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Part V
Linear Models in R

For background, see SPDM: Sections 9-11.

1 Linear and Other Models in R

In this laboratory, the major attention will be on the model fitting function is 1m(), where the 1m
stands for linear model. An aim is to encourage an expansive view of linear models, modeling reponses
that may be highly non-linear in the explanatory variables.

R’s implementation of linear models uses a symbolic notation, described in (Wilkinson & Rogers ,
1973), that gives a straightforward means for describing elaborate and intricate models. A very similar
notation is used throughout the modeling functions in R, with modification as required. Important
ideas are basis function, factor, interaction, and model formula.

2 Fitting Straight Lines to Data

Ezxercise 1

In each of the data frames elasticl and elastic2, fit straight lines that show the dependence of
distance on stretch. Plot the two sets of data, using different colours, on the same graph. Add
the two separate fitted lines. Also, fit one line for all the data, and add this to the graph.

Ezercise 2

In the data set pressure (datasets), the relevant theory is that associated with the Claudius-
Clapeyron equation, by which the logarithm of the vapor pressure is approximately inversely propor-
tional to the absolute temperature. Transform the data in the manner suggested by this theoretical
relationship, plot the data, fit a regression line, and add the line to the graph. Does the fit seem
adequate?

[For further details of the Claudius-Clapeyron equation, search on the internet, or look in a suitable
reference text.]

Ezercise 3

Run the function plot.intersalt(); data frame intersalt. Data are population average values of
blood pressure, from 52 different studies. Is the fitted line reasonable? Or is it a misinterpretation
of the data? Suggest alternatives to regression analysis, for getting a sense of how these results
should be interpreted? What are the populations where levels are very low? What is special about
these countries?

[The function plot.intersalt(), and the data frame intersaltl, are available from
http://www.maths.anu.edu.au/~ johnm/courses/dm/math3346/|




3 MULTIPLE EXPLANATORY VARIABLES 26

(a)
(b)

FEzxercise 4

Install the package gamair (from CRAN) and examine the help page for the data frame hubble.
Type data(hubble) to bring the data frame into the workspace. (This is necessary because the
gamair package differs from most other packages in not using the lazy loading mechanism for data
sets.)

Plot y (Velocity in km sec™!) versus x (Distance in Mega-parsec).

Fit a line, omitting the constant term; for this the 1m() function call is
Im(y ~ -1 + x, data=hubble)

A Mega-parsec (Mpc) is 3.09 x 10! km, so that we need to divide the slope by this amount,
so that distances in both cases are in km. The inverse of the slope is then the age of the
universe, in seconds. Divide this by 602 x 24 x 365 to get an estimate for the age of the earth
in years.

[The answer should be around 13 x 10° years.]

Repeat the plot, now using logarithmic scales for both axes. Fit a line, now insisting that the
coefficient of log(x) is 1.0 (Why?) For this, specify

Im(log(y) ~ 1 + offset(log(x)), data=hubble)

Add this line to the plot. Again, obtain an estimate of the age of the universe. Does this give
a substantially different estimate for the age of the universe?

In each of the straight line fits, on an untransformed scale and using logarithmic scales, do
any of the points seem outlers? Investigate the effect of omitting any points that seem to be
outliers?

Does either plot, on an untransformed scale or using logarithmic scales, seem to show evidence
of curvature?
[See further the note at the end of this set of exercises.]

3 Multiple Explanatory Variables

Exercise 5
For the data frame oddbooks (DAAG),

Add a further column that gives the density.

Use the function pairs(), or the lattice function splom(), to display the scatterplot matrix.
Which pairs of variables show evidence of a strong realtionship?

In each panel of the scatterplot matrix, record the correlation for that panel. (Use cor()) to
calculate correlations).

Fit the following regression relationships:

(a) log(weight) on log(thick), log(height) and log(breadth).

(b) log(weight) on log(thick) and 0.5*(log(height) + log(breadth)). What feature
of the scatterplot matrix suggests that this might make sense to use this form of equation?

Take the fitted regression equation (take whichever of the two forms of equation seems prefer-
able) and rewrite it in a form that as far as possible separates effects that arise from changes
in the linear dimensions from effects that arise from changes in linear dimensions.
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4 FErrors in Variables

Ezercise 6

Run the accompanying function errorsINx() several times. Comment on the results. The under-
lying relationship between y and x is the same in all cases. The error in x is varied, from values of
x that are exact to values of x that have random errors added with a variance that is twice that of
the variance of x.

4.1 Note re exercise 4

According to the relevant cosmological model, the velocity of recession of any galaxy from any other
galaxy has been constant, independent of time. Those parts of the universe that started with the
largest velocities of recession from our galaxy have moved furthest, with no change from the velocity
just after after time 0. Thus the time from the beginning should be s/v, where s is distance, and v
is velocity. The slope of the least squares line gives a combined estimate, taken over all the galaxies
included in the data frame gamair. More recent data suggests, in fact, that the velocity of recession
is not strictly proportional to distance.

4.2 Functions used

These are available from my web page

"errorsINx" <-
function(mu = 8.25, n = 100, a = 5, b = 2.5, SDx=1, sigma = 2,
timesSDx=(1:5)/2.5){
mat <- matrix(0, nrow=n, ncol=length(timesSDx)+2)

x0 <- muxexp(rnorm(n,0,SDx/mu))/exp(0)

y <- a + b*xO+rnorm(n,0,sigma)
mat[, length(timesSDx)+2] <- y
mat[,2] <- x0
mat[,1] <- y
sx <- sd(x0)
k <- 2
for(i in timesSDx){
k <- k+1
xWITHerror <- xO+rnorm(n, O, sx*i)
mat[, k] <- xWITHerror

}

df <- as.data.frame(mat)

names(df) <- c("y", "x", paste("x",timesSDx,sep=""))
df

## Now use function to simulate y vs x relationships, with several
## different values of timesSDx, which specifies the ratio of the
## errors in x variance to SD[x]
oldpar <- par(mar=c(3.6,3.1,1.6,0.6), mgp=c(2.5,0.75,0),
oma=c(1,1,0.6,1),
mfrow=c(2,3), pty="s"
mu <- 20; n <- 100; a <- 15; b <- 2.5; sigma <- 12.5; timesSigma<-(1:5)/2.5
mat <- errorsINx(mu = 20, n = 100, a = 15, b = 2.5, sigma = 5,
timesSDx=(1:5)/2.5)
beta <- numeric(dim(mat) [2]-1)
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sx <- sd(mat[,2])
y <- mat[, 1]
for(j in 1:length(beta))q{
xj <- mat[,j+1]
plot(y ~ xj, xlab="", ylab="", col="gray30")
if (§==1)
mtext (side=3, line=0.5, "No error in x") else{
xm <- timesSigmal[j-1]
mtext (side=3, line=0.5, substitute(tau == xm*s[z], list(xm=xm)))
}
if(j>=4)mtext(side=1, line=2, "x")
if (j%%3 == 1)mtext(side=2, line=2, "y")
errors.lm <- 1m(y ~ xj)
abline(errors.1lm)
betalj] <- coef(errors.1lm) [2]
bigsigma <- summary(errors.lm)$sigma
print(bigsigma/sigma)
abline(a, b, 1lty=2)
}
print (round(beta, 3))

plot.intersalt <-
function (dset = intersaltl, figno = 2)
{
oldpar <- par(oma = c(6.5, 0, 0, 0), mar = par()$mar - c(O,
0, 3.5, 0))
on.exit (par(oldpar))
lowna <- c(4, 5, 24, 28)
plot(dset$na, dset$bp, pch = 15, ylim = c(50, 85),
xlab = "Median sodium excretion (mmol/24hr)",
ylab = "Median diastolic BP (mm Hg)", type = "n")
points(dset$na[-lownal, dset$bp[-lownal], pch = 16)
points(dset$nal[lownal, dset$bp[lownal], pch = 1, lwd = 3)
u <~ lm(bp ~ na, data = dset)
abline(u$coef [1], u$coef[2])

figtxt <-
paste("Fig. ", figno, ": Plot of median blood pressure versus salt",
"\\n (measured by sodium excretion) for 52 human",
"\\npopulations. Four results (open circles) are for",
"\\nnon-industrialised societies with very low salt intake,",
"\\nwhile other results are for industrialised societies.",
sep = " u)
mtext(side = 1, line = 6, figtxt, cex = 1.1, adj = 0, at = -20)
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Part VI
Exploiting the Model Matrix

For background, see SPDM: Sections 12-13.

It is straightforward to model qualitative effects. In R, factors, with one level for each qualita-
tive category, are typically used to account for qualitative effects. Additonally, and perhaps more
surpringingly, it is straightforward to use linear models to model curvilinear effects,

1 A One-way classification — eggs in the cuckoo’s nest

This demonstrates the use of linear models to fit qualitative effects.

Like many of nature’s creatures, cuckoos have a nasty habit. They lay their eggs in the nests of
other birds. First, let’s see how egg length changes with the host species. This will use the graphics
function stripplot () from the lattice package. The data frame cuckoos is in the DAAG package.

> par(mfrow = ¢(1, 2))

> library(DAAG)

> library(lattice)

> names (cuckoos) [1] <- "length"
> table(cuckoos$species)

hedge.sparrow meadow.pipit pied.wagtail robin tree.pipit
14 45 15 16 15

wren

15

> stripplot(species ~ length, data = cuckoos)

> cuckoo.strip <- stripplot(breadth ~ length, groups = species,
+ data = cuckoos, auto.key = list(columns = 3))

> print (cuckoo.strip)

> par(mfrow = c(1, 1))

Now estimate the means for each of the groups. We will use two forms of the model. The first gives
the species means directly, as parameters for the model. In the second parameterization, the first
parameter estimate is the mean for the first species, while later estimates are differences from the first
species.

Ezercise 1
In examining how cuckoo egg length varies between host species, the following forces all parameters
to be species means

> Im(length ~ -1 + species, data = cuckoos)
The following makes the first species the baseline
> Im(length ~ species, data = cuckoos)

Use the function fitted() to calculate the fitted values in each case, and check that they are the
same. Reconcile the two sets of results.

Exercise 2

Use the termplot() function to show the effects of the different factor levels. Be sure to call the
function with partial.resid=TRUE and with se=TRUE. Does the variability seem similar for all host
species?
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FExercise 3
Obtain the standard deviation for each species:

> attach(cuckoos)

> sapply(split(length, species), sd)

hedge.sparrow meadow.pipit pied.wagtail robin tree.pipit

1.0494373 0.9195849 1.0722917 0.6821229 0.8800974
wren
0.7542262

[The function split() splits the lengths into six sublists, one for each species. The function
sapply O applies the function calculation to the vectors of lengths in each separate sublist.]
Check that the SD seems smallest for those species where the SD seems, visually, to be smallest.

FExercise J
Obtain, for each species, the standard error of the mean. This is obtained by dividing the standard
deviation by the square root of the number of values:

> sdev <- sapply(split(length, species), sd)
> n <- sapply(split(length, species), length)
> sdev/sqrt (n)

hedge.sparrow meadow.pipit pied.wagtail robin tree.pipit

0.2804739 0.1370836 0.2768645 0.1705307 0.2272402
wren
0.1947404

Alternatively, create a function that calculates the standard error of the mean in a single calculation:

> se <- function(x) sd(x)/sqrt(length(x))
> sapply(split(length, species), se)

hedge.sparrow meadow.pipit pied.wagtail robin tree.pipit

0.2804739 0.1370836 0.2768645 0.1705307 0.2272402
wren
0.1947404

This can be done in a single line of code. The function se() can be inserted as an anonymous
function. In this case, it does not need a name; the function definition is inserted where the function
name would otherwise appear:

> sapply(split(length, species), function(x) sd(x)/sqrt(length(x)))

hedge.sparrow meadow.pipit pied.wagtail robin tree.pipit
0.2804739 0.1370836 0.2768645 0.1705307 0.2272402
wren

0.1947404
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2 Regression Splines — one explanatory variable

Exercise 5
The following is based on the fruitohms data frame (in DAAG)

(a) Plot ohms against juice.
(b) Try the following:

> plot(ohms ~ juice, data = fruitohms)
> with(fruitohms, lines(lowess(juice, ohms)))
> with(fruitohms, lines(lowess(juice, ohms, f = 0.2), col = "red"))

Which of the two fitted curves best captures the pattern of change?
(¢) Now fit a natural regression spline. Try for example:

> library(splines)

> plot(ohms ~ juice, data = fruitohms)

> hat <- with(fruitohms, fitted(lm(ohms ~ ns(juice, 4))))
> with(fruitohms, lines(juice, hat, col = 3))

> attributes(ns(fruitohms$juice, 4))$knots

25% 50% 75%
18.625 41.000 48.000

Experiment with different choices for the number of degrees of freedom. How many degrees
of freedom seem needed to adequately capture the pattern of change? Plot the spline basis
functions. Add vertical lines to the plot that show the knot locations.

Ezercise 6

In the geophones data frame (DAAG), plot thickness against distance. Use regression splines, as
in Exercise 6, to fit a suitable curve through the data. How many degrees of freedom seem needed?
Add vertical lines to the plot that show the locatons of the knots.

3 Regression Splines — Two or More Explanatory Variables

We begin by using the hil1s2000 data (DAAG version 0.84 or later) to fit a model that is linear in
log(dist) and log(climb), thus

> 1hills2k <- log(hills2000[, 7:9])
> names (1hills2k) <- c("ldist", "lclimb", "ltime")
> 1hills2k.1lm <- 1Im(1ltime ~ ldist + 1lclimb, data = 1hills2k)

Use termplot () to check departures from linearity in 1hills2k.1lm. Note whether there seem to be
any evident outliers.

Ezercise 7

Now use regression splines to take out the curvature that was evident when 1time was modeled as
a linear function of 1dist and 1climb. Use termplot () to guide your choice of degrees of freedom
for the spline bases. For example, you might try

> 1hills2k.ns <- 1lm(1ltime ~ ns(ldist, 4) + ns(lclimb, 3), data = 1hills2k)

Again, examine the diagnostic plots? Are there any points that should perhaps be regarded as
outliers?
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FExercise 8
The MASS package has the function 1qs() that can be used for a resistant regression fit, i.e., the
effect of outlying points is attenuated. Try the following

library (MASS)
1hills2k.1lqs <- 1lgs(ltime ~ ns(ldist, 4) + ns(lclimb, 3), data = 1lhills2k)
plot(resid(1hills2k.1gs) ~ fitted(1hills2k.1gs))
big4 <- order(abs(resid(lhills2k.1qs)), decreasing = TRUE) [1:4]
text (resid(1hills2k.1qgs) [big4] ~ fitted(lhills2k.1lqs)[big4],
labels = rownames (1hills2k) [big4], pos = 4)

+ VVVyVvyVv

Try the plot without the two largest outliers. Does this make any difference of consequence to the
fitted values?




