
The R System:

I R is currently the environment of choice for
I specialists who are implementing new methodology
I highly trained professional data analysts.

I It is designed for interactive data analysis: the next step may
depend on the previous result

I New releases every few months bring improvements & new
features.

I It can be remarkably efficient, even though:

I data resides (mostly) in memory
I it is an interpreted language (but one command may start a

lengthy computation)

Check out http://cran.ms.unimelb.edu.au
or (outside of Australia) http://cran.r-project.org

http://cran.ms.unimelb.edu.au
http://cran.r-project.org

The R System:

I R is currently the environment of choice for
I specialists who are implementing new methodology
I highly trained professional data analysts.

I It is designed for interactive data analysis: the next step may
depend on the previous result

I New releases every few months bring improvements & new
features.

I It can be remarkably efficient, even though:
I data resides (mostly) in memory
I it is an interpreted language (but one command may start a

lengthy computation)

Check out http://cran.ms.unimelb.edu.au
or (outside of Australia) http://cran.r-project.org

http://cran.ms.unimelb.edu.au
http://cran.r-project.org

First Steps with R

Command line calculations
Type following >, which is the command prompt.

> 2+2
[1] 4
>

The [1] says, perhaps a little strangely,
“first requested element will follow”

Demonstrations

demo(graphics) # Gives graphics demonstrations
demo() # List all available demonstrations

Examples

example(plot) # Examples from help page for plot()

Getting Started

Command Enter commands following the prompt, e.g.
prompt (>) > 2 + 2 # Calculate 2 + 2

Quitting To quit from R type
q() # NB q(), not q

Case matters volume is different from Volume

Help Use it often. For example
help() # Describe the use of help()
help(plot) # help on the plot function

Assignment The assignment symbol is <-, e.g.
volume <- c(351, 955, 662, 1203, 557)
Store the column of numbers in volume
c = concatenate

Other topics Simple arithmetic operations; simple plots.

The Working Environment

Working R will by default read files from this directory,
directory or write files to it

Object A data structure or function that R recognizes
Functions, as well as data, exist as “objects”
Note also, e.g., formula objects, expression objects, . . .

Workspace This is the user’s “database”. It holds objects that the
user can modify or delete, or to which the user can add.
Use ls() to list contents of current workspace.

read.table() Use to read data, from a file, into the workspace

Image files Use to store R objects, e.g., workspace contents.
(The expected file extension is .RData or .rda)

save.image() Use to store all or some workspace contents.
For safety, use from time to time in a session
Alternatively, use the relevant menu item.

Packages, and the Search List

Packages Packages are collections of R functions and/or data.

library() Use to attach a package, e.g. library(DAAG)
(Binary R distributions include recommended packages.
Install other packages, as required, prior to their use.)

Search List The search list specifies the working directory,
followed by other “databases” that should be searched
if the object sought is not in the working directory.

Databases Other “databases” that can be added to the search
list include image (.RData) files, and data frames.

Different types of data objects:

Vectors These collect together elements that are all of one mode.
(Possible modes are ”logical”, ”integer”, ”numeric”,
”complex”, ”character”) and ”raw”)

Factors These identify categories (levels) in categorical data.
They make it easy to write down model formulae that
account for categorical effects
(Factors are very like vectors, but do not quite manage
to be vectors! Why?)

Data A list of columns – same length; may have different modes.
frame Data frames are an effective way to organise data for use

with modeling functions.

Lists Lists group together an arbitrary collection of objects
(These are recursive structures; elements of lists are lists.)

NAs The handling of NAs (missing values) can be tricky.

Different Kinds of Functions

Generic They examine the object given as argument, before
functions deciding what action is needed. Examples include

print(), plot() & summary()

Modeling Use to fit statistical models. Thus note lm() for linear
functions modeling. Output may be stored in a model object.

Extractor Use extractor functions to obtain specific types of
functions information (summary, coefficients, residuals, etc.)

from model objects. Examples are summary(),
residuals(), etc

User Create functions that automate & document computations

Anonymous Functions that are defined in place do not need a name

Base Graphics

Base graphics implements a relatively “traditional” style of graphics

Functions plot(), points(), lines(), text(), mtext(), axis(),
identify() etc. form a suite (plot points, lines, text, etc.)

Plot y vs x with(women, plot(height, weight))
(older syntax)
Or: plot(weight ∼ height, data=women)
(uses graphics formula)

Caveat Some base graphics functions do not take a data parameter

In addition to base graphics there is
(i) lattice (trellis) graphics, using the lattice package,
and (ii) the low-level grid package on which lattice is built.

Lattice Graphics

Lattice Lattice is a flavour of trellis graphics
(the S-PLUS flavour was the original implementation)

Grid grid is a low-level graphics system. It was used to build lattice.
For grid, see Part II of Paul Murrell’s R Graphics

Lattice Lattice is more structured, automated and stylized.
vs base Much is done automatically, without user intervention.

Changes to the default style are harder than for base.

Lattice Lattice syntax is consistent and tightly regulated
syntax For use of lattice, graphics formulae are mandatory.

xyplot(csoa ∼ it | sex, groups = target, data = tinting)
csoa ∼ it: Plot csoa vs it
| sex: Condition on sex (one panel for each level of sex
groups: In each panel, group by levels (locon, hicon) of target

Use auto.key for a basic key to the group labeling (groups parameter).

Linear Models, in the style of lm()

Linear model Any model that lm() will fit is a “linear” model.
lm() can fit highly non-linear forms of response!

Diagnostic Use plot() with the model object as argument,
plots to get a basic set of diagnostic plots.

termplot() If there are no interaction terms, use termplot() to
visualize the contributions of the different terms.
(Why are interactions a problem for lm()?

Factors In model terms, use factors to model qualitative effects.

Model How should coefficients be interpreted? Examine the
matrices model matrix. (This is an especial issue for factors.)

GLMs Generalized Linear Models are an extension of linear
models, commonly used for analyzing counts.

[NB: lm() assumes independently & identically distributed (iid) errors,
perhaps after applying a weighting function.]

Models with Non-iid Errors

Error Term Errors do not have to be (and often are not) iid

Multi-level Multi-level models are a (relatively) simple type of non-iid
models model, implemented using lme() (nlme) or lmer()

(lme4 package).
Such models allow different errors of prediction, depending
on the intended prediction. (The error term does matter!)

Time Points that are close together in time are likely to show a
series (usually, positive) correlation. R’s acf() and arima()

functions are powerful tools for working with time series.

Other Models and Methods

anova Models for designed experiments etc
[Brief mention in Ch 3 of “Statistical Models document”]
More flexibly (less insight?), use multi-level approach.

Multivariate Principal components, multi-dimensional scaling [Ch 8]

Discriminant Discriminant analysis [Ch 8] & tree-based methods for
methods classification [Ch 7]

Common Uses for Key Language Ideas

Classes Classes make generic functions (methods) possible.

Methods Examples are print(), plot(), summary(), etc.

S4 vs S3 S3 is the original implementation of classes & methods
S4, which uses the methods package, is more recent.

Formulae As of now, there are model, graphics and table formulae.
Formulae can be manipulated, just as with other objects.

Expressions They can be evaluated (of course!). They can also
be printed (on a graph)

Argument Argument lists can be constucted in advance, as a
lists list of named values, with do.call() then used

to pass the argument list to the function

Environments Environments hold various subtleties. There are basic
matters that it helps to know.

Additional Notes

Errors in My attempt to input data has generated an error.
data input How can I locate it?

scan() scan() is a more flexible alternative to read.table()

sapply() sapply(), lapply() and apply() apply functions
& friends in parallel across all columns of a data frame

or ((apply()) across all rows or columns of a matrix.
Apply any function that will not generate an error.
[e.g., log("Hobart") is not allowed.]

Inf & friends The logarithm of zero returns -Inf. Take care!

Large datasets A little knowhow can save a load of time.

Workspaces Manage them carefully!

THE END

You may think that this is the end,
Well it is, but to prove we’re all liars,
We’re going to sing it again,
Only this time we’ll sing a little higher.

Actually, this is not the end, for there are many other analysis methods
and R packages to explore, even if not in this workshop!

	Overview of R
	General
	Simple R
	The Working Environment of an R Session
	Packages, and the Search List
	Different Types of Data Objects

	Graphics

