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Why care about rare classes?

Often the rare classes are the ones we care about...

Predicted Class
No Yes Error

Diabetes? No 190 33 15%
Yes 47 62 43%

Can we do better?
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Linear classifiers and rare classes

Linear classifiers:

simple, efficient and easily understood;

less parameters ⇒ more easily generalizable.

Yet nonlinearly separable data exacerbates the rare class problem.
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COG (Classification using lOcal clusterinG)

The Algorithm

Input:
# of clusters to find in common class
# of times to replicate rare class
Phase I: local clustering
Phase II: over-sampling
Phase III: training on altered class data
Phase IV: testing on original class data
Output:
Model on the training set.
Predictions for the test set.
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Initial Tests

Split data into training (70%) and test (30%) sets.

Two-level: Random sampling on small class to make it ‘rare’.

Multi-level: Random sampling not necessary...

How to measure success?

The F measure

Recall: Fraction of those actually in X that were placed there
Precision: Fraction of those placed in X that were actually there

F =
2 · Recall · Precision

Recall + Precision

Nathan Deutscher Local Decomposition for Rare Class Analysis



The Problem
The Solution

Experimental Testing
A Critical Evaluation

Results

Pima (diabetes):

SVM COG(SVM)
rare NA 0.373
common 0.949 0.940

This is typical for the two-level data... and for multi-level data?
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Results

Pima (diabetes):

SVM COG(SVM)
rare NA 0.373
common 0.949 0.940

This is typical for the two-level data... and for multi-level data?

The F-measure generally improves on small classes.
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under-sampling.
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COG(SVM) is better on the rare and the common classes.
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Further comparisons

A little modesty:

COG does not improve nonlinear classifiers; and

can impede performance.
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Further comparisons

A little modesty:

COG does not improve nonlinear classifiers; and

can impede performance.

Final test: random partitioning is not as good as kmeans in the
local clustering phase.
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Some cleverness...
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Local Clustering: kmeans

Some cleverness...also some confusion.

“ [kmeans] tends to produce clusters with relatively uniform sizes”

Better justification is efficiency and nonconvexity of clusters.

Other issues with kmeans:

it is sensitive to noise; and

requires highly nontrivial input – k!

data set #1 #2 #3 #4 #5
optimal k 8 8 6 6 2
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Over-sampling

To over-sample they simply replicate. Now if rarity is:

relative – then this is OK.

absolute – then it is NOT!
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Concluding Remarks

COG is a useful combination of:

local clustering (unsupervised); and

linear classification (supervised).

It generally improves performance.

Yet questions remain...
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