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1 Introduction

There will be references to the following web sites:
CRAN (Comprehensive R Archive Network): http://cran.r-project.org
Go to the nearest mirror. Australian mirrors are:
http://mirror.aarnet.edu.au/pub/CRAN and http://cran.ms.unimelb.edu.au/.
R homepage: http://www.r-project.org/
http://www.maths.anu.edu.au/∼johnm/r/misc-data/

1.1 Commentary on R

General

R runs on many types of system – Windows, Mac, Unix and Linux. It is free. Obtain it from a
CRAN site (see above).

R has extensive graphical abilities that are tightly linked with its analytic abilities.

Much of the power of R for statistical analysis and for specialist graphics comes from the
extensive enhancements that the packages build on top of the base system.

Although now relatively mature, the system gets continuing scrutiny, with improvements and
enhancements appearing with each new release, i.e., every few months.

Though not perfect in this respect (!), the system has been developed with a keen regard to
notions of good statistical practice.

Users should expect to encounter demands to improve their statistical knowledge, in order to
use R effectively. The R community expects users to be serious about data analysis, to want
more than a quick cook-book fix!

As noted, the R code that is in the base system and in the recommended packages gets unusually
careful scrutiny. Nevertheless, there are traps. Take particular care with newer abilities, which
may not have been much tested in regular use. Note also that some of the contributed packages
may not have been much tested, except by their developers. [Such warnings apply, of course to
any statistical system.]

At this time, R primarily serves two groups: statistical and allied professionals who wish to
develop or require access to cutting edge tools, and working scientists who have such substantial
and continuing data analysis problems that they justify time spent in the mastery of R.

Getting help

Although there is no official support for R, its informal support network, accessible from the r-help
mailing list, can be highly effective. Details of this and other lists can be found on the home page
for the R project: http://www.r-project.org. Be sure to check the available documentation before
posting to r-help. Archives are available that can be searched for questions that have been previously
answered.

Use of an editor as a run-time environment

The Windows implementation, and the Cocoa based GUI for Mac OS X, now offer a simple script
editor that has a Run Line or Selection feature. There are various editors and associated interfaces to
R that allow editing of code, again offering a single click Run Line or Selection. On Windows systems,
the Tinn-R editor (http://www.sciviews.org/Tinn-R/) is an excellent option. ESS (Emacs Speaks
Statistics), now fully operational for Windows as well as for Unix, is attractive for users who relish
the power of the Emacs editor.

http://cran.r-project.org
http://mirror.aarnet.edu.au/pub/CRAN
http://cran.ms.unimelb.edu.au/
http://www.r-project.org/
http://www.maths.anu.edu.au/~johnm/r/misc-data/
http://www.r-project.org
http://www.sciviews.org/Tinn-R/
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Data set size, and databases

R’s evolving technical design has allowed it, taking advantage of advances in computing hardware, to
steadily improve its handling of large data sets. The flexibility that R’s memory model allows does
however have a cost for some types of operation, relative to systems that are highly efficient in the
processing of data from file to file. An important step was the move, with the release of version 1.2,
to a dynamic memory model.

The R system has limited database abilities which are unlikely, at present, to be much extended.
Instead, the emphasis will be on extending and improving connections into widely used database
systems.

The development model, and development strategies

An impressive developer skill base, and the use of the open source development model has been highly
effective in ensuring the quality and correctness of the base system and of the recommended packages.
The development model for R is broadly similar to that for the Linux operating system. Observe
that, whereas Linux competes in the shadow of Microsoft, R is not obviously in the shadow of any
other system!

Connectivity has been an important development focus. Better than duplicating abilities that are
handled well in other systems is, often, the provision of interfaces into those systems. Systems for
which there are interfaces to R include Python, SQL and other databases, parallel computing using
MPI, and Excel using the DCOM software.

Unifying Ideas

Generic functions for common tasks – print, summary, plot, etc. (the Object-oriented idea; do
what that “class” of object requires)

Formulae, for specifying graphs, models and tables.

Expressions can be:

evaluated (of course)

printed on a graph (come to think of it, why not?)

Language structures can be manipulated, just like any other object (Manipulate formulae, ex-
pressions, argument lists for functions, . . . )

Trellis (lattice) graphics – graphs whose layout reflects data structure

There are many unifying computational features, e.g.

Any ‘linear’ model (lm, lme, etc) can use spline basis functions to fit spline terms. This
extends to any other system of basis functions.

These ideas are not uniformly implemented right through R, reflecting the incremental manner in
which R has developed.

Retrospect, prospect and alternatives to R

Ross Ihaka and Robert Gentleman, both at that time from the University of Auckland, developed
the initial version of R, for use in teaching tool. It implements a dialect of the S language that
was developed at AT&T Bell Laboratories for use as a general purpose scientific language, but with
especial strengths in data manipulation, graphical presentation and statistical analysis. Since mid-
1997, development has been overseen by a ‘core team’ of about a dozen people, drawn from many
different institutions worldwide.

The commercial S-PLUS implementation of S had popularized the use of S as a language for
scientific and statistical computation, and for graphics. The S language had, in the two decades up to
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2000, a large user base among professionals and others. The R system tapped into this existing large
user base. There were a number of roughly comparable systems – including Matlab, Scilab, Gauss,
Python and Lisp-Stat – that might potentially have supplanted R. However these had much smaller
existing bases in the institutions and groups that in due course drove the development of R. Note
however the popularity of Matlab in the signal and image processing community.

Although with a syntax that looks superficially like that of C, the implementation of R has been
heavily influenced by LISP. The R interpreter uses a model that is based on the Scheme dialect
of LISP. Luke Tierney, and several others who had previously had a heavy involvement with Luke
Tierney’s Lisp=Stat system, are now actively involved in the ongoing development of R. See Tierney
(2005), and other papers in the same volume of the Journal of Statistical Software

With the release of version 1.0 in early 2000, R became a serious tool for professional use. Since
that time, the pace of development has been frenetic, with a new package appearing every week or
two. There are now more than 400 packages available through the CRAN (Comprehensive R Archive
Network) sites. Books that were specifically devoted to R began to appear in 2002.

Novice users will notice small but occasionally important differences between R and S-PLUS.
Writers of substantial functions and (especially) packages will find larger differences. R’s packages
are now more wide-ranging in scope as S-PLUS libraries. Some specialised S-PLUS abilities may not
be available in R or in R packages.

The R project has pushed boundaries and shown what is possible when experts in statistical
computing work co-operatively to push boundaries. Its language model is however now dated. While
many of those who have been involved in the development of R are pondering what might lie beyond
R, this has not as yet led to the development of credible prototypes for an alternative. What will
eventually overtake and in large part encompass R is anyone’s guess.

The Statistics of Data Collection

The scientific context, which includes available statistical methodology, has crucial implications for
the experiments that it is useful to do, and for the analyses that are meaningful. There are, in
addition, constraints and opportunities that arise from computing software and hardware.

Statistics of data collection encompasses statistical experimental design, sampling design, and
more besides. At base, the same issues arise in field, industrial, medical, biological and laboratory
experimentation. The aim, as always, is to get maximum value from the use of all resources. The
planning that is required will be most effective if based on sound knowledge of the materials and
procedures used by experimenters. As we learn more about these issues, we gain the knowledge
needed to design better experiments.

1.2 Installation and Updates

Versions of R are available, at no cost, for Windows 95 and later versions of Microsoft Windows for
Linux, for Unix and for Macintosh systems 8.6 or later. It is available through the Comprehensive
R Archive Network (CRAN). Australian users should obtain files that can be used for R installation
from one of the sites:
http://mirror.aarnet.edu.au/pub/CRAN, http://cran.ms.unimelb.edu.au/.

Installation details vary between operating systems. A fresh install is typically required to take
advantage of new major releases (e.g. moving from a 2.2 series release to a 2.3 series release) when
they appear. For working through these notes, version 2.2.0 or later should be installed.

Once R has been installed, functions are available that will, from within R, install additional
packages or update packages that are already installed, via an internet connection. At several points
in these notes, the DAAG package will be required. If there must be a live internet connection that
R can access, then you can install it by entering, from the R command line:

install.packages("DAAG")

Alternatively, on systems where a menu is available, do this via the menu.

http://mirror.aarnet.edu.au/pub/CRAN
http://cran.ms.unimelb.edu.au/
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For further information on install.packages(), enter help(install.packages) from within an
R session. Note also download.packages() (this takes a list of package names and a destination
directory, downloads the newest versions of the package sources and saves them in ‘destdir’) and
update.packages() (outdated packages are reported and for each outdated package the user can
specify if it should be automatically updated).

On Unix and Linux systems, the relevant gzipped tar files can be downloaded or copied across
from a CD collection. They can then be installed using the shell command

R CMD INSTALL <package (.tar.gz file)>
On Windows systems, zip binaries that have been downloaded separately from CRAN can be

installed by navigating to the Packages menu item Install package(s) from local zip file. Then navigate
to the directory that holds the zip file(s), and select those that are to be installed.

For installation from the command line, call install.packages() with pkgs giving the files (with
path, if necessary), and with the argument repos=NULL. If for example the binary DAAG 0.79.zip
has been downloaded to D:\tmp\, it can be installed thus

install.packages(pkgs="D:/DAAG_0.79. zip", repos=NULL)

From the R command line, be sure to replace the usual Windows backslashes by forward slashes.

Help for installation under Windows

Windows users will find a great deal of helpful information on the web page
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/installation.html

Data sets, additional to those in the DAAG package

Several data sets that relate to the present workshop are included in the R image file misc.RData
that can be obtained from the url:
http://www.maths.anu.edu.au/∼johnm/r/misc-data/
Other files that are available from this same directory include travelbooks.txt, MouseArray.RData,
and the R scripts for these notes.

1.3 Documentation

Official Documentation: Users who are working through these notes on their own should have
available for reference the document
“An Introduction to R”, written by the R Development Core Team. To download an up-to-date copy,
go to CRAN.

R News: Successive issues of R News contain much useful information. These can be copied down
from one of the CRAN sites.

Contributed Documentation: There is an extensive collection of user-written documents on R
that can be accessed by going to this same mirror site, and clicking (under Documentation) on
Contributed. See also the links that John Fox gives on the web page for his book that is noted
under the reference for his book.

Books: Subsection 11.1 includes references to a number of books. Recently, a number of new books
on R have appeared. See http://www.R-project.org/doc/bib/R.bib for a list that is updated
regularly.

http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/installation.html
http://www.maths.anu.edu.au/~johnm/r/misc-data/
http://www.R-project.org/doc/bib/R.bib


2 AN OVERVIEW OF R 9

2 An Overview of R

Command prompt (>) Enter commands following the prompt, e.g.
> 2 + 2 # Calculate 2 + 2

Quitting To quit from R type
q() # NB q(), not q

Case matters volume is different from Volume
Help Use it often. For example

help() # Information on the help function
help(plot) # help on the plot function

Demonstrations Type demo() to get details of demonstrations.
Examples Many of the help pages include examples. To run them, type, e.g.

example(plot) # run all the examples for plot()
Assignment The assignment symbol is <-, e.g.

volume <- c(351, 955, 662, 1203, 557) # c = concatenate
# Store the column of numbers in volume

Other topics Simple arithmetic operations; simple plots.

2.1 Use of the console (i.e., command line) window

The command line prompt, i.e. the >, is an invitation to start entering commands. For example, type
2+2 and press the Enter key. The following appears on the screen:

> 2+2
[1] 4
>

The result is 4. The [1] says, a little strangely, “first requested element will follow”. Here, there
is just one element. The > indicates that R is ready for another command.

The exit or quit command is

> q()

Depending on the platform, alternatives may be to click on the File menu and then on Exit, or to
click on the X in the top right hand corner of the R window. There will be a message asking whether
to save the workspace image. Clicking Yes (the safe option) will save the objects that remain in the
workspace – any that were there at the start of the session and any that have been added since.

Commands may continue over more than one line. By default, the continuation prompt is
+

As with the > prompt, this is generated by R. Any attempt to include it in the code that is entered
will generate an error!

For the names of R objects or commands, case is significant. Thus Myr (millions of years), which
we will use below, is different from myr. For file names on Windows systems, the Microsoft Windows
conventions apply, and case does not distinguish file names. On Unix systems (the Mac OS X version
of Unix is an exception) case in file names is significant.

Further points are:

o The quit command (“quit from the R session”) is the function call q(). Typing q on its own,
without the parentheses, displays the text of the function on the screen.

o Multiple commands may appear on a line, with the semicolon (;) as the separator.

o The # symbol indicates that what follows, on that line, is comment.
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Practice with R commands

Try the following

1:5 # The numbers 1, 2, 3, 4, 5

mean (1:5)
sum (1:5) # Apply the sum function to the

# the vector of numbers 1, 2, 3, 4, 5

(2:5)^10 # 2 to the power of 10, 3 to the power of 10, ...

log2(c(0.5, 1, 2, 4, 8)) # Values that differ by a factor of 2

# are , on this scale , one unit apart.

The R language has the abilities for evaluating arithmetic and logical expressions that are available
in most languages. It uses functions to extend these basic arithmetic and logical abilities.

2.2 Demonstrations

There are a number of demonstrations that give useful indications of R’s abilities, especially for
graphics. To get a list of available demonstration, type:

demo()

Visually interesting demonstrations are:

demo(image)
demo(graphics)
demo(persp)
demo(plotmath) # Mathematical symbols can be visually interesting

library(lattice)
demo(lattice) # Demonstrates lattice graphics

Especially for demo(lattice), it pays to stretch the graphics window to cover a substantial part of
the screen. Place the cursor on the lower right corner of the graphics window, hold down the left
mouse button, and pull.

Try also

demo(package = .packages(all.available = TRUE))

Also interesting is:

library(vcd) # The vcd package must of course be installed.

demo(mosaic)

2.3 Help, and examples

All built-in functions have help files, which can be accessed using the help() command. Try typing

help(help) # Get help on help()

help(mean)

Often, a good way to learn how to use a function is to run the examples that are included in the
help file. The function example() checks the help page for examples, and runs them. Be warned that
the examples for relatively simple functions can be non-trivial. Or they may be extensive. Try:

example(mean)
example(plot) # This gives a species of movie show

par(ask=TRUE) # Ask before displaying the next graph

example(plot) # Now the plots are displayed one at a time.
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example(lowess) # Fit a smooth curve to scatterplot data

example(image)
example(contour)
example(filled.contour)
par(ask=FALSE) # From here on , plot without asking

Typically, several examples will run one after the other. The code appears on the screen. To re-run
an example, look on the screen for the code that was used, and copy or type it following the command
line prompt. The examples sometimes illustrate technical details that may puzzle novices.

Use help.search() to look for functions that include a specific word in their alias or title. For
example, in order to look for a function for bar plots, try

help.search("bar")

This draws attention to the function barplot(). As a first step in investigating the function, try

par(ask=TRUE)
example(barplot)
par(ask=FALSE)

Several of fhe examples focus on sophisticated barplot abilities. Finally, type in help(barplot), and
read the information on the help page.

The function apropos() lists all functions (or other R objects) whose names include the text string
that is given as the function argument. For example

> apropos("str")
[1] "R.version.string" "ls.str" "lsf.str"
[4] "str" "str.POSIXt" "str.data.frame"
[7] "str.default" "str.logLik" "strftime"
[10] "strheight" "stripchart" "strptime"
[13] "strsplit" "structure" "strwidth"
[16] "strwrap" "substr" "substr <-"
[19] "substring" "substring <-"
>

Finally, note that help.start() should start a browser window that gives access to a variety of
help information and documentation.

Vignettes

Vignettes are pdf documents that describe the abilities in packages for R. To get a list of vignettes in
all installed packages type:

vignette ()

To get a name(s) of vignette(s), if any, for specific packages, type, e.g.:

vignette(package="graph")
vignette(package="e1071") # e701 includes functions for

# Support Vector Machines (SVMs)

vignette(package="mcmc") # Markov Chain Monte Carlo

The package graph has two vignettes, clusterGraph and graph, the package e1071 has the
vignette svmdoc, the package mcmc has the vignette demo. To use the default pdf viewer to
display a specific vignette, type, e.g.:

vignette("graph") # Equivalent to vignette(topic ="graph ")
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2.4 A Short R Session

We will work with the data set shown in Table 1:

Volume (mm3) Weight (g) type
Aird’s Guide to Sydney 351.00 250.00 Guide

Moon’s Australia handbook 955.00 840.00 Guide
Explore Australia Road Atlas 662.00 550.00 Roadmaps

Australian Motoring Guide 1203.00 1360.00 Roadmaps
Penguin Touring Atlas 557.00 640.00 Roadmaps
Canberra - The Guide 460.00 420.00 Guide

Table 1: Weights and volumes, for six Australian travel books.

Entry of vector elements from the command line

Data may be entered from the command line, thus:

volume <- c(351, 955, 662, 1203, 557, 460)
weight <- c(250, 840, 550, 1360, 640, 420)

Now enter the descriptions:

description <- c("Aird ’s Guide to Sydney", "Moon ’s Australia handbook",
"Explore Australia Road Atlas", "Australian Motoring Guide",
"Penguin Touring Atlas", "Canberra - The Guide")

Notes:

• The assignment symbol is <-

• Read the symbol c as “concatenate”. The function c() joins elements together into a vector.
(For volume and weight the elements were numbers, while for description the elements were
text strings.

• Typing the name of an object causes the printing of its contents. Try typing volume. This
applies to functions as well as data objects. For example, try typing q, or mean.

Operations with vectors

Here are the values of volume

> volume
[1] 351 955 662 1203 557 460
>

Here are various arithmetic operations:

> # Final element of volume

> volume [6]
[1] 460
> ## Ratio of weight to volume , i.e., density

> round(weight/volume ,2)
[1] 0.71 0.88 0.83 1.13 1.15 0.91

Notice the use of # to preface the comment, which will be ignored by the command line interpreter.
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Figure 1: Weight ver-
sus volume, for six Aus-
tralian travel books.

A simple plot

To plot (weight against volume (Figure 1), type one of the following:

plot(weight ~ volume , pch=16, cex =1.5)
# pch=16 gives a solid blob as plotting symbol

# cex =1.5 makes points 1.5 times the default size

## Alternative

plot(volume , weight , pch=16, cex =1.5)

The parameter weight ~ volume is a graphics formula. The “formulae” that are used in specifying
models, and in the functions xtabs() and unstack(), take a similar form.

The axes can be labeled:

plot(weight ~ volume , pch=16, cex=1.5, xlab="Volume (cubic mm)",
ylab="Weight (g)")

Labeling of the points (e.g., with the species names) can be done interactively, with the identify()
command. Type:

identify(weight ~ volume , labels=description)

Then click the left mouse button above or below a point, or on the left or right, depending on where
you wish the label to appear. Repeat for as many points as you want labelled.

Depending on the computer system, either click outside the graphics area to terminate the la-
belling, or click the right mouse button outside the figure area.

Alternatively, use text() to place labels on all the points.
There are extensive abilities that may be used to control the formatting and layout of plots, and

to add features such as special symbols, fitted lines and curves, annotation (including mathematical
annotation), colors and so on. A later section (Section 5) is devoted to graphics.

2.5 Summary

One use of R is as a calculator, to evaluate arithmetic expressions. Calculations can be carried
out in parallel, across all elements of a vector at once.

Use q() to quit from R. If newly created objects are to be retained, save the workspace upon
quitting.

Useful help functions are help() (for getting information on a known function), help.search()
(for searching for a word that is used in the header for the help file), and apropos() (for
identifying functions that include a particular text string as part of their names). Note also
the use of help.start(), to start a browser window from which R help information can be
accessed.
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3 The Working Environment of an R Session

The Working Environment:
Working directory R will by default read files from this directory, or write files to it
Object A data structure or function that R recognizes
Workspace This holds objects that relate to the user’s current session
read.table() Use this function to read data, from a file, into the workspace
Image files These store a collection of R objects, e.g., the workspace conents.

(The expected file extension is .RData or .rda)
save.image() Use, at any time in an R session, to store all or some workspace contents.

Or use the relevant menu item to achive the same effect.
Packages Packages are collections of R functions and/or data.
library() Use this function to attach a package, e.g. library(DAAG)

(Recommended packages are included with binary distributions of R.
Other packages must be installed, before they can be attached)

Objects in R Both data objects and functions are referred to as objects
Use ls() to list the objects in the current workspace.

Search path The search path determines where R looks for objects that are
internal to R, or to one of its packages. The items on the search path
have the name “databases”.

A system such as R requires access to directories where relevant files can be stored or accessed.
Files that belong to the R system are by default placed somewhere that is (usually) sensible. Novice
users should not need to concern themselves with the details.

It may be necessary to know:

• the location of the current working directory, where R will by default look for files or store files
that are external to R;

• the search path, which is important for determining where R looks for objects that are required
in an R session. Here we are talking about objects that are internal to R.

3.1 The Working Directory and the Workspace

The working directory is the directory in which R will by default look for files, and save files. It pays
to have a separate working directory, and associated workspace, for each major project.

Listing Workspace Contents

To see a list of the objects or of selected objects that are in the workspace, type a command such as
the following:

> ls()
[1] "volume" "weight"
> ls(pattern="^w")
[1] "weight"

In a long session in a working directory, cautious users will from time to time save the current
workspace image as a backup, perhaps first using rm() to remove objects that are no longer required.
The command save.image()) will save everything in the workspace, by default into a file with the
name .RData in the working directory. On implementations that offer a menu, this can alternatively
be done by clicking on the relevant menu item.

Before saving the workspace, consider use of rm() to remove objects that are no longer required.
Saving the workspace image will then save everything that remains, by default into a file called .Rdata
in the working directory.
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Upon quitting from R (type q(), or on Macs and Windows use the relevant item on the menu),
users are asked whether they wish to save the current workspace.1 The workspace is reloaded next
time an R session is started in the directory.

The workspace is at the base of a search list that gives access to packages, objects in other
directories, etc.

Setting the Working Directory

When working from a Unix or Linux command line, the working directory is the directory in which
you start. When an session is started by clicking on an icon, the session will start in a working
directory that is associated with the icon. The default choice, usually an R installation directory, is
not a good choice for long-term use, and should be changed. On Windows PC systems, change the
Start In directory that is specified in the Preferences setting for the icon.

It is good practice to use a separate working directory for each different project. On Windows
systems, copy an existing R icon, rename it as desired, and change the Start In directory to the new
working directory.

It is also possible to change the working directory once a session has been started. This can be done

either from the menu (if available) or from the command line. Before making such a change, be sure to save

the existing workspace, if it is to be kept. Then, once the working directory has been changed, load the new

workspace.

3.2 Saving and retrieving R objects

Image files, created using save() or save.image(), may contain arbitrary R objects. One or more
objects can be saved to an image file at any time during a session. Upon quitting a session, the user
is offered the option of saving the workspace in the default image file. The following demonstrate the
explicit use of the save() and load() commands:

save(volume , weight , file="books.RData")
# Can save many objects in the same file

load("books.RData") # Recover the saved objects

The function save.image() is a variation on save() that saves the contents of the workspace, by
default in the file .RData. The contents of any .RData file in the working directory are automatically
loaded when a new session is started.

An alternative to saving the objects in an image file is to save them, in a text format, as dump
files:the above use of save() is:

dump(c("volume", "weight"), file="books.R")

The objects can be recreated from this “dump” file by inputting the lines of books.R one by one at
the command line. The following command restores both objects to the workspace:

source("books.R")

For day to day use, image .RData files are in general preferable to dump files. The same checks
are performed on dump files as if the text had been entered at the command line. These may be
unwanted, and they slow down entry of the data or other object.

For archival storage, dump (.R) files may be preferable. For added security, retain a printed
version. If a problem arises (from a system change, or because the file has been corrupted), it is
straightforward to check through the file line by line to find what is wrong.

1Users of Linux should however note that clicking on the × in the upper right of the Window in order to quit may
not, depending on the window manager, give the option to save the workspace.
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3.3 Input of Data

For input into data frames, the most important function is read.table(). The following assumes
that the file travelbooks.txt (on my web page) is in the working directory. Here is a listing of the
first of these files:

thickness width height weight volume kind

Aird’s Guide to Sydney 1.30 11.30 23.90 250 351 Guide
Moon’s Australia handbook 3.90 13.10 18.70 840 955 Guide

Explore Australia Road Atlas 1.20 20.00 27.60 550 662 Roadmaps
Australian Motoring Guide 2.00 21.10 28.50 1360 1203 Roadmaps

Penguin Touring Atlas 0.60 25.80 36.00 640 557 Roadmaps
Canberra - The Guide 1.50 13.10 23.40 420 460 Guide

Notice that the first column has no header information. A suitable way to read in these data is:

# Row 1 of the file gives column names. Column 1 gives row names

travelbooks <- read.table("travelbooks.txt")
# The following is safer and more explicit

travelbooks <- read.table("travelbooks.txt", header=TRUE , row.names =1)

The object travelbooks is a data frame. Data frames are pervasive in R. Most datasets that are
included with R packages are supplied as data frames.

This data frame has column and row names. The first seven columns are numeric. The final
column is a factor, though for present purposes it can be treated as a character vector. There are
various ways to access the columns. The following will do for now:

plot( weight ~ volume , data=travelbooks)

3.4 Writing of data frames to text files

Data frames can be stored as text files. Use the function write.table() to write a data frame to a
text file.

More generally, to save several objects (data frames or any other R object) in the one file, use
dump() (to save in a text format) or save.image(), as noted above.

3.5 Installations, packages and sessions

3.5.1 The architecture of an R installation

An R installation is structured as a library of packages.

• All installations should have the base packages (one of them is called base) , which provide the
superstructure for other packages.

• Binaries that are available from CRAN sites include, also, all the recommended packages.

• Other packages can be installed as required.

A number of packages are by default attached at the start of a session. Other packages can be
attached (use library()) as required. To discover which packages have been attached, enter:

sessionInfo ()
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3.5.2 The search list: attach() and library()

The R system has a search path where it looks for objects. This can be changed in the course of a
session. To get a snapshot of the search list, type:

> search ()
[1] ".GlobalEnv" "package:xtable" "package:MASS" "package:vcd"
[5] "package:methods" "package:stats" "package:graphics" "package:utils"
[9] "Autoloads" "package:base"

Technically, these are called “databases”. The search list is used to structure the search for R objects.
The database ”.GlobalEnv” is the user’s workspace, which is at the base of the search path. The

attach() and library() commands extend the search list.

3.5.3 R packages

The use of library() to load a new R package extends the search list. The system then looks in the
package database for objects that are not in the user workspace.

If at some point (often the end of the session) the workspace is saved, and objects that were added
have not been explicitly removed, they will be saved as part of the workspace. If saved in the default
.RData image file in the working directory, the workspace will be automatically loaded when a new
session is next started in that working directory.

Use the function .path.package() to get the path of a currently attached package. By default,
this information is given for all loaded packages.

3.5.4 The attachment of image files

As noted earlier, the function attach() extends the search list, by simplifying access to the columns
of data frames or to the elements of lists, or by giving access to an image file that is stored somewhere.

Additionally, any R image file can be attached, either from the current working directory, or from
any other directory. For example:

attach("books.RData")

The workspace then has access to objects in the file books.RData. The file becomes a further
“database” on the search list, separate from the workspace. If however the object is modified, the
modified copy does become part of the workspace.

In order to detach such a database, proceed thus:

detach("file:books.RData")

3.6 Summary

Each R session has a working directory. This is the directory where R will by default look for
files or store files that are external to R.

User-created objects appear appear in the workspace. At the end of a session (and perhaps
from time to time during the session), an image of the workspace will typically be saved into
the working directory.

It is usually best to keep a separate workspace and associated working directory, for each major
project.
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4 Objects and Functions

Key notions and language structures:
Vector Collects together elements that are all of the one mode. (Possible modes

are ”logical”, ”integer”, ”numeric”, ”complex”, ”character”) and ”raw”)
Factors Use for categorical data. They are often invaluable for specifying models.

(Challenge: Explain why factors are not vectors, even though they
behave pretty much like vectors! Columns of data frames can be factors)

Data frame A list of columns, all of the same length, but perhaps of different modes.
(Data frames are often the best way to supply data to Modeling functions)

Lists Lists group together an arbitrary collection of objects
(These have the recursive list structure that computer buffs might expect.)

Missing values The symbol is NA. The handling of NAs can be tricky.
Generic functions They examine the object given as argument, before deciding

what action is needed. Examples include print(), plot() & summary()
Modeling functions These fit statistical models. Thus note lm(), for linear modeling
Model objects These store information from a call to a modeling function, such as lm()

(They serve as a repository from which to extract output information)
Packages Packages are collections of R functions and/or data.
library() Use this function to attach a package, e.g. library(DAAG)

(Recommended packages are included with binary distributions of R.
Other packages must be installed, before they can be attached)

The Search List The current list specifies “databases” where R looks, in turn, for objects.
Specify search() to display the search list.

4.1 Data Frames – Lists of Vectors

The following demonstrates the use of a data frame to group together, under the name travelbooks,
the several columns of Table 1.

## NB , the row names will now be shortened

travelbooks <- data.frame(
thickness = c(1.3, 3.9, 1.2, 2, 0.6, 1.5),
width = c(11.3, 13.1, 20, 21.1, 25.8, 13.1) ,
height = c(23.9 , 18.7, 27.6, 28.5, 36, 23.4),
weight = weight , # Include values of weight , entered earlier

volume = volume , # Include values of volume , entered earlier

kind = c("Guide", "Guide", "Roadmaps", "Roadmaps", "Roadmaps", "Guide"),
row.names = description

)
## Remove objects that are not now needed.

rm(volume , weight , description)

The vectors volume, weight and description had already been entered, and it was not necessary to
re-enter them. It is a matter of convenience whether the description information is used to label the
rows, or alternatively placed in a column of the data frame.

The different columns of a data frame can be any of the modes logical, or numeric or character;
there are other possibilities also. All elements in a column must of course have the same mode.

The function read.table() takes data from a text file (or from the clipboard, specify file="clipboard")
and places them in a data frame.

The Use of Data Frames

Data frames can be used in the following ways:

o They can be manipulated directly; see below for some of the possibilities
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o They can be attached (use the attach() function), making their columns available by name.
Alternatively, use with(), which makes the data frame available for the duration of the com-
mand.

o In modelling and graphics functions, there is often a data parameter that can be used to specify
the data frame from which variable and factor names will be taken. In effect, the data frame is
attached for the duration of the analysis, though in the environment of the function.

The command attach(travelbooks) extends R’s search list to include the columns of the data
frame, thus:

> volume

Error: Object "volume" not found
> attach(travelbooks)
> volume
[1] 351 955 662 1203 557 460

Once travelbooks is for the time being no longer required, it is advisable to detach it, thus:

detach(travelbooks)

This reduces the risk of ambiguity because two data sets that are attached at the same time have one
or more column names in common, or because the name of column in a data frame is the same as the
name of an object in the workspace.

The following, which displays the values of volume, illustrates the use of with() to make the data
frame available for the duration of the command:

## Display the column volume , from the travelbooks data frame

with(travelbooks , volume)

Data frames as lists

Data frames are lists of column vectors. One consequence is that use of the subscript notation to
extract a row from a data frame gives a different data structure from use of the subscript notation to
extract a column. Specifically:

The result of travelbooks$volume or travelbooks[,"volume"] or travelbooks[,1] is a vec-
tor.

The result of travelbooks["robin", ] or travelbooks[3, ] is a data frame, i.e., a special
form of list. The syntax unlist(travelbooks["robin", ]) can be used to turn such a list
into a vector.

Data Frames versus Matrices

Matrices are rectangular arrays in which all elements have the same class. Internally, matrices are
one long vector in which the columns are strung out one after the other. For a regression calculation,
a data frame is necessary. Depending on the calculation that is to be performed, matrices and data
frames may require a different syntax, or even explicit conversion from one to the other.

Matrices will be discussed in Subsection 4.4.

4.2 Input of Data – some further comments

Recall the earlier use of read.table():

travelbooks <- read.table("travelbooks.txt", header=TRUE , row.names =1)
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Points to note are:

If there is one less column heading than there are columns, the first column of input is, by
default, used for row names. Use of the argument heading=FALSE overrides this default.

If all rows have the same number of values, the default is to take the first row of the file as the
first row of data, i.e., it is assumed that there is no header row.

The final column (nest) will, by default, be a factor. To prevent such type conversions, specify
as.is=TRUE.

If the first row of the file has the same number of fields as later rows, it is assumed that this
is the first row of data, not a header row. Alternatively, specify header=FALSE to ensure this.
The default is then to give the columns the names V1, V2, . . . .

4.3 The Use of Data Frames in Correlation and Regression

The purpose here is to indicate how R uses data frames in statistical calculations, using the data in
the data frame travelbooks.

We will first add, to the data frame travelbooks, new columns area (area of page), and density
(weight to volume ratio):

> travelbooks$area <- with(travelbooks , width*height)
> travelbooks$density <- with(travelbooks , weight/volume)
> names(travelbooks) # Check full set of column names

[1] "thickness" "width" "height" "weight" "volume" "kind"
[7] "area" "density"

A first step is to call the generic function plot with travelbooks as argument:

pairs(travelbooks[, -6]) # Omit column 6

## Alternative

plot(travelbooks [,-6])

Not unexpectedly, there are relationships between width and height, and between weight and
volume. Less expected, perhaps, is the indication of a relationship between density and area.

It is possible, in R, to “plot” just about any data object.

Correlation calculations

The function cor(), with a matrix or data frame as argument, calculates the correlation matrix for
the columns. By default, it gives the Pearson product-moment linear correlation. For example:

> round(cor(travelbooks[, -6]),2)
thickness width height weight volume area density

thickness 1.00 -0.47 -0.77 0.40 0.58 -0.59 -0.16
width -0.47 1.00 0.91 0.44 0.28 0.98 0.80
height -0.77 0.91 1.00 0.13 -0.08 0.97 0.67
weight 0.40 0.44 0.13 1.00 0.97 0.30 0.69
volume 0.58 0.28 -0.08 0.97 1.00 0.12 0.51
area -0.59 0.98 0.97 0.30 0.12 1.00 0.77
density -0.16 0.80 0.67 0.69 0.51 0.77 1.00
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Dependence of weight on volume

One way to investigate is to examine the regression relationship:

> wtvol.lm <- lm(weight ~ volume , data=travelbooks)
> wtvol.lm

Call:
lm(formula = weight ~ volume , data = travelbooks)

Coefficients:
(Intercept) volume

-137.768 1.167

Notice that we saved the regression (lm) object, with the name wtvol.lm. This can be printed or
summarized or used to extract other information, or be used as the basis for various graphs.

The large intercept is perhaps unexpected. We might expect weight to be proportional to volume.
To force the line through the origin, do the following:

wtvol0.lm <- lm(weight ~ -1 + volume , data=travelbooks)
wtvol0.lm

Summary information – print(), summary() and plot()

All three functions are generic. The effect depends on the class of object that is printed (on the
screen) or summarized (again, on the screen), or plotted.

The function print() typically displays relatively terse output, while summary() may display
more extensive output. When used with lm objects, print() calls print.lm(), while summary()
calls summary.lm().

Actually summary() calls Usemethod("summary"), which notes that myr.lm is an lm object and
therefore calls summary.lm(). The extent of information given by print() and summary() varies
from one type of model object to another.

Compare the outputs from the following:

print(wtvol.lm)
# Equivalent to typing wtvol.lm at the command line

summary(wtvol.lm)
## The following gives diagnostic plots

par(mfrow=c(2 ,2)) # Subsequent plots appear in a 2 x 2 layout

plot(wtvol.lm)
par(mfrow=c(1 ,1)) # Reset to 1 plot per page , for any later plots

Note also the generic extractor functions residuals(), coefficients(), and fitted.values().
These can be abbreviated to resid(), coef(), and fitted().

4.4 Data Objects

Although it is often convenient to distinguish data objects from functions, there is not a rigid dis-
tinction. For, example, data that will be analyzed may be stored along with functions in the same
object.

4.4.1 Vectors

Examples of vectors are
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c(2,3,5,2,7,1)
3:10 # The numbers 3, 4,.., 10

c(T,F,F,F,T,T,F)
c("cherry","mango","apple","prune")

As noted in Chapter 1, vectors may have mode logical, numeric or character. The first two vectors
above are numeric, the third is logical (i.e. a vector with elements of mode logical), and the fourth is
a string vector (i.e. a vector with elements of mode character).

The c in c(2, 3, 5, 7, 1) has the meaning is: “Join (concatenate) these numbers together into
a vector”. Existing vectors may supply some or all of the elements that are to be concatenated.

The missing value symbol, which is NA, can be included as an element of a vector.
Factors will be discussed in Subsection 4.4.6. There is one important respect (the use of c()) in

which they differ from vector.

Subsets of Vectors

There are three common ways to extract subsets of vectors.
1. Specify the subscripts of the elements that are to be extracted, e.g.

> x <- c(3,11,8,15,12) # Assign to x the values

3, 11, 8, 15, 12
> x[c(2 ,4)] # Extract elements (rows) 2 and 4

[1] 11 15

Negative numbers may be used to omit elements:

> x <- c(3,11,8,15,12)
> x[-c(2 ,3)]
[1] 3 15 12

2. Specify a vector of logical values. The elements that are extracted are those for which the
logical value is TRUE. Thus suppose we want to extract values of x that are greater than 10.

> x>10 # This generates a vector of logical

(TRUE or FALSE)
[1] F T F T T
> x[x > 10]
[1] 11 15 12

Arithmetic relations that may be used in the extraction of subsets >=, ==, and !=. The first four
compare magnitudes, == tests for equality, and != tests for inequality.

3. For vectors of named elements, the elements may be identified by name:

> library(DAAG)
> cuckooEgglengths <- cuckoohosts [,1]
> cuckooEgglengths
[1] 22.3 23.1 22.5 22.6 23.1 21.1 22.6
>
> ## Assign names to the vector elements

> names(cuckooEgglengths) <- rownames(travelbooks)
> cuckooEgglengths
meadow pipit hedge sparrow robin wagtails

22.3 23.1 22.5 22.6
tree pipit wren yellow ammer

23.1 21.1 22.6
>
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> ## Names can be used to extract elements

> cuckooEgglengths[c("hedge.sparrow", "robin", "wren")]
hedge sparrow robin wren

23.1 22.5 21.1

4.4.2 Matrices as vectors

A matrix is a vector that is laid out in a two-dimensional tabular format and has a dimension attribute.
The dimension attribute can be examined thus:

> travelmat <- as.matrix(travelbooks[, 1:4])
> dim(travelmat) # Equivalent to attr(molmat , "dim")

[1] 6 4
> attr(travelmat , "dim")
[1] 7 4

The dimension attribute can be changed or removed, thus:

> dim(travelmat) <- NULL # Columns of travelmat become one long

# vector , stacked in order of columns.

> travelmat
[1] 1.3 3.9 1.2 2.0 0.6 1.5 11.3 13.1 20.0

21.1
[11] 25.8 13.1 23.9 18.7 27.6 28.5 36.0 23.4 250.0 840.0
[21] 550.0 1360.0 640.0 420.0
> # Use of as.vector(travelmat) is however preferable to the above

> # For these data , why would one do this?

Matrix Manipulations

Let X, Y and B be numeric matrices. Some of the possibilities are:

X + Y # Elementwise addition (The dimensions must agree)
X * Y # Elementwise multiplication (The dimensions must agree)
X %*% B # Matrix multiplication (X is n by k; B k by m)
solve(X, Y) # Solve X B = Y (X is n by k, Y n by m, B k by m)
svd(X) # Singular value decomposition of X
qr(X) # QR decomposition of X.

Use of matrices for efficient computation For working with large numerical arrays, the matrix
structure can allow much faster computations than are possible with data frames. See Section 9.4

4.4.3 Data frames versus matrices

Data frames that consist entirely of numeric data are in some (but not all) contexts interchangeable
with numeric matrices. There are however important differences. In some applications, and notably
in the analysis of microarray data, it is likely to be necessary to work with both of these types of
object.

One way to check whether an object is a data frame or matrix is to see what value the function
length() returns:

> length(travelbooks) # travelbooks is a list of 7 vectors

[1] 5
> length(as.matrix(travelbooks [ ,1:4])) # matrix has 28 elements

[1] 28
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Functions are available to convert data frames into matrices, and vice versa. For example:

travelmat <- as.matrix(travelbooks[, 1:4])
# From data frame to matrix

newtravelbooks <- as.data.frame(travelmat)
# From matrix to data frame

Tables may similarly be converted into data frames. Use as.data.frame.table().

Subsets of data frames and matrices

To extract the first three rows of the data frame travelbooks, specify travelbooks[1:3,]. For
columns 1 to 3, specify travelbooks[1:3,]. Additionally, a vector of logicals (TRUEs and FALSEs)
may be used to extract rows and/or columns, thus:

> travelbooks$weight > 500 ## Result is a vector of logicals

[1] FALSE TRUE TRUE TRUE TRUE FALSE
> travelbooks[travelbooks$weight > 500, ]

thickness width height weight volume
kind
Moon’s Australia handbook 3.9 13.1 18.7 840 955 Guide
Explore Australia Road Atlas 1.2 20.0 27.6 550 662 Roadmaps
Australian Motoring Guide 2.0 21.1 28.5 1360 1203 Roadmaps
Penguin Touring Atlas 0.6 25.8 36.0 640 557 Roadmaps

4.4.4 Lists

A list is a collection of arbitrary objects. Above, we encountered data frames. A data frame is a
specialised form of list. The list elements hold the columns of the data frame, which must all be of
the same length. Here we note two other common types of list, the first of importance for microarray
work, and the second of general importance.

Lists of matrices

Included with the data in the sma package are the objects mouse.data and mouse.lratio. These
hold data from a microarray experiment, in which gene expression intensities for knockout mice were
compared with expression intensities for normal mice. Assuming that the sma package is installed,
the following will bring it into the workspace:

library(sma)
data(MouseArray) # MouseArray holds several data objects

ls() # Check contents of workspace

The object mouse.data is a list. It has four elements, with names R, G, Rb and Gb. Each of these
elements is a matrix, with dimensions 6384 spots by 6 slides. The object mouse.lratio is a list with
elements A and M. Again each element is a matrix with dimensions 6384 spots by 6 slides. [The values
in M are the logarithms to base 2 of the ratios of “red” to “green” intensities, while the values in M
are averages of the logarithms of the “red” and “green” intensities.]

4.4.5 Model objects are lists

Model objects are typically lists, consisting of elements that can be of very different types. We will
use the output from the regression calculation with data in travelbooks, stored in the lm object
wtvol.lm, as an example. Note first that lm is, in effect, a mnemonic for linear model.

Regression objects hold output structures from the regression output that can be used for further
calculations. It stores the information in a list, with named elements. To see the names of the list
elements in clock.lm, type:
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> names(wtvol.lm)
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

To extract individual list elements type, e.g.:

> wtvol.lm$call
lm(formula = weight ~ volume , data = travelbooks)

Where an extractor function is available, use this in preference to accessing the specific list ele-
ments. Thus use:

> coef(wtvol.lm)
(Intercept) volume
-137.767923 1.166812
> resid(wtvol.lm)

Aird’s Guide to Sydney Moon’s Australia handbook
-21.78300 -136.53728

Explore Australia Road Atlas Australian Motoring Guide
-84.66144 94.09341

Penguin Touring Atlas Canberra - The Guide
127.85379 21.03453

Notice that the residuals carry the row names. We might prefer shorter row names.
The various R modeling functions all return their own particular type of model object, always

stored as a list. Note also that data frames are a specialized form of list, with the restriction that all
columns must be vectors that all have the same length.

4.4.6 Factors

Factors are column objects whose elements are integer values 1, 2, . . . , k, where k is the number of
levels. They are distinguished from integer vectors by having the class factor and a levels attribute.
They provide, in data frames, the default way to store text string information.

The character vector c("cherry","mango","apple","prune","cherry","prune") might equally
well be stored as a factor, thus:

> fruit <- c("cherry","mango","apple","prune","cherry")
> fruitfac <- factor(fruit)
> as.numeric(fruitfac)
[1] 2 3 1 4 2 4
> levels(fruitfac)
[1] "apple" "cherry" "mango" "prune"

Notice that, by default, the levels are taken in alphanumeric order.
Internally, the factor is stored as the integer vector 2, 3, 1, 4, 2, 4. It has stored with it the table:

1 2 3 4
"apple" "cherry" "mango" "prune"

Thus, the numeric values are codes for text strings, with information that matches the codes to
a unique set of text strings stored in the separate table. Once stored as a factor, the space required
for storage can, depending on the lengths of the text strings and their frequencies of occurrence, be
greatly reduced.

The order can be specified. For example:

> ## Take fruit in order of stated glycemic index (15, 22, 38, 55)

> fruitfac <- factor(fruit , levels=c("prune","cherry","apple","mango"))
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> levels(fruitfac)
[1] "prune" "cherry" "apple" "mango"

Changing the levels in this way can be useful where factor levels are used, as in some lattice graphs
that have one panel for each factor level, to determine the order in which plots appear.

Note that the function factor(), with the levels argument specified, can be used both to specify
the order of levels when the factor is created, or to make a later change to the order.

Incorrect spelling of the level names generates missing values, for the level that was mis-spelled.
Try:

fruitfac <- factor(fruitfac , levels=c("prune","cherry","Apple","mango"))
table(fruitfac) # The number of Apples is given as 0

In most places where the context seems to demand it, the integer levels are translated into text
strings, thus:

> fruitfac <- factor(c("cherry","mango","apple","prune","cherry"))
> fruitfac == "cherry"
[1] TRUE FALSE FALSE FALSE TRUE

Subsection 7.2 has detailed examples of the use of factors in model formulae and the resultant
model matrices.

Ordered factors

In addition to factors, note the existence of ordered factors, created using the function ordered().
For ordered factors, the order of levels implies a relational ordering. For example:

> windowTint <- ordered(rep(c("lo","med","hi"), 2), levels=c("lo","med","hi"))
> windowTint
[1] lo med hi lo med hi
Levels: lo < med < hi

4.4.7 Missing Values, Infinite Values and NaNs

Problems with missing values, infinite values and NaNs are a common reason why functions fail.
An understanding of the conventions for arithmetic with NAs will reduce the scope for unwelcome
surprises.

The missing value symbol is NA. Any arithmetic or logical operation with NA generates an NA. The
consequences are more far-reaching than might be immediately obvious. Use is.na() to test for a
missing value:

> is.na(c(1, NA, 3, 0, NA))
[1] FALSE TRUE FALSE FALSE TRUE

The expression NA == NA returns NA, and cannot be used to test for a missing value.

> NA == NA
[1] NA

Note that the attempt to assign values to an expression whose subscripts include missing values
generates an error.

> y <- c(1, NA, 3, 0, NA)
> y[y > 0]
[1] 1 NA 3 NA
> y[y > 0] <- c(11, 12)
Error: NAs are not allowed in subscripted assignments



4 OBJECTS AND FUNCTIONS 28

It is best to ensure that NAs do not appear, when there is an assignment, in subscript expressions
on either side of the expression.

Identifying and processing rows that include missing values

The function na.omit() omits rows that contain one or more missing values. The argument may be
a data frame or a matrix. The function complete.cases() identifies such rows. Thus:

> test.df <- data.frame(x=c(1:2,NA), y=1:3)
> test.df
x y
1 1 1
2 2 2
3 NA 3
> complete.cases(test.df)
[1] TRUE TRUE FALSE
> na.omit(test.df)
x y
1 1 1
2 2 2

4.4.8 Information on Data Objects

We will make later work with the possum data frame. The function str() gives basic information on
the object that is given as argument.

> str(possum)
‘data.frame ’: 104 obs. of 14 variables:
$ case : num 1 2 3 4 5 6 7 8 9 10...
$ site : num 1 1 1 1 1 1 1 1 1 1...
$ Pop : Factor w/ 2 levels "Vic","other ": 1 1 1 1 1 1 1 1 1 1...
$ sex : Factor w/ 2 levels "f","m": 2 1 1 1 1 1 2 1 1 1...
$ age : num 8 6 6 6 2 1 2 6 9 6...
$ hdlngth : num 94.1 92.5 94 93.2 91.5 93.1 95.3 94.8 93.4 91.8...
$ skullw : num 60.4 57.6 60 57.1 56.3 54.8 58.2 57.6 56.3 58...
$ totlngth: num 89 91.5 95.5 92 85.5 90.5 89.5 91 91.5 89.5...
$ taill : num 36 36.5 39 38 36 35.5 36 37 37 37.5...
$ footlgth: num 74.5 72.5 75.4 76.1 71 73.2 71.5 72.7 72.4 70.9...
$ earconch: num 54.5 51.2 51.9 52.2 53.2 53.6 52 53.9 52.9 53.4...
$ eye : num 15.2 16 15.5 15.2 15.1 14.2 14.2 14.5 15.5 14.4...
$ chest : num 28 28.5 30 28 28.5 30 30 29 28 27.5...
$ belly : num 36 33 34 34 33 32 34.5 34 33 32...

4.5 Functions

4.5.1 Built-In Functions

Common useful functions, for use with vectors

Common Useful Functions are

print() # Prints a single R object
cat() # Prints multiple objects, one after the other
length() # Number of elements in a vector or of a list
mean()
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median()
range()
unique() # Gives the vector of distinct values
diff() # Vector of first differences

# N. B. diff(x) has one less element than x
sort() # Sort elements into order, but omitting NAs
order() # x[order(x)] orders elements of x, with NAs last
cumsum()
cumprod()
rev() # reverse the order of vector elements
any() # Returns TRUE if there are any missing values
is.factor() # Returns TRUE if the argument is a factor
is.na() # Returns TRUE if the argument is an NA

# NB also is.logical(), is.matrix(), etc.
str() # Information on an R object
args() # Information on arguments to a function

The functions mean(), median(), range(), and a number of other functions, take the argument
na.rm=T; i.e., remove NAs, then proceed with the calculation. For example

> mean(c(1, NA, 3, 0, NA), na.rm=T)
[1] 1.3

4.5.2 User-defined functions

The R language is a functional language. The function mean() calculates means, The function sd()
calculates standard deviations. Here is a function that calculates mean and standard deviation at the
same time:

mean.and.sd <- function(x){
av <- mean(x)
sdev <- sd(x)
c(mean=av , sd = sdev) # The function returns this vector

}

The parameter x is the argument that the user must supply. The body of the function is enclosed
between curly braces. The value that the function returns is given on its final line. Here the return
value is a vector that has two named elements.

The following calculates the mean and standard deviation of heterozygosity estimates for seven
different Drosophila species.2

> hetero <- c(.43 ,.25 ,.53 ,.47 ,.81 ,.42 ,.61)
> mean.and.sd(hetero)

mean sd
0.5028571 0.1749966

It is useful to give the function argument a default value, so that it can be run without user-
supplied parameters, in order to see what it does. A possible choice is a set of random normal
numbers, perhaps generated using the rnorm() function.

Here is a revised function definition. The function body has been reduced to a single line, so that
the curly braces are not needed.

> mean.and.sd <- function(x = rnorm (20)) c(mean=mean(x), sd=sd(x))
> mean.and.sd()

mean sd

2Data are from Lewontin, R. 1974. The Genetic Basis of Evolutionary Change.
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0.05013396 0.68567644
> mean.and.sd()

mean sd
0.1067355 1.1383779

We get a different set of random numbers, and hence a different mean and SD, each time that the
function is run with its default argument.

Information on Functions

A useful function is args(). It lists function arguments, together with default values, if any.

4.6 Tables and Cross-Tabulation

Use the function table() to make a table of counts. Use xtabs() for cross-tabulation, i.e., to
determine totals of numeric values for each table category.

table()

The function table() makes a table of counts. Specify one vector of values (often a factor) for each
table margin that is required. A simple example is:

library(DAAG)
> table(possum$Pop , possum$sex)

f m
Vic 24 22
other 19 39

Here is a use of table() to count the number of NAs in the column bp (blood pressure) from the
data frame Pima.tr2 that is in the MASS package.

> library(MASS)
> table(is.na(Pima.tr2$bp))

FALSE TRUE
287 13

By default, table() ignores NAs. Hence the need for a check of the following type, here using
sapply() function. This can be used with a data frame as its first argument to apply the function
specified as its second argument in parallel to all columns of the data frame, to give the number of
NAs in each column of the data frame Pima.tr2

> sapply(Pima.tr2 , function(x)sum(is.na(x)))
npreg glu bp skin bmi ped age type

0 0 13 98 3 0 0 0

The action needed to get NAs tabulated under a separate NA category depends, annoyingly, on
whether or not the vector is a factor. If the vector is not a factor, specify exclude=NULL. If the vector
is a factor then it is necessary to generate a new factor that includes NA as a level. Specify

x <- factor(x, exclude=NULL)
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Creating Groups

The following uses the cut() function to group data in the column bp in the data frame Pima.tr2,
into four categories, then tabulating the numbers in the four categories:

> catBP <- cut(Pima.tr2$bp , breaks =4)
> table(catBP)
catBP
(37.9 ,57] (57 ,76] (76 ,95] (95 ,114]

22 170 87 8
> sum(table(catBP ))
[1] 287

Notice that the 13 missing values, out of the total of 300, are not included in the table. This can be
a trap. They are in catBP, as we can easily verify:

> table(is.na(catBP ))

FALSE TRUE
287 13

Thus, above, we can do the following

> catBP <- factor(catBP , exclude=NULL)
> table(catBP)
catBP
(37.9 ,57] (57 ,76] (76 ,95] (95 ,114] <NA>

22 170 87 8 13
> sum(table(catBP ))

4.7 Option Settings

Setting the number of significant digits in output

Often, the printed result of calculations will, unless the default is changed (as has sometimes been
done for the output in this document) show more decimal places of output than are useful. The
options() function can be used to change to make a global (until further notice) change to the
number of significant digits that are printed. For example:

> sqrt (10)
[1] 3.162278
> options(digits =2) # Change until further notice ,

> # or until end of session.

> sqrt (10)
[1] 3.2

Notice that options(digits=2) expresses a wish, which R will not always obey!
Rounding will sometimes introduce small inconsistencies. For example, with results rounded to

two decimal places

> round(sqrt (372/12), 2)
[1] 5.57
> round(sqrt (2) * sqrt (372/12), 2)
[1] 7.87
> round(sqrt (2) * 5.57, 2)
[1] 7.88
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Other option settings

Type in help(options) to get further details. I prefer to use the setting options(show.signif.stars=FALSE).
(The default is TRUE.)

4.8 Common sources of difficulty

In the use of read.table() for the entry of data that has a rectangular layout, it is important
to tune the parameter settings to the input data set. See the discussion of read.table() in
Subsection 9.1 for comments on common issues.

The function count.fields() can be a useful way to determine how many fields read.table()
thinks it has found in each record. Alternatively, use read.table() with the parameter setting
fill=TRUE, and carefully check the input data frame. Blank fields will be implicitly added, as
needed, in order to ensure that all records have an equal number of fields.

Character vectors that are included as columns in data frames become, by default, factors.
There are implications for the use of read.table().

Factors can often be treated as vectors of text strings, with values given by the factor levels.
There are several, potentially annoying, exceptions. If a factor is used to provide labels when
using the function text(), use as.character() to turn the factor into a text string whose
elements are the factor levels.

The handling of missing values is a common source of difficulty. Refer back to Subsection 4.4.7.

The syntax elasticband[,2], extracts the second column from the data frame elasticband,
yielding a numeric vector. Observe however that elasticband[2, ] yields a data frame, rather
than the numeric vector that the user may require. The structure is different, depending on
whether a column or a row is extracted. Specify unlist(elasticband[2, ]) to obtain the
vector of numeric values in the second row of the data frame. For another instance (use of
sapply()) where the difference between a numeric data frame and a numeric matrix is impor-
tant, see Subsection 4.4.3.

It is inadvisable to assign new values to a data frame, thus creating a new local data frame with
the same name, while it is attached. Use of the name of the data frame accesses the new local
copy, while the column names that are in the search path are for the original data frame. There
is obvious potential for confusion and erroneous calculations. The new local copy replaces the
original when the data frame is detached.

Data objects that individually or in combination occupy a large part of the available computer
memory can slow down all memory intensive computations. See further Subsection 9.4 for
comment on associated workspace management issues. Note that most of the data objects that
are used for our examples are small and thus will not, except where memory is very small, make
much individual contribution to demands on memory.

4.9 Summary

Important R data structures are vectors, factors, data frames and lists. Vectors may be of mode
numeric, logical, character or complex.

Factors, used for categorical data, are fundamental to the use of many of the R modeling
functions. Ordered factors are appropriate for use with ordered categorical data.

The function c() (concatenate) joins vector elements together into vectors. It may be used for
logical and character vectors, as well as for numeric vectors.
[It is in fact more general than this. It may be used to join lists, which are non-atomic vectors]
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Missing Values, Infinite Values and NaNs can require special care.

Data frames group columns that all have the same length, together as a single R object. A data
frame may have columns that are any mix of logical, numeric, character, factor or complex.

For simple forms of scatterplot, note the plot() function. There is a wide range of plotting
abilities, beyond those offered by plot().

Matrices, and data frames whose elements are all of one type (typically all numeric) are in some
contexts handled similarly. In other contexts, they are handled quite differently. A matrix is a
vector (with matrix elements stacked column upon column) that has a dimension attribute.

read.table() is the function of first recourse for inputting rectangular files.

Where access is required to columns of a data frame for one or two lines of code only, it is often
convenient to use the function with().

Attachment of a data frame (use the function attach()) can be where there are a number of
lines of code that require access to its columns. Give the name of the data frame, i.e., no quotes.

Note also the use of attach() to give access to objects in an image (.RData) file. Include the
name of the file in quotes.

The search path determines the order of search for objects that are accessed from the command
line, or that are not found in the environment of a function that accesses them.

The R system has a wide range of generic functions, including print(), plot() and summary(),
For such functions, the result depends on the class of object that is given as argument.

Modeling functions typically output a list, known as a model object, that holds key output
information from the analysis.

Use table() for tables of counts, and xtabs() for tables of totals.

Various options settings control such matters as the number of significant digits that will be
displayed in output.

4.10 Exercises

Table 2: Estimates of amino acid replacements per 100 million years, for the three genes GPDH,
SOD, and XDH. The column Ave is a weighted average of these three, with weights proportional to
sequence length. The final column (Myr) gives time since divergence in millions of years.

Gpdh Sod Xdh AvRate Myr
Drosophila subgroups 1.50 25.70 30.40 22.40 55.00
Drosophila subgenera 2.00 30.70 29.20 22.30 60.00

Drosophial genera 4.40 34.90 31.70 24.90 65.00
dipteran families 9.25 33.70 25.30 22.00 120.00

mammalian orders 11.60 46.00 17.10 18.70 70.00
animal phyla 13.20 19.20 19.20 17.50 600.00

fungi 40.00 24.90 13.70 21.40 300.00
kingdoms 13.00 12.60 11.50 11.90 1100.00

1. Read the data that is stored in the file molclock.txt (shown in Table 2), into the data frame
molclock. Modify the arguments to read.table() so that:

• The file molclock1.txt is input correctly
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• The file molclock2.txt is input correctly.

2. For the data in Table 2, plot graphs of Sod against Myr, and of Xdh against Myr. Use abbreviate()
to create abbreviated versions of the row names, and use these to label the points.
[Hint: Use readLines("molclock.txt", n=-1) to inspect, from the R command line, the con-
tents of molclock.txt.]

3. Modify the function mean.and.sd() so that it outputs, in addition to the mean and standard
deviation, the number of vector elements.

4. Find an R function that will sort a vector. Give an example of its use.

5. Type library() and check that the DAAG package is installed. Attach the DAAG package.
Type library(DAAG) to see the help page for the data frame elasticband. Plot distance
against stretch. Regress distance against stretch and explain how to interpret the coefficient.
Examine the diagnostic plot and check whether there is anything that calls for special attention.

6. Find out what the function substring() does.

7. Find two ways to split a text string into a vector that holds its individual characters, using
substring(), and using strsplit(). Use the function on the text strings

gi14786865 <- "LNLFFAGTETVSTTLRYGFLLLMKHPEVEAKVHEEI"

o4cka3 <- "LNIMVAGRDTTAGLLSFAMFELARNPKIWNKLREEV"
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5 Base Graphics

Base graphics implements a relatively “traditional” style of graphics

Functions plot(), points(), lines(), text(), mtext(), axis(), identify() etc.
form a suite that plots points, lines and text.

Plot y vs x Either: with(women, plot(height, weight)) (older syntax)
Or: plot(weight ∼ height, data=women) (uses graphics formula)

Caveat Some base graphics functions do not take a data parameter

Note also (i) the lattice flavour of trellis graphics, implemented in the lattice package,
and (ii) the low-level grid package on which lattice is built.
Lattice graphics will be the subject of the next chapter.

To see some of the possibilities that traditional (or base) R graphics offers, enter

demo(graphics)

Press the Enter key to move to each new graph.
For lattice graphics, enter

library(lattice)
demo(lattice)

Our discussion will start with an exposition of traditional graphics.

5.1 plot() and allied functions

The following both plot y against x:

plot(y ~ x) # Use a formula to specify the graph
plot(x, y) # Horizontal ordinate, then verhills20-0tical

Obviously x and y must be the same length.
Try

plot ((0:20)*pi/10, sin ((0:20)*pi/10))
plot ((1:30)*0.92, sin ((1:30)*0.92))

Is it obvious that these points lie on a sine curve? (To make this obvious, place the cursor over the
lower border of the graph sheet, until it becomes a double-sided arror. Drag the border in towards
the top border, making the graph sheet short and wide.)

Here are two further examples.

library(DAAG)
attach(elasticband) # R can now find distance & stretch

plot(distance ~ stretch)
plot(ACT ~ year , data=austpop , type="l")
plot(ACT ~ year , data=austpop , type="b")
detach(elasticband)

The points() function adds points to a plot. The lines() function adds lines to a plot3. The
text() function adds text at specified locations. The mtext() function places text in one of the
margins. The axis() function gives fine control over axis ticks and labels.

Here is a further possibility
3Actually these functions differ only in the default setting for the parameter type. The default setting for points()

is type = "p", and for lines() is type = "l". Explicitly setting type = "p" causes either function to plot points, type
= "l" gives lines.
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with(austpop ,
plot(spline(Year , ACT), type="l") # Fit smooth curve through points

)

Newer plot methods

Above, I described the default plot method. The plot function is a generic function that has special
methods for “plotting” various different classes of object. For example, as we saw in chapter 2,
plotting an lm object (created by the use of the lm() modelling function) gives diagnostic and other
information that can help in the interpretation of regression results.

Recall also

plot(travelbooks [ ,1:5])
# Has the same effect as pairs(travelbooks[, 1:5])

Note also the function splom() from the lattice package. For this, specify

library(lattice)
splom(~ travelbooks[, 1:5]) # Lattice alternative to pairs plot

5.2 Fine control – Parameter settings

For plot(), points() and text(), the parameter cex (“character expansion”) controls the size, while
col (”color”) controls the colour. The parameter pch controls the choice of plotting symbol.

Figure 2 shows some of the possibilities:
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plot(1:6, rep(4.5, 6), cex=1:6, col=1:6, pch=0:5,

xlim=c(1, 6.5), ylim=c(0,5.4), xlab="", ylab="")

a b c d e f
abc <− c("a", "b", "c", "d", "e", "f")

text(1:6,rep(3.25, 6), labels=abc, cex=1:6, col=1:6)

● ●

0 1 2 3 4 5 6 7 8 9 10 11 12

plotchars <− 0:12

points((1:13)*0.48, rep(1.5,13), pch=plotchars)

text((1:13)*0.48, rep(1.75,13), paste(plotchars), pos=1, cex=0.75)

● ● ● ● ●

13 14 15 16 17 18 19 20 21 22 23 24 25

plotchars <− 13:25

## Now rerun the previous two lines of code

Figure 2: Different plot
symbols, colours and
sizes.

The default settings of parameters, such as character size, are often adequate. When it is necessary
to change parameter settings, alternatives may be to supply the values required as parameters to the
plotting function, or to use par() to make the change, prior to calling the plotting function. For
some parameters, the first method must be used, while for others the second method is necessary. In
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some case, the reasons for this are obvious. One that is not obvious is pty="s" (specify using par()),
which gives a square plotting region.

On the first use of par() to make changes to the current device, it is often useful to store existing
settings, so that they can be restored later. For this, specify, e.g.:

oldpar <- par(cex=1.25 , col="red")

This stores the existing settings in oldpar, then changes parameters (here cex and col) as requested.
To restore the original parameter settings at some later time, enter par(oldpar). See below (“Multiple
plots on the one page”) for an example

Type help(par) to get details of all the parameter settings that are available.

Adding Text in the Margin

mtext(side, line, text,..) adds text in the margin of the current plot. The sides are numbered
1(x-axis), 2(y-axis), 3(top) and 4.

5.3 Adding points, lines and text – examples

Here is a simple example that uses the function text() to label the points on a plot.
Figure 3 has the plot:
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> ## Data used in plot

> primates # DAAG package

Bodywt Brainwt
Potar monkey 10.0 115
Gorilla 207.0 406
Human 62.0 1320
Rhesus monkey 6.8 179
Chimp 52.2 440

Figure 3: Plot of brain weight against body weight, for selected primates.

Code that gives the above plot is:

attach(primates)
plot(Bodywt , Brainwt , xlim=c(0, 250),

xlab="Body weight (kg)", ylab="Brain weight (g)")
# Specify xlim so that there is room for the labels

text(x=Bodywt , y=Brainwt , labels=rownames(primates), pos=4)
# Alternatives are pos=1 (below), 2 (left), 3 (above)

detach(primates)

Example – Labels that locate possum study sites

Where are the possums? The oz package plots an outline of the Australian coast and state boundaries.
As it uses standard plot functions, we can use text() to add information about specific locations.

> possumsites # DAAG package

latitude longitude altitude
Cambarville 145.9 -37.55 800
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Bellbird 148.8 -37.62 300
Allyn River 151.5 -32.12 300
Whian Whian 153.3 -28.62 400
Byrangery 153.4 -28.62 200
Conondale 152.6 -26.43 400
Bulburin 151.5 -24.55 600

A plot that shows the sites, on a map of the Eastern coast of Australia, may be obtained thus:

attach(possumsites)
## Ensure that the oz package is installed

library(oz)
oz()
text(longitude ~ latitude , labels=rownames(possumsites), adj=1, col="red")

Figure 4 improves somewhat on this simple code:

● ●

●

●●

●

●

Cambarville Bellbird

Allyn River

Whian Whian

Byrangery

Conondale

Bulburin

Figure 4: Sites at
which possums were
collected.

## Code used for plot:

oz(sections=c(3:5, 11:16) , col="gray", xlim=c(130, 165))
chh <- par()$cxy [2]
points(latitude , longitude+c(0,0,0,.2,-.2, 0,0)*chh , col="blue")
text(longitude ~ latitude , labels=rownames(possumsites),

pos=c(2,4,2,1,3,2,2), col="red", xpd=TRUE)
# Settings for pos are 1: below , 2: left , 3: above and 4: right

# With xpd=TRUE plotting is allowed outside the figure region

Multiple plots on the one page

The parameter mfrow can be used to configure the graphics sheet so that subsequent plots appear
row by row, one after the other in a rectangular layout, on the one page. For a column by column
layout, use mfcol instead. The following presents four different transformations of the primates data,
in a two by two layout:
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oldpar <- par(mfrow=c(2,2), pch =16)
library(MASS)
with(Animals , { # bracket several R statements

plot(body , brain)
plot(sqrt(body), sqrt(brain))
plot((body )^0.1 , (brain )^0.1)
plot(log(body),log(brain))

}) # close both sets of brackets

par(oldpar) # Restore to 1 figure per page , and pch=1

Color palettes

A variety of color palettes are available. Here is a function that displays some of the possibilities:

view.colours <- function (){
plot(1, 1, xlim=c(0,14), ylim=c(0,3), type="n", axes=F, xlab="",ylab="")
text (1:6, rep(2.5,6), paste (1:6) , col=palette ()[1:6] , cex =2.5)
text(10, 2.5, "Default palette", adj =0)
rainchars <- c("R","O","Y","G","B","I","V")
text (1:7, rep(1.5,7), rainchars , col=rainbow (7), cex =2.5)
text(10, 1.5, "rainbow (7)", adj=0)
cmtxt <- substring("cm.colors", 1:9 ,1:9)
# Split "cm.colors" into its 9 characters

text (1:9, rep(0.5,9), cmtxt , col=cm.colors (9), cex =3)
text(10, 0.5, "cm.colors (9)", adj=0)

}

To run the function, enter

view.colours ()

The shape of the graph sheet

There is provision to specify the size and shape of the graph page, e.g. so that the individual plots are
rectangular rather than square. The R for Windows functions win.graph() or x11() that set up the
Windows screen take the parameters width (in inches), height (in inches) and pointsize (in 1/72
of an inch). The setting of pointsize (default =12) determines character heights. It is the relative
sizes of these parameters that matter for screen display or for incorporation into Word and similar
programs. Graphs can be enlarged or shrunk by pointing at one corner, holding down the left mouse
button, and pulling.

5.4 Identification and Location on the Figure Region

Two functions are available for this purpose. Draw the graph first, then call one or other of these
functions.

o identify() labels points. Position the cursor near the point that is to be identified, and click
the left mouse button.

o locator() prints out the co-ordinates of points. One positions the cursor at the location for
which coordinates are required, and clicks the left mouse button.

A click with the right mouse button signifies that the identification or location task is complete,
unless the setting of the parameter n is reached first. For identify() the default setting of n is the
number of data points, while for locator() the default setting is n = 500.

An example of the use of identify() was given in Subsection 2.4. The use of identify() is even
simpler.
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with(travelbooks , plot(weight ~ volume)
locator ()

Now, left click at the locations whose coordinates are required, terminating as for identify(). Alter-
natively or additionally, specify the number of points to be located as an argument to the function.

5.5 Plots that show the distribution of data values

We discuss histograms, density plots, boxplots and normal probability plots.

Histograms and density plots

The shapes of histograms depend on the placement of the breaks, as Figure 5 illustrates:
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Figure 5: The two graphs show
the same data, but with a differ-
ent choice of breakpoints.

Here is the code used to plot the histograms:

par(mfrow = c(1, 2), pty="s") # pty="s"; square plots

attach(possum)
here <- sex == "f"
hist(totlngth[here], breaks = 72.5 + (0:5) * 5, ylim = c(0, 22),

xlab="Total length", main ="A: Breaks at 72.5, 77.5 ,...")
hist(totlngth[here], breaks = 75 + (0:5) * 5, ylim = c(0, 22),

xlab="Total length", main="B: Breaks at 75, 80 ,...")
par(mfrow=c(1 ,1))
detach(possum)

Below, I argue against placing much reliance on histograms. Some may prefer them on the grounds
that they are derived very directly and simply from the actual data. In that case, why not show the
actual distribution of data values. The following uses the function rug() to show the distribution of
the data values along the horizontal axis:

with(subset(possum , sex=="f"), hist(totlngth ))
with(subset(possum , sex=="f"), rug(totlngth ))

One of the following can sometimes be insightful:

with(subset(possum , sex=="f"), dotchart(totlngth ))
with(subset(possum , sex=="f"), stripchart(totlngth ))
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Density Plots

The density at each point is an estimate of the number of points per unit interval. A histogram
is a crude form of density estimate, one in which the density estimate changes discretely at class
boundaries. Density plots are in general preferable to histograms, because they give a density estimate
that changes smoothly. Density plots do not depend on a choice of breakpoints. They do require the
choice of a bandwidth parameter and a choice between different types of window; often the default
choices are acceptable.

The following gives a density plot:

with(possum , plot(density(totlngth[here]),type="l"))

Note that in the overlaid density plot in 5 the y-axis for the histogram is labelled so that the area
of a rectangle is the frequency for that rectangle. To get the plot on the left, specify:

attach(possum)
here <- sex == "f"
dens <- density(totlngth[here])
xlim <- range(dens$x)
ylim <- range(dens$y)
hist(totlngth[here], breaks = 72.5 + (0:5) * 5,

probability = T, xlim = xlim , ylim = ylim ,
xlab="Total length", main="")

lines(dens)
detach(possum)

With data that have sharp lower and/or upper cutoff limits, it may be necessary to specify the
limit or limits. For example, a failure time distribution may have a mode close to zero, with a sharp
cutoff at zero. Use the parameters from and/or to for this purpose. This issue most commonly arises
with a lower cutoff at 0.

Boxplots

●

75 80 85 90 95

Figure 6: Distribution
of lengths of female
possums. The bars
(rugs) show actual
data values.

Boxplots use a small number of characteristics of a distribution to characterize it. Look up
help(boxplot) for details. Here is code that gives a boxplot of the above possum data:

with(subset(possum , sex=="f"), boxplot(totlngth , horizontal=TRUE))

It can be insightful to add a “rug” that shows the individual values, by default along the horizontal
axis (side=1). To add a rug to the above plot, type

with(subset(possum , sex=="f"), rug(totlngth ))

Figure 6 shows the result.
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Side by side boxplots

Boxplots allow convenient side-by-side comparisons of different groups, as in the cuckoo egg data that
we now present (from Latter1902; Tippett 1931 presents them in a summarized form.) Cuckoos lay
eggs in the nests of other birds. The eggs are then unwittingly adopted and hatched by the host birds.
Figure7 shows side by side boxplots of these data.
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Figure 7: Side by side
boxplots of egg length
data.

## Code used for plot:

boxplot(length ~ species , data=cuckoos ,
xlab="Length of egg", horizontal=TRUE ,
las =2) # las=2 => Plot labels perpendicular to axis

Normal probability plots

●

●

●

●

●●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●
●

●

●●

−2 −1 0 1 2

75
80

85
90

95

Female possums

Le
ng

th
s 

of
 fe

m
al

e 
po

ss
um

s

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●●

●

●

●

−2 −1 0 1 2

−
2

0
1

2
3 Simulated

S
im

ul
at

ed

●●
●

●

●

●●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
1

0
1

2

Simulated

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●
●●

●

●

−2 −1 0 1 2

−
1

0
1

2

Simulated

S
im

ul
at

ed ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

−2 −1 0 1 2

−
2

0
1

2

Simulated
●

●

●

●●

●

●

●
●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

−2 −1 0 1 2

−
2.

0
−

0.
5

0.
5

1.
5

Simulated

Figure 8: Normal prob-
ability plots. For data
from a normal distribu-
tion points should fall,
approximately, along a
line. The top left panel
shows the 43 lengths of
female possums. Other
panels are for inde-
pendent normal random
samples of size 43.

The function qqnorm(y) gives a normal probability plot of the elements of y. The points of this
plot will lie approximately on a straight line if the distribution is Normal. In order to calibrate the
eye to recognise plots that indicate non-normal variation, it is helpful to do several normal probability
plots for random samples of the relevant size from a normal distribution, obtained using the function
rnorm().

x11(width=8, height =6) # This is a better shape for this plot

attach(possum)
here <- sex == "f"
par(mfrow=c(3,4)) # 3 by 4 layout of plots
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y <- totlngth[here]
qqnorm(y,xlab="", ylab="Length", main="Possums")
for(i in 1:11) qqnorm(rnorm (43), xlab="", ylab="Simulated lengths",

main="Simulated")
par(mfrow=c(1,1))
# By default , rnorm() generates random samples from a normal

# distribution with mean 0 and standard deviation equal to 1.

detach(possum)

Figure 8 shows the plots. There is one unusually small value. Otherwise the points for the female
possum lengths are as close to a straight line as in many of the plots for random normal data.

The idea is an important one. In order to judge whether data are normally distributed, examine
a number of randomly generated samples of the same size from a normal distribution. It is a way to
train the eye.

5.6 Scatterplot Smoothing

Figure 9 shows miles per gallon (mpg), plotted against piston displacement (disp), for 32 cars whose
detailed characteristics were described in the US 1974 magazine Motor Trends.

It can be useful to make a comparison with a curve provided by a data smoothing routine that is
not restricted to using a particular mathematical form of curve.
[R has both a lowess() function and the more general loess() function. The lowess() function
does smoothing in one dimension only, while loess() will handle multi-dimensional smoothing. For
technical details of lowess() and loess(), see Cleveland (1981), and references given in that paper.]
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Figure 9: Plot showing
change in fuel usage
(miles per gallon) with
displacement (disp).
Code is:

attach(mtcars) # From the datasets package

plot(mpg ~ disp ,
xlab=expression("Displacement ("*"in"^3*")"),
ylab="Miles per gallon")

lines(lowess(mpg ~ disp , f=0.5))
detach(mtcars)

A smooth trend curve that has been superimposed on a scatterplot can be a useful aid to inter-
pretation. When the data appear to scatter about a simple mathematical curve, the curve-fitting
methods that are discussed in other sections can be used to obtain a ‘best-fit’ or regression line or
curve to pass through the points.
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The female athletes (AIS) data

Here we use data on the heights of 100 female athletes4. First load the data frame ais, if necessary
from http://www.maths.anu.edu.au/∼johnm/r/workshop.

The function panel.smooth() plots points, then adds a smooth curve. For example:

attach(ais)
here <- sex=="f"
plot(pcBfat[here]~ht[here], xlab = "Height", ylab = "% Body fat")
panel.smooth(ht[here],pcBfat[here])
abline(lm(pcBfat[here] ~ ht[here ]))
detach(ais)

The least squares regression line (abline()) has been added for comparison.

5.7 Plotting Mathematical Symbols

Both text() and mtext() will take an expression rather than a text string. In plot(), either or
both of xlab and ylab can be an expression. Figure 10 is an example.
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Figure 10: The x-axis
and y-axis labels are both
mathematical expressions.

## Code used for plot:

r <- seq(0.1, 8.0, by=0.1)
plot(r, pi * r^2, xlab=expression(Radius == r),

ylab=expression(Area == pi*r^2), type="l")
# NB: Use ==, within an expression , to print =

See Subsection 8.5 (Figure 15) for another and much more complicated example of the plotting of
mathematical expressions.

See help(plotmath) for detailed information. The final plot from

demo(graphics)

shows some of the possibilities for plotting mathematical symbols.

5.8 Multi-way Tables – Mosaic Plots

Here is a more interesting example, using the multi-way table UCBAdmissions that is in the base
package. This holds admission data, from University of California at Berkeley in 1973. First, we will
get information about the data:

4Data relate to the paper: Telford, R.D. and Cunningham, R.B. 1991: Sex, sport and body-size dependency of
hematology in highly trained athletes. Medicine and Science in Sports and Exercise 23: 788-794.

http://www.maths.anu.edu.au/~johnm/r/workshop
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> class(UCBAdmissions)
[1] "table"
> dim(UCBAdmissions)
[1] 2 2 6
> dimnames(UCBAdmissions)
$Admit
[1] "Admitted" "Rejected"
$Gender
[1] "Male" "Female"

$Dept
[1] "A" "B" "C" "D" "E" "F"

Finally while we explore around this table, here is the table for department A:

> UCBAdmissions[, , "A"] # Equivalent to UCBAdmissions[, , 1]

Gender
Admit Male Female
Admitted 512 89
Rejected 313 19

To get a mosaic plot, type

mosaicplot(UCBAdmissions , color=TRUE)

For a direct comparison between male and female admission rates, it is helpful to permute the
dimensions:

mosaicplot(aperm(UCBAdmissions , c(2,1,3)), color=TRUE)

Note also the functionmosaic(), from the vcd package.

5.9 Regular Graphics Functions – Additional Points

The variety of R graphics functions

For other plotting possibilities, look under the help for the functions hist(), coplot(), contour(),
filled.contour(), image(), etc. Use of example() with these functions gives some impressive plots.

Functions that handle smoothing and density estimation can be useful adjuncts to the graphics
functions. These include lowess() and density() and scatter.smooth(), and bkde2D() in the
KernSmooth package.

Additionally, there are several specialist graphics packages. Assuming that it is installed, examine
the help information for the package scatterplot3d.

Plots with Large Numbers of Points

When the number of points is large, such standard forms of presentation as scatterplots can be
problematic. Graphs may appear as a dense uninformative mass of black ink. The graphics files may
be so large that they take an inordinate time to print. There are ways to address these issues, but
they require the use of a different form of graphic.

Histograms, density curves and boxplots present highly summarized information. The density of
points on the graph is small, so that there should not be a problem. Normal probability plots can be
problematic, because they try to present each point individually. The central part of the plot, e.g., in
the region where points overlap, might, in most instances be replaced by a curve through the data.
There need not be any loss of visual information.
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For two-dimensional data, one approach is to use a two-dimensional analogue of a density plot.
The function bkde2D() in the KernSmooth package may be used. Here is an example of its use. We
take the range of each of the variables to be about a tenth of the range of the data:

library(KernSmooth)
attach(mouse.lratio)
M13 <- bkde2D(na.omit(M[,c(1,3)]), bandwidth=c(1,1))
attach(M13)
filled.contour(x1,x2,fhat , xlab="Slide 1", ylab="Slide 3")
detach(M13)
detach(mouse.lratio)

Inclusion of Graphs in Other Documents

Both on PC and Mac systems, writing to a pdf file that is then included in a latex document, or
directly inserted into a pdf file, gives a high quality result.

Graphs do not, for some reason, import well from the clipboard into Word on the Macintosh under
OS X. I have used png() to write to a file that is then inserted as a picture. I have left width and
height at their defaults, except when the shape of the graph sheet needs to be changed. I have mostly
used pointsize=18 or pointsize=16. Within Word, graphs are then shrunk to the requisite size.

5.10 Exercises

1. The data set LakeHuron (datasets package) has mean July average water surface elevations, in
feet, IGLD (1955) for Harbor Beach, Michigan, on Lake Huron, Station 5014, for 1875-1972.
Use the following to create a data frame that has the same information:

huron <- data.frame(year=as.vector(time(LakeHuron)),
mean.height=LakeHuron)

a) Plot mean.height against year.

b) Use the identify function to determine which years correspond to the lowest and highest mean
levels. That is, type

identify(huron$year , huron$mean.height , labels=huron$year)

and use the left mouse button to click on the lowest point and highest point on the plot. To
quit, press both mouse buttons simultaneously.

c) As in the case of many time series, the mean levels are correlated from year to year. To see
how each year’s mean level is related to the previous year’s mean level, use

lag.plot(huron$mean.height)

This plots the mean level at year i against the mean level at year i-1.

d) Now explain why the following code achieves the same effect:

plot(LakeHuron)
identify(LakeHuron , labels=time(LakeHuron ))

2. Check the distributions of head lengths (hdlngth) in the possum data set. Compare the following
forms of display:

a) a histogram (hist(possum$hdlngth));

b) a stem and leaf plot (stem(qqnorm(possum$hdlngth));
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c) a normal probability plot (qqnorm(possum$hdlngth)); and

d) a density plot (plot(density(possum$hdlngth)).

What are the advantages and disadvantages of these different forms of display?

3. Use mfrow() to set up the layout for a 3 by 4 array of plots. In the top 4 rows, show normal
probability plots for four separate ‘random’ samples of size 10, all from a normal distribution.
In the middle 4 rows, display plots for samples of size 100. In the bottom four rows, display
plots for samples of size 1000. Comment on how the appearance of the plots changes as the
sample size changes.

4. The function runif() can be used to generate a sample from a uniform distribution, by default
on the interval 0 to 1. Try x <- runif(10), and print out the numbers you get. Then repeat
exercise 6 above, but taking samples from a uniform distribution rather than from a normal
distribution. What shape do the points follow?

5. Repeat exercise 4, but for other distributions. For example x <- rchisq(10,1) will generate
10 random values from a chi-squared distribution with degrees of freedom 1. The statement x
<- rt(10,1) will generate 10 random values from a t distribution with degrees of freedom one.
Make normal probability plots for samples of various sizes from these distributions.

6. For the first two columns of the data frame hills, examine the distribution using:

(a) histograms

(b) density plots

(c) normal probability plots.

Repeat (a), (b) and (c), now working with the logarithms of the data values.

7. The following data gives milk volume (g/day) for smoking and nonsmoking mothers5:

Smoking Mothers: 621, 793, 593, 545, 753, 655, 895, 767, 714, 598, 693

Nonsmoking Mothers: 947, 945, 1086, 1202, 973, 981, 930, 745, 903, 899, 961

Present the data (i) in side by side boxplots; (ii) using a dotplot form of display.

8. The frame airquality that is in the base package has columns Ozone, Solar.R, Wind, Temp,
Month and Day. Plot Ozone against Solar.R for each of three temperature ranges, and each of
three wind ranges.

5Data are from the paper “Smoking During Pregnancy and Lactation and Its Effects on Breast Milk Volume” (Amer.
J. of Clinical Nutrition).
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6 Lattice Graphics

Lattice Lattice is a flavour of trellis graphics (cf the earlier S-PLUS flavour)
Grid grid is the low-level graphics system on which lattice is built.

Part II of Paul Murrell’s R Graphics has an accessible introduction to grid.
Lattice vs base Lattice graphics is more structured, automated and stylized.
Lattice syntax Lattice type graphics formulae are mandatory for lattice plots, e.g.,

xyplot(csoa ∼ it | sex * agegp, groups = target, data = tinting)
csoa ∼ it: Plot csoa vs it
| sex * agegp: Condition on sex * agegp,
(a different panel for each combination of sex and agegp)
groups: Within each panel, group by levels (locon, hicon) of target

auto.key Use auto.key for a basic key to the group labeling (groups parameter).

Lattice (trellis) graphics allow the use of the layout on the page to reflect meaningful aspects of
data structure. They offer abilities similar to those in the S-PLUS trellis package.

6.1 Panels of Scatterplots – Examples of the Use of xyplot()

The basic function for drawing panels of scatterplots is xyplot(). We will use the data frame tinting
(supplied) to demonstrate its use. These data are from an experiment that investigated the effects
of tinting of car windows on visual performance6. The authors were mainly interested in visual
recognition tasks that would be performed when looking through side windows.

In this data frame, csoa (critical stimulus onset asynchrony, i.e. the time in milliseconds required
to recognise an alphanumeric target), it (inspection time, i. e. the time required for a simple
discrimination task) and age are variables, tint (level of tinting: no, lo, hi) and target (contrast:
locon, hicon) are ordered factors, sex (1 = male, 2 = female) and agegp (1 = younger, in the early
20s; 2 = an older participant, in the early 70s) are factors. Attaching the DAAG package makes these
data available:

library(DAAG)

A simple graph, that does not distinguish the two different targets, can be obtained with:

xyplot(csoa~it|sex*agegp , data=tinting)

Figure 11 shows a graph that makes more extensive use of the function’s abilities, using differ-
ent symbols (and, if available, different colors) for different targets. It uses the parameter setting
auto.key=list(columns=2) to obtain a simple key. (Setting columns=2 places the two key items in
separate columns, i.e., side by side rather than in a single column.) The code is:

xyplot(csoa~it|sex*agegp , data=tinting ,
auto.key=list(columns =2), groups=target)

Setting groups=target automatically invokes the use of panel.superpose. If the device supports
color, different colors are by default used for the different groups.

A striking feature is that the very high values, for both csoa and it, occur only for elderly males.
It is apparent that the long response times for some of the elderly males occur, as we might have
expected, with the low contrast target. The following puts smooth curves through the data, separately
for the two target types:

xyplot(csoa~it|sex*agegp , data=tinting ,
groups=target , auto.key=list(columns =3),
type=c("p","smooth"))

6Data relate to the paper: Burns, N. R., Nettlebeck, T., White, M. and Willson, J. 1999. Effects of car
window tinting on visual performance: a comparison of elderly and young drivers. Ergonomics 42: 428-443.
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Figure 11: csoa versus it, for each
combination of females/males and
older/younger. The two targets
(o = low, + = high contrast) are
shown with different symbols.

The relationship between csoa and it seems much the same for both levels of contrast.
The following plot uses different symbols (in black and white) or different colours for different

levels of tinting. The longest times are for the high level of tinting.

xyplot(csoa ~ it|sex*agegp , data=tinting , groups=tint ,
auto.key=list(columns =3))

6.2 Annotation – the auto.key, key and legend arguments

For a key is required that identifies the colours, plotting symbols and names for the groups, the
easiest mechanism is to use the setting auto.key=TRUE. For greater flexibility, auto.key can be a list.
Settings that are often useful are:

• x and y, where these are coordinates with respect to the whole display area, together with
corner, which is one of c(0,0) (bottom left corner of legend), c(1,0), c(1,1) and c(0,1).

• space: one of "above", "below", "left", "right".

• points, lines: in each case set to TRUE or FALSE. columns: number of columns of keys.

Colours, plotting symbols, line type are then taken from the trellis settings for the device used. Unless
text is supplied as a parameter, levels(groups) provides the legends.

Alternatives are to supply a list of arguments to the parameter key, or to use the argument
key=simpleKey(). If key is supplied as a list, at least one of lines, points and text must be
supplied. Arguments to simpleKey() are the names of list elements when auto.key is used. When
the parameter key is supplied, arguments that are not otherwise specified use the trellis settings that
were in place when the trellis object was created.

See help(xyplot) for further details.

6.3 Trellis settings

To ensure that changes from defaults affect both the graph and the legend, they can be made by
using the function trellis.par.set(), which changes the default settings for the current device.
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Alternatively, the settings can be specified in the par.settings argument to the trellis function. To
find what settings might be changed, type:

> names(trellis.par.get())
[1] "fontsize" "background" "clip"
[4] "add.line" "add.text" "bar.fill"
[7] "box.dot" "box.rectangle" "box.umbrella"

[10] "dot.line" "dot.symbol" "plot.line"
[13] "plot.symbol" "reference.line" "strip.background"
[16] "strip.shingle" "superpose.line" "regions"
[19] "shade.colors" "superpose.symbol" "axis.line"
[22] "axis.text" "box.3d" "par.xlab.text"
[25] "par.ylab.text" "par.zlab.text" "par.main.text"
[28] "par.sub.text"

The settings that are of interest can then be inspected individually. When groups=TRUE, settings
for the symbols are controlled by the superpose.symbol list item, and for lines by the superpose.line
list item. Inspection of the settings for superpose.symbol gives:

> trellis.par.get("superpose.symbol")
$cex
[1] 0.8 0.8 0.8 0.8 0.8 0.8 0.8

$col
[1] "grey" "steelblue" "black"

$font
[1] 1 1 1 1 1 1 1

$pch
[1] 16 16 16

For superpose.line, the list elements are col, lty and lwd. The superpose.line settings apply
when a line is used to join the points (specify type="l"), or a smooth curve is passed through them
(specify type=c("p", ‘‘smooth’’) to get points, with a smooth curve added).

6.4 An example

The code that now follows uses the parameter par.settings to make changes to these settings. It
adds smooth curves, and includes information about the line type and color in the legend. Figure 12
shows the result:

trellis.device ()
xyplot(csoa ~ it|sex*agegp , data=tinting ,

par.settings=list(superpose.symbol=list(col=c("gray","gray","black"),
pch=c(1,16,16)),

superpose.line=list(col=c("grey", "gray", "black"),
lty=c(1,2,4), lwd=c(2,2,1))),

groups=tint , type=c("p","smooth"), span =0.9,
auto.key=list(columns=3, lines=TRUE))

# The parameter "span" controls the extent of smoothing.

The different levels of tinting (o=no, +=low, >=high) are shown with different symbols. Annotation
is now included on the plot. Smooth curves are fitted, one for each level of tinting.
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Figure 12: csoa versus it, for each
combination of females/males and
elderly/young. Different line and
point styles are used for different
levels of tint. The parameter
par.settings has been used to
make point and line settings.

6.5 Lattice Style Stripplots and Boxplots

The following stripplot (for the cuckoos data set is from DAAG) has a different ‘strip’ for each different
host species:

## The two lines that follow ensure display of the species name

levnam <- strsplit(levels(cuckoos$species), "\\.")
levels(cuckoos$species) <- sapply(levnam , paste , collapse="")
stripplot(species ~ length , xlab="Length of egg", aspect =0.5,

data=cuckoos)

Compare the above with a boxplot form of presentation

## NB. The lattice function is bwplot ()

bwplot(species ~ length , xlab="Length of egg", data=cuckoos)

The aspect argument determines the ratio of distance in the y-direction to distance in the x-direction.

Inclusion of lattice graphics functions in user functions

The function xyplot() does not itself print the graph. Instead, it returns an object of class trellis
which, if the statement is typed on the command line, is then “printed” by the function print.trellis().
Thus, typing

xyplot(csoa ~ it | sex * agegp , data=tinting)

on the command line is equivalent to

print(xyplot(csoa ~ it | sex * agegp , data=tinting ))

In a function, unless the lattice command appears as the final statement of the function, the print
statement must be explicit, i.e.

print(xyplot(csoa ~ it | sex * agegp, data=tinting))

or equivalently:
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tinting.trellis <- xyplot(csoa ~ it | sex * agegp, data=tinting)
print(tinting.trellis)

6.6 Dotplots

Dotplots are typically used to show the variation in values of a response variable, at each of a number
of levels of a factor. Try for example:

dotplot(variety ~ yield | site , data = barley , groups = year ,
key = simpleKey(levels(barley$year), space = "right"),
xlab = "Barley Yield (bushels/acre) ",
aspect = 0.5, layout = c(1, 6), ylab = NULL)

Try stretching the plot vertically so that the labels do not overlap.
Where there is just one point per factor level, the argument type="h") gives a line from the origin

to the point. Both a line and a point may be given. This can be used to provide a graph that can be
quite striking in its effect, as in the following example:

deathrate <- c(40.7, 36 ,27 ,30.5 ,27.6 ,83.5)
ord <- order(deathrate)
hosp <- c("Cliniques of Vienna (1834 -63)\n(> 2000 cases pa)",

"Enfans Trouves at Petersburg\n(1845 -59 , 1000 -2000 cases pa)",
"Pesth (500 -1000 cases pa)",
"Edinburgh (200 -500 cases pa)",
"Frankfort (100 -200 cases pa)", "Lund (< 100 cases pa)")

hosp <- factor(hosp , levels=hosp[order(deathrate )])
dotplot(hosp ~ deathrate , xlim=c(0,110), cex=1.5,

scale=list(cex =1.25) , type=c("h","p"),
xlab=list("Death rate per 1000 ", cex =1.5),
sub="From Nightingale (1871) - data from Dr Le Fort")

Data are from Nightingale, F. (1871): Notes on Lying-in Institutions.

6.7 Lattice Style Density Plots

Here is a density plot, for data from the possum data set (DAAG), that compares sexes and Vic/other
populations.

densityplot(~earconch | Pop , groups=sex , data=possum)

Different labeling for different sites would be helpful. For this, merge information from the data
frame possum, with information from possumsites (DAAG), allowing the sites to be labeled by name.

possumsites$site <- 1:7
possumsites$Site <- factor(rownames(possumsites ))
possums <- merge(possum , possumsites[, 4:5], by="site")

Here then is the code for the density plots:

densityplot(~earconch | sex , group=Site , data=possums , aspect =1.5)

We can include a key, thus:

densityplot(~earconch | sex , group=Site , data=possums , aspect =1.5,
key=simpleKey(text=levels(possums$Site), points=TRUE))

Note that histogram() ignores the parameter group.
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6.8 An incomplete list of lattice Functions

dotplot(factor ~ numeric,..) # 1-dim. Display
stripplot(factor ~ numeric,..) # 1-dim. Display
barchart(character ~ numeric,..)
histogram( ~ numeric,..)
densityplot( ~ numeric,..) # Density plot
bwplot(factor ~ numeric,..) # Box and whisker plot
qqmath(factor ~ numeric,..) # normal probability plots
splom( ~ dataframe,..) # Scatterplot matrix
parallel( ~ dataframe,..) # Parallel coordinate plots
cloud(numeric ~ numeric * numeric, ...) # 3D surface
wireframe(numeric ~ numeric * numeric, ...) # 3D scatterplot

In each instance, users can add conditioning variables.
To get a succession of examples of the use of bwplot(), type:

example(bwplot)

Similarly for qqmath(), dotplot(), etc. The examples are in each instance taken from the relevant
help page.

6.9 Summary

The functions plot(), points(), lines(), text(), mtext(), axis(), identify() etc. form
a suite that plots points, lines and text.

Note the alternatives plot(x, y), plot(y ∼ x)
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7 Fitting Statistical Models

Linear models In R, any model that can be fitted using lm() is a “linear” model.
Such models can handle many types of highly non-linear response.

Diagnostic plots Use plot() with the model object as argument, to get a basic set of
diagnostic plots.
Where interactions are not involved, use termplot() to give a visual
represenation of the contributions of the different terms.
(Why are interactions a problem for lm()?

Extractor functions Where available, these are the preferred way to extract information from
model objects.

Factors Factors are used, in model terms, to model qualitative effects.
Model matrices What are they, how are they obtained, and why are they important?
The Error Term Errors do not have to be (and often are not) independently and identically

distributed. A simple hierarchical multi=level model will illustrate why
attention to the error term can be important.

The various R packages provide, between them, a huge range of model fitting abilities. Perhaps the
most widely used model fitting function is lm(), where the lm stands for linear model. The example
of the use of lm() that appears below is designed to demonstrate the far reach of models that may be
fitted using this function. It is an example that stretches the meaning of the word linear. The lm()
function will fit any model for which the fitted values are a linear combination of basis functions. Each
basis function can in principle be an arbitrary transformation of one or more explanatory variables.
“Additive models” may be better terminology.

The lm() function assumes that the random term is i.i.d. (independently and identically dis-
tributed) normal. Various R packages, of which nlme is (or was, until lme4 came along) perhaps the
most important, include functions that allow a more general form of random term. In the example in
Section 7.3 below, there are i.i.d. random (“error”) terms at two levels, between units and between
groups to which the units belong. (In this case, the groups were different sites where experiments
were conducted.) This simple form of non-i.i.d. random structure has sufficient complication to show
how important it can be to take account of random structure in the random term, and to illustrate
the possibilities for misleading inference when structure in the random part of the model is ignored.

Among other models that handle non-i.i.d. random structure, note:

• Time series models, where the random term typically has a sequential correlation structure;

• Repeated measures models, which model the time profiles of multiple “individuals”.

• Spatial models, where there is a correlation structure that depends on the separation of obser-
vations in space.

7.1 A Regression Model

The data that will be used are a subset of the races2000 data set that is in the DAAG package. To
make the data available, do the following:

library(DAAG)
names(races2000) # Require dist , climb , time and timef

hills2k <- races2000[races2000$type=="hill", 7:10]

An initial step is to obtain scatterplot matrices that shows all of the pairwise scatterplots for the
variables that are of interest:

plot(hills2k) # Equivalent to pairs(hills2k)

plot(log(hills2k )) # Check what difference this makes
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The diagonal panel in the same column as the graph gives the x -axis label. The diagonal panel in
the same row gives the y-axis label. Such a graph may be examined, if there are enough points,
for evidence of: (1) Strong clustering in the data, and/or obvious outliers; (2) Clear non-linear
relationships, so that a correlation7 will underestimate the strength of any relationship; (3) Severely
skewed distributions, so that the correlation is an unreliable measure of the strength of relationship.

The graph should be used only as an initial coarse screening device. Skewness in the individual
distributions is better checked with the use of plots of density estimates.

The row names store the names of the hillraces. I have recently discovered that for the Caerketton
race, where the time seems anomalously small, dist should probably be 1.5mi not 2.5mi. The safest
option may be to omit this point. For later reference, note the row number:

> match("Caerketton", rownames(hills2k ))
[1] 42
> hills2k [42, "dist"]
[1] 2.5

The interest is in prediction of time as a function of dist and climb. First examine the scatterplot
matrices, for the untransformed variables, and for the log transformed variables. The pattern of rela-
tionship between the two explanatory variables – dist and climb – is much closer to linear for the log
transformed data, i.e., the log transformed data are consistent with a form of parsimony that is advan-
tageous if we hope to find a relatively simple form of model. Note also that the graphs of log(dist)
against log(time) and of log(climb) against log(time) are consistent with approximately linear
relationships. Thus, we will work with the logged data:

loghills2k <- log(hills2k [-42, ]) # Omit the dubious point

names(loghills2k) <- c("ldist", "lclimb", "ltime", "ltimef")
loghills2k.lm <- lm(ltime ~ ldist + lclimb , data=loghills2k)
par(mfrow=c(2 ,2))
plot(loghills2k.lm) # Diagnostic plot
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Figure 13: Term plot, showing the partial
residuals for log(time) against log(dist) (left
panel), and for log(time) against log(climb)
(right panel). Smooth curves (dashes) that
have been passed through the points. The
vertical scale, which is centered on the mean
of log(time), shows changes in log(time).

We pause at this point and look more closely at the model that has been fitted. Does log(time)
really depend linearly on the terms ldist and log(lclimb)? The function termplot() gives a good
graphical indication (Figure 13).

## Plot the terms in the model

termplot(loghills2k.lm , col.term="gray", partial=TRUE ,
col.res="black", smooth=panel.smooth)

The vertical scales show changes in ltime, about the mean of ltime. The lines show the effect of
each explanatory variable when the other variable is held at its mean value. The lines, which are the
contributions of the individual linear terms (“effects”) in this model, are shown in gray so that they
do not obtrude unduly. The dashed curves, which are smooth curves that are passed through the

7There are several alternative forms of correlation coefficient. The usual form of correlation coefficient, such as we
discuss here, is the “product-moment” correlation, which measures linear association.
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residuals, are the primary feature of interest in these plots. In both panels, they show clear indications
of curvature. A spline of degree 3 (by default a cubic polynomial) seemed adequate for capturing the
curvature in the partial residuals for ldist, while a spline of degree 4 seemed adequate for capturing
the slightly more complicated pattern of curvature in the partial residuals for lclimb. The function
ns(), used to generate a spline basis, is in the splines package.

library(splines) # Attach the splines package

loghills2ks.lm <- lm(ltime ~ ns(ldist ,3) + ns(lclimb ,4),
data=loghills2k)

par(mfrow=c(2,2))
plot(loghills2ks.lm) # Diagnostic plot

Notice that, in the diagnostic plot, one point (row 19: 12 Trig Trog) has a huge Cook’s distance.
With a time of 8.3h, it is the longest of any of the races.

The following plots the contributions of the individual spline curves (“the effects”), shows the
partial residuals, and passes a smooth curve (red dashes) through the partial residuals:

termplot(loghills2ks.lm , col.term="gray", partial=TRUE ,
col.res="black", smooth=panel.smooth)

Also the fitted curve for lclimb is not monotonic for small values of lclimb. It would be desirable
to constrain it to be monotonic.

The Basis Functions

The basis functions are available for inspection, thus:

bases <- model.matrix(loghills2ks.lm)
colnames(bases)
options(digits =3)
bases [1:5 ,]

To see the shape of the basis curves, the best idea is to plot them. The following plots the four
basis functions that are formed by lclimb

par(mfrow=c(2 ,2))
for (i in 0:3) plot(loghills2k$lclimb , bases[,5+i])
par(mfrow=c(1 ,1))

The contribution of lclimb to the fitted values is determined as a linear combination of these three
curves.

7.2 Models that Include Factor Terms – Contrasts

A Simple Example

The data frame cuckoos (DAAG) has egg length for eggs laid in the nests of six different species of
host bird.

> str(cuckoos)
‘data.frame ’: 120 obs. of 4 variables:
$ length : num 21.7 22.6 20.9 21.6 22.2 22.5 22.2 24.3 22.3 22.6 ...
$ breadth: num 16.1 17 16.2 16.2 16.9 16.9 17.3 16.8 16.8 17 ...
$ species: Factor w/ 6 levels "hedge.sparrow ",..: 2 2 2 2 2 2 2 2 2 2 ...
$ id : num 21 22 23 24 25 26 27 28 29 30 ...

The analysis of these data can be handled within the linear model framework, although this
may not be the most natural approach for this relatively simple analysis. The factor species is a
qualitative description of categories (“levels”) in the data. The levels are:
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> levels(cuckoos$species)
[1] "hedge.sparrow" "meadow.pipit" "pied.wagtail" "robin"
[5] "tree.pipit" "wren"

For purposes of fitting a model the levels are taken to be 1, 2, . . . , k, where k is the number of
levels. For a factor that is not ordered, these are qualitative distinctions. The first level (1) does
however have a special role for the default parameterization, as a reference. (The order can easily be
changed, so that one of the other species is placed first and thus becomes the reference.)

The following code demonstrates the choice of parameters for coding the factor species. It creates
a factor that has one element for each of the six levels 1, 2, . . . , 6, and then forms the model matrix.
The model matrix for species repeats each row from this model matrix as it is required:

> alpha <- factor (1:6)
> mm <- model.matrix(~alpha)
> rownames(mm) <- levels(cuckoos$species)
> mm

(Intercept) alpha2 alpha3 alpha4 alpha5 alpha6
hedge.sparrow 1 0 0 0 0 0
meadow.pipit 1 1 0 0 0 0
pied.wagtail 1 0 1 0 0 0
robin 1 0 0 1 0 0
tree.pipit 1 0 0 0 1 0
wren 1 0 0 0 0 1
attr(,"assign")
[1] 0 1 1 1 1 1
attr(,"contrasts")
attr(,"contrasts")$alpha
[1] "contr.treatment"

The parameter (Intercept) is the expected value for hedge.sparrow. The parameter alpha2 is the
amount added to this to get the expected value for meadow.pipit. Similarly for each of the other
species. For each level, the reference is hedge.sparrow.

The columns of the model matrix are known as “contrasts”. The values in columns of the model
matrix after the first give contrasts with the reference. The specific form of contrasts used here, which
are the default for qualitative factors, are called the “treatment” contrasts.

The mechanism just described allows the automatic creation of the model matrix for any qualitative
factor. Extensions and variants will be described later. The following demonstrates its use to fit a
simple one-way analysis of variance model, in which there is a different mean for each different species:

> cuckoos.lm <- lm(length ~ species , data=cuckoos)
> coef(cuckoos.lm)

(Intercept) speciesmeadow.pipit speciespied.wagtail
23.1143 -0.8210 -0.2276

speciesrobin speciestree.pipit specieswren
-0.5580 -0.0343 -1.9943

Much more information can be gleaned from the analysis, including an analysis of variance table,
but the above will do for now. The estimated expected values for the different species are:

(Intercept) meadow.pipit pied.wagtail
23.1143 23.1143-0.8210 23.1143-0.2276
robin tree.pipit wren

23.1143-0.5580 23.1143-0.0343 23.1143-1.9943

Recall that (Intercept) is the reference, which is hedge.sparrow.
There are other ways to choose model parameters. Here are two of the possibilities:
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> ## 1. Leave out the intercept term , i.e. reference = 0

> cuckoos.lm <- lm(length ~ -1+species , data=cuckoos)
> coef(cuckoos.lm)
specieshedge.sparrow speciesmeadow.pipit speciespied.wagtail

23.11 22.29 22.89
speciesrobin speciestree.pipit specieswren

22.56 23.08 21.12

As the estimated values are the same as before, this is the same model, but with a different parame-
terization.

It may seem preferable to make the overall mean the reference. For this, specify the “sum”
contrasts:

> ## 2. Make the overall mean the reference

> cuckoos.lm <- lm(length ~ C(species , sum), data=cuckoos)
> coef(cuckoos.lm)

(Intercept) C(species , sum)1 C(species , sum)2 C(species , sum)3
22.5084 0.6059 -0.2151 0.3782

C(species , sum)4 C(species , sum)5
0.0478 0.5716

Now it is the final level that is omitted. The C(species, sum)6 term, if it were given, would be
calculated so that the sum of the six such terms is zero. Here are two ways that it might be calculated:

> coef(cuckoos.lm)[1] - sum(coef(cuckoos.lm)[ -1])
(Intercept)

21.12
> coef(cuckoos.lm) %*% c(1,-1,-1,-1,-1,-1) # Scalar product

[,1]
[1,] 21.12

The operator %*% is matrix multiplication. When the arguments are vectors, it treats the second
argument as a row vector and thus forms the scalar product.

The inclusion of interaction terms

Extensions of the above ideas allow the creation of a model matrix, and thus the fitting of an lm
model, for terms that include any combination of variables, spline terms, factors and interactions
between such terms. Here is a simple example:

> x <- 1:6
> f1 <- factor(rep(1:2, 3)) # 1,2,1,2,1,2

> f2 <- factor(rep(1:3, rep (2 ,3))) # 1,1,1,2,2,2

> model.matrix(~ x + f1 + f2 + f1:f2 + f1:x + f2:x)
(Intercept) x f12 f22 f23 f12:f22 f12:f23 x:f12 x:f22 x:f23

1 1 1 0 0 0 0 0 0 0 0
2 1 2 1 0 0 0 0 2 0 0
3 1 3 0 1 0 0 0 0 3 0
4 1 4 1 1 0 1 0 4 4 0
5 1 5 0 0 1 0 0 0 0 5
6 1 6 1 0 1 0 1 6 0 6
attr(,"assign")
[1] 0 1 2 3 3 4 4 5 6 6

attr(,"contrasts")
attr(,"contrasts")$f1
[1] "contr.treatment"
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attr(,"contrasts")$f2
[1] "contr.treatment"

The model formula could have been specified more simply, as in:

model.matrix(~(x + f1 + f2)^2)

The effect of the ^2 is to include the main effects and pairwise interactions involving all terms that
are specified within the round brackets.

Contrasts for ordered factors

Here the default is to use “polynomial” contrasts, which are successive orthogonal polynomial terms
in the numeric factor values.

> tint <- ordered(c("lo", "med", "hi"), levels=c("lo", "med", "hi"))
> model.matrix(~tint)

(Intercept) tint.L tint.Q
1 1 -7.07e-01 0.408
2 1 -9.07e-17 -0.816
3 1 7.07e-01 0.408
attr(,"assign")
[1] 0 1 1
attr(,"contrasts")
attr(,"contrasts")$tint
[1] "contr.poly"

The values in tint.L are, to a close approximation, (-1/
√

2, 0, 1/
√

2). The values in tint.Q are
obtained by dividing the vector (1, -2, 1) by

√
12 + 22 + 12.

7.3 Hierarchical Multi-level Models
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Figure 14: Yields from blocks on
eight sites on the Caribbean island
of Antigua. Data are a summa-
rized version of a subset of data
given in Andrews and Herzberg
1985, pp.3̃39-353.

Figure 14 shows corn yield data from the Caribbean island of Antigua. The figure can be obtained
using the code:

# ant111b is in DAAG

library(lattice)
stripplot(site ~ harvwt , data=ant111b)

Depending on the use that will be made of the results, it may be essential to correctly model the
structure of the random part of the model. The analysis will use the abilities of the lme() function in
the nlme package, though the example is one where it is easy to get the needed sums of squares from
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a linear model calculation. The data give results for each of several blocks at a number of different
locations (sites). A prediction for a new block at one of the existing locations is likely to be more
accurate than a prediction for a totally new location. Multi-level models are able to account for such
differences in predictive accuracy.

7.3.1 Analysis of the Antiguan corn yield data

The data that will be analyzed are in the second column of Table 3, which has the block means for
the Antiguan data. In comparing yields from different blocks, there are two sorts of comparison.
Blocks on the same location should be relatively similar, while blocks on different locations should be
relatively more different. Figure 14 suggests that this is indeed the case.

Location Location means Location effect Residuals from
location mean

DBAN 5.16, 4.8, 5.07, 4.51 +0.59 0.28, −0.08, 0.18, −0.38
LFAN 2.93, 4.77, 4.33, 4.8 −0.08 −1.28, 0.56, 0.12, 0.59
NSAN 1.73, 3.17, 1.49, 1.97 −2.2 −0.36, 1.08, −0.6, −0.12
ORAN 6.79, 7.37, 6.44, 7.07 (4.29) +2.62 −0.13, 0.45, −0.48, 0.15
OVAN 3.25, 4.28, 5.56, 6.24 +0.54 −1.58, −0.56, 0.73, 1.4
TEAN 2.65, 3.19, 2.79, 3.51 −1.26 −0.39, 0.15, −0.25, 0.48
WEAN 5.04, 4.6, 6.34, 6.12 +1.23 −0.49, −0.93, 0.81, 0.6
WLAN 2.02, 2.66, 3.16, 3.52 −1.45 −0.82, −0.18, 0.32, 0.68

square, add, square, add, divide by
multiply by 4, d.f.=24, to give ms
divide by d.f.=7,
to give ms

Table 3: The leftmost column has harvest weights (harvwt), for the blocks in each location, for the
Antiguan corn data. Each of these harvest weights can be expressed as the sum of the overall mean
(= 4.29), location effect (third column), and residual from the location effect (final column). This
information that can be used to create the analysis of variance table.)

Comparison with analysis of variance: In an analysis of variance formalization, the two-level
structure of variation is handled by splitting variation, as measured by the total sum of squares
about the grand mean, into two parts – variation within locations, and variation between location
means. The final two columns in Table 3 indicate how to calculate the relevant sums of squares
and (by dividing by degrees of freedom) mean squares. The division of the sum of squares into two
parts mirrors two different types of predictions that can be based on these data.

Variance components – a multi-level model

The model that is used is:

yield = overall mean + location effect
(random) + block effect

(random)

In formal mathematical language:

yij = µ + αi
(location, random) + βij

(block, random) (i = 1, . . . , 8; j = 1, . . . , 4)

with var[αi] = σ2
L, var[βij] = σ2

B.
The quantities σ2

L and σ2
B are known, technically, as variance components. The variance compo-

nents analysis allows inferences that are not immediately available from the breakdown of the sums of
squares in the analysis of variance table. Importantly, the variance components provide information
that can help design another experiment.
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Analysis using lme

The modeling command takes the form:

library(nlme)
ant111b.lme <- lme(fixed=harvwt ~ 1, random = ~1 | site ,

data=ant111b)

The only fixed effect is the overall mean. The parameter random = ~1 | site fits random variation
between locations. Variation between the individual units that are nested within locations, i.e.,
between blocks, are by default treated as random. Here is the default output:

> ant111b.lme
Linear mixed -effects model fit by REML

Data: ant111b
Log -restricted -likelihood: -47.208
Fixed: harvwt ~ 1

(Intercept)
4.2917

Random effects:
Formula: ~1 | site

(Intercept) Residual
StdDev: 1.5387 0.75996

Number of Observations: 32
Number of Groups: 8

Notice that lme gives, not the components of variance, but the standard deviations (StdDev) which
are their square roots. Observe that, according to lme, σ̂2

B/n = 0.759962 = 0.57754, and σ̂2
L = 1.53872

= 2.3676.
Those who are familiar with an analysis of variance table for such data should note that lme does not give

the mean square at any level higher than level 0, not even in this balanced case.

The take-home message from this analysis is:

o For prediction for a new block at one of the existing sites, the standard error is 0.76

o For prediction for a new block at a new site, the standard error is
√

1.53872 + .762 = 1.72

o For prediction of the mean of n blocks at a new site, the standard error is
√

1.53872 + 0.762/n

Where there are multiple levels of variation, the predictive accuracy can be dramatically different,
depending on what is to be predicted. Similar issues are arise in repeated measures contexts, and in
time series. Repeated measures data has multiple profiles, i.e., many small time series.

Additional Calculations

Is variability between blocks similar at all locations?

library(DAAG)
vars <- sapply(split(ant111b$harvwt , ant111b$site), var)
vars <- vars/mean(vars) # Standardize to a variance of one

qreference (3*vars , distribution=function(x)qchisq(x, df=3))

Does variation within locations follow a normal distribution?

qqnorm(residuals(ant111b.lme))
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What is the pattern of variation between sites?

sitemeans <- sapply(split(ant111b$harvwt , ant111b$site), mean)
qqnorm(sitemeans)

The distribution seems remarkably close to normal.

Fitted values and residuals in lme

By default fitted values account for all random effects, except those at level 0. In the example under
discussion fitted(ant111b.lme) calculates fitted values at level 1, which can be regarded as estimates
of the location means. They are not however the location means, as the graph given by the following
calculation demonstrates:

hat.lm <- fitted(lm(harvwt ~ site , data=ant111b ))
hat.lme <- fitted(ant111b.lme) # By default , level =1)

plot(hat.lme ~ hat.lm , xlab="Location means",
ylab="Fitted values (BLUPS) from lme")

abline(0,1,col="red") # Show the line y=x

The fitted values are known as BLUPs (Best Linear Unbiased Predictors). Relative to the location
means, they are pulled in toward the overall mean. The most extreme location means will on aver-
age, because of random variation, be more extreme than the corresponding “true” means for those
locations. There is a theory that gives the factor by which they should be shrunk in towards the true
mean.

Residuals are by default the residuals from the block means, i.e., they are residuals from the fitted
values at the highest level available. To get fitted values and residuals at level 0, enter:

hat0.lme <- fitted(ant111b.lme , level =0)
res0.lme <- resid(ant111b.lme , level =0)
plot(res0.lme , ant111b$harvwt - hat0.lme) # Points lie on y=x

abline(0,1,col="red")
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8 Common Uses for Key Language Ideas

Key notions and language structures:
Classes & methods R’s implementation (or, rather, implementations) of classes and methods

makes generic functions possible
(There are two implementations of classes and methods, the original S3
implementation, & the newer S4 implementation of the methods package.)

Formulae They can be manipulated, like other objects.
(Currently, there can be model, graphics and table formulae)

Expressions It’s not surprising that formulae can be evaluated. Perhaps more surprising
is that they can be printed (on a graph)

Argument lists Argument lists for functions can be constucted in advance, as a list of
named values, with do.call() then used to pass the argument list to
the function

Environments Environments hold quite a number of subtleties. There are a few basic
matters that it helps to know about.

While there is much that users can do without understanding in too much detail what happens
“under the hood”, a knowledge of important aspects of R’s “construction kit” can be a great help,
both in understanding why some things work the way they do, and in getting R to do things that
otherwise would be impossible.

8.1 Generic Functions (Classes and Methods)

All objects have a class. Use the function class() to get this information. For many common tasks
there are generic functions – print(), summary(), plot(), etc., whose action varies according to the
class of object to which they are applied.

Thus consider print(). For a factor, print.factor() is used, for a data frame print.data.frame()
is used, and so on. Ordered factors “inherit” the print method for factors. For objects (such as numeric
vectors) that do not otherwise have a print method, print.default() handles the printing.

Generic functions do not call the specific method, such as print.factor(), directly. Instead they
call the UseMethod() function, which then calls the relevant method for that class of object, e.g., the
factor method (such as print.factor()) for a factor object.

Thus, here is the function print().

> print
function (x ,...)
UseMethod("print")

The function UseMethod() notes the class of the object, now identified as x, and calls the print
function for that class.

To get a list of the S3 methods that are available for a generic function such as plot(), type, e.g.:

methods(plot)

Namespaces

Packages can have their own namespaces, with private functions and classes that are not ordinarily
visible from the command line, or from other packages. For example, the function intervals.lme()
that is part of the lme package must be called via the generic function intervals().

The function intervals.lme() does however have its own help page that can be accessed with
help(intervals.lme). For accessing the code for this function, specify getAnywhere(intervals.lme).
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S4 Classes and Methods – the methods package

There are two sets of conventions and mechanisms – those of version 3 of the S language (S3), and
those of version 4 of the S language (S4). The methods package makes available S4 style methods,
which offer various advantages The S4 conventions and mechanisms extend the abilities available
under S3, build in checks that are not available with S3, and are more conducive to good software
engineering practice. The Bioconductor bundle of packages makes extensive use of S4 style classes
and methods. See help(Methods) (note the upper case M) for a brief overview of S4 classes and
methods.

Users of packages (e.g., lme4, or Bioconductor packages) may need to access the slots of S4 objects.
Use the function slotNames() to obtain the names of the slots, and either the function slot() or
the operator @ to extract or replace a slot. For example, consider the following example

> ## ant111b is in the DAAG package

> library(lme4) # lme4 must be installed

> ant111b.lmer <- lmer(harvwt ~ 1 + (1 | site), data = ant111b)
> slotNames(ant111b.lmer)
[1] "assign" "call" "family" "fitted" "fixed" "frame"
[7] "logLik" "residuals" "terms" "flist" "perm" "Parent"

[13] "D" "bVar" "L" "ZZpO" "Omega" "method"
[19] "RXX" "RZX" "XtX" "ZtZ" "ZtX" "cnames"
[25] "devComp" "deviance" "nc" "Gp" "status"
> slot(ant111b.lmer , "assign")
[1] 0
> slot(ant111b.lmer , "call")
lmer(formula = harvwt ~ 1 + (1 | site), data = ant111b)
> ant111b.lmer@call
lmer(formula = harvwt ~ 1 + (1 | site), data = ant111b)

Most often, an extractor function will be used to extract some relevant part of the output. For
example:

> VarCorr(ant111b.lmer)
Groups Name Variance Std.Dev.
site (Intercept) 2.368 1.54
Residual 0.578 0.76

For moderately simple examples of the definition and use of S4 classes and methods, see help(setClass)
and help(setMethod).

Model, Graphics and Table Formulae

Formulae are a key idea in R., though their implementation is incomplete. They are widely available
for specifying graphs, models and tables. Details will be given below.

Expressions

Expressions can be:

evaluated (of course)

printed on a graph (come to think of it, why not?)

Manipulation of Language Constructs

Language structures can be manipulated, just like any other object. Below, we will show how formulae,
expressions, and argument lists for functions, can be pasted together.
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8.2 Manipulation of Formulae

Model and Graphics Formulae

We demonstrate the construction of model or graphics formulae from text strings. For example, here
is a function that takes two named columns from the data frame mtcars (in the datasets package that
is part of the default installation), plotting them one against another:

plot.mtcars <- function(xvar="disp", yvar="mpg"){
mt.txt <- paste(yvar , "~", xvar)
plot(formula(mt.txt), xlab=xvar , ylab=yvar)

}

We can, when we call the function, set xvar and yvar to be any columns we choose:

> attach(mtcars)
> names(mtcars)
[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
[11] "carb"
> plot.mtcars(xvar="hp", yvar="mpg")

Extraction of Variable Names from Formula Objects

The function all.vars() takes a formula as argument, and returns the names of the variables that
appear in the formula. For example:

> all.vars(mpg ~ disp)
[1] "mpg" "disp"

As well as allowing the use of a formula to specify the graph, the following gives more informative x-
and y-labels:

plot.mtcars <- function(form = mpg~disp){
yvar <- all.vars(form )[1]
xvar <- all.vars(form )[2]
## Include information that allows a meaningful label

mtcars.info <- c(mpg= "Miles/(US) gallon",
cyl= "Number of cylinders",
disp= "Displacement (cu.in.)",
hp= "Gross horsepower",
drat= "Rear axle ratio",
wt= "Weight (lb/1000)",
qsec= "1/4 mile time",
vs= "V/S",
am= "Transmission (0 = automatic , 1 = manual)",
gear= "Number of forward gears",
carb= "Number of carburettors")

xlab <- mtcars.info[xvar]
ylab <- mtcars.info[yvar]
plot(form , xlab=xlab , ylab=ylab)

}

8.3 Expressions

An expression is anything that can be evaluated. Thus x^2 Is an expression, and y == x^2 is an
expression.

A simple use of expression() is to extract a text string representation of a function argument.
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plot.mtcars <- function(x = disp , y = mpg){
xvar <- deparse(expression(x))
yvar <- deparse(expression(y))
plot(y ~ x, xlab=xvar , ylab=yvar)

}

Formatting and plotting of text and equations

The construction

expr <- expression(x^2)

creates an expression that can be evaluated later. For example

> expr <- expression(x^2)
> x <- 5
> eval(expr)
[1] 25
> eval(expr , list(x=7))
[1] 49

Moreover, such an expression can be plotted:

x <- 1:10
plot(x, x^2, ylab=expression(x^2))

Some expressions that cannot be evaluated can nevertheless be plotted. For example the following
is a legitimate expression:

"Graph is for" * phantom(0) * italic("Acmena smithii")

The construct phantom(0) inserts a space. The construct italic("Acmena smithii") gives italic
text. The asterisks are left out. The reasoning is that expression(x*y) is written xy, whether x
and y are quoted or unquoted. Such “expressions” can be included in any of the functions text() or
mtext() or title().

The following, which follows normal text with italic text, demonstrates the mixing of different text
styles in a single line of text:

library(DAAG) # rainforest is from DAAG

plot(wood ~ dbh , data = rainforest , subset = species =="Acmena smithii")
mtext(side=3, line =1.25, expression(italic("Acmena smithii") * ": " *

"wood vs dbh"))
# phantom (0) inserts a space that is the width of a zero

Here is an example of the use of mathematical expression in an annotation for a graph. It uses
both expression() and substitute(). This latter function is a generalization of expression() that
allows the substitution of selected symbols in the expression:

## First plot the "angular" transformation

curve(asin(sqrt(x)), from = 0, to = 1.0, n=101,
xlab = expression(italic(p)),
ylab = expression(asin(sqrt(italic(p)))))
# Place a title above the graph

mtext(side = 3, line = 1,
substitute(tx * italic(y) == asin(sqrt(italic(p))),

list(tx = "Plot of the angular function ")))
# Use ‘==’ where ‘=’ will appear in the plotted text
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The following generates random numbers from the Weibull distribution, and gives a plot of the
density:

random.weibull <- function(n=100, shape =1.75){
x <- rweibull(n=100, shape=shape)
simden <- density(x, from =0)
xval <- pretty(x,50)
theoryden <- list(x=xval , y=dweibull(pretty(x,50), shape=shape))
plot(simden , ylim=range(c(simden$y, theoryden$y)))

lines(theoryden , col="red")
topright <- par()$usr[c(2,4)] - c(0, 1.5*par()$cxy [2])
text(topright [1], topright [2],
substitute(atop("Density is" * phantom (0) *

f(x) == (a/b) (x/b)^(a-1) * exp(- (x/b)^a),
"with"*phantom (0)*list(a==z, b==1)) ,
list(z=shape)), adj=1)

}
## Run function

random.weibull ()

See help(plotmath) for further details.

8.4 The use of a list to pass parameter values

The following are equivalent:

mean(rnorm (20))
do.call("mean", args=list(x=rnorm (20)))

Use of do.call() allows the parameter list to be set up in advance of the call. The following function
demonstrates a use for this.

simple.simulate.distribution <-
function(distn="weibull", parms=NULL , n=100){
## Simulates one of the distributions: weibull , gaussian ,

## logistic , exponential

if(is.null(parms ))
parms <- switch(distn , weibull=, list(shape =1), NULL)
## weibull requires a default shape parameter.

## =====================================================

## Choose the function that will generate the random sample

rfun <- switch(distn ,
weibull= rweibull ,
gaussian= rnorm ,
logistic= rlogis ,
exponential= rexp)

## Call the function. Use of do.call() allows giving

## the parameter list as a list of named values.

## (If the list is null , no parameters are passed .)

x <- do.call("rfun", args=c(parms , list(n=n)))
## Notice the use of c() to add another list item

invisible(x)
}

Note also call(), which sets up an unevaluated expression. The expression can be evaluated at
some later time, using eval().
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> mean.call <- call("mean", x=rnorm (5))
> eval(mean.call)
[1] -0.6276536
> eval(mean.call)
[1] -0.6276536

Notice that the argument x was evaluated when call() was evoked. Hence the result is unchanged
upon repeating the use of eval(). This can be verified by printing out the expression:

> mean.call
mean(x = c( -0.68467334794551 , -0.376091734366091 , -0.289459988631994 ,

-3.04694266628697 , 1.25889972957396))

8.5 *Symbolic substitution in parallel

This requires the use of a list of “quoted” unevaluated expressions. The list is passed, using do.call()
to expression(), which returns a list of expressions that can then be plotted. The functions quote()
returns a quoted unevaluated expression, while bquote() is an extension of quote() that allows
symbolic substitution. These functions are used to provide the legend in Figure 15.

## Plot Acmena smithii data (subset of rainforest , from DAAG)

Acmena <- subset(rainforest , species="Acmena")
plot(wood~dbh , data=Acmena)
b <- coef(Acmena.lm <- lm(log(wood) ~ log(dbh), data=Acmena ))
curve(exp(b[1])*x^b[2], add=TRUE)
b <- round(b,3)
arg1 <- bquote(italic(y) == .(A) * italic(x)^.(B),

list(A=b[1], B=b[2]))
arg2 <- quote("(" * italic(y) * "=wood; " *

italic(x) * "=dbh)")
legend("topleft", legend=do.call("expression", c(arg1 , arg2)),

bty="n")

Figure 15 has further refinements that are unrelated to the subject of this subsection. The code is:

plot(wood~dbh , data=Acmena , xlim=c(0, max(Acmena$dbh)))
## In fitting the curve , omit the point where dbh is largest

b <- round(lm(log(wood) ~ log(dbh), data=Acmena ,
subset=Acmena$dbh < max(Acmena$dbh )))

largest2 <- sort(Acmena$dbh , decreasing=TRUE )[1:2]
curve(exp(b[1])*x^b[2], from=min(Acmena$dbh), to=largest2 [2], add=TRUE)
curve(exp(b[1])*x^b[2], from=largest2 [2], to=largest2 [1],

lty=2, add=TRUE)
## Finally , use the code given above to add the legend and a title

The object arg2 that is created by the call to quote() has class call; it can be included as a list
element in the args parameter to do.call(), for passing to the function that is specified by the what
argument to do.call()

The call to bquote() that creates arg1 adds a further feature – the substitution of values for the
variables A and B. The values of A in .(A), and of B in .(B), are each taken from the environment,
here specified by list(A=b[1], B=b[2]).
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Figure 15: Plot of wood
(wood biomass) vs dbh (di-
ameter at breast height), for
the species Acmena smithii
(rainforest). The text de-
scribes the code used to ob-
tain the annotation.

8.6 Environments

Every call to a function creates a frame that contains the local variables created in the function. This
combines with the environment in which the function was defined to create a new environment.

The global environment, .Globalenv, is the workspace. This is frame number 0. The frame
number increases by 1 with each new function call. Additionally, frames may be referred to by name.
Use

sys.nframe() to get the number of the current evaluation frame

sys.frame(sys.nframe()) to identify the frame by name

sys.parent() to get the number of the parent frame.

There are many other such functions, but these will do for now!
Here is a function that determines, from within the function, its name:

> test <- function (){
+ fname <- as.character(sys.call(sys.parent ())[[1]])
+ fname
+ }
> test()
[1] "test"
> newtest <- test
> newtest ()
[1] "newtest"

I like to call my figures, in the directory that relates to a paper that I am writing, fig1(), fig2(),
etc. These functions will in turn call a function gf() that calls the graphics device, and specifies the
file that will be used to store the graph. The definition of gf() is:

gf <-
function(width =2.25 , height =2.25, color=F, pointsize =8){

funtxt <- sys.call (1) # Sea

fnam <- paste(funtxt , ".pdf", sep="")
print(paste("Output will be to the file ’",

fnam , "’", sep=""))
pdf(file=fnam , width=width , height=height , pointsize=

pointsize)
}

Now create a function that calls gf():
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graph1 <- function (){
gf() # Call with default parameters

curve(sin , -pi , 2*pi)
dev.off()

}

Output goes to the file graph1.pdf. For a function graph2() that calls gf(), the file name will be
graph2.pdf. Similarly for fig1() or fig2() or any other function that calls gf().

Bound and Unbound Variables

Variables that are passed as formal arguments to a function are bound variables. Local variables are
those that are created within the body of the function. Unbound variables are first searched for in
the frame of the function, then in the parent frame, and so on. If they are not found in any of the
frames, then they are sought in the search list.

8.7 Summary

Language structures (formulae and expressions) can be manipulated, just like any other object.

R uses formulae to specify models, graphs and (xtabs() only) tables.

The expression syntax allows the plotting of juxtaposed text strings, which may include math-
ematical text.

8.8 Exercises

1. Modify the function simulate.simple.distribution() so that it allows, additonanally, the
simulation of the lognormal, the loglogistic and the (Type I) extreme value distribution. You may
call it simulate.NotSoSimple.distribution().

2. Write a function that takes a vector of numerical values x and gives, in a 2 by layout
a. a density plot
b. a boxplot
c. a cumulative probability plot
d. a quantile-quantile plot, against some specified reference distribution.
3. Write a function that is designed to give a density plot for the output from simulate.simple.distribution().

On the density plot, it will overlay the density for the theoretical distribution. It will print the formula
for the density, noting below the formula the actual parameter values that were used.
[Note: As it stands, this will be a tedious exercise. Hence, we settle for a proof of concept, i.e., set
this up so that it works for the weibull, with placeholders for other distributions that can be filled
later.]
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9 Additional Notes on R

This section gathers up a number of further matters that can be important.
Key notions and language structures:
Entry of data Where do I start when my attempt to input data generates an error?

scan() is a more flexible alternative to read.table()
sapply() and friends The functions sapply(), lapply() and apply() offer flexible mechanisms

for carrying out operations in parallel across all columns of a data
frame or, for (apply(), across all rows or columns of a matrix.

Inf and friends The logarithm of zero returns -Inf. Take care!
Large datasets A little knowhow can save a load of time.
Workspaces Manage them carefully!

9.1 Entry of data using read.table() and scan()

read.table() – Errors when reading in data

Carefully check the option settings for the version of the input command that is in use. If some text
strings have embedded single quotes, it may be necessary to set quote = "". There may be text
strings that have a # embedded; the default (which can of course be changed) is then to ignore the
rest of the input line.

The function count.fields() can be a useful way to determine how many fields the input function
thinks it has found in each record. Alternatively, use read.table() with the parameter setting
fill=TRUE, and carefully check the input data frame. Blank fields will be implicitly added, as needed,
in order to ensure that all records have an equal number of fields.

read.table() – Additional points

Users can set parameters that give a great deal of detailed control over the way that read.table()
works. These allow control over: the character(s) used to separate fields (specify sep), the missing
value character(s) (specify na.strings), the quote character(s) (specify quote), the number of lines
to skip at the beginning of the file (specify skip), etc. There are a number of aliases for read.table()
that have different settings for these and other defaults. See help(read.table). Note however that
non-default option settings can, for large files, severely slow down data input.

Other points, additional to those made earlier, are:

• Columns that are taken as character are by default converted to factors. For now, think of such
columns as vectors of character strings. The character strings are not stored directly; instead
codes are stored that identify the character strings. In many contexts, the factors that result
from conversion from vectors of character strings behave just like vectors of character strings.
There are however some contexts where they do not, which can be a source of puzzlement and
frustration for novices.

• When a vector of character strings is converted to a factor the different text strings, by default
taken in alphanumeric order, become factor levels. Factor levels are stored in a table, in which
the row number is the code for the level. The data frame holds the code, not the level. This can
be useful in reducing memory requirements when some columns hold a small number of distinct
and perhaps longish text strings, each of which is repeated a number of times.

The sma package has a function read.spot() that is designed for use with data that are output
from the Spot image analysis package. This is a slight adaptation of read.table().

*The use of scan() for flexible data input

Data records may for example spread over several rows. There seems no way for read.table() to
handle this. The function scan() has the necessary flexibility. There may be other reasons for using
scan(). With large files, data input is much faster than with read.table().
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The following code demonstrates the use of scan() to read in the file molclock.txt.

col.names <- scan("molclock.txt", nlines=1, what="")
molclock <- scan("molclock.txt", skip=1, what=c(list(""),

rep(list (1) ,5)))
molclock <- data.frame(molclock , row.names =1)

# Column 1 supplies row names

names(molclock) <- col.names

This could easily be put into a function that accepts as parameters the file name, the number of
lines per record, and the what list.

Notice that that there were two calls to scan(), each time with the same file molclock.txt. The
first (with nlines=1 and what=""), recovered the column names, while the second [with skip=1 and
what=c(list(""), rep(list(1),5)))], recovered the entries for the several rows of data. The calls
introduces the use of a the what parameter, which expects a list as argument. There is one list element
for each column that is to be input. The ”” in the first list element indicates that the data is to be
input as character. The remaining five list elements hold 1’s, indicating numeric data.

Where there are a number of data files that have the same format, it makes sense to put the code
into a function, probably with the what list as a parameter. Where records extend over several lines,
it will be necessary to set multi.line=TRUE. The length of the what list gives the number of fields in
each record.

Large files – Reading in part of a file

Difficulties with large files can often be eased by reading in part only of a file at any time. Both
read.table() and scan() allow this. Give skip the value needed to get to the point where you will
start reading. For read.table() set nrows to the number of lines to be read, while for scan() use
nlines for this purpose.

9.2 The apply family of functions

The function apply() handles operations that are carried out across rows (dimension 1) or down
columns (dimension 2) of matrices. The function sapply() is primarily for use with data frames.
Thus, for work with microarrays, it is usually apply() that is required.

The apply() function

The function apply() may be used both with data frames and matrices.8 It has three mandatory
arguments, a matrix or data frame, the dimension (1 for rows; 2 for columns) or dimensions, and a
function that will be applied across that dimension of the matrix or data frame.

apply(molclock , 2, range)

Here is a more interesting example, using the multi-way table UCBAdmissions that is in the base
package. We’d like to see how the admission rates, for males and females separately, compare across
the departments. Here is how to do it:

> apply(UCBAdmissions , c(2,3), function(x)x[1]/sum(x))

Dept
Gender A B C D E F
Male 0.620606 0.6303571 0.3692308 0.3309353 0.2774869 0.05898123

Female 0.824074 0.6800000 0.3406408 0.3493333 0.2391858 0.07038123

8More generally, it can be used with arrays. Arrays are a generalization of matrices to allow an arbitrary number of
dimensions.
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Compare this with

> apply(UCBAdmissions , c(1,2), sum)
Gender
Admit Male Female
Admitted 1198 557
Rejected 1493 1278

Next, to get the overall admission rates, we demonstrate a double use of apply().

> apply(apply(UCBAdmissions , c(1,2), sum), 2, function(x)x[1]/sum(x))

Male Female
0.4451877 0.3035422

The sapply() function

The function sapply() makes it possible to apply functions such as mean(), range(), etc., in parallel
to all columns of a data frame. It takes as arguments the name of the data frame, and the function
that is to be applied. Here are examples:

> sapply(molclock , range)
AvRate Myr Gpdh Sod Xdh
[1,] 12 55 1.5 13 12
[2,] 25 1100 40.0 46 32

One can specify na.rm=T as a third argument to the function sapply. This argument is then auto-
matically passed to the function that is given in the second argument position. The following shows
the syntax:

> sapply(molclock , range , na.rm=T)
AvRate Myr Gpdh Sod Xdh
[1,] 12 55 1.5 13 12
[2,] 25 1100 40.0 46 32

The function lapply() has the same syntax as sapply(), but returns a list that has one element
corresponding to each element of the argument. It is the appropriate function to use when the function
that is the second argument either
(i) does not return a vector, or
(ii) returns vectors that are of different lengths for different elements of the list or data frame that is
the first parameter.
(For a data frame, the different columns of the data frame count as different list elements.)

More generally, the first argument to sapply() or lapply() can be any vector.

Warning: It is possible to use sapply() or lapply() with a matrix. However the result is different
to that from use of these functions with a data frame that has the same dimensions. The functions
sapply() and lapply() treat the matrix as a vector that has as many elements as there are matrix
elements, applying the function that is specified as the second argument to each element in turn. This
can be a trap for functions that return one or more of their output structures as matrices rather than
data frames, and is particularly disastrous if the matrix is large. For example, the scores that are
returned by the principal components function prcomp() are stored in a matrix. To find the ranges of
each of the columns either use apply(), which is designed for use with matrices, or else first convert
the matrix to a data frame.

More efficient alternatives to apply() and sapply()

The apply() family of functions may take an unreasonably long time when data sets are large, e.g.,
depending on available memory, 50,000 or 100,000 rows. If there is a ready alternative that uses
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matrix multiplication or sweep(), this is likely to be much faster. The speed of execution of these
functions may improve greatly at some future time, with the implementation of major components of
the calculations in compiled C code.

9.3 Logarithms, with some zero or negative numbers

This can be a particular issue for microarrray data. Numbers that are zero or negative require
careful attention when data are to be transformed to a logarithmic scale, to avoid unnecessary loss
of information and to avoid numerical problems that may arise if logarithms are taken regardless of
zero or negative arguments. Zeros are an issue for the mouse.data data in the sma package. There
are, adding over all six slides, 74 spots where R, Rb, G and Gb are all zero. For all other spots R>Rb
and G>Gb.

Calculation of log(0) yields –Inf, which R treats, for some purposes at least, as a number. The
attempt to calculate, e.g., log(-1) generates an NaN, which is for most purposes treated as an NA.
The quantities –Inf and Inf are not missing values, and are not treated as such. Some calculations
that cope with NAs by omitting them before proceeding will however fail if they encounter –Inf or Inf.
Perhaps the easiest way to deal with them is to turn all such quantities into NAs, which can then be
detected and omitted using na.omit(). There is some loss of information.

The sma package has a function log.na() that is a replacement for log(). This returns NA
whenever the function argument is zero or negative. Points where there are NAs are then omitted in
plots and in subsequent calculations.

Rather than omitting negative or zero numbers prior to taking logarithms, we might prefer to
retain the information that these are the smallest of the expression values. For zeros, this can be
achieved by replacing zero values by a suitable small number, smaller for background values than for
the signal.

In replacing the zeros by small numbers, how might we proceed? In order to get an idea of suitable
small numbers for data in the mouse.data object we find, for each of R, Rb, G and Gb, the smallest
non-zero value. These are:

> attach(mouse.data)
> min(R[R>0])
[1] 929.2
> min(Rb[Rb >0])
[1] 688
> min(G[G>0])
[1] 231.63
> min(Gb[Gb >0])
[1] 100.04
> detach(mouse.data)

It might be reasonable to replace zeros of R with 475 (around half of 929.2), zeros of Rb with 350,
zeros of G with 115, and zeros of Gb with 50.

Note that different functions handle NAs in different ways. The plot() function is accepting of
NAs, infinities and NaNs, handling such points by omitting them. If however we wish to use lowess()
to put a smooth curve through the plot, we need first to remove NAs.

9.4 Computations with Large Datasets

Most of R’s modeling functions (regression, smoothing, discriminant analysis, etc.) are designed to
work with data frames. If the data set is so large that these calculations are slow, consider whether
it makes sense to run the function separately on different subsets of the data, or on a random subset
of the data, or on some suitably summarized version of the data. Where a random subset is used, it
can be advantageous to repeat the analysis for several different random subsets.

Functions that are specifically written for use with large data sets may prefer data that are stored
in matrix form. Microarray applications, where it would not make sense to run calculations on a
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subset of spots (“genes”), are an example. The matrix or matrices may be list element(s) in a more
complex data structure.

Note the following points:

Use matrices, if possible, in preference to data frames: Computations with large matrices
are typically much faster than the equivalent computations with large data frames.

Matrix operations can be more efficient even for such a simple operation as adding a constant
quantity to each element of the array, or taking logarithms of all elements. Here is an example:

> xy <- matrix(rnorm (500000) , ncol =50)
> dim(xy)
[1] 10000 50
> system.time(xy+1)
[1] 0.05 0.00 0.08 0.00 0.00
> ## Times are: user cpu , system cpu , elapsed , subproc1 , subproc2

> xy.df <- data.frame(xy)
> system.time(xy.df+1)
[1] 3.24 0.00 8.23 0.00 0.00

The two non-zero numbers are of interest to us. The first is processor time and the second is elapsed
time. The above was on a 4Mhz Macintosh G4 laptop with 768MB of random access memory.

Use the most efficient coding: Matrix arithmetic can be much faster than the equivalent com-
putations that use apply(). Here are timings for some alternative ways to find the sums of rows of
a matrix:

> xy <- matrix(rnorm (200000) , nrow =2000)
> system.time(apply(xy ,1,sum))
[1] 0.25 0.00 0.60 0.00 0.00
> system.time(xy %*% rep (1 ,100))
[1] 0.01 0.00 0.06 0.00 0.00
> system.time(rowSums(xy))
[1] 0.01 0.00 0.01 0.00 0.00
>
> xy2 <- matrix(rnorm (200000) , nrow =100)

> system.time(apply(xy2 ,1,sum))
[1] 0.10 0.00 0.25 0.00 0.00
> system.time(xy2%*%rep (1 ,2000))
[1] 0.01 0.00 0.02 0.00 0.00
> system.time(rowSums(xy2))
[1] 0.01 0.00 0.02 0.00 0.00

The first time is processor time, in seconds. The third is elapsed time.
Unnecessary formation of a diagonal matrix should however be avoided. The following are equiv-

alent:

> xy <- matrix(rnorm (200000) , nrow =2000)
> dd <- sample (2000)
> system.time(diag(dd)%*%xy)
[1] 3.26 0.00 8.44 0.00 0.00
> system.time(sweep(xy, 1, dd , "*"))
[1] 0.42 0.00 1.07 0.00 0.00
> system.time(xy*dd)
[1] 0.02 0.00 0.10 0.00 0.00
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Suppose however that we want to multiply each column of xy by a constant. Is it helpful to
transpose xy?

> dd100 <- sample (100)
> system.time(xy%*%diag(dd100))
[1] 0.12 0.00 0.45 0.00 0.00
> system.time(sweep(xy, 2, dd100 , "*"))
[1] 0.12 0.00 0.19 0.00 0.00
> system.time(t(xy)*dd100)
[1] 0.06 0.00 0.29 0.00 0.00

Observe that processor time decreases, but elapsed time increases, between methods 2 and 3.

Skinny Matrices can be Advantageous Processing can be more efficient for skinny matrices
(many rows and few columns). Internally, successive elements in a column are stored in sequence.
The requirement for fresh memory access is reduced when elements are accessed one after another
down a column.

The singular value decomposition gives the same information whether applied to the matrix X or
to its transpose. Calculation of X = U D VT is equivalent to

XT = V D UT ,
where U and V are orthogonal matrices and D is diagonal.

> system.time(svd(xy)) # xy is 2000 x 100

[1] 1.28 0.00 3.35 0.00 0.00
> xyt <- t(xy)
> system.time(svd(xyt)) # xy2 is 100 x 2000

[1] 1.90 0.00 4.81 0.00 0.00

Data Base Connections

The relevant tables can be huge, so that bringing them across into R may involve huge delay. Ripley
and Fei Chen (2003) discuss ways to make such manipulations tractable.

9.5 Workspace management

Even with careful housekeeping, the workspace may soon become cluttered, and data and other objects
that are in use must be identified from among the clutter. Large data objects, such as are common
in expression array work, take up what may for some tasks be a scarce memory resource.

There are two complementary strategies:

Objects that cannot easily be reconstructed or copied from elsewhere, but are not for the time
being required, are conveniently saved to an image file, using the save() function.

Use a separate working directory for each major project.

It is straightforward to move, within an R session, from one working directory to another. Use
save.image() to save the contents of the current workspace in the current working directory, rm(list=ls())
to clear the workspace, setwd("newdir") to set the new working directory to, e.g., newdir, and
load(".Rdata") to load the new workspace. These operations can all be carried out from the menu,
where available. The effect is to change .Globalenv.

Use getwd() to check the name and path of the current working directory. Note also the utility
function dir() (get the names of files, by default in the current working directory).

Several image files (“workspaces”) that have distinct names can live in the one working directory.
The image file, if any, that is called .RData is the file whose contents will be loaded at the beginning
of a new session in the directory.
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Under Windows, and under the Mac OSX/Carbon version of R, there are File menu items Save
Workspace..., Change Dir... and Load Workspace.... These can be used to save the current
workspace, then moving to a new workspace in a new directory.

The removal of clutter

Use a command of the form rm(x, y, tmp) to remove objects (here x, y, tmp) that are no longer
required. A good precaution, before removing any objects, is to make an archive of the workspace.
For this, type:

save.image(file="archive.Rdata")

In place of archive, it might be better to use, e.g., the date when the file was created, e.g.

save.image(file="a31 -1-03. Rdata")

Objects can then be removed without too much worry. If some objects that were removed turn
out to be needed, they can be recovered from the “archive”.

Movement of files between computers

Files that are saved in the default binary save file format can usually be moved between different
computer systems. There may be unusual platforms where the XDR binary interchange format used
by R is unavailable; in this case use save() with the parameter setting ascii = TRUE.

*Further possibilities – saving objects in text form

Data frames and vectors can be dumped to disk with a command such as

dump("molclock", file="molclock.R")
source("molclock.R") # Use to retrieve molclock

The same form of source() command can be used to input R script files, i.e., files that contain R
code. It can in principle be used with any R objects. However there are checks on dependencies that
can cause strife. Problems can usually be resolved by editing the R source file to remove lines that
lead to problems.

9.6 Summary

scan() can be a useful alternative to read.table() when large data sets are input, or when
row spreads over more than one line of the file.

apply(), sapply() and reshape() can be useful for manipulations with data frames and
matrices

Specific action may be needed, when some numbers are zero or negative, in taking logarithms

In computations with large datasets, operations that are formally equivalent can differ greatly
in their use of computational resources.

Careful workspace management is important when files are large. It pays to use separate working
directories for each different project, and to save important data objects as image files when
they are, for the time being, no longer required.
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10 Packages

10.1 Base Packages

These are base, methods, stats, graphics, grDevices, utils and datasets. These are all, in a custom
installation, attached by default at startup

The methods package has formally defined methods and classes for R objects, plus other pro-
gramming tools, as described in the “Green Book”
(“Programming with Data” (1998), by John M. Chambers, Springer.)

The graphics package has R’s regular graphics functions.

The stats package has basic abilities for handling density estimation, tests, linear models, multi-
variate analysis, smoothing, time series, maximum likelihood maximization and profiling, non-
linear least squares, etc.

The utils package has a variety of utility functions, including Sweave() and functions for editing
data.

The grDevices package has device drivers.

The datasets package has datasets.

10.2 Recommended packages

“Recommended” packages that are included along with the base packages in all binary distributions
are:

boot : Functions and datasets for bootstrapping from the book “Bootstrap Methods and Their
Applications” by A. C. Davison and D. V. Hinkley, 1997, Cambridge University Press.

class: Functions for classification (k-nearest neighbor and LVQ). Contained in the VR bundle.

cluster : Functions for cluster analysis.

foreign: Functions for reading and writing data stored by statistical software like Minitab, SAS,
SPSS, Stata, etc.

grid: This provides a framework, alternative to that of the graphics package, for graphics. The
lattice package uses this framework.

tcltk: Interface and language bindings to Tcl/Tk GUI elements.

nlme: Linear and non-linear maximum likelihood estimation.

KernSmooth: Functions for kernel smoothing (and density estimation) corresponding to the
book “Kernel Smoothing” by M. P. Wand and M. C. Jones, 1995.

lattice: Lattice graphics, an implementation of Trellis Graphics.

MASS : Functions and datasets from the main package of Venables and Ripley, “Modern Applied
Statistics with S”. Contained in theVR bundle

mgcv : Routines for GAMs and other genralized ridge regression problems with multiple smooth-
ing parameter selection by GCV or UBRE

nlme: Fit and compare Gaussian linear and nonlinear mixed-effects and repeated measures
models. Note also lme4, which is a beta version of package, based on S4 classes and methods,
that includes and extends lme() and related functions from the nlme package.
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nnet : Software for single hidden layer perceptrons (“feed-forward neural networks”), and for
multinomial log-linear models. Contained in the VR bundle

rpart : Recursive PARTitioning and regression trees.

spatial : Functions for kriging and point pattern analysis from “Modern Applied Statistics with
S” by W. Venables and B. Ripley. Contained in the VR bundle

survival: Functions for survival analysis, proportional hazards regression and related analyses.

10.3 Contributed Packages

Note that new packages appear every few weeks. The following are in any case a small selection from
what is available.

Bayesian methods

gbayes:

GLMMGibbs: Generalized Linear Mixed Models

lmm: Linear mixed models, using Bayesian methods

mcmc: Markov Chain Monte Carlo.

ordinal: Models and utilities for categorical data.

Categorical data

cat: Analysis of categorical data where some data are missing.

repeated: Models for non-normal repeated measurements, including categorical measurements

vcd: Functions and data sets based on the book ”Visualizing Categorical Data” by Michael
Friendly.

GUIs

Rcmdr: A basic-statistics graphical user interface to R

Time series

In addition to abilities in stats, note

pear: for modeling periodic time series

tseries: for modeling nonlinear time series

fracdiff: for modeling long-memory time series

strucchange: for estimation of change points in time series

Note also the time series abilities in nlme.
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Design of Experiments

AlgDesign: Algorithmic experimental designs. “Calculates exact and approximate theory ex-
perimental designs for D,A, and I criteria. Very large designs may be created. Experimental
designs may be blocked or blocked designs created from a candidate list, using several criteria.
The blocking can be done when whole and within plot factors interact.”

conf.design: Construction of factorial designs

crossdes: Design and Randomization in Crossover Studies

The following packages are designed for applications in population genetics:

ldDesign: Design of experiments for detection of linkage disequilibrium

powerpkg : Power analyses for the affected sib pair and the TDT design

qtlDesign: Design of QTL experiments

The brewing and use of colors

dichromat: Simulation of the effect of two different types of red-green color blindness

RColorBrewer: Discrete color combinations that are effective for coloring maps and images.

Fun and recreational packages

fortunes: R fortunes. Attach the package and type fortunes()

magic: Create and investigate magic squares.

Other packages

There is a huge variety of other packages. Here is a small selection:

classPP : Projection Pursuit for supervised classification.

clim.pact: Climate analysis and downscaling for monthly and daily data

clines: Calculates Contour Lines

nlmeODE : Combine the nlme and odesolve packages for mixed-effects modelling using differ-
ential equations.

nlrq : Nonlinear quantile regression.

corpora: Statistical analysis of corpus frequency data.

TeachingDemos: Demonstrations for teaching and learning.

10.4 Multivariate analysis – what does R offer?

The most important of the multivariate libraries that are part of the R distribution are stats, cluster
and mass. Below, I list functions that may be of interest from these libraries. For more complete
details, type in commands of the form help(package=cluster), and then look at help pages for
individual functions that are of interest. See also Venables and Ripley (2002).
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cluster

The available clustering functions are:
agnes: Agglomerative Nesting
clara: Clustering Large Applications
daisy: Dissimilarity Matrix Calculation
diana: Divisive Analysis
fanny: Fuzzy Analysis
mona: Monothetic Analysis
pam: Partitioning Around Medoids

Multivariate abilities in package stats

as.hclust: Convert Objects to Class hclust
biplot: Biplot of Multivariate Data
biplot.princomp: Biplot for Principal Components
cancor: Canonical Correlations
cmdscale: Classical (Metric) Multidimensional Scaling
cutree: Cut a tree into groups of data
dist: Distance Matrix Computation
hclust: Hierarchical Clustering
identify.hclust: Identify Clusters in a Dendrogram
kmeans: K-Means Clustering
prcomp: Principal Components Analysis
princomp: Principal Components Analysis
rect.hclust: Draw Rectangles Around Hierarchical Clusters

MASS

isoMDS: Kruskal’s Non-metric Multidimensional Scaling
kde2d: Two-dimensional Kernel Density Estimation
lda: Linear Discriminant Analysis
ldahist: Histograms or Density Plots of Multiple Groups
lqs: Linear Quantile Smoothing, i.e., resistant regression and covariance estimation, which aims to
identify and use the “good” points in the data.
pairs.lda: Produce pairwise scatterplots from an ‘lda’ Fit
parcoord: Parallel Coordinates plot
plot.lda: Plot method for class ‘lda’
predict.lda: Classify multivariate observations by Linear Discrimination
predict.qda: Classify using Quadratic Discriminant Analysis
qda: Quadratic Discriminant Analysis
sammon: Sammon’s non-linear mapping.
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Index of Functions

Functions not otherwise identified are
from one of the base packages that, in
most “out-of-the-box” installations,
are loaded at startup: methods, stats,
graphics, grDevices, utils, datasets.

abbreviate, 33
all.vars, 67
apply, 73, 74, 79
apropos, 11
as.character, 32
as.data.frame, 25
as.data.frame.table, 25
attach, 18, 20, 33
axis, 35, 54

barchart, 54
bkde2D (KernSmooth), 45, 46
bquote, 70
bwplot (lattice), 54

c, 9, 23, 26, 33, 36, 50
cat, 29
character, 73
class, 65
cloud (lattice), 54
complete.cases, 28
contour, 45
coplot, 45
cor, 21
count.fields, 32
cut, 31

demo, 9, 10
density, 45, 47
densityplot (lattice), 54
diff, 29
dir, 78
do.call, 70
dotplot (lattice), 54
download.packages, 8

eval, 69, 70
example, 9, 10, 45
expression, 67, 68, 70

fig1 (in text), 72
fig2 (in text), 71, 72
file, 8
filled.contour, 45
fortunes (fortunes), 83

getAnywhere, 65

getwd, 78
gf (in text), 71, 72

help, 8–10, 13, 32, 41, 50, 65, 66, 73, 83
hist, 45
histogram (lattice), 54

identify, 35, 39, 54
image, 45
install.packages, 8
intervals (nlme), 65
intervals.lme (nlme), 65
is.logical, 29
is.matrix, 29
is.na, 27
italic, 68

lapply, 73, 75
length, 29
levels, 50
library, 15, 18, 19, 34
lines, 35, 54
list, 74
lm, 19, 22, 36, 55
lme, 60, 65, 81
load, 16, 78
locator, 39
loess, 43
log, 56, 76
log.na (sma), 76
lowess, 43, 45, 76
ls, 78

mean, 29, 75
mean.and.sd, 34
median, 29
mfrow, 47
mtext, 35, 37, 44, 54, 68

na.omit, 76

options, 32
order, 29

par, 36, 37
parallel, 54
paste, 36
phantom, 68
plot, 9, 19, 22, 33, 35, 36, 44, 54, 55, 65
png, 46
points, 35, 36, 54
print, 22, 29, 53, 65
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print.data.frame, 65
print.factor, 65
print.lm, 22
print.trellis, 52

q, 9, 13
qqmath, 54
qqnorm, 42, 46
qr, 24
quote, 70

range, 29, 75
rchisq, 47
read.table, 15, 17, 20, 32, 73, 74, 79
readLines, 33
rep, 36, 74
reshape, 79
rm, 15, 78, 79
rnorm, 30, 42
rt, 47
runif, 47

sapply, 30, 73, 75, 79
save, 16, 78
save.image, 15, 16, 78
scan, 73, 74, 79
scatter.smooth, 45
sd, 29
setwd, 78
simpleKey, 50
simulate.simple.distribution (in text), 72
slot, 66
solve, 24
sort, 29
splom (lattice), 54
str, 28
stripplot (lattice), 54
strsplit, 34
substring, 34
summary, 19, 22, 33, 65
summary.lm, 22
svd, 24
sweep, 76
sys.frame, 71
sys.nframe, 71
sys.parent, 71

table, 30
termplot, 55, 56
text, 32, 35–37, 44, 54, 68
title, 68
trellis.par.set (lattice), 50

unique, 29
unlist, 20, 32

unstack, 13
UseMethod, 65

vignette, 11

with, 20, 33, 35
write.table, 17

x11, 39
xtabs, 30
xyplot (lattice), 49, 52, 53
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