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Part IX

Discriminant Methods – Error Rate
Estimation, and Low-Dimensional Views

1 rpart Analyses – the Combined Pima Dataset

Note the rpart terminology:

size Number of leaves Used in plots from plotcp()
nsplit Number of splits = size - 1 Used in printcp() output
cp Complexity parameter Appears as CP in graphs and printed

output. A smaller cp gives a more complex model,
i.e., more splits.

rel error Resubstitution error Multiply by baseline error to get the
measure corresponding absolute error measure.

In general, treat this error measure with scepticism.
xerror Crossvalidation error Multiply by baseline error to get the

estimate corresponding absolute error measure.

After loading the MASS package, type help(Pima.tr) to get a description of these data. They
are relevant to the investigation of conditions that may pre-dispose to diabetes.

The Pima data frame combines Pima.tr and Pima.te from the MASS package, thus:

> library(e1071)

> library(MASS)

> Pima <- rbind(Pima.tr, Pima.te)

1.1 Fitting the model

Fit an rpart model to the Pima data:

> library(rpart)

> Pima.rpart <- rpart(type ~ ., data = Pima, method = "class")

> plotcp(Pima.rpart)

The formula type ∼ . has the effect of using as explanatory variables all columns of Pima except
type. The parameter cp is a complexity parameter; it penalizes models that are too complex. A
small penalty leads to more splits. Note that cp, at this initial fit, has to be small enough so that the
minimum of the cross-validated error is attained.

Try this several times. The result will vary somewhat from run to run. Why?
One approach is to choose in a manner that makes the model on average best, i.e., choose the

absolute minimum of the cross-validated error. If the fitting has been repeated several times, the
cross-validation errors can be averaged over the separate runs.

A more cautious approach is to choose a model where there is some modest certainty that the final
split is giving a better than chance improvement. For this, choose the smallest number of splits so that
cross-validated error rate lies under the dotted line. For example, in one of my runs, this happened
for cp=0.038, with size=4. The resulting tree can be cut back to this size with:

> Pima.rpart4 <- prune(Pima.rpart, cp = 0.037)

The value of cp is chosen to be less than 0.038, but more than the value that led to a further split.
Plot the tree, thus:

> plot(Pima.rpart4)

> text(Pima.rpart4)
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Note also the printed output from

> printcp(Pima.rpart)

Classification tree:
rpart(formula = type ~ ., data = Pima, method = "class")

Variables actually used in tree construction:
[1] age bmi glu npreg ped

Root node error: 177/532 = 0.33271

n= 532

CP nsplit rel error xerror xstd
1 0.265537 0 1.00000 1.00000 0.061400
2 0.056497 1 0.73446 0.77966 0.057116
3 0.025424 3 0.62147 0.74011 0.056141
4 0.020716 5 0.57062 0.70621 0.055249
5 0.014124 9 0.48588 0.70621 0.055249
6 0.011299 11 0.45763 0.74576 0.056284
7 0.010000 14 0.42373 0.75706 0.056567

Get the absolute cross-validated error by multiplying the root node error by xerror. With nsplit=3
(a tree of size 4 leaves), this is, in the run I did, 0.3327*0.7006 = 0.233. (The accuracy is obtained by
subtracting this from 1.0, i.e., about 77%.)

Where it is not clear from the graph where the minimum (or the minimum+SE, if that is used)
lies, it will be necessary to resort to use this printed output for that purpose. It may be necessary to
use a value of cp that is smaller than the default in the call to rpart(), in order to be reasonably
sure that the optimum (according to one or other criterion) has been found.

Exercise 1: Repeat the above several times, i.e.

> library(rpart)

> Pima.rpart <- rpart(type ~ ., data = Pima, method = "class")

> plotcp(Pima.rpart)

(a) Overlay the several plots of the cross-validated error rate against the number of splits. Why
does the cross=validated error rate vary somewhat from run to run? Average over the several runs
and choose the optimum size of tree based on (i) the minimum cross-validated error rate, and (ii) the
minimum cross-validated error rate, plus one SE.

(b) Show the relative error rate on the same graph.
NB: You can get the error rate estimates from:

> errmat <- printcp(Pima.rpart)

Classification tree:
rpart(formula = type ~ ., data = Pima, method = "class")

Variables actually used in tree construction:
[1] age bmi glu npreg ped

Root node error: 177/532 = 0.33271

n= 532
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CP nsplit rel error xerror xstd
1 0.265537 0 1.00000 1.00000 0.061400
2 0.056497 1 0.73446 0.80791 0.057772
3 0.025424 3 0.62147 0.72316 0.055701
4 0.020716 5 0.57062 0.68927 0.054783
5 0.014124 9 0.48588 0.66667 0.054139
6 0.011299 11 0.45763 0.64407 0.053470
7 0.010000 14 0.42373 0.64972 0.053640

> colnames(errmat)

[1] "CP" "nsplit" "rel error" "xerror" "xstd"

> resub.err <- 1 - 0.3327 * errmat[, "rel error"]

> cv.err <- 1 - 0.3327 * errmat[, "xerror"]

]

Exercise 2: Prune the model back to give the optimum tree, as determined by the one SE rule.
How does the error rate vary with the observed value of type? Examine the confusion matrix. This is
most easily done using the function xpred(). (The following assumes that 3 leaves, i.e., cp less than
about 0.038 and greater than 0.011, is optimal.)

> Pima.rpart <- prune(Pima.rpart, cp = 0.037)

> cvhat <- xpred.rpart(Pima.rpart4, cp = 0.037)

> tab <- table(Pima$type, cvhat)

> confusion <- rbind(tab[1, ]/sum(tab[1, ]), tab[2, ]/sum(tab[2,

+ ]))

> dimnames(confusion) <- list(ActualType = c("No", "Yes"), PredictedType = c("No",

+ "Yes"))

> print(confusion)

PredictedType
ActualType No Yes

No 0.8647887 0.1352113
Yes 0.4971751 0.5028249

The table shows how the predicted accuracy changes, depending on whether the correct type is Yes
or No.

How would you expect the overall estimate of predictive accuracy to change, using the same fitted
rpart model for prediction:

• if 40% were in the Yes category?

• if 20% were in the Yes category?

2 rpart Analyses – Pima.tr and Pima.te

Exercise 3 These exercises will use the two data sets Pima.tr and Pima.te, and carrying out a
variation on the calculations of Exercise 2.

What are the respective proportions of the two types in the two data sets?
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Exercise 3a: Repeat Exercise 1, but now use the data frame Pima.tr to determine the model, and
comparing cross-validation accuracies from calculations with Pima.tr with accuracies when Pima.te
is used as the test data:

> trPima.rpart <- rpart(type ~ ., data = Pima.tr, method = "class")

> plotcp(trPima.rpart)

> printcp(trPima.rpart)

Classification tree:
rpart(formula = type ~ ., data = Pima.tr, method = "class")

Variables actually used in tree construction:
[1] age bmi bp glu ped

Root node error: 68/200 = 0.34

n= 200

CP nsplit rel error xerror xstd
1 0.220588 0 1.00000 1.00000 0.098518
2 0.161765 1 0.77941 0.88235 0.095305
3 0.073529 2 0.61765 0.79412 0.092331
4 0.058824 3 0.54412 0.79412 0.092331
5 0.014706 4 0.48529 0.66176 0.086846
6 0.010000 7 0.44118 0.75000 0.090647

as above, e.g.

> trPima.rpart <- prune(trPima.rpart, cp = 0.02)

How does the error rate vary between the No’s and Yes’s. How does the expected error rate vary with
the proportion of No’s in the target population?

Exercise 3b: Refit the model. Choose values of cp that will give the points on the graph obtained
from plotcp(trPima.rpart). Suitable values of cp are those that appear on the graph given by
plotcp(). These (except for the first; what happens there?) are the geometric means of the successive
pairs that are printed, and can be obtained thus:

> trPima.rpart <- rpart(type ~ ., data = Pima.tr, method = "class")

> cp.all <- printcp(trPima.rpart)[, "CP"]

Classification tree:
rpart(formula = type ~ ., data = Pima.tr, method = "class")

Variables actually used in tree construction:
[1] age bmi bp glu ped

Root node error: 68/200 = 0.34

n= 200

CP nsplit rel error xerror xstd
1 0.220588 0 1.00000 1.00000 0.098518
2 0.161765 1 0.77941 1.00000 0.098518
3 0.073529 2 0.61765 0.76471 0.091224
4 0.058824 3 0.54412 0.77941 0.091785
5 0.014706 4 0.48529 0.66176 0.086846
6 0.010000 7 0.44118 0.75000 0.090647
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> n <- length(cp.all)

> cp.all <- sqrt(cp.all * c(Inf, cp.all[-n]))

> nsize <- printcp(trPima.rpart)[, "nsplit"] + 1

Classification tree:
rpart(formula = type ~ ., data = Pima.tr, method = "class")

Variables actually used in tree construction:
[1] age bmi bp glu ped

Root node error: 68/200 = 0.34

n= 200

CP nsplit rel error xerror xstd
1 0.220588 0 1.00000 1.00000 0.098518
2 0.161765 1 0.77941 1.00000 0.098518
3 0.073529 2 0.61765 0.76471 0.091224
4 0.058824 3 0.54412 0.77941 0.091785
5 0.014706 4 0.48529 0.66176 0.086846
6 0.010000 7 0.44118 0.75000 0.090647

Observe that nsize is one greater than the number of splits.
Prune back successively to these points. In each case determine the cross-validated error for the

training data and the error for test data. Plot both these errors against the size of tree, on the same
graph. Are they comparable? The following will get you started:

> tr.cverr <- printcp(trPima.rpart)[, "xerror"] * 0.34

Classification tree:
rpart(formula = type ~ ., data = Pima.tr, method = "class")

Variables actually used in tree construction:
[1] age bmi bp glu ped

Root node error: 68/200 = 0.34

n= 200

CP nsplit rel error xerror xstd
1 0.220588 0 1.00000 1.00000 0.098518
2 0.161765 1 0.77941 1.00000 0.098518
3 0.073529 2 0.61765 0.76471 0.091224
4 0.058824 3 0.54412 0.77941 0.091785
5 0.014706 4 0.48529 0.66176 0.086846
6 0.010000 7 0.44118 0.75000 0.090647

> n <- length(cp.all)

> trPima0.rpart <- trPima.rpart

> te.cverr <- numeric(n)

> for (i in n:1) {

+ trPima0.rpart <- prune(trPima0.rpart, cp = cp.all[i])

+ hat <- predict(trPima0.rpart, newdata = Pima.te, type = "class")

+ tab <- table(hat, Pima.te$type)

+ te.cverr[i] <- 1 - sum(tab[row(tab) == col(tab)])/sum(tab)

+ }

of splits.
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3 Analysis Using svm

Exercise 4: Compare the result also with the result from an SVM (Support Vector Machine) model.
For getting predictions for the current test data, it will be necessary, for models fitted using svm(),
to use the newdata argument for predict(). Follow the prototype

> library(e1071)

> library(MASS)

> trPima.svm <- svm(type ~ ., data = Pima.tr)

> hat <- predict(trPima.svm, newdata = Pima.te)

> tab <- table(Pima.te$type, hat)

> 1 - sum(tab[row(tab) == col(tab)])/sum(tab)

> confusion.svm <- rbind(tab[1, ]/sum(tab[1, ]), tab[2, ]/sum(tab[2,

+ ]))

> print(confusion.svm)

4 Analysis Using randomForest

Exercise 5: Repeat the previous exercise, but now using randomForest()

> library(randomForest)

> Pima.rf <- randomForest(type ~ ., data = Pima.tr, xtest = Pima.te[,

+ -8], ytest = Pima.te$type)

> Pima.rf

Call:
randomForest(formula = type ~ ., data = Pima.tr, xtest = Pima.te[, -8], ytest = Pima.te$type)

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 2

OOB estimate of error rate: 28%
Confusion matrix:

No Yes class.error
No 110 22 0.1666667
Yes 34 34 0.5000000

Test set error rate: 24.1%
Confusion matrix:

No Yes class.error
No 190 33 0.1479821
Yes 47 62 0.4311927

Note that OOB = Out of Bag Error rate, calculated using a cross-validation type approach with the
training data, i.e., with the data specified by the data parameter. Notice that randomForest() is set
up to give, following the one function call, an assessment of predictive error for a completely separate
set of test data that has had no role in training the model. Where such a test set is available, this
provides a reassuring check that randomForest() is not over-fitting.

Exercise 6: The function tuneRF() can be used for such limited tuning as randomForest() allows.
Look up help(tuneRF(), and run this function in order to find an optimal value for the parameter
mtry. Then repeat the above with this optimum value of mtry, and again compare the OOB error
with the error on the test set.

Exercise 7: Comment on the difference between rpart() and randomForest(): (1) in the level
of automation; (2) in error rate for the data sets for which you have a comparison; (3) in speed of
execution.
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5 Prior Proportions

Exercise 8: Analysis with and without specification of a prior Try the following:

> Pima.rf <- randomForest(type ~ ., data = Pima, method = "class")

> Pima.rf.4 <- randomForest(type ~ ., data = Pima, method = "class",

+ classwt = c(0.6, 0.4))

> Pima.rf.1 <- randomForest(type ~ ., data = Pima, method = "class",

+ classwt = c(0.9, 0.1))

What class weights have been implicitly assumed, in the first calculation?
Compare the three confusion matrices. Why are they different?

6 Plots that show the “distances” between points

In analyses with randomForest, the proportion of times (over all trees) that any pair of observations
(“points”) appears at the same terminal node can be use as a measure of proximity between the pair.
An ordination method can then be used to find a low-dimensional representation of the points that
as far as possible preserves the distances or (for non-metric scaling) preserves the ordering of the
distances. Here is an example:

> Pima.rf <- randomForest(type ~ ., data = Pima, proximity = TRUE)

> Pima.prox <- predict(Pima.rf, proximity = TRUE)

> Pima.cmd <- cmdscale(1 - Pima.prox$proximity)

> Pima.cmd3 <- cmdscale(1 - Pima.prox$proximity, k = 3)

> library(lattice)

> cloud(Pima.cmd3[, 1] ~ Pima.cmd3[, 2] * Pima.cmd3[, 2], groups = Pima$type)

Exercise 9: What is the plot from cloud() saying? Why is this not overly surprising?:

7 Discrimination with Multiple Groups

The package mclust has the data set diabetes. It does not automatically become available when the
package is attached; instead, it is necessary to bring it into the workspace by typing

> data(diabetes)

Here is a 3-dimensional cloud plot:

> cloud(insulin ~ glucose + sspg, groups = class, data = diabetes)

7.1 Linear discriminant analysis

We will first try linear discriminant analysis. We specify CV=TRUE, in order to obtain predictions of
class membership that are derived from leave-one-out cross-validation. We then run the calculations
a second time, now with CV=FALSE, in order to obtain an object from which we can obtain the
discriminant scores

> diabetes.lda <- lda(class ~ insulin + glucose + sspg, data = diabetes,

+ CV = TRUE)

> diabetes.lda

> tab <- table(diabetes$class, diabetes.lda$class)

> 1 - sum(tab[row(tab) == col(tab)])/sum(tab)

> confusion.lda <- rbind(tab[1, ]/sum(tab[1, ]), tab[2, ]/sum(tab[2,

+ ]), tab[3, ]/sum(tab[3, ]))

> dimnames(confusion.lda) <- list(Actual = c("chemical", "normal",
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+ "overt"), "Predicted (cv)" = c("chemical", "normal", "overt"))

> print(confusion.lda)

> hat.lda <- predict(lda(class ~ insulin + glucose + sspg, data = diabetes))

> plot(hat.lda$x, col = unclass(diabetes$class) + 1)

7.2 Support vector machines

Here, we will specify the use of tenfold cross-validation, in order to estimate the error rate. The
“decision values” will be used to define co-ordinate axes, so that data can be plotted.

> diabetes.svm <- svm(class ~ insulin + glucose + sspg, data = diabetes,

+ cross = 10)

> summary(diabetes.svm)

> pred <- predict(diabetes.svm, diabetes[, -1], decision.values = TRUE)

> decision <- attributes(pred)$decision.values

> decision.cmd <- cmdscale(dist(decision))

> plot(decision.cmd, col = unclass(diabetes$class) + 1)

The cross-validated prediction accuracy is less than using lda(). There is however substantial scope
for using another kernel, and/or setting various tuning parameters. If there is such tuning, care is
needed in obtaining an accuracy measure that is not biased on account of the tuning. Two possibilities
are: (1) divide the data into training and test sets, and use the test set accuracy rather than the cross-
validation accuracy; or (2) repeat the tuning at each cross-validation fold.

Also possible is to use a scaled version of the decision values. For example, the following uses the
MASS program isoMDS() to obtain a 2-dimensional representation. The function isoMDS() requires
a starting configuration; we use the values from cmdscale() for that purpose:

> diabetes.mds <- isoMDS(dist(decision), decision.cmd)

It turns out that observations 4 and 80 have zero distance, which isoMDS() is unable to handle. We
therefore omit observation 80.

> decision1 <- decision[-80, ]

> diabetes.mds <- isoMDS(dist(decision1), decision.cmd[-80, ])

initial value 0.454312
iter 5 value 0.387661
final value 0.384746
converged

> plot(diabetes.mds$points, col = unclass(diabetes$class)[-80] +

+ 1)

7.3 Use of randomForest()

First, fit a tree-based discriminant model, calculating at the same time the proximities:

> diabetes.rf <- randomForest(class ~ ., data = diabetes, proximity = TRUE)

> print(diabetes.rf)

> diabetes.rf.cmd <- cmdscale(1 - diabetes.rf$proximity)

> plot(diabetes.rf.cmd, col = unclass(diabetes$class) + 1)

The clear separation between the three groups, on this graph, is remarkable. It is however consistent
with the OOB error rate of 2%.

Exercise 10: Make a table that compares lda(), svm() and randomForest(), with respect to error
rate for the three classes separately.


