
Contents

Convenience Functions – One Set per Chapter

Each of chapters 1-9 has a set of accompanying convenience functions that can be used to
reproduce graphs, or in a few cases tables, in that chapter. The package modregR includes
source files that can be used to generate the functions. The text box has an example.

Loading and Using the Convenience Functions: Assuming that the packagemodregR
has been installed, use the command library() to attach it. As an example, the following
places the Chapter 1 functions in the workspace:

library(modregR)
figs1path <- system.file('doc/figs1.R', package='modregR')
source(figs1path)

A good way to proceed, for making sense of the R code, is to first run the function, thus:

Run the code for Figure 1.1
fig1.1()

Then look inside the function to see what code is used.

Examine the code used to give Figure 1.1
print(fig1.1) # Or, just type fig1.1

Readers who are not totally at home with R may be wise to take as given figures where
the code has some modest degree of complication.

Executing the Functions: There is a device that allows functions, once they have been
loaded, to be executed, with any necessary intervening code. To set this up, enter at the
command line:

OpenSesame <- 7

Be warned that the functions for Chapter 6 take a modest time to execute – around 21

2

minutes on my well-configured machine. Remove the object OpenSesame to enable loading
of functions without execution.

The discussion that follows will use the data on record times for Northern Ireland hill
races, in the dataset nihills in the DAAG package. We will need, also, access to the
lattice and latticeExtra packages. The following attaches these packages:

l ibrary (DAAG)
l ibrary (l a t t i c eEx t r a)

Base graphics versus lattice graphics: The R system has several styles of graphics.
Here, base graphics (the older more traditional style of graphics) and lattice graphics will
be used. There are important di↵erences in the conventions that they follow. Base graphics
generates plots directly. Lattice graphics functions (and ggplot2 graphics functions) create
graphics objects. A graph is displayed when the object is supplied as argument to a
print() or plot() command. Compare:

Base graph i c s
plot (t ime f˜time , log="xy" , data=n i h i l l s ,

11

Contents

xlab="Time for males (h)" , y lab="Time for females (h)")

La t t i c e g raph i c s
gph <� xyplot (t ime f˜time , s c a l e s=l i s t (log=2) , data=n i h i l l s ,

type=c ("p" , "r"))
print (gph)

Base graphics versus lattice graphics – more extensive code

The following base graphics code plots record times for females against record times for
males, based on data from the nihills package. It adda a regression line. It adds also the
line y = x, now plotted as a dashed line:

plot (t ime f˜time , log="xy" ,
data=n i h i l l s ,
x lab="Time for males (h)" ,
y lab="Time for females (h)")

form <� log10 (t ime f)˜log10 (time)
l o g l i n e <� lm(form , data=n i h i l l s)
abline (l o g l i n e)
abline (a=0, b=1, l t y =2)

Plot points, using a log
10

scale on both
x- and y-axes, and with meaningful x-
and y- axis labels.

Set up regression formula (form).
Fit line (log

10

scales).
Add fitted line to plot.
Add the line y = x.

Here is code that uses lattice graphics to give a roughly similar plot:

gph <� xyplot (t ime f˜time ,
s c a l e s=l i s t (log=2) ,
data=n i h i l l s ,
type=c ("p" , "r"))

gph <� update (gph ,
xlab="Time for males (h)" ,
y lab="Time for females (h)")

add <� l a y e r (panel . abline (a=0, b=1,
l t y =2))

gph <� gph + add

plot (gph)

Create an initial graphics object, with
log

2

axis scales. In type=c("p","r"),
"p", adds points and "r" adds a regres-
sion line.

Update the graphics object to have
meaningful x- and y- axis labels.

Add the line y = x.

Plot the graph.

Here are alternative ways to create a function that does the same task. Options will be
demonstrated for the use of lattice functions.

Place the code inside a wrapper function, thus:

graph1 <� function (){
gph <� xyplot (t ime f˜time , s c a l e s=l i s t (log=2) ,

data=n i h i l l s , type=c ("p" , "r"))
gph <� update (gph , xlab="Time for males (h)" ,

y lab="Time for females (h)")
gph <� gph + lay e r (panel . abline (a=0, b=1, l t y =2))
plot (gph)

}

12

Contents

Then typing graph1() at the command line has the same e↵ect as entering the code
inside the function. The function has no arguments (in function(), there is nothing
between the parentheses). It has no return value. The final statement in the function is a
a plot statement, which does not return a value.

A function with arguments and return value:

graph2 <� function (form=t imef˜time , data=n i h i l l s){
gph <� xyplot (form , s c a l e s=l i s t (log=2) ,

data=data , type=c ("p" , "r"))
gph <� update (gph , xlab="Time for males (h)" ,

y lab="Time for females (h)")
gph <� gph + lay e r (panel . abline (a=0, b=1, l t y =2))
gph

}

Inside the function the graphics formula timef ⇠ time has been replaced by form.
The name dataset name nihills has been replaced by data. The default arguments set
form=timef time, and data=nihills. These can be changed when the function is called,
as the user wishes.
Typing graph2() at the command line causes the function to be executed, with the

default arguments. The relevant object(s) (here nihills) must be in the search path.
The final line has the value that is returned. If returned to the command line, the graph
is plotted. Typing:
gph <- graph2()

stores the graphics object with the name gph, and no graph is plotted.
In the functions that accompany the chapters of this text, functions that create a single

lattice graphics object will have the return object on the final line. If two lattice objects
are created, for exmample ghpA and ghpB, the final line will be:

invisible(list(gphA, gphB))

Such functions have an argument plotit. If called with plotit=TRUE, both graphs will
be plotted in some suitable layout.

Note well. Base graphics functions plot graphs. Lattice graphics functions create graphics
objects. In order to obtain a graph, use plot() or print() with the lattice graphics object
as argument. This invokes the plot (or print) method for a lattice graphics object.

13

