracy will change. If for example, the two classes are in
the ratio 0.9:0.1, the overall accuracy will be 0.9 × 0.8636 + 0.1 × 0.5441 # 0.83. The No’s are easier
to classify; with a higher proportion of No’s the classification accuracy increases.

However the classification rule that is optimal also changes if the prior proportions change. The
function lda() allows specification of a prior, thus:

> prior <- c(0.9, 0.1)
> PimaCVp.lda <- lda(type ~ ., data=Pima.tr, CV=TRUE, prior=prior)
> confusion(Pima.tr$type, PimaCVp.lda$class, prior=c(0.9, 0.1))

Overall accuracy Prior frequency.No Prior frequency.Yes
0.91 0.90 0.10

Confusion matrix
Predicted (cv)

1 ACCURACY FOR CLASSIFICATION MODELS – THE PIMA DATA 58

Actual No Yes
No 0.977 0.0227
Yes 0.691 0.3088

If the rule is modified to be optimal relative to the new prior proportions, the accuracy thus increases
to 0.91, approximately.

Exercise 2
Now assume prior proportions of 0.85 and 0.15. Repeat the above calculations, i.e.

• Estimate the accuracy using the rule that is designed to be optimal when the prior proportions
are as in the sample.

• Estimate the accuracy using the rule that is designed to be optimal when the prior proportions
are 0.85:0.15.

1.4 The ROC (receiver operating characteristic)

This introduces the terms sensitivity and specificity. With prior proportions as in the sample (0.755:0.245),
the sensitivity (true positive rate) was estimated as 0.544; this is the probability of correctly identi-
fying a person who is a diabetic as a diabetic. The false positive rate (1 - Specificity) was estimated
as 0.136. There is a trade-off between sensitivity and specificity. The ROC curve, which is a plot of
sensitivity against specificity, displays this trade-off graphically.

The analysis assumes that the cost of both types of mis-classification are equal. Varying the costs,
while keeping the prior probabilities the same, is equivalent to keeping the costs equal, but varying
the prior probabilities. The following calculation takes advantage of this equivalence.

Exercise 3
Run the following calculations:

> truepos <- numeric(19)
> falsepos <- numeric(19)
> p1 <- (1:19)/20
> for(i in 1:19){
+ p <- p1[i]
+ Pima.CV1p <- lda(type ~ ., data=Pima.tr, CV=TRUE, prior=c(p, 1-p))
+ confmat <- confusion(Pima.tr$type, Pima.CV1p$class, printit=FALSE)
+ falsepos[i] <- confmat[1,2]
+ truepos[i] <- confmat[2,2]
+ }

Now plot the curve.

> plot(truepos ~ falsepos, type="l", xlab="False positive rate",
+ ylab="True positive rate (Sensitivity)")

Read off the sensitivity at a low false positive rate (e.g., 0.1), and at a rate around the middle of
the range, and comment on the tradeoff.

The ROC curve allows assessment of the effects of different trade-offs between the two types of
cost.

1.5 Accuracy on test data

There is an additional data set – Pima.te – that has been set aside for testing. The following checks
the accuracy on these “test” data.

1 ACCURACY FOR CLASSIFICATION MODELS – THE PIMA DATA 59

> Pima.lda <- lda(type ~ ., data = Pima.tr)
> testhat <- predict(Pima.lda, newdata=Pima.te)
> confusion(Pima.te$type, testhat$class)

Overall accuracy Prior frequency.No Prior frequency.Yes
0.798 0.672 0.328

Confusion matrix
Predicted (cv)

Actual No Yes
No 0.888 0.112
Yes 0.385 0.615

This improves on the leave-one-out CV accuracy on Pima.tr. The difference in the prior proportions
is too small to have much effect on the overall accuracy. The apparent improvement may be a chance
effect. Another possibility is that the division of the data between Pima.tr and Pima.te may not
have been totally random, and Pima.te may have fewer hard to classify points. There are two checks
that may provide insight:

• Swap the roles of training and test data, and note whether the relative accuracies are similar.

• Repeat the calculations on a bootstrap sample of the training data, to get an indication of the
uncertainty in the accuracy assessment.

Exercise 4
Try the effect of swapping the role of training and test data.

> swapCV.lda <- lda(type ~ ., data = Pima.te, CV=TRUE)
> confusion(Pima.te$type, swapCV.lda$class)

Overall accuracy Prior frequency.No Prior frequency.Yes
0.783 0.672 0.328

Confusion matrix
Predicted (cv)

Actual No Yes
No 0.888 0.112
Yes 0.431 0.569

> swap.lda <- lda(type ~ ., data = Pima.te)
> otherhat <- predict(Pima.lda, newdata=Pima.tr)
> confusion(Pima.tr$type, otherhat$class)

Overall accuracy Prior frequency.No Prior frequency.Yes
0.77 0.66 0.34

Confusion matrix
Predicted (cv)

Actual No Yes
No 0.871 0.129
Yes 0.426 0.574

Note that, again, the accuracy is greater for Pima.te than for Pima.tr, but the difference is smaller.

2 LOGISTIC REGRESSION – AN ALTERNATIVE TO LDA 60

Exercise 5
Now check the accuracy on a bootstrap sample:

> prior <- table(Pima.tr$type)
> prior <- prior/sum(prior)
> index <- sample(1:dim(Pima.tr)[1], replace=TRUE)
> boot.lda <- lda(type ~ ., data = Pima.tr[index,], CV=TRUE)
> cmat <- confusion(Pima.tr[index, "type"], boot.lda$class, printit=FALSE)
> print(c(acc=round(prior[1]*cmat[1,1]+prior[2]*cmat[2,2],4)))

acc.No
0.801

The calculations should be repeated several times. The changes in the predictive accuracy estimates
are substantial.
Note the need to relate all accuracies back to the same prior probabilities, to ensure comparability.
Annotate the code to explain what it does.

(From running this code five times, I obtained results of 0.77, 0.74, 0.72, 0.71 and 0.82.)

2 Logistic regression – an alternative to lda
As the Pima data have only two classes (levels of type) the calculation can be handled as a regression
problem, albeit with the reponse on a logit scale, i.e., the linear model predicts log(π

1−π), where π is
the probability of having diabetes.

Exercise 6
Fit a logistic regression model and check the accuracy.

> Pima.glm <- glm(I(unclass(type)-1) ~ ., data=Pima.tr, family=binomial)
> testhat <- round(predict(Pima.glm, newdata=Pima.te, type="response"))
> confusion(Pima.te$type, testhat)

Compare the accuracy with that obtained from lda().
A cross-validation estimate of accuracy, based on the training data, can be obtained thus:

> library(DAAG)
> CVbinary(Pima.glm)

Fold: 6 1 4 7 9 5 3 10 2 8
Internal estimate of accuracy = 0.775
Cross-validation estimate of accuracy = 0.76

This should be repeated several times. How consistent are the results?

One advantage of glm() is that asymptotic standard error estimates are available for parameter
estimates:

> round(summary(Pima.glm)$coef, 3)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.773 1.770 -5.520 0.000
npreg 0.103 0.065 1.595 0.111
glu 0.032 0.007 4.732 0.000
bp -0.005 0.019 -0.257 0.797
skin -0.002 0.022 -0.085 0.932

3 DATA THAT ARE MORE CHALLENGING – THE CRX DATASET 61

bmi 0.084 0.043 1.953 0.051
ped 1.820 0.666 2.735 0.006
age 0.041 0.022 1.864 0.062

These results suggest that npreg, bp and skin can be omitted without much change to predictive
accuracy. Predictive accuracy may actually increase. There is however, no guarantee of this, and it is
necessary to check. Even though there is individually no detectable effect, the combined effect of two
or more of them may be of consequence.

Using this logistic regression approach, there is no built-in provision to adjust for prior probabilities.
Users can however make their own adjustments.

One advantage of glm() is that the termplot() function is available to provide a coarse check
on possible nonlinear effects of covariates. Use termplot() with a glm object as the first argument,
and with the argument smooth=panel.smooth. The resulting graphs can be examined for hints of
nonlinear covariate effects. Detection of nonlinear effects may require very extensive data.

3 Data that are More Challenging – the crx Dataset
The data can be copied from the web:

> webpage <- "http://mlearn.ics.uci.edu/databases/credit-screening/crx.data"
> webn <- "http://mlearn.ics.uci.edu/databases/credit-screening/crx.names"
> test <- try(readLines(webpage)[1])
> if (!inherits(test, "try-error")){
+ download.file(webpage, destfile="crx.data")
+ crx <- read.csv("crx.data", header=FALSE, na.strings="?")
+ download.file(webn, destfile="crx.names")
+ }

Column 16 is the outcome variable. Factors can be identified as follows:

> if(exists("crx"))
+ sapply(crx, function(x)if(is.factor(x))levels(x))

These data have a number of factor columns. It will be important to understand how they are handled.

3.1 Factor terms – contribution of the model matrix

As with normal theory linear models, the matrix has an initial column of ones that allows for a
constant term. (In all rows, the relevant parameter is muitiplied by 1.0, so that the contribution to
the fitted value is the same in all rows.) For terms that correspond directly to variables, the model
matrix incoporates the variable directly as one of its columns. With the default handling of a factor
term

• Implicitly there is a column that corresponds to the initial level of the factor, but as it has all
elements 0 it can be omitted;

• For the third and any subsequent levels, the model matrix has a column that is zeros except for
rows where the factor is at that level.

A factor that has only two levels will generate a single column, with 0s correponding to the first level,
and 1s for the second level. The Pima data has, except for the response variable type, no binary
variables.

4 USE OF RANDOM FOREST RESULTS FOR COMPARISON 62

3.2 Fitting the model

Exercise 7
Now fit a linear discriminant model:

> if(exists("crx")){
+ crxRed <- na.omit(crx)
+ crxCV.lda <- lda(V16 ~ ., data=crxRed, CV=TRUE)
+ confusion(crxRed$V16, crxCV.lda$class)
+ }

Note the message

Warning message:
In lda.default(x, grouping, ...) : variables are collinear

Now, for comparison, fit the model using glm(). This is one way to get details on the reasons for
collinearity. Also, for using glm(), the argument na.action=na.exclude is available, which omits
missing values when the model is fit, but then places NAs in those positions when fitted values,
predicted values, etc., are calculated. This ensures that predicted values match up with the rows of
the orginal data.

> if(exists("crx")){
+ crx.glm <- glm(V16 ~ ., data=crx, family=binomial, na.action=na.exclude)
+ alias(crx.glm)
+ confusion(crx$V16, round(fitted(crx.glm)))
+ summary(crx.glm)$coef
+ }

From the output from alias(crx.glm), what can one say about the reasons for multi-collinearity?

Now display the scores from the linear discriminant calculations:

> if(exists("crx")){
+ crxRed <- na.omit(crx)
+ crx.lda <- lda(V16 ~ ., data=crxRed)
+ crx.hat <- predict(crx.lda)
+ densityplot(~crx.hat$x, groups=crxRed$V16)
+ }

This plot is actually quite interesting. What does it tell you?

4 Use of Random Forest Results for Comparison
A good strategy is to use results from the random forests method for comparison. The accuracy of
this algorithm, when it does give a worthwhile improvement over lda(), is often hard to beat. This
method has the advantage that it can be applied pretty much automatically. It is good at handling
situations where explanatory variables and factors interact in a relatively complex manner.

Here are results for Pima.tr as training data, at the same time applying predictions to Pima.te as
test data. Notice that there are two confusion matrices, one giving the OOB estaimtes for Pima.tr,
and the other for Pima.te.

> library(randomForest)
> Pima.rf <- randomForest(type ~ ., xtest=Pima.te[,-8], ytest=Pima.te[,8],
+ data=Pima.tr)
> Pima.rf

5 NOTE – THE HANDLING OF NAS 63

Call:
randomForest(formula = type ~ ., data = Pima.tr, xtest = Pima.te[, -8], ytest = Pima.te[, 8])

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 2

OOB estimate of error rate: 28.5%
Confusion matrix:

No Yes class.error
No 109 23 0.174
Yes 34 34 0.500

Test set error rate: 23.5%
Confusion matrix:

No Yes class.error
No 192 31 0.139
Yes 47 62 0.431

Look at the OOB estimate of accuracy, which is pretty much equivalent to a cross-validation estimate
of accuracy. This error will be similar to the error on test data that are randomly chosen from the
same population.

The accuracy is poorer than for lda(). As before, the error rate is lower on Pima.te than on
Pima.te. Note however the need to re-run the calculation several times, as the accuracy will vary
from run to run.

Here are results for crx.

> if(exists("crxRed")){
+ crx.rf <- randomForest(V16 ~ ., data=crxRed)
+ crx.rf
+ }

Call:
randomForest(formula = V16 ~ ., data = crxRed)

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 3

OOB estimate of error rate: 11.9%
Confusion matrix:

+ - class.error
+ 255 41 0.139
- 37 320 0.104

Accuracy is similar to that from use of lda().

5 Note – The Handling of NAs
The assumption that underlies any analysis that omits missing values is that, for purposes of the
analysis, missingness is uninformative. This may be incorrect, and it is necessary to ask: Are the
subjects where there are missing values different in some way?

The missing value issue is pertinent both to the Pima data and to the crx data. There is a further
dataset, Pima.tr2, that augments Pima.tr with 100 subjects that have missing values in one or more
of the explanatory variables. The question then arises: Is the pattern of missingness the same for
those without diabetes as for those with diabetes?

The following shows the numbers of missing values for each of the variables

5 NOTE – THE HANDLING OF NAS 64

> if(exists("Pima.tr2", where=".GlobalEnv", inherits=FALSE))
+ rm(Pima.tr2)
> sapply(Pima.tr2,function(x)sum(is.na(x)))

npreg glu bp skin bmi ped age type
0 0 13 98 3 0 0 0

> sum(!complete.cases(Pima.tr2))

[1] 100

Note that the variable skin accounts for 98 of the 100 subjects where there is one or more missing
value.

A first step is to check whether the subjects with one or more missing values differ in some
systematic manner from subjects with no missing values. The major issue is for values that are
missing for skin. We start by creating a new variable – here named complete – that distinguishes
subjects with missing values for skin from others. We omit observations that are missing on any of
the other variables.

> newPima <- subset(Pima.tr2, complete.cases(bp) & complete.cases(bmi))
> newPima$NOskin <- factor(is.na(newPima$skin), labels=c("skin","NOskin"))
> ## NB: FALSE (skin is not NA) precedes TRUE in alphanumeric order
> newPima$skin <- NULL # Omit the column for skin

The argument labels=c("skin","NOskin") takes the values (here FALSE and TRUE) in alphanumeric
order, then making skin and NOskin the levels. Omission of this argument would result in levels
FALSE and TRUE.5

We now do a linear discriminant analysis in which variables other than skin are explanatory
variables.

> completeCV.lda <- lda(NOskin ~ npreg+glu+bp+bmi+ped+age+type,
+ data=newPima, CV=TRUE)
> confusion(newPima$NOskin, completeCV.lda$class)

Overall accuracy Prior frequency.skin Prior frequency.NOskin
0.694 0.704 0.296

Confusion matrix
Predicted (cv)

Actual skin NOskin
skin 0.970 0.0300
NOskin 0.964 0.0357

A linear discriminant analysis seems unable to distinguish the two groups. The overall accuracy does
not reach what could be achieved by predicting all rows as complete.

5.1 Does the missingness give information on the diagnosis?

If there is a suspicion that it does, then a valid analysis may be possible as follows. Missing values of
continuous variables are replaced by 0 (or some other arbitrary number). For each such variable, and
each observation for which it is missing, there must be a factor, e.g. with levels miss and nomiss, that
identifies the subject for whom the value is missing. Where values of several variables are missing for
the one subject, the same factor may be used. This allows an analysis in which all variables, together
with the newly created factors, are “present” for all subjects.

5NB also factor(is.na(newPima$skin), levels=c(TRUE, FALSE)); levels would then be TRUE and FALSE, in that
order.

65

Part XIII

Discriminant Methods & Associated
Ordinations
Packages: e1071, ggplot2, mlbench (this has the Vehicle dataset), mclust, textttrandomForest

These exercises will introduce classification into three or more groups. They examine and compare
three methods – linear discriminant analysis, Support Vector machines, and random forests.

As noted in an earlier laboratory, linear discriminant analysis generates scores that can be plotted
directly. Support Vector Machines generate decision scores, one set for each of the g groups; these
can be approximated in g − 1 dimensional and plotted. For random forests the pairwise proximity of
points, calculated as the proportion of trees for whiah the two observations end up in the same terminal
node, is a natural measure of the relative nearness. These can be subtracted from 1.0 to yield relative
distances, with non-metric scaling then be used to obtain a representation in a low-dimensional space.
In favorable cases, metric scaling may yield a workable represention, without going to further step to
non-metric scaling.

Again, it will be handy to have the function confusion() available.

> confusion <- function(actual, predicted, names=NULL,
+ printit=TRUE, prior=NULL){
+ if(is.null(names))names <- levels(actual)
+ tab <- table(actual, predicted)
+ acctab <- t(apply(tab, 1, function(x)x/sum(x)))
+ dimnames(acctab) <- list(Actual=names,
+ "Predicted (cv)"=names)
+ if(is.null(prior)){
+ relnum <- table(actual)
+ prior <- relnum/sum(relnum)
+ acc <- sum(tab[row(tab)==col(tab)])/sum(tab)
+ } else
+ {
+ acc <- sum(prior*diag(acctab))
+ names(prior) <- names
+ }
+ if(printit)print(round(c("Overall accuracy"=acc,
+ "Prior frequency"=prior),4))
+ if(printit){
+ cat("\nConfusion matrix", "\n")
+ print(round(acctab,4))
+ }
+ invisible(acctab)
+ }

1 Discrimination with Multiple Groups
With three groups, there are three group centroids. These centroids determine a plane, onto which
data points can be projected. Linear discrinimant analysis assumes, effectively, that discriminants
can be represented without loss of information in this plane. It yields two sets of linear discriminant
scores that can be plotted, giving an accurate graphical summary of the analysis.

More generally, with g ≥ 4 groups, there are max(g − 1, p) dimensions, and max(g − 1, p) sets
of linear discriminant scores. With three (or more) sets of scores, the function plot3d() in the rgl
package can be used to give a 3D scatterplot that rotates dynamically under user control.

1 DISCRIMINATION WITH MULTIPLE GROUPS 66

The output from printing an lda object that is called with CV=FALSE (the default) includes“propor-
tion of trace” information. The successive linear discriminants explain successively smaller proportions
of the trace, i.e., of the ratio of the between to within group variance. It may turn out that the final
discriminant or the final few discriminants explain a very small proportion of the trace, so that they
can be dropped.

With methods other than lda(), representation in a low-dimensional space is still in principle
possible. However any such representation arises less directly from the analysis, and there is nothing
directly comparable to the “proportion of trace” information.

1.1 The diabetes dataset

The package mclust has the data set diabetes. Datasets in this package do not automatically become
available when the package is attached.6 Thus, it is necessary to bring the data set diabetesit into
the workspace by typing

> library(mclust)
> data(diabetes)

Here is a 3-dimensional cloud plot:

> library(lattice)
> cloud(insulin ~ glucose+sspg, groups=class, data=diabetes)

1.2 Linear discriminant analysis

First try linear discriminant analysis. We specify CV=TRUE, in order to obtain predictions of class
membership that are derived from leave-one-out cross-validation. We then run the calculations a sec-
ond time, now with CV=FALSE, in order to obtain an object from which we can obtain the discriminant
scores

> library(MASS)
> library(lattice)
> diabetesCV.lda <- lda(class ~ insulin+glucose+sspg, data=diabetes, CV=TRUE)
> confusion(diabetes$class, diabetesCV.lda$class)
> diabetes.lda <- lda(class ~ insulin+glucose+sspg, data=diabetes)
> diabetes.lda # Linear discriminant 1 explains most of the variance
> hat.lda <- predict(diabetes.lda)$x
> xyplot(hat.lda[,2] ~ hat.lda[,1], groups=diabetes$class,
+ auto.key=list(columns=3), par.settings=simpleTheme(pch=16))

1.3 Quadratic discriminant analysis

The plot of linear discriminant scores makes it clear that the variance-covariance structure is very
different between the three classes. It is therefore worthwhile to try qda().

> diabetes.qda <- qda(class ~ insulin+glucose+sspg, data=diabetes, CV=TRUE)
> confusion(diabetes$class, diabetes.qda$class)

The prediction accuracy improves substantially.

6This package does not implement the lazy data mechanism.

1 DISCRIMINATION WITH MULTIPLE GROUPS 67

Exercise 1
Suppose now that the model is used to make predictions for a similar population, but with a different
mix of the different classes of diabetes.

(a) What would be the expected error rate if the three classes occur with equal frequency?

(b) What would be the expected error rate in a population with a mix of 50% chemical, 25%
normal and 25% overt?

1.4 Support vector machines

This requires the e1071 package. Here, we can coonveniently specify tenfold cross-validation, in order
to estimate predictve accuracy. A plot of points can be based on a low-dimensional representation of
the “decision values”.

> library(e1071)
> diabetes.svm <- svm(class ~ insulin+glucose+sspg, data=diabetes, cross=10)
> summary(diabetes.svm)
> pred <- predict(diabetes.svm, diabetes[,-1], decision.values = TRUE)
> decision <- attributes(pred)$decision.values
> decision.dist <- dist(decision)
> decision.cmd <- cmdscale(decision.dist)
> library(lattice)
> xyplot(decision.cmd[,2] ~ decision.cmd[,1], groups=diabetes$class)

The cross-validated prediction accuracy is lower than using lda(). There is however substantial scope
for using another kernel, and/or setting various tuning parameters. If there is such tuning, care is
needed to ensure that the tuning does not bias the accuracy measure. Two possibilities are: (1) divide
the data into training and test sets, and use the test set accuracy rather than the cross-validation
accuracy; or (2) repeat the tuning at each cross-validation fold. Automation of option (2) will require
the writing of special code. Depending on the nature of the tuning, it may not be straightforward.

1.4.1 A rubber sheet representation of the decision values

The plot given above projected the decision values on to a Euclidean space. A non-metric represen-
tation may be preferable. The following uses the MASS program isoMDS() to obtain a 2-dimensional
representation. The function isoMDS() requires a starting configuration; we use the values from
cmdscale() for that purpose:

> diabetes.mds <- isoMDS(decision.dist, decision.cmd)

It turns out that observations 4 and 80 have zero distance, which isoMDS() is unable to handle. We
therefore add a small positive quantity to the distance between these two observations.

> eps <- min(decision.dist[decision.dist > 0])
> ## We add half the smallest non-zero distance
> decision.dist[decision.dist == 0] <- eps
> diabetes.mds <- isoMDS(decision.dist, decision.cmd)
> xyplot(diabetes.mds$points[,2] ~ diabetes.mds$points[,1],
+ groups=diabetes$class)

1.5 Use of randomForest()

First, fit a randomForest discriminant model, calculating at the same time the proximities. The
proximity of any pair of points is the proportion of trees in which the two points appear in the same
terminal node:

1 DISCRIMINATION WITH MULTIPLE GROUPS 68

> ## Use randomForest(), obtain proximities
> library(randomForest)
> diabetes.rf <- randomForest(class~., data=diabetes, proximity=TRUE)
> print(diabetes.rf)

Note the overall error rate.

Exercise 2
Suppose that the model is used to make predictions for a similar population, but with a different
mix of the different classes of diabetes.

(a) What would be the expected error rate if the three classes occur with equal frequency?

(b) What would be the expected error rate in a population with a mix of 50% chemical, 25%
normal and 25% overt?

Points that in a large proportion of trees appear at the same terminal node are in some sense
“close together”, whereas points that rarely appear in the same terminal node are “far apart”. This is
the motivation for subtracting the proximities from 1.0, and treating the values obtained as distances
in Euclidean space. Inititially, a two-dimensional representation will be tried. If this representation
reproduces the distances effectively, the result will be a plot in which the visual separation of the
points reflects the accuracy with which the algorithm has been able to separate the points:

> ## Euclidean metric scaling
> diabetes.rf.cmd <- cmdscale(1-diabetes.rf$proximity)
> plot(diabetes.rf.cmd, col=unclass(diabetes$class)+1)

The clear separation between the three groups, on this graph, is remarkable, though perhaps to be
expected given that the OOB error rate is ∼2%.

1.5.1 A rubber sheet representation of the proximity-based ”distances”

There is no necessary reason why distances that have been calculated as above should be Euclidean
distances. It is more reasonable to treat them as relative distances. The isoMDS() function in the
MASS package uses the ordinates that are given by cmdscale() as a starting point for Kruskal’s
”non-metric” multi-dimensional scaling. In effect distances are represented on a rubber sheet that can
be stretched or shrunk in local parts of the sheet, providing only that relative distances are unchanged.

Almost certainly, some distances will turn out to be zero. In order to proceed, zero distances will
be replaced by 0.5 divided by the number of points. (The minimum non-zero distance must be at
least 1/dim(diabetes)[1]. Why?)

> sum(1-diabetes.rf$proximity==0)
> distmat <- as.dist(1-diabetes.rf$proximity)
> distmat[distmat==0] <- 0.5/dim(diabetes)[1]

We now proceed with the plot.

> diabetes.rf.mds <- isoMDS(distmat, y=diabetes.rf.cmd)
> xyplot(diabetes.rf.mds$points[,2] ~ diabetes.rf.mds$points[,1],
+ groups=diabetes$class, auto.key=list(columns=3))

Note that these plots exaggerate the separation between the groups. They represent visually the
effectiveness of the algorithm in classifying the training data. To get a fair assessment, the plot should
show points for a separate set of test data.

Exercise 10: Make a table that compares lda(), svm() and randomForest(), with respect to error
rate for the three classes separately.

1 DISCRIMINATION WITH MULTIPLE GROUPS 69

1.6 Vehicle dataset

Repeat the above, now with the Vehicle data frame from the mlbench package. For the plots, ensure
that the ggplot2 package (and dependencies) is installed.

Plots will use quickplot(), from the ggplot2 package. This makes it easy to get density plots.
With respect to arguments to quickplot(), note that:

• quickplot() has the geom (not geometry) argument, where base and lattice graphics would use
type;

• If different colours are specified, data will be grouped according to those colours.

> library(ggplot2)
> library(mlbench)
> data(Vehicle)
> VehicleCV.lda <- lda(Class ~ ., data=Vehicle, CV=TRUE)
> confusion(Vehicle$Class, VehicleCV.lda$class)
> Vehicle.lda <- lda(Class ~ ., data=Vehicle)
> Vehicle.lda
> hat.lda <- predict(Vehicle.lda)$x
> quickplot(hat.lda[,1], hat.lda[,2], colour=Vehicle$Class,
+ geom=c("point","density2d"))

1.6.1 Vehicle dataset – Quadratic discriminant analysis

> Vehicle.qda <- qda(Class ~ ., data=Vehicle, CV=TRUE)
> confusion(Vehicle$Class, Vehicle.qda$class)

Support Vector Machines

> Vehicle.svm <- svm(Class ~ ., data=Vehicle, cross=10)
> summary(Vehicle.svm)
> pred <- predict(Vehicle.svm, Vehicle, decision.values = TRUE)
> decision <- attributes(pred)$decision.values
> decision.dist <- dist(decision)
> eps <- min(decision.dist[decision.dist>0])/2
> decision.cmd <- cmdscale(decision.dist)
> quickplot(decision.cmd[,1], decision.cmd[,2], colour=Vehicle$Class,
+ geom=c("point","density2d"))
> ## Now try Kruskal's non-metric MDS
> decision.dist[decision.dist == 0] <- eps
> decision.mds <- isoMDS(decision.dist, decision.cmd)$points
> quickplot(decision.mds[,1], decision.mds[,2], colour=Vehicle$Class,
+ geom=c("point","density2d"))

Compare the metric and non-metric plots. Do they tell the same story?

1.7 Vehicle dataset – random forests

> Vehicle.rf <- randomForest(Class~., data=Vehicle, proximity=TRUE)
> print(Vehicle.rf)
> distmat <- 1-Vehicle.rf$proximity
> Vehicle.rf.cmd <- cmdscale(distmat)
> quickplot(Vehicle.rf.cmd[,1], Vehicle.rf.cmd[,2], colour=Vehicle$Class,
+ geom=c("point","density2d"))
> eps <- min(distmat[distmat>0])/2
> distmat[distmat == 0] <- eps

1 DISCRIMINATION WITH MULTIPLE GROUPS 70

> Vehicle.rf.mds <- isoMDS(distmat, Vehicle.rf.cmd)$points
> quickplot(Vehicle.rf.mds[,1], Vehicle.rf.mds[,2], colour=Vehicle$Class,
+ geom=c("point","density2d"))

Now calculate the distances for the points generated by isoMDS(), and plot these distances against
distances (in distmat) generated by subtracting the proximities from 1.

> mdsdist <- dist(Vehicle.rf.mds)
> plot(as.dist(distmat), mdsdist)

71

Part XIV

Ordination
Packages: DAAGxtras, ape, cluster, mclust, oz

The package oz, used to draw a map of Australia, must be installed. In order to use the dataframe
diabetes from the package mclust, that package must be installed. Or you can obtain the R image
file from "http://www.maths.anu.edu.au/~johnm/courses/dm/math3346/data/ Also required are
the functions read.dna() and dist.dna() from the package ape; that package must be installed.

Where there is no “natural” measure of distance between points, and there are groups in the
data that correspond to categorizations that will be of interest when the data are plotted, some
form of discriminant analysis may be the preferred starting point for obtaining a low-dimensional
representation. The low-dimensional representation that is likely to be superior to that obtained from
ordination without regard to any such categorization.

Two of the possibilities that the ordination methods considered in this laboratory addresses are:

• Distances may be given, from which it is desired to recover a low-dimensional representation.

– For example we may, as below, attempt to generate a map in which the distances on the
map accurately reflect Australian road travel distances.

– Or we may, based on genomic differences, derive genomic“distances ”between, e.g., different
insect species. The hope is that, with a judicious choice of the distance measure, the
distances will be a monotone function of the time since the two species separated. We’d
like to derive a 2 or 3-dimensional representation in which the distances accurately reflect
the closeness of the evolutionary relationships.

• There may be no groupings of the data that are suitable for use in deriving a low-dimensional
representation. Hence we calculate, using a metric that seems plausible, a matrix of distances
between pairs of points, from which we in turn try to derive a low-dimensional representation.

1 Australian road distances
The distance matrix that will be used is in the matrix audists, in the image file audists.Rdata.

Here is how the data can be read in from the text file:

audists <- read.table("audists.txt", sep="\t")
audists[is.na(audists)] <- 0
Also, we will later use the data frame aulatlong
aulatlong <- read.table("aulatlong.txt", row.names=1)[,2:1]
aulatlong[,2] <- -aulatlong[,2]
colnames(aulatlong) <- c("latitude", "longitude")

Consiser first the use of classical multi-dimensional scaling, as implemented in the function cmdscale():

> library(DAAGxtras)
> aupoints <- cmdscale(audists)
> plot(aupoints)
> text(aupoints, labels=paste(rownames(aupoints)))

An alternative to text(aupoints, labels=paste(rownames(aupoints))), allowing better place-
ment of the labels, is identify(aupoints, labels=rownames(aupoints)). We can compare the
distances in the 2-dimensional representation with the original road distances:

> origDists <- as.matrix(audists)
> audistfits <- as.matrix(dist(aupoints))
> misfit <- audistfits-origDists

1 AUSTRALIAN ROAD DISTANCES 72

> for (j in 1:9)for (i in (j+1):10){
+ lines(aupoints[c(i,j), 1], aupoints[c(i,j), 2], col="gray")
+ midx <- mean(aupoints[c(i,j), 1])
+ midy <- mean(aupoints[c(i,j), 2])
+ text(midx, midy, paste(round(misfit[i,j])))
+ }
> colnames(misfit) <- abbreviate(colnames(misfit), 6)
> print(round(misfit))

Adelad Alice Brisbn Broome Cairns Canbrr Darwin Melbrn Perth Sydney
Adelaide 0 140 -792 -156 366 20 11 82 482 -273
Alice 140 0 -1085 -175 -41 76 -118 106 -26 -314
Brisbane -792 -1085 0 198 319 -25 -233 -471 153 -56
Broome -156 -175 198 0 527 -7 6 -65 990 70
Cairns 366 -41 319 527 0 277 -31 178 8 251
Canberra 20 76 -25 -7 277 0 -1 -241 372 -8
Darwin 11 -118 -233 6 -31 -1 0 -12 92 -58
Melbourne 82 106 -471 -65 178 -241 -12 0 301 -411
Perth 482 -26 153 990 8 372 92 301 0 271
Sydney -273 -314 -56 70 251 -8 -58 -411 271 0

The graph is a tad crowded, and for detailed information it is necessary to examine the table.
It is interesting to overlay this “map” on a physical map of Australia.

> if(!exists("aulatlong"))load("aulatlong.RData")
> library(oz)
> oz()
> points(aulatlong, col="red", pch=16, cex=1.5)
> comparePhysical <- function(lat=aulatlong$latitude, long=aulatlong$longitude,
+ x1=aupoints[,1], x2 = aupoints[,2]){
+ ## Get best fit in space of (latitude, longitude)
+ fitlat <- predict(lm(lat ~ x1+x2))
+ fitlong <- predict(lm(long ~ x1+x2))
+ x <- as.vector(rbind(lat, fitlat, rep(NA,10)))
+ y <- as.vector(rbind(long, fitlong, rep(NA,10)))
+ lines(x, y, col=3, lwd=2)
+ }
> comparePhysical()

An objection to cmdscale() is that it gives long distances the same weight as short distances. It is
just as prepared to shift Canberra around relative to Melbourne and Sydney, as to move Perth. It
makes more sense to give reduced weight to long distances, as is done by sammon() (MASS).

> library(MASS)
> aupoints.sam <- sammon(audists)

Initial stress : 0.01573
stress after 10 iters: 0.00525, magic = 0.500
stress after 20 iters: 0.00525, magic = 0.500

> oz()
> points(aulatlong, col="red", pch=16, cex=1.5)
> comparePhysical(x1=aupoints.sam$points[,1], x2 = aupoints.sam$points[,2])

Notice how Brisbane, Sydney, Canberra and Melbourne now maintain their relative positions much
better.

2 IF DISTANCES MUST FIRST BE CALCULATED . . . 73

Now try full non-metric multi-dimensional scaling (MDS). THis preserves only, as far as possible,
the relative distances. A starting configuration of points is required. This might come from the
configuration used by cmdscale(). Here, however, we use the physical distances.

> oz()
> points(aulatlong, col="red", pch=16, cex=1.5)
> aupoints.mds <- isoMDS(audists, as.matrix(aulatlong))

initial value 11.875074
iter 5 value 5.677228
iter 10 value 4.010654
final value 3.902515
converged

> comparePhysical(x1=aupoints.mds$points[,1], x2 = aupoints.mds$points[,2])

Notice how the distance between Sydney and Canberra has been shrunk quite severely.

2 If distances must first be calculated . . .
There are two functions that can be used to find distances – dist() that is in the base statistics
package, and daisy() that is in the cluster package. The function daisy() is the more flexible. It
has a parameter stand that can be used to ensure standardization when distancces are calculated,
and allows columns that are factor or ordinal. Unless measurements are comparable (e.g., relative
growth, as measured perhaps on a logarithmic scale, for different body measurements), then it is
usually desirable to standardize before using ordination methods to examine the data.

> library(cluster)
> library(mclust)
> data(diabetes)
> diadist <- daisy(diabetes[, -1], stand=TRUE)
> ## Examine distribution of distances
> plot(density(diadist, from=0))

3 Genetic Distances
Here, matching genetic DNA or RNA or protein or other sequences are available from each of the
different species. Distances are based on probabilistic genetic models that describe how gene sequences
change over time. The package ape implements a number of alternative measures. For details see
help(dist.dna).

3.1 Hasegawa’s selected primate sequences

The sequences were selected to have as little variation in rate, along the sequence, as possible. The
sequences are available from:
http://evolution.genetics.washington.edu/book/primates.dna. They can be read into R as:

> library(ape)
> webpage <- "http://evolution.genetics.washington.edu/book/primates.dna"
> test <- try(readLines(webpage)[1])
> if (!inherits(test, "try-error")){
+ primates.dna <- read.dna(con <- url(webpage))
+ close(con)
+ hasdata <- TRUE
+ } else hasdata <- FALSE

3 GENETIC DISTANCES 74

Now calculate distances, using Kimura’s F84 model, thus

> if(hasdata)
+ primates.dist <- dist.dna(primates.dna, model="F84")

We now try for a two-dimensional representation, using cmdscale().

> if(hasdata){
+ primates.cmd <- cmdscale(primates.dist)
+ eqscplot(primates.cmd)
+ rtleft <- c(4,2,4,2)[unclass(cut(primates.cmd[,1], breaks=4))]
+ text(primates.cmd[,1], primates.cmd[,2], row.names(primates.cmd), pos=rtleft)
+ }

Now see how well the distances are reproduced:

> if(hasdata){
+ d <- dist(primates.cmd)
+ sum((d-primates.dist)^2)/sum(primates.dist^2)
+ }

[1] 0.1977

This is large enough (20%, which is a fraction of the total sum of squares) that it may be worth
examining a 3-dimensional representation.

> if(hasdata){
+ primates.cmd <- cmdscale(primates.dist, k=3)
+ cloud(primates.cmd[,3] ~ primates.cmd[,1]*primates.cmd[,2])
+ d <- dist(primates.cmd)
+ sum((d-primates.dist)^2)/sum(primates.dist^2)
+ }

[1] 0.1045

Now repeat the above with sammon() and mds().

> if(hasdata){
+ primates.sam <- sammon(primates.dist, k=3)
+ eqscplot(primates.sam$points)
+ rtleft <- c(4,2,4,2)[unclass(cut(primates.sam$points[,1], breaks=4))]
+ text(primates.sam$points[,1], primates.sam$points[,2],
+ row.names(primates.sam$points), pos=rtleft)
+ }

Initial stress : 0.11291
stress after 10 iters: 0.04061, magic = 0.461
stress after 20 iters: 0.03429, magic = 0.500
stress after 30 iters: 0.03413, magic = 0.500
stress after 40 iters: 0.03409, magic = 0.500

There is no harm in asking for three dimensions, even if only two of them will be plotted.

> if(hasdata){
+ primates.mds <- isoMDS(primates.dist, primates.cmd, k=3)
+ eqscplot(primates.mds$points)
+ rtleft <- c(4,2,4,2)[unclass(cut(primates.mds$points[,1], breaks=4))]
+ text(primates.mds$points[,1], primates.mds$points[,2],
+ row.names(primates.mds$points), pos=rtleft)
+ }

4 *DISTANCES BETWEEN FLY SPECIES 75

initial value 19.710924
iter 5 value 14.239565
iter 10 value 11.994621
iter 15 value 11.819528
iter 15 value 11.808785
iter 15 value 11.804569
final value 11.804569
converged

. .

. .
The two remaining examples are optional extras.

4 *Distances between fly species
These data have been obtained from databases on the web. We extract them from an Excel .csv
file (dipt.csv) and store the result in an object of class "dist". The file dipt.csv is available from
http://www.maths.anu.edu.au/~johnm/datasets/ordination.

Only below diagonal elements are stored, in column dominant order, in the distance object
dipdist that is created below. For manipulating such an object as a matrix, should this be re-
quired, as.matrix() can be used to turn it into a square symmetric matrix. Specify, e.g., dipdistM
<- as.matrix(dipdist). For the clustering and ordination methods that are used here, storing it as
a distance object is fine.

> ## Diptera
> webpage <- "http://www.maths.anu.edu.au/~johnm/datasets/ordination/dipt.csv"
> test <- try(readLines(webpage)[1])
> if (!inherits(test, "try-error")){
+ diptera <- read.csv(webpage, comment="", na.strings=c(NA,""))
+ dim(diptera)
+ ## Now observe that the names all start with "#"
+ species <- as.character(diptera[,1])
+ table(substring(species, 1, 1))
+ ## Now strip off the initial "#"
+ species <- substring(species,2)
+ genus <- as.character(diptera[,2])
+ ## Now store columns 5 to 114 of diptera as a distance object.
+ ## The distance matrix stores, in vector form, the elements of the
+ ## matrix that are below the diagonal.
+ dipdist <- as.dist(diptera[1:110,5:114])
+ attributes(dipdist)$Labels <- species
+ length(dipdist) ## The length reflects the number of elements in
+ ## the lower triangle, i.e., below the diagonal
+ hasdata <- TRUE
+ } else hasdata <- FALSE

Two of the functions that will be used – sammon() and isoMDS() – require all distances to be
positive. Each zero distance will be replaced by a small positive number.

> if(hasdata)
+ dipdist[dipdist==0] <- 0.5*min(dipdist[dipdist>0])

Now use (i) classical metric scaling; (ii) sammon scaling; (iii) isometric multi-dimensional scaling,
with i as the starting configuration; (iv) isometric multi-dimensional scaling, with ii as the starting
configuration.

5 *ROCK ART 76

> if(hasdata){
+ dipt.cmd <- cmdscale(dipdist)
+ genus <- sapply(strsplit(rownames(dipt.cmd), split="_", fixed=TRUE),
+ function(x)x[1])
+ nam <- names(sort(table(genus), decreasing=TRUE))
+ genus <- factor(genus, levels=nam)
+ plot(dipt.cmd, col=unclass(genus), pch=16)
+ dipt.sam <- sammon(dipdist)
+ plot(dipt.sam$points, col=unclass(genus), pch=16)
+ dipt.mds <- isoMDS(dipdist, dipt.cmd)
+ plot(dipt.mds$points, col=unclass(genus), pch=16)
+ dipt.mds2 <- isoMDS(dipdist, dipt.sam$points)
+ plot(dipt.mds2$points, col=unclass(genus), pch=16)
+ }

5 *Rock Art
Here, we use data that were collected by Meredith Wilson for her PhD thesis. The 614 features were
all binary – the presence or absence of specific motifs in each of 103 Pacific sites. It is necessary to
omit 5 of the 103 sites because they have no motifs in common with any of the other sites. Data are
in the DAAGxtras package.

The binary measure of distance was used – the number of locations in which only one of the sites
had the marking, as a proportion of the sites where one or both had the marking. Here then is the
calculation of distances:

> library(DAAGxtras)
> pacific.dist <- dist(x = as.matrix(rockArt[-c(47, 54, 60, 63, 92), 28:641]),
+ method = "binary")
> sum(pacific.dist==1)/length(pacific.dist)

[1] 0.6312

> plot(density(pacific.dist, to = 1))
> ## Now check that all columns have some distances that are less than 1
> symmat <- as.matrix(pacific.dist)
> table(apply(symmat, 2, function(x) sum(x==1)))

13 21 27 28 29 32 33 35 36 38 40 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56
1 1 1 1 2 1 2 1 2 2 1 2 4 3 1 3 1 2 1 1 2 2 3 2 2 2
57 58 61 62 64 65 66 67 68 69 70 71 73 75 76 77 79 81 83 84 85 90 91 92 93 94
1 3 3 1 2 1 1 1 3 3 1 1 4 1 2 1 1 1 2 1 1 3 1 1 3 1
95 96 97
1 3 4

It turns out that 63% of the distances were 1. This has interesting consequences, for the plots we now
do.

> pacific.cmd <- cmdscale(pacific.dist)
> eqscplot(pacific.cmd)

77

Part XV

Trees, SVM, and Random Forest
Discriminants
Packages: e1071, lattice, randomForest

1 rpart Analyses – the Pima Dataset
Note the rpart terminology:

size Number of leaves Used in plots from plotcp()
nsplit Number of splits = size - 1 Used in printcp() output
cp Complexity parameter Appears as CP in graphs and printed

output. A smaller cp gives a more complex model,
i.e., more splits.

rel error Resubstitution error Multiply by baseline error to get the
measure corresponding absolute error measure.

In general, treat this error measure with scepticism.
xerror Crossvalidation error Multiply by baseline error to get the

estimate corresponding absolute error measure.

After attaching the MASS package, type help(Pima.tr) to get a description of these data. They
are relevant to the investigation of conditions that may pre-dispose to diabetes.

1.1 Fitting the model

Fit an rpart model to the Pima.tr data:

> library(MASS)
> library(rpart)
> Pima.rpart <- rpart(type ~ ., data=Pima.tr, method="class")
> plotcp(Pima.rpart)

The formula type ∼ . has the effect of using as explanatory variables all columns of Pima.tr except
type. The parameter cp is a complexity parameter; it penalizes models that are too complex. A
small penalty leads to more splits. Note that cp, at this initial fit, has to be small enough so that the
minimum of the cross-validated error is attained.

Try this several times. The result will vary somewhat from run to run. Why?
One approach is to choose the model that gives the absolute minimum of the cross-validated error.

If the fitting has been repeated several times, the cross-validation errors can be averaged over the
separate runs.

A more cautious approach is to choose a model where there is some modest certainty that the final
split is giving a better than chance improvement. For this, the suggestion is to choose the smallest
number of splits so that cross-validated error rate lies under the dotted line. This is at a height of
(minimum cross-validated error rate) + 1 standard error.

The choice of 1 SE, rather than some other multiple of the SE, is somewhat arbitrary. The aim
is to identify a model where the numbers of splits stays pretty much constant under successive runs
of rpart. For this it is necessary to move back somewhat, on the curve that plots the cross-validated
error rate against cp, from the flat part of the curve where the cross-validated error rate is a minimum.
The 1 SE rule identifies a better-defined value of cp where the curve has a detectable negative slope.

For example, in one of my runs, the 1 SE rule gave cp=0.038, with size=4. The resulting tree can
be cut back to this size with:

1 RPART ANALYSES – THE PIMA DATASET 78

> Pima.rpart4 <- prune(Pima.rpart, cp=0.037)

The value of cp is chosen to be less than 0.038, but more than the value that led to a further split.
Plot the tree, thus:

> plot(Pima.rpart4) # NB: plot, not plotcp()
> text(Pima.rpart4) # Labels the tree

Note also the printed output from

> printcp(Pima.rpart)

Classification tree:
rpart(formula = type ~ ., data = Pima.tr, method = "class")

Variables actually used in tree construction:
[1] age bmi bp glu ped

Root node error: 68/200 = 0.34

n= 200

CP nsplit rel error xerror xstd
1 0.221 0 1.00 1.00 0.099
2 0.162 1 0.78 1.00 0.099
3 0.074 2 0.62 0.85 0.094
4 0.059 3 0.54 0.88 0.095
5 0.015 4 0.49 0.71 0.089
6 0.010 7 0.44 0.78 0.092

Get the absolute cross-validated error by multiplying the root node error by xerror. With nsplit=3
(a tree of size 4 leaves), this is, in the run I did, 0.3327*0.7006 = 0.233. (The accuracy is obtained by
subtracting this from 1.0, i.e., about 77%.)

Where it is not clear from the graph where the minimum (or the minimum+SE, if that is used)
lies, it will be necessary to resort to use this printed output for that purpose. It may be necessary to
use a value of cp that is smaller than the default in the call to rpart(), in order to be reasonably
sure that the optimum (according to one or other criterion) has been found.

Exercise 1: Repeat the above several times, i.e.

> library(rpart)
> Pima.rpart <- rpart(type ~ ., data=Pima.tr, method="class")
> plotcp(Pima.rpart)

(a) Overlay the several plots of the cross-validated error rate against the number of splits. Why
does the cross=validated error rate vary somewhat from run to run? Average over the several runs
and choose the optimum size of tree based on (i) the minimum cross-validated error rate, and (ii) the
minimum cross-validated error rate, plus one SE.

(b) Show the relative error rate on the same graph.
NB: You can get the error rate estimates from:

> errmat <- printcp(Pima.rpart)

Classification tree:
rpart(formula = type ~ ., data = Pima.tr, method = "class")

Variables actually used in tree construction:

2 RPART ANALYSES – PIMA.TR AND PIMA.TE 79

[1] age bmi bp glu ped

Root node error: 68/200 = 0.34

n= 200

CP nsplit rel error xerror xstd
1 0.221 0 1.00 1.00 0.099
2 0.162 1 0.78 1.01 0.099
3 0.074 2 0.62 0.91 0.096
4 0.059 3 0.54 0.90 0.096
5 0.015 4 0.49 0.74 0.090
6 0.010 7 0.44 0.81 0.093

> colnames(errmat) # Hints at what will come next

[1] "CP" "nsplit" "rel error" "xerror" "xstd"

> resub.err <- 1-0.3327*errmat[,"rel error"]
> cv.err <- 1-0.3327*errmat[,"xerror"]

Exercise 2: Prune the model back to give the optimum tree, as determined by the one SE rule.
How does the error rate vary with the observed value of type? Examine the confusion matrix. This is
most easily done using the function xpred(). (The following assumes that 3 leaves, i.e., cp less than
about 0.038 and greater than 0.011, is optimal.)

> Pima.rpart <- prune(Pima.rpart, cp=0.037)
> cvhat <- xpred.rpart(Pima.rpart4, cp=0.037)
> tab <- table(Pima.tr$type, cvhat)
> confusion <- rbind(tab[1,]/sum(tab[1,]), tab[2,]/sum(tab[2,]))
> dimnames(confusion) <- list(ActualType=c("No","Yes"),
+ PredictedType=c("No","Yes"))
> print(confusion)

PredictedType
ActualType No Yes

No 0.8636 0.1364
Yes 0.4706 0.5294

The table shows how the predicted accuracy changes, depending on whether the correct type is Yes
or No.

How would you expect the overall estimate of predictive accuracy to change, using the same fitted
rpart model for prediction:

• if 40% were in the Yes category?

• if 20% were in the Yes category?

2 rpart Analyses – Pima.tr and Pima.te
Exercise 3 These exercises will use the two data sets Pima.tr and Pima.te.

What are the respective proportions of the two types in the two data sets?

2 RPART ANALYSES – PIMA.TR AND PIMA.TE 80

Exercise 3a: Refit the model.

> trPima.rpart <- rpart(type ~ ., data=Pima.tr, method="class")
> plotcp(trPima.rpart)
> printcp(trPima.rpart)

Classification tree:
rpart(formula = type ~ ., data = Pima.tr, method = "class")

Variables actually used in tree construction:
[1] age bmi bp glu ped

Root node error: 68/200 = 0.34

n= 200

CP nsplit rel error xerror xstd
1 0.221 0 1.00 1.00 0.099
2 0.162 1 0.78 0.90 0.096
3 0.074 2 0.62 0.79 0.092
4 0.059 3 0.54 0.79 0.092
5 0.015 4 0.49 0.68 0.088
6 0.010 7 0.44 0.75 0.091

Choose values of cp that will give the points on the graph given by plotcp(trPima.rpart). These
(except for the first; what happens there?) are the geometric means of the successive pairs that are
printed, and can be obtained thus:

> trPima.rpart <- rpart(type ~ ., data=Pima.tr, method="class")
> cp.all <- printcp(trPima.rpart)[, "CP"]

Classification tree:
rpart(formula = type ~ ., data = Pima.tr, method = "class")

Variables actually used in tree construction:
[1] age bmi bp glu ped

Root node error: 68/200 = 0.34

n= 200

CP nsplit rel error xerror xstd
1 0.221 0 1.00 1.00 0.099
2 0.162 1 0.78 1.01 0.099
3 0.074 2 0.62 0.87 0.095
4 0.059 3 0.54 0.88 0.095
5 0.015 4 0.49 0.74 0.090
6 0.010 7 0.44 0.85 0.094

> n <- length(cp.all)
> cp.all <- sqrt(cp.all*c(Inf, cp.all[-n]))
> nsize <- printcp(trPima.rpart)[, "nsplit"] + 1

Classification tree:
rpart(formula = type ~ ., data = Pima.tr, method = "class")

3 ANALYSIS USING SVM 81

Variables actually used in tree construction:
[1] age bmi bp glu ped

Root node error: 68/200 = 0.34

n= 200

CP nsplit rel error xerror xstd
1 0.221 0 1.00 1.00 0.099
2 0.162 1 0.78 1.01 0.099
3 0.074 2 0.62 0.87 0.095
4 0.059 3 0.54 0.88 0.095
5 0.015 4 0.49 0.74 0.090
6 0.010 7 0.44 0.85 0.094

Observe that nsize is one greater than the number of splits.
Prune back successively to these points. In each case determine the cross-validated error for the

training data and the error for test data. Plot both these errors against the size of tree, on the same
graph. Are they comparable? The following will get you started:

> tr.cverr <- printcp(trPima.rpart)[, "xerror"] * 0.34

Classification tree:
rpart(formula = type ~ ., data = Pima.tr, method = "class")

Variables actually used in tree construction:
[1] age bmi bp glu ped

Root node error: 68/200 = 0.34

n= 200

CP nsplit rel error xerror xstd
1 0.221 0 1.00 1.00 0.099
2 0.162 1 0.78 1.01 0.099
3 0.074 2 0.62 0.87 0.095
4 0.059 3 0.54 0.88 0.095
5 0.015 4 0.49 0.74 0.090
6 0.010 7 0.44 0.85 0.094

> n <- length(cp.all)
> trPima0.rpart <- trPima.rpart
> te.cverr <- numeric(n)
> for (i in n:1){
+ trPima0.rpart <- prune(trPima0.rpart, cp=cp.all[i])
+ hat <- predict(trPima0.rpart, newdata=Pima.te, type="class")
+ tab <- table(hat, Pima.te$type)
+ te.cverr[i] <- 1-sum(tab[row(tab)==col(tab)])/sum(tab)
+ }

Comment on the comparison, and also on the dependence on the number of splits.

3 Analysis Using svm
Exercise 4: Compare the result also with the result from an SVM (Support Vector Machine) model.
For getting predictions for the current test data, it will be necessary, for models fitted using svm(),

4 ANALYSIS USING RANDOMFOREST 82

to use the newdata argument for predict(). Follow the prototype

> library(e1071)
> library(MASS)
> trPima.svm <- svm(type ~ ., data=Pima.tr)
> hat <- predict(trPima.svm, newdata=Pima.te)
> tab <- table(Pima.te$type, hat)
> 1-sum(tab[row(tab)==col(tab)])/sum(tab)
> confusion.svm <- rbind(tab[1,]/sum(tab[1,]), tab[2,]/sum(tab[2,]))
> print(confusion.svm)

4 Analysis Using randomForest
Random forests can be fit pretty much automatically, with little need or opportunity for tuning. For
datasets where there is a relatively complex form of dependence on explanatory factors and variables,
random forests may give unrivalled accuracy.

Fiting proceeds by fitting (in fact, overfitting) many (by default, 500) trees, with each tree fitted
to a different bootstrap sample of the data, with a different random sample of variables also. Each
tree is taken to its full extent. The predicted class is then determined ny a simple vote over all trees.

Exercise 5: Repeat the previous exercise, but now using randomForest()

> library(randomForest)
> Pima.rf <- randomForest(type~., data=Pima.tr, xtest=Pima.te[,-8],
+ ytest=Pima.te$type)
> Pima.rf

Call:
randomForest(formula = type ~ ., data = Pima.tr, xtest = Pima.te[, -8], ytest = Pima.te$type)

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 2

OOB estimate of error rate: 29%
Confusion matrix:

No Yes class.error
No 108 24 0.1818
Yes 34 34 0.5000

Test set error rate: 23.49%
Confusion matrix:

No Yes class.error
No 191 32 0.1435
Yes 46 63 0.4220

Note that OOB = Out of Bag Error rate, calculated using an approach that has much the same effect
as cross-validation, applied to the data specified by the data parameter. Notice that randomForest()
will optionally give, following the one function call, an assessment of predictive error for a completely
separate set of test data that has had no role in training the model. Where such a test set is available,
this provides a reassuring check that randomForest() is not over-fitting.

Exercise 6: The function tuneRF() can be used for such limited tuning as randomForest() allows.
Look up help(tuneRF(), and run this function in order to find an optimal value for the parameter
mtry. Then repeat the above with this optimum value of mtry, and again compare the OOB error
with the error on the test set.

5 CLASS WEIGHTS 83

Exercise 7: Comment on the difference between rpart() and randomForest(): (1) in the level
of automation; (2) in error rate for the data sets for which you have a comparison; (3) in speed of
execution.

5 Class Weights
Exercise 8: Analysis with and without specification of class weights Try the following:

> Pima.rf <- randomForest(type ~ ., data=Pima.tr, method="class")
> Pima.rf.4 <- randomForest(type ~ ., data=Pima.tr, method="class", classwt=c(.6,.4))
> Pima.rf.1 <- randomForest(type ~ ., data=Pima.tr, method="class", classwt=c(.9,.1))

What class weights have been implicitly assumed, in the first calculation?
Compare the three confusion matrices. The effect of the class weights is not entirely clear. They

do not function as prior probabilites. Prior probabilities can be fudged by manipulating the sizes of
the bootstrap samples from the different classes.

6 Plots that show the “distances” between points
In analyses with randomForest, the proportion of times (over all trees) that any pair of observations
(“points”) appears at the same terminal node can be use as a measure of proximity between the pair.
An ordination method can then be used to find a low-dimensional representation of the points that
as far as possible preserves the distances or (for non-metric scaling) preserves the ordering of the
distances. Here is an example:

> Pima.rf <- randomForest(type~., data=Pima.tr, proximity=TRUE)
> Pima.prox <- predict(Pima.rf, proximity=TRUE)
> Pima.cmd <- cmdscale(1-Pima.prox$proximity)
> Pima.cmd3 <- cmdscale(1-Pima.prox$proximity, k=3)
> library(lattice)
> cloud(Pima.cmd3[,1] ~ Pima.cmd3[,2]*Pima.cmd3[,2], groups=Pima.tr$type)

Exercise 9: What is the plot from cloud() saying? Why is this not overly surprising?:

Note: The function randomForest() has the parameter classwt, which seems to have little effect.

6.1 Prior probabilities

The effect of assigning prior probabilities can be achieved by choosing the elements of the parameter
sampsize (the bootstrap sample sizes) so that they are in the ratio of the required prior probabilities.

> ## Default
> randomForest(type ~ ., data=Pima.tr, sampsize=c(132,68))

Call:
randomForest(formula = type ~ ., data = Pima.tr, sampsize = c(132, 68))

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 2

OOB estimate of error rate: 29.5%
Confusion matrix:

No Yes class.error
No 108 24 0.1818
Yes 35 33 0.5147

7 FURTHER EXAMPLES 84

> ## Simulate a prior that is close to 0.8:0.2
> randomForest(type ~ ., data=Pima.tr, sampsize=c(132,33))

Call:
randomForest(formula = type ~ ., data = Pima.tr, sampsize = c(132, 33))

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 2

OOB estimate of error rate: 26%
Confusion matrix:

No Yes class.error
No 122 10 0.07576
Yes 42 26 0.61765

> # Notice the dramatically increased accuracy for the No's
> ## Simulate a prior that is close to 0.1:0.9
> randomForest(type ~ ., data=Pima.tr, sampsize=c(17,68))

Call:
randomForest(formula = type ~ ., data = Pima.tr, sampsize = c(17, 68))

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 2

OOB estimate of error rate: 40.5%
Confusion matrix:

No Yes class.error
No 58 74 0.5606
Yes 7 61 0.1029

With small sample sizes, it may be beneficial to fit a greater number of trees.

7 Further Examples
(a) Look up the help page for the dataset Vehicle from the mlbench package:

(a) Fit a linear discriminant analysis model (lda()). Plot the first two sets of discriminant
scores, identifying the different vehicle types;

(b) Try quadratic discriminant analysis (qda()) for comparison;
(c) Compare the accuracy with that from fitting a random forest model. Use the proximities

to derive a three-dimensional representation of the data. Examine both the projection onto
two dimensions and (using rgl() from the rgl package) the three-dimensional representa-
tion.

(d) Compare the two (or more; you might derive more than one plot from the proximities)
low-dimensional plots. Do any of the plots offer any clue on why quadratic discriminant
analysis is so effective?

(b) Repeat Exercise 1, now with the dataset fgl (forensic glass data) in the MASS package. Note
that, for these data, qda() fails. Why does it fail?

85

Part XVI

Data Exploration and Discrimination –
Largish Dataset
DAAGxtras, randomForest

Note: These computations are at the limit, or beyond, what a machine with 512MB memory and
running Microsoft Windows is able to handle. A reboot may be necessary in order to get the calcula-
tions to run. If you cannot get calculations to run at all, try taking every second observation in the
relevant data frames, and working with these reduced datasets.

One a 512MB Mac system running OS X, calculations have run without problem. The same is
almost certainly true on a Unix or Linux system (I have not tested this),

The data used in this laboratory are derived from a dataset that gives forest cover type (seven
different types), for 581,012 sites in the United States. There are 54 columns of explanatory features
(variables or dummy variables that code for qualitative effects). The 55th column holds the cover
type, given as an integer in the range 1 to 7. Data, stored in the R image file covtype.RData, are
available from
http://www.maths.anu.edu.au/~johnm/datasets/forestCover/
[To obtain the data as a text file, go to the UCI Machine Learning Repository at
http://www.ics.uci.edu/~mlearn/MLRepository.html

1 Data Input and Exploration
As available from the repository, data are comma delimited, and (assuming that the file has been
placed in the working directory; if accessible from another location, the path must be included) can
be read in with

covtype <- read.csv("covtype.data", header=FALSE)

For purposes of this laboratory, data have been placed in the image file covtype.RData.
The image file covtype.RData holds all 581,012 records. The first 11340 records have been sampled

in some systematic way from an original total data set, for use as a training set. The next 3780 records,
again sampled in some systematic way from the total data, were used as test data. Below, the first
11340 records will be extracted into the data frame covtrain, while the next 3780 records will be
extracted into the data frame covtest.

1.1 Extraction of subsets of interest

The following extracts these data, plus a systematic sample of every 50th record, taken right through
the 565,982 records that remain after the training and test sets have been extracted. If these calcula-
tions prove troublesome on your system, skip them.7 The datasets covtrain, covtest and covsample
are included with the DAAGxtras package.

The following assumes that the file covtype.RData is in your working directory; if it is elsewhere
you must of course include the path:

> attach("covtype.RData")
> covtrain <- covtype[1:11340,]
> covtest <- covtype[11340+(1:3780),]
> every50th <- seq(from=11340+3780+1, to=581012, by=50)

7On a 1.25GHz G4 Powerbook with 512MB of RAM, the elapsed time for extraction of covtrain was 28 seconds while
for extraction of covtest the time was 16 seconds (try, e.g., system.time(covtest <- covtype[11340+(1:3780),]) –
the third of these numbers is the elapsed time). These times are however highly variable. On less well endowed systems,
the calculations may take an unreasonable time, or may not run at all.

1 DATA INPUT AND EXPLORATION 86

> covsample <- covtype[every50th,]
> tab.all <- table(covtype$V55) # Keep for later
> detach("file:covtype.RData")

Because data are stored columnwise, extraction of subsets of rows that spread across all columns
requires substantial manipulation within memory, which can be time-consuming.

An alternative, for the input of covtrain and covtest, is:

covtrain <- read.csv("covtype.data", header=FALSE, nrows=11340)
covtest <- read.csv("covtype.data", header=FALSE, skip=11340, nrows=3780)

(Use these on Windows machines with less than 512MB of random access memory.)

Question: Which of the following is preferable?

every50th <- seq(from=11340+3780+1, to=581012, by=50)
every50th <- seq(from=15121, to=581012, by=50)
every50th <- 15121+(0:((581012-15121) %/% 50))*50

Which is more consistent with notions of literate programming? Is computational efficiency a consid-
eration?
(The symbol %/% is the integer division operator. Try, e.g., 11 %/% 3, 12 %/% 3, etc. Try also
11 %% 3, 12 %% 3, which give the remainders after division.)

1.2 Image files

Having extracted these data, they can be saved to image files, which can then be attached so that
they are available as required:

> save(covtrain, file="covtrain.RData")
> rm(covtrain)
> save(covtest, file="covtest.RData")
> rm(covtest)
> save(covsample, file="covsample.RData")
> rm(covsample)

Now attach these image files, making covtrain, covtest and covsample available as required:

> attach("covtrain.RData")
> attach("covtest.RData")
> attach("covsample.RData")

Alternatively, they can be made available by typing

> library(DAAGxtras)

1.3 Data exploration

Next, we extract some basic statistical information about these data:

> options(digits=3)
> tab.train <- table(covtrain$V55)
> tab.test <- table(covtest$V55)
> tab.sample <- table(covsample$V55)
> tab.all/sum(tab.all)

1 2 3 4 5 6 7
0.36461 0.48760 0.06154 0.00473 0.01634 0.02989 0.03530

1 DATA INPUT AND EXPLORATION 87

> tab.sample/sum(tab.sample)

1 2 3 4 5 6 7
0.371620 0.494169 0.059640 0.000707 0.014579 0.028185 0.031101

> tab.train/sum(tab.train)

1 2 3 4 5 6 7
0.143 0.143 0.143 0.143 0.143 0.143 0.143

> tab.test/sum(tab.test)

1 2 3 4 5 6 7
0.143 0.143 0.143 0.143 0.143 0.143 0.143

What is interesting is that the proportions of the different cover types, in both the training and the
test data, are equal. That is not the case for the data as a whole, and in this respect the ”training”
and ”test” data are untypical.

The above suggests that, in forming the training and test data, observations were taken from the
original main body of data until cover types 3-7 were largely ”used up”. It might be suspected that
the proportions of the different cover types will vary systematically as one moves through data. The
following function, which models the occurrence of the specified forest cover as a function of distance
(as a proportion) through the data, can be used to check this:

> library(splines)
> runningprops <- function(df=covtrain, type=1){
+ n <- dim(df)[1]
+ propthru <- (1:n)/(n+1)
+ occurs <- as.integer(df$V55==type)
+ print(table(occurs))
+ cov.glm <- glm(occurs ~ bs(propthru,6), family=binomial)
+ hat <- predict(cov.glm, type="response")
+ cbind(propthru, hat)
+ }
> hat.train <- runningprops()

occurs
0 1

9720 1620

> hat.test <- runningprops(df=covtest)

occurs
0 1

3240 540

> hat.sample <- runningprops(df=covsample)

occurs
0 1

7112 4206

> print(range(c(hat.train[,2], hat.test[,2], hat.sample[,2])))

[1] 0.00264 0.64866

Next, plot this information:

> plot(hat.train[,1], hat.train[,2], ylim=c(0,0.65))
> lines(hat.test[,1], hat.test[,2], col=2)
> lines(hat.sample[,1], hat.sample[,2], col=3)

What does this plot suggest?

2 TREE-BASED CLASSIFICATION 88

Exercise 1: Repeat the above plots, but now for forest cover type 2.

Exercise 2: Another way to estimate hat would be as a moving average of values of the variable
occurs in the above function. Write a function to calculate moving averages, with the window wid
as one of its parameters.

Exercise 3: What other preliminary explorations of these data might be useful?

2 Tree-Based Classification
Now fit a tree-based model for covtrain:

> library(rpart)
> train.rpart <- rpart(V55 ~ ., data=covtrain, cp=0.0001, method="class")
> train.rpart <- prune(train.rpart, cp=0.0048)
> trainhat.train <- xpred.rpart(train.rpart, cp=0.0048)
> testhat.train <- predict(train.rpart, newdata=covtest, type="class")
> samplehat.train <- predict(train.rpart, newdata=covsample, type="class")

Next, we will define a function that calculates error rates for each different cover type:

> errs.fun <- function(obs, predicted){
+ tab <- table(obs, predicted)
+ grosserr <- 1-sum(tab[row(tab)==col(tab)])/sum(tab)
+ errs <- 1-tab[row(tab)==col(tab)]/apply(tab,1,sum)
+ names(errs) <- paste(1:length(errs))
+ print("Overall error rate (%)")
+ print(round(100*grosserr,1))
+ print("Error rate (%), broken down by forest cover type")
+ print(round(100*errs,2))
+ cat("\n")
+ invisible(errs)
+ }

Now apply the function, first to trainhat.train, then to testhat.train, and finally to samplehat.train:

> errs.fun(covtrain$V55, trainhat.train)

[1] "Overall error rate (%)"
[1] 35.4
[1] "Error rate (%), broken down by forest cover type"

1 2 3 4 5 6 7
51.23 63.70 45.56 11.11 15.12 54.14 6.91

> errs.fun(covtest$V55, testhat.train)

[1] "Overall error rate (%)"
[1] 34.5
[1] "Error rate (%), broken down by forest cover type"

1 2 3 4 5 6 7
55.56 60.74 40.19 10.37 11.67 56.11 6.67

> errs.fun(covsample$V55, samplehat.train)

[1] "Overall error rate (%)"
[1] 55.6
[1] "Error rate (%), broken down by forest cover type"

1 2 3 4 5 6 7
54.11 62.40 43.41 0.00 16.97 56.11 6.25

3 USE OF RANDOMFOREST() 89

Exercise 4: Explain: calculations:

• What data have been used, in each case, to test the model?

• Explain the notation used for the different sets of fitted values (trainhat.train, testhat.train,
samplehat.train.)

• Why is it that, although the three sets of error rates are relatively similar when broken down by
cover type, are there are major differences in the overall error rate?

• Which, if any, of these overall error rates is it reasonable to quote in practical application of the
results? If none of them seem appropriate, what error rate do you consider should be quoted?

Exercise 5: Do the following calculation and comment on the results:

> sample.rpart <- rpart(V55 ~ ., data=covsample, cp=0.0001, method="class")
> sample.rpart <- prune(sample.rpart, cp=0.001)
> samplehat.sample <- xpred.rpart(sample.rpart, cp=0.001)
> samplehat.sample <- factor(samplehat.sample, levels=1:7)
> trainhat.sample <- predict(sample.rpart, newdata=covtrain, type="class")
> testhat.sample <- predict(sample.rpart, newdata=covtest, type="class")
> errs.fun(covtrain$V55, trainhat.sample)

[1] "Overall error rate (%)"
[1] 59.8
[1] "Error rate (%), broken down by forest cover type"

1 2 3 4 5 6 7
30.4 17.9 12.2 100.0 100.0 100.0 58.0

> errs.fun(covtest$V55, testhat.sample)

[1] "Overall error rate (%)"
[1] 59.4
[1] "Error rate (%), broken down by forest cover type"

1 2 3 4 5 6 7
30.9 17.6 12.2 100.0 100.0 100.0 54.8

> errs.fun(covsample$V55, samplehat.sample)

[1] "Overall error rate (%)"
[1] 26.9
[1] "Error rate (%), broken down by forest cover type"

1 2 3 4 5 6 7
29.7 18.2 20.7 100.0 97.0 87.2 54.0

3 Use of randomForest()
For use of randomForest(), calculations speed up greatly if explanatory variables are input as columns
of a matrix, while (for classification) the response variable is input as a vector of class factor.

Exercise 6: Run the following computations, and interpret the output, comparing it with the rel-
evant output from rpart(). Suggest why the error rates may be so much lower than those from
rpart():

4 FURTHER COMMENTS 90

> library(randomForest)
> xcovtrain <- as(covtrain[,1:54], "matrix")
> ycovtrain <- covtrain[,55]
> xsampletrain <- as(covsample[,1:54], "matrix")
> ysampletrain <- covsample[,55]
> ycovtrain <- factor(covtrain[,55])
> ysampletrain <- factor(covsample[,55])
> covtrain.rf <- randomForest(x=xcovtrain, y=ycovtrain,
+ xtest=xsampletrain, ytest=ysampletrain)
> covtrain.rf

Call:
randomForest(x = xcovtrain, y = ycovtrain, xtest = xsampletrain, ytest = ysampletrain)

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 7

OOB estimate of error rate: 17.4%
Confusion matrix:

1 2 3 4 5 6 7 class.error
1 1182 244 2 0 40 8 144 0.2704
2 310 1047 40 0 151 57 15 0.3537
3 0 2 1173 118 17 310 0 0.2759
4 0 0 25 1567 0 28 0 0.0327
5 2 63 31 0 1488 36 0 0.0815
6 0 6 183 61 13 1357 0 0.1623
7 69 0 1 0 1 0 1549 0.0438

Test set error rate: 30.3%
Confusion matrix:

1 2 3 4 5 6 7 class.error
1 3055 631 5 0 125 23 367 0.2737
2 1032 3575 128 3 579 232 44 0.3608
3 0 2 495 54 6 118 0 0.2667
4 0 0 0 8 0 0 0 0.0000
5 0 10 6 0 145 4 0 0.1212
6 0 1 35 10 4 269 0 0.1567
7 14 1 0 0 0 0 337 0.0426

4 Further comments
This has been a preliminary exploration of these data. The model that is optimal changes as one moves
through the data. This can be verified by selecting successsive subsets of perhaps 10,000 successive
observations at various points through the data (e.g.: 1-10,000, 101,000-110,000, . . .), and comparing:
(1) gross error rate for that subset as calculated by using xpred.rpart() and errs.fun(), with (2)
the gross error rate when train.rpart() or (more appropriately) sample.rpart() is used determine
fitted values for that subset.

Thus, after the first 15,120 (11,340 + 3780) records, a reasonable guess is that the order of records
reflects an ordering of the data according to geographical location. The ordering holds information
that can be used, even without knowledge of more exact geographical locations, to get improved model
predictions.

