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1 Introduction

There will be references to the following web sites:

CRAN (Comprehensive R Archive Network): http://cran.r-project.org

Go to the nearest mirror. Australian mirrors are:
http://mirror.aarnet.edu.au/pub/CRAN and http://cran.ms.unimelb.edu.au/.
R homepage: http://www.r-project.org/
http://www.maths.anu.edu.au/~johnm/r/misc-data/

1.1 Commentary on R
General

R runs on many types of system — Windows, Mac, Unix and Linux. It is free. Obtain it from a
CRAN site (see above).

R has extensive graphical abilities that are tightly linked with its analytic abilities.

Much of the power of R for statistical analysis and for specialist graphics comes from the
extensive enhancements that the packages build on top of the base system.

Although now relatively mature, the system gets continuing scrutiny, with improvements and
enhancements appearing with each new release, i.e., every few months.

Though not perfect in this respect (!), the system has been developed with a keen regard to
notions of good statistical practice.

Users should expect to encounter demands to improve their statistical knowledge, in order to
use R effectively. The R community expects users to be serious about data analysis, to want
more than a quick cook-book fix!

As noted, the R code that is in the base system and in the recommended packages gets unusually
careful scrutiny. Nevertheless, there are traps. Take particular care with newer abilities, which
may not have been much tested in regular use. Note also that some of the contributed packages
may not have been much tested, except by their developers. [Such warnings apply, of course to
any statistical system.]

At this time, R primarily serves two groups: statistical and allied professionals who wish to
develop or require access to cutting edge tools, and working scientists who have such substantial
and continuing data analysis problems that they justify time spent in the mastery of R.

Getting help

Although there is no official support for R, its informal support network, accessible from the r-help
mailing list, can be highly effective. Details of this and other lists can be found on the home page
for the R project: http://www.r-project.org. Be sure to check the available documentation before
posting to r-help. Archives are available that can be searched for questions that have been previously
answered.

Use of an editor as a run-time environment

The Windows implementation, and the Cocoa based GUI for Mac OS X, now offer a simple script
editor that has a Run Line or Selection feature. There are various editors and associated interfaces to
R that allow editing of code, again offering a single click Run Line or Selection. On Windows systems,
the Tinn-R editor (http://www.sciviews.org/Tinn-R/) is an excellent option. ESS (Emacs Speaks
Statistics), now fully operational for Windows as well as for Unix, is attractive for users who relish
the power of the Emacs editor.



http://cran.r-project.org
http://mirror.aarnet.edu.au/pub/CRAN
http://cran.ms.unimelb.edu.au/
http://www.r-project.org/
http://www.maths.anu.edu.au/~johnm/r/misc-data/
http://www.r-project.org
http://www.sciviews.org/Tinn-R/
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Data set size, and databases

R’s evolving technical design has allowed it, taking advantage of advances in computing hardware, to
steadily improve its handling of large data sets. The flexibility that R’s memory model allows does
however have a cost for some types of operation, relative to systems that are highly efficient in the
processing of data from file to file. An important step was the move, with the release of version 1.2,
to a dynamic memory model.

The R system has limited database abilities which are unlikely, at present, to be much extended.
Instead, the emphasis will be on extending and improving connections into widely used database
systems.

The development model, and development strategies

An impressive developer skill base, and the use of the open source development model has been highly
effective in ensuring the quality and correctness of the base system and of the recommended packages.
The development model for R is broadly similar to that for the Linux operating system. Observe
that, whereas Linux competes in the shadow of Microsoft, R is not obviously in the shadow of any
other system!

Connectivity has been an important development focus. Better than duplicating abilities that are
handled well in other systems is, often, the provision of interfaces into those systems. Systems for
which there are interfaces to R include Python, SQL and other databases, parallel computing using
MPI, and Excel using the DCOM software.

Unifying Ideas
Generic functions for common tasks — print, summary, plot, etc. (the Object-oriented idea; do
what that “class” of object requires)
Formulae, for specifying graphs, models and tables.
Expressions can be:

evaluated (of course)

printed on a graph (come to think of it, why not?)

Language structures can be manipulated, just like any other object (Manipulate formulae, ex-
pressions, argument lists for functions, .. .)

Trellis (lattice) graphics — graphs whose layout reflects data structure
There are many unifying computational features, e.g.

Any ‘linear’ model (Im, lme, etc) can use spline basis functions to fit spline terms. This
extends to any other system of basis functions.

These ideas are not uniformly implemented right through R, reflecting the incremental manner in
which R has developed.

Retrospect, prospect and alternatives to R

Ross Thaka and Robert Gentleman, both at that time from the University of Auckland, developed
the initial version of R, for use in teaching tool. It implements a dialect of the S language that
was developed at AT&T Bell Laboratories for use as a general purpose scientific language, but with
especial strengths in data manipulation, graphical presentation and statistical analysis. Since mid-
1997, development has been overseen by a ‘core team’ of about a dozen people, drawn from many
different institutions worldwide.

The commercial S-PLUS implementation of S had popularized the use of S as a language for
scientific and statistical computation, and for graphics. The S language had, in the two decades up to



1 INTRODUCTION 7

2000, a large user base among professionals and others. The R system tapped into this existing large
user base. There were a number of roughly comparable systems — including Matlab, Scilab, Gauss,
Python and Lisp-Stat — that might potentially have supplanted R. However these had much smaller
existing bases in the institutions and groups that in due course drove the development of R. Note
however the popularity of Matlab in the signal and image processing community.

Although with a syntax that looks superficially like that of C, the implementation of R has been
heavily influenced by LISP. The R interpreter uses a model that is based on the Scheme dialect
of LISP. Luke Tierney, and several others who had previously had a heavy involvement with Luke
Tierney’s Lisp=Stat system, are now actively involved in the ongoing development of R. See Tierney
(2005), and other papers in the same volume of the Journal of Statistical Software

With the release of version 1.0 in early 2000, R became a serious tool for professional use. Since
that time, the pace of development has been frenetic, with a new package appearing every week or
two. There are now more than 400 packages available through the CRAN (Comprehensive R Archive
Network) sites. Books that were specifically devoted to R began to appear in 2002.

Novice users will notice small but occasionally important differences between R and S-PLUS.
Writers of substantial functions and (especially) packages will find larger differences. R’s packages
are now more wide-ranging in scope as S-PLUS libraries. Some specialised S-PLUS abilities may not
be available in R or in R packages.

The R project has pushed boundaries and shown what is possible when experts in statistical
computing work co-operatively to push boundaries. Its language model is however now dated. While
many of those who have been involved in the development of R are pondering what might lie beyond
R, this has not as yet led to the development of credible prototypes for an alternative. What will
eventually overtake and in large part encompass R is anyone’s guess.

The Statistics of Data Collection

The scientific context, which includes available statistical methodology, has crucial implications for
the experiments that it is useful to do, and for the analyses that are meaningful. There are, in
addition, constraints and opportunities that arise from computing software and hardware.

Statistics of data collection encompasses statistical experimental design, sampling design, and
more besides. At base, the same issues arise in field, industrial, medical, biological and laboratory
experimentation. The aim, as always, is to get maximum value from the use of all resources. The
planning that is required will be most effective if based on sound knowledge of the materials and
procedures used by experimenters. As we learn more about these issues, we gain the knowledge
needed to design better experiments.

1.2 Installation and Updates

Versions of R are available, at no cost, for Windows 95 and later versions of Microsoft Windows for
Linux, for Unix and for Macintosh systems 8.6 or later. It is available through the Comprehensive
R Archive Network (CRAN). Australian users should obtain files that can be used for R installation
from one of the sites:

http://mirror.aarnet.edu.au/pub/CRAN, http://cran.ms.unimelb.edu.au/.

Installation details vary between operating systems. A fresh install is typically required to take
advantage of new major releases (e.g. moving from a 2.2 series release to a 2.3 series release) when
they appear. For working through these notes, version 2.2.0 or later should be installed.

Once R has been installed, functions are available that will, from within R, install additional
packages or update packages that are already installed, via an internet connection. At several points
in these notes, the DAAG package will be required. If there must be a live internet connection that
R can access, then you can install it by entering, from the R command line:

install.packages ("DAAG")

Alternatively, on systems where a menu is available, do this via the menu.


http://mirror.aarnet.edu.au/pub/CRAN
http://cran.ms.unimelb.edu.au/
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For further information on install.packages(), enter help(install.packages) from within an
R session. Note also download.packages() (this takes a list of package names and a destination
directory, downloads the newest versions of the package sources and saves them in ‘destdir’) and
update.packages() (outdated packages are reported and for each outdated package the user can
specify if it should be automatically updated).

On Unix and Linux systems, the relevant gzipped tar files can be downloaded or copied across
from a CD collection. They can then be installed using the shell command

R CMD INSTALL <package (.tar.gz file)>

On Windows systems, zip binaries that have been downloaded separately from CRAN can be
installed by navigating to the Packages menu item Install package(s) from local zip file. Then navigate
to the directory that holds the zip file(s), and select those that are to be installed.

For installation from the command line, call install.packages () with pkgs giving the files (with
path, if necessary), and with the argument repos=NULL. If for example the binary DAAG_0.79.zip
has been downloaded to D:\tmp\, it can be installed thus

install.packages (pkgs="D:/DAAG_0.79.zip", repos=NULL)

From the R command line, be sure to replace the usual Windows backslashes by forward slashes.

Help for installation under Windows

Windows users will find a great deal of helpful information on the web page
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/installation.html

Data sets, additional to those in the DAAG package

Several data sets that relate to the present workshop are included in the R image file misc. RData
that can be obtained from the url:

http://www.maths.anu.edu.au/~johnm/r/misc-data/

Other files that are available from this same directory include travelbooks.txt, MouseArray.RData,
and the R scripts for these notes.

1.3 Documentation

Official Documentation: Users who are working through these notes on their own should have
available for reference the document

“An Introduction to R”, written by the R Development Core Team. To download an up-to-date copy,
go to CRAN.

R News: Successive issues of R News contain much useful information. These can be copied down
from one of the CRAN sites.

Contributed Documentation: There is an extensive collection of user-written documents on R
that can be accessed by going to this same mirror site, and clicking (under Documentation) on
Contributed. See also the links that John Fox gives on the web page for his book that is noted
under the reference for his book.

Books: Subsection includes references to a number of books. Recently, a number of new books
on R have appeared. See http://www.R-project.org/doc/bib/R.bib| for a list that is updated
regularly.


http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/installation.html
http://www.maths.anu.edu.au/~johnm/r/misc-data/
http://www.R-project.org/doc/bib/R.bib
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2 An Overview of R

Command prompt (>)  Enter commands following the prompt, e.g.
>2 + 2 # Calculate 2 + 2
Quitting To quit from R type
q0 # NB q(), not g
Case matters volume is different from Volume
Help Use it often. For example
help( # Information on the help function
help(plot) # help on the plot function
Demonstrations Type demo () to get details of demonstrations.
Examples Many of the help pages include examples. To run them, type, e.g.
example(plot) # run all the examples for plot()
Assignment The assignment symbol is <-, e.g.
volume <- c(351, 955, 662, 1203, 557) # c = concatenate
# Store the column of numbers in volume
Other topics Simple arithmetic operations; simple plots.

2.1 Use of the console (i.e., command line) window

The command line prompt, i.e. the >, is an invitation to start entering commands. For example, type
2+2 and press the Enter key. The following appears on the screen:

> 2+2
[1] 4
>

The result is 4. The [1] says, a little strangely, “first requested element will follow”. Here, there
is just one element. The > indicates that R is ready for another command.
The exit or quit command is

> qO

Depending on the platform, alternatives may be to click on the File menu and then on Exit, or to
click on the X in the top right hand corner of the R window. There will be a message asking whether
to save the workspace image. Clicking Yes (the safe option) will save the objects that remain in the
workspace — any that were there at the start of the session and any that have been added since.

Commands may continue over more than one line. By default, the continuation prompt is

+
As with the > prompt, this is generated by R. Any attempt to include it in the code that is entered
will generate an error!

For the names of R objects or commands, case is significant. Thus Myr (millions of years), which
we will use below, is different from myr. For file names on Windows systems, the Microsoft Windows
conventions apply, and case does not distinguish file names. On Unix systems (the Mac OS X version
of Unix is an exception) case in file names is significant.

Further points are:

o The quit command (“quit from the R session”) is the function call (). Typing q on its own,
without the parentheses, displays the text of the function on the screen.

o Multiple commands may appear on a line, with the semicolon (;) as the separator.

0 The # symbol indicates that what follows, on that line, is comment.
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Practice with R commands

Try the following

1:5 # The numbers 1, 2, 3, 4, &5
mean (1:5)
sum (1:5) # Apply the sum function to the
# the wvector of numbers 1, 2, 3, 4, 5
(2:5)°10 # 2 to the power of 10, 3 to the power of 10,

log2(c(0.5, 1, 2, 4, 8)) # Values that differ by a factor of 2
# are, on this scale, one unit apart.

The R language has the abilities for evaluating arithmetic and logical expressions that are available
in most languages. It uses functions to extend these basic arithmetic and logical abilities.

2.2 Demonstrations

There are a number of demonstrations that give useful indications of R’s abilities, especially for
graphics. To get a list of available demonstration, type:

demo ()

Visually interesting demonstrations are:

demo (image)
demo (graphics)
demo (persp)

demo (plotmath) # Mathematical symbols can be wvisually interesting
library(lattice)
demo (lattice) # Demonstrates lattice graphics

Especially for demo(lattice), it pays to stretch the graphics window to cover a substantial part of
the screen. Place the cursor on the lower right corner of the graphics window, hold down the left
mouse button, and pull.

Try also

demo (package = .packages(all.available = TRUE))
Also interesting is:

library(vcd) # The wvcd package must of course be installed.
demo (mosaic)

2.3 Help, and examples
All built-in functions have help files, which can be accessed using the help() command. Try typing

help (help) # Get help on help ()
help (mean)

Often, a good way to learn how to use a function is to run the examples that are included in the
help file. The function example () checks the help page for examples, and runs them. Be warned that
the examples for relatively simple functions can be non-trivial. Or they may be extensive. Try:

example (mean)

example (plot) # This gives a species of movie show

par (ask=TRUE) # Ask before displaying the mnexzt graph
example (plot) # Now the plots are displayed one at a time.
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example (lowess) # Fit a smooth curve to scatterplot data
example (image)

example (contour)

example (filled.contour)

par (ask=FALSE) # From here on, plot without asking

Typically, several examples will run one after the other. The code appears on the screen. To re-run
an example, look on the screen for the code that was used, and copy or type it following the command
line prompt. The examples sometimes illustrate technical details that may puzzle novices.

Use help.search() to look for functions that include a specific word in their alias or title. For
example, in order to look for a function for bar plots, try

help.search("bar")

This draws attention to the function barplot (). As a first step in investigating the function, try

par (ask=TRUE)
example (barplot)
par (ask=FALSE)

Several of fhe examples focus on sophisticated barplot abilities. Finally, type in help(barplot), and
read the information on the help page.

The function apropos () lists all functions (or other R objects) whose names include the text string
that is given as the function argument. For example

> apropos("str")

[1] "R.version.string" "ls.str" "lsf.str"
[4] "str" "str.POSIXt" "str.data.frame"
[7] "str.default" "str.logLik" "strftime"
[10] "strheight" "stripchart" "strptime"

[13] "strsplit" "structure" "strwidth"
[16] "strwrap" "substr" "substr<-"
[19] "substring" "substring<-"

>

Finally, note that help.start() should start a browser window that gives access to a variety of
help information and documentation.
Vignettes

Vignettes are pdf documents that describe the abilities in packages for R. To get a list of vignettes in
all installed packages type:

vignette ()

To get a name(s) of vignette(s), if any, for specific packages, type, e.g.:

vignette (package="graph")
vignette (package="el071") # e701 includes functions for

# Support Vector Machines (SVMs)
vignette (package="mcmc") # Markov Chain Monte Carlo

The package graph has two vignettes, clusterGraph and graph, the package el071 has the
vignette svindoc, the package mcmc has the vignette demo. To use the default pdf viewer to
display a specific vignette, type, e.g.:

vignette ("graph") # Equivalent to vignette(topic="graph'")
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2.4 A Short R Session
We will work with the data set shown in Table [I}

Volume (mm?) Weight (g) type

Aird’s Guide to Sydney 351.00 250.00 Guide

Moon’s Australia handbook 955.00 840.00 Guide
Explore Australia Road Atlas 662.00 550.00 Roadmaps
Australian Motoring Guide 1203.00 1360.00 Roadmaps
Penguin Touring Atlas 557.00 640.00 Roadmaps

Canberra - The Guide 460.00 420.00 Guide

Table 1: Weights and volumes, for six Australian travel books.

Entry of vector elements from the command line
Data may be entered from the command line, thus:

volume <- c(351, 955, 662, 1203, 557, 460)
weight <- c(250, 840, 550, 1360, 640, 420)

Now enter the descriptions:

description <- c("Aird’s Guide to Sydney", "Moon’s Australia handbook",
"Explore Australia Road Atlas", "Australian Motoring Guide",
"Penguin Touring Atlas", "Canberra - The Guide")

Notes:
e The assignment symbol is <-

e Read the symbol c as “concatenate”. The function c() joins elements together into a vector.

(For volume and weight the elements were numbers, while for description the elements were
text strings.

e Typing the name of an object causes the printing of its contents. Try typing volume. This
applies to functions as well as data objects. For example, try typing q, or mean.

Operations with vectors
Here are the values of volume

> volume

[1] 351 955 662 1203 557 460
>

Here are various arithmetic operations:

> # Final element of wvolume

> volume [6]

[1] 460

> ## Ratio of weight to wvolume, i.e., density
> round(weight/volume ,2)

[1] 0.71 0.88 0.83 1.13 1.15 0.91

Notice the use of # to preface the comment, which will be ignored by the command line interpreter.
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A simple plot
To plot (weight against volume (Figure , type one of the following:

plot (weight ~ volume, pch=16, cex=1.5)

# pch=16 gives a solid blob as plotting symbol

# cex=1.5 makes points 1.5 times the default size
## Alternative
plot (volume, weight, pch=16, cex=1.5)

The parameter weight ~ volume is a graphics formula. The “formulae” that are used in specifying
models, and in the functions xtabs() and unstack(), take a similar form.
The axes can be labeled:

plot (weight ~ volume, pch=16, cex=1.5, xlab="Volume (cubic mm)",
ylab="Weight (g)")

Labeling of the points (e.g., with the species names) can be done interactively, with the identify ()
command. Type:

identify(weight ~ volume, labels=description)

Then click the left mouse button above or below a point, or on the left or right, depending on where
you wish the label to appear. Repeat for as many points as you want labelled.

Depending on the computer system, either click outside the graphics area to terminate the la-
belling, or click the right mouse button outside the figure area.

Alternatively, use text () to place labels on all the points.

There are extensive abilities that may be used to control the formatting and layout of plots, and
to add features such as special symbols, fitted lines and curves, annotation (including mathematical
annotation), colors and so on. A later section (Section [5)) is devoted to graphics.

2.5 Summary

One use of R is as a calculator, to evaluate arithmetic expressions. Calculations can be carried
out in parallel, across all elements of a vector at once.

Use q(O) to quit from R. If newly created objects are to be retained, save the workspace upon
quitting.

Useful help functions are help() (for getting information on a known function), help.search()
(for searching for a word that is used in the header for the help file), and apropos() (for
identifying functions that include a particular text string as part of their names). Note also
the use of help.start(), to start a browser window from which R help information can be
accessed.
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3 The Working Environment of an R Session

The Working Environment:
Working directory R will by default read files from this directory, or write files to it

Object A data structure or function that R recognizes

Workspace This holds objects that relate to the user’s current session

read.table() Use this function to read data, from a file, into the workspace

Image files These store a collection of R objects, e.g., the workspace conents.
(The expected file extension is .RData or .rda)

save.image () Use, at any time in an R session, to store all or some workspace contents.
Or use the relevant menu item to achive the same effect.

Packages Packages are collections of R functions and/or data.

library() Use this function to attach a package, e.g. library(DAAG)

(Recommended packages are included with binary distributions of R.
Other packages must be installed, before they can be attached)

Objects in R Both data objects and functions are referred to as objects
Use 1s() to list the objects in the current workspace.
Search path The search path determines where R looks for objects that are

internal to R, or to one of its packages. The items on the search path
have the name “databases”.

A system such as R requires access to directories where relevant files can be stored or accessed.
Files that belong to the R system are by default placed somewhere that is (usually) sensible. Novice
users should not need to concern themselves with the details.

It may be necessary to know:

e the location of the current working directory, where R will by default look for files or store files
that are external to R;

e the search path, which is important for determining where R looks for objects that are required
in an R session. Here we are talking about objects that are internal to R.

3.1 The Working Directory and the Workspace

The working directory is the directory in which R will by default look for files, and save files. It pays
to have a separate working directory, and associated workspace, for each major project.

Listing Workspace Contents

To see a list of the objects or of selected objects that are in the workspace, type a command such as
the following:

> 1s ()

[1] "volume" "weight"
> ls(pattern=""w"

[1] "weight"

In a long session in a working directory, cautious users will from time to time save the current
workspace image as a backup, perhaps first using rm() to remove objects that are no longer required.
The command save.image()) will save everything in the workspace, by default into a file with the
name .RData in the working directory. On implementations that offer a menu, this can alternatively
be done by clicking on the relevant menu item.

Before saving the workspace, consider use of rm() to remove objects that are no longer required.
Saving the workspace image will then save everything that remains, by default into a file called .Rdata
in the working directory.
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Upon quitting from R (type q(), or on Macs and Windows use the relevant item on the menu),
users are asked whether they wish to save the current Workspaceﬂ The workspace is reloaded next
time an R session is started in the directory.

The workspace is at the base of a search list that gives access to packages, objects in other
directories, etc.

Setting the Working Directory

When working from a Unix or Linux command line, the working directory is the directory in which
you start. When an session is started by clicking on an icon, the session will start in a working
directory that is associated with the icon. The default choice, usually an R installation directory, is
not a good choice for long-term use, and should be changed. On Windows PC systems, change the
Start In directory that is specified in the Preferences setting for the icon.

It is good practice to use a separate working directory for each different project. On Windows
systems, copy an existing R icon, rename it as desired, and change the Start In directory to the new
working directory.

It is also possible to change the working directory once a session has been started. This can be done
either from the menu (if available) or from the command line. Before making such a change, be sure to save
the existing workspace, if it is to be kept. Then, once the working directory has been changed, load the new
workspace.

3.2 Saving and retrieving R objects

Image files, created using save() or save.image(), may contain arbitrary R objects. One or more
objects can be saved to an image file at any time during a session. Upon quitting a session, the user
is offered the option of saving the workspace in the default image file. The following demonstrate the
explicit use of the save() and load() commands:

save (volume, weight, file="books.RData")
# Can save many objects in the same file
load ("books.RData") # Recover the saved objects

The function save.image() is a variation on save () that saves the contents of the workspace, by
default in the file .RData. The contents of any .RData file in the working directory are automatically
loaded when a new session is started.

An alternative to saving the objects in an image file is to save them, in a text format, as dump
files:the above use of save() is:

dump (c("volume", "weight"), file="books.R")

The objects can be recreated from this “dump” file by inputting the lines of books.R one by one at
the command line. The following command restores both objects to the workspace:

source ("books.R")

For day to day use, image .RData files are in general preferable to dump files. The same checks
are performed on dump files as if the text had been entered at the command line. These may be
unwanted, and they slow down entry of the data or other object.

For archival storage, dump (.R) files may be preferable. For added security, retain a printed
version. If a problem arises (from a system change, or because the file has been corrupted), it is
straightforward to check through the file line by line to find what is wrong.

1Users of Linux should however note that clicking on the X in the upper right of the Window in order to quit may
not, depending on the window manager, give the option to save the workspace.
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3.3 Input of Data

For input into data frames, the most important function is read.table(). The following assumes
that the file travelbooks.txt (on my web page) is in the working directory. Here is a listing of the
first of these files:

thickness width height weight volume kind

Aird’s Guide to Sydney 1.30 11.30  23.90 250 351  Guide

Moon’s Australia handbook 3.90 13.10 18.70 840 955  Guide
Explore Australia Road Atlas 1.20 20.00 27.60 550 662 Roadmaps
Australian Motoring Guide 2.00 21.10 28.50 1360 1203 Roadmaps
Penguin Touring Atlas 0.60  25.80 36.00 640 557 Roadmaps

Canberra - The Guide 1.50 13.10 23.40 420 460 Guide

Notice that the first column has no header information. A suitable way to read in these data is:

# Row 1 of the file gives column names. Column 1 gives Tow mnames
travelbooks <- read.table("travelbooks.txt")

# The following %s safer and more explicit

travelbooks <- read.table("travelbooks.txt", header=TRUE, row.names=1)

The object travelbooks is a data frame. Data frames are pervasive in R. Most datasets that are
included with R packages are supplied as data frames.

This data frame has column and row names. The first seven columns are numeric. The final
column is a factor, though for present purposes it can be treated as a character vector. There are
various ways to access the columns. The following will do for now:

plot ( weight volume, data=travelbooks)
3.4 Writing of data frames to text files

Data frames can be stored as text files. Use the function write.table() to write a data frame to a
text file.

More generally, to save several objects (data frames or any other R object) in the one file, use
dump () (to save in a text format) or save.image (), as noted above.

3.5 Installations, packages and sessions
3.5.1 The architecture of an R installation
An R installation is structured as a library of packages.

e All installations should have the base packages (one of them is called base) , which provide the
superstructure for other packages.

e Binaries that are available from CRAN sites include, also, all the recommended packages.
e Other packages can be installed as required.

A number of packages are by default attached at the start of a session. Other packages can be
attached (use library()) as required. To discover which packages have been attached, enter:

sessionInfo ()
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3.5.2 The search list: attach() and library()

The R system has a search path where it looks for objects. This can be changed in the course of a
session. To get a snapshot of the search list, type:

> search ()

[1] ".GlobalEnv" "package:xtable" "package : MASS" "package:vcd"
[5] "package:methods" ‘"package:stats" "package:graphics" "package:utils"
[9] "Autoloads" "package :base"

Technically, these are called “databases”. The search list is used to structure the search for R objects.
The database ”.GlobalEnv” is the user’s workspace, which is at the base of the search path. The
attach() and library() commands extend the search list.

3.5.3 R packages

The use of 1ibrary() to load a new R package extends the search list. The system then looks in the
package database for objects that are not in the user workspace.

If at some point (often the end of the session) the workspace is saved, and objects that were added
have not been explicitly removed, they will be saved as part of the workspace. If saved in the default
.RData image file in the working directory, the workspace will be automatically loaded when a new
session is next started in that working directory.

Use the function .path.package() to get the path of a currently attached package. By default,
this information is given for all loaded packages.

3.5.4 The attachment of image files

As noted earlier, the function attach() extends the search list, by simplifying access to the columns
of data frames or to the elements of lists, or by giving access to an image file that is stored somewhere.

Additionally, any R image file can be attached, either from the current working directory, or from
any other directory. For example:

attach("books.RData")
The workspace then has access to objects in the file books.RData. The file becomes a further
“database” on the search list, separate from the workspace. If however the object is modified, the

modified copy does become part of the workspace.
In order to detach such a database, proceed thus:

detach("file:books.RData")

3.6 Summary

Each R session has a working directory. This is the directory where R will by default look for
files or store files that are external to R.

User-created objects appear appear in the workspace. At the end of a session (and perhaps
from time to time during the session), an image of the workspace will typically be saved into
the working directory.

It is usually best to keep a separate workspace and associated working directory, for each major
project.
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4 Objects and Functions

Key notions and language structures:

Data frame
Lists

Missing values
Generic functions

Modeling functions
Model objects

Packages
library()

Vector Collects together elements that are all of the one mode. (Possible modes
are "logical”, ”integer”, ”"numeric”, ”complex”, ”character”) and "raw”)
Factors Use for categorical data. They are often invaluable for specifying models.

(Challenge: Explain why factors are not vectors, even though they

behave pretty much like vectors! Columns of data frames can be factors)
A list of columns, all of the same length, but perhaps of different modes.
(Data frames are often the best way to supply data to Modeling functions)
Lists group together an arbitrary collection of objects

(These have the recursive list structure that computer buffs might expect.)
The symbol is NA. The handling of NAs can be tricky.

They examine the object given as argument, before deciding

what action is needed. Examples include print (), plot() & summary()
These fit statistical models. Thus note 1m(), for linear modeling

These store information from a call to a modeling function, such as 1m()
(They serve as a repository from which to extract output information)
Packages are collections of R functions and/or data.

Use this function to attach a package, e.g. library (DAAG)

(Recommended packages are included with binary distributions of R.
Other packages must be installed, before they can be attached)

The current list specifies “databases” where R looks, in turn, for objects.
Specify search() to display the search list.

The Search List

4.1 Data Frames — Lists of Vectors

The following demonstrates the use of a data frame to group together, under the name travelbooks,
the several columns of Table 1.

## NB, the row mnames will now be shortened
travelbooks <- data.frame (

thickness = c¢(1.3, 3.9, 1.2, 2, 0.6, 1.5),

width = ¢(11.3, 13.1, 20, 21.1, 25.8, 13.1),

height = c(23.9, 18.7, 27.6, 28.5, 36, 23.4),

weight = weight, # Include values of weight, entered earlier

volume = volume, # Include wvalues of wolume, entered earlier

kind = c("Guide", "Guide", "Roadmaps", "Roadmaps", "Roadmaps", "Guide"),

row.names = description

)
## Remove objects that are not now needed.
rm(volume, weight, description)

The vectors volume, weight and description had already been entered, and it was not necessary to
re-enter them. It is a matter of convenience whether the description information is used to label the
rows, or alternatively placed in a column of the data frame.

The different columns of a data frame can be any of the modes logical, or numeric or character;
there are other possibilities also. All elements in a column must of course have the same mode.

The function read.table () takes data from a text file (or from the clipboard, specify file="clipboard")
and places them in a data frame.

The Use of Data Frames
Data frames can be used in the following ways:

o They can be manipulated directly; see below for some of the possibilities
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o They can be attached (use the attach() function), making their columns available by name.
Alternatively, use with(), which makes the data frame available for the duration of the com-
mand.

o In modelling and graphics functions, there is often a data parameter that can be used to specify
the data frame from which variable and factor names will be taken. In effect, the data frame is
attached for the duration of the analysis, though in the environment of the function.

The command attach(travelbooks) extends R’s search list to include the columns of the data
frame, thus:

> volume

Error: Object "volume" not found
> attach(travelbooks)

> volume

[1] 351 955 662 1203 557 460

Once travelbooks is for the time being no longer required, it is advisable to detach it, thus:

detach(travelbooks)

This reduces the risk of ambiguity because two data sets that are attached at the same time have one
or more column names in common, or because the name of column in a data frame is the same as the
name of an object in the workspace.

The following, which displays the values of volume, illustrates the use of with() to make the data
frame available for the duration of the command:

## Display the column volume, from the travelbooks data frame
with(travelbooks, volume)

Data frames as lists

Data frames are lists of column vectors. One consequence is that use of the subscript notation to
extract a row from a data frame gives a different data structure from use of the subscript notation to
extract a column. Specifically:

The result of travelbooks$volume or travelbooks[,"volume"] or travelbooks[,1] is a vec-
tor.

The result of travelbooks["robin", ] or travelbooks[3, ] is a data frame, i.e., a special
form of list. The syntax unlist(travelbooks["robin", ]) can be used to turn such a list
into a vector.

Data Frames versus Matrices

Matrices are rectangular arrays in which all elements have the same class. Internally, matrices are
one long vector in which the columns are strung out one after the other. For a regression calculation,
a data frame is necessary. Depending on the calculation that is to be performed, matrices and data
frames may require a different syntax, or even explicit conversion from one to the other.

Matrices will be discussed in Subsection .4l

4.2 Input of Data — some further comments
Recall the earlier use of read.table():

travelbooks <- read.table("travelbooks.txt", header=TRUE, row.names=1)
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Points to note are:

If there is one less column heading than there are columns, the first column of input is, by
default, used for row names. Use of the argument heading=FALSE overrides this default.

If all rows have the same number of values, the default is to take the first row of the file as the
first row of data, i.e., it is assumed that there is no header row.

The final column (nest) will, by default, be a factor. To prevent such type conversions, specify
as.is=TRUE.

If the first row of the file has the same number of fields as later rows, it is assumed that this
is the first row of data, not a header row. Alternatively, specify header=FALSE to ensure this.
The default is then to give the columns the names V1, V2, ....

4.3 The Use of Data Frames in Correlation and Regression

The purpose here is to indicate how R uses data frames in statistical calculations, using the data in
the data frame travelbooks.

We will first add, to the data frame travelbooks, new columns area (area of page), and density
(weight to volume ratio):

> travelbooks$area <- with(travelbooks, width*height)
> travelbooks$density <- with(travelbooks, weight/volume)

> names (travelbooks) # Check full set of column names
[1] "thickness" "width" "height" "weight" "volume" "kind"
[7] "area" "density"

A first step is to call the generic function plot with travelbooks as argument:

pairs(travelbooks [, -6]1) # Omit column 6
## Alternative
plot (travelbooks [, -6])

Not unexpectedly, there are relationships between width and height, and between weight and
volume. Less expected, perhaps, is the indication of a relationship between density and area.
It is possible, in R, to “plot” just about any data object.

Correlation calculations

The function cor(), with a matrix or data frame as argument, calculates the correlation matrix for
the columns. By default, it gives the Pearson product-moment linear correlation. For example:

> round (cor (travelbooks[, -61),2)
thickness width height weight volume area demnsity

thickness 1.00 -0.47 -0.77 0.40 0.58 -0.59 -0.16
width -0.47 1.00 0.91 0.44 0.28 0.98 0.80
height -0.77 0.91 1.00 0.13 -0.08 0.97 0.67
weight 0.40 0.44 0.13 1.00 0.97 0.30 0.69
volume 0.58 0.28 -0.08 0.97 1.00 0.12 0.51
area -0.59 0.98 0.97 0.30 0.12 1.00 0.77
density -0.16 0.80 0.67 0.69 0.51 0.77 1.00
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Dependence of weight on volume
One way to investigate is to examine the regression relationship:

> wtvol.lm <- lm(weight ~ volume, data=travelbooks)
> wtvol.1lm

Call:
Im(formula = weight ~ volume, data = travelbooks)

Coefficients:
(Intercept) volume
-137.768 1.167

Notice that we saved the regression (1m) object, with the name wtvol.lm. This can be printed or
summarized or used to extract other information, or be used as the basis for various graphs.

The large intercept is perhaps unexpected. We might expect weight to be proportional to volume.
To force the line through the origin, do the following:

wtvolO.1lm <- lm(weight ~ -1 + volume, data=travelbooks)
wtvolO.1lm

Summary information — print(), summary() and plot()

All three functions are generic. The effect depends on the class of object that is printed (on the
screen) or summarized (again, on the screen), or plotted.

The function print() typically displays relatively terse output, while summary() may display
more extensive output. When used with 1m objects, print () calls print.1lm(), while summary()
calls summary.1lm(Q).

Actually summary() calls Usemethod ("summary"), which notes that myr.1m is an lm object and
therefore calls summary.1lm(). The extent of information given by print() and summary() varies
from one type of model object to another.

Compare the outputs from the following:

print (wtvol.1lm)
# Equivalent to typing wtwvol.lm at the command line
summary (wtvol.lm)
## The following gives diagnostic plots
par (mfrow=c(2,2)) # Subsequent plots appear in a 2 =z 2 layout
plot (wtvol.1lm)
par (mfrow=c(1,1)) # Reset to 1 plot per page, for any later plots

Note also the generic extractor functions residuals(), coefficients(), and fitted.values().
These can be abbreviated to resid(), coef (), and fitted().

4.4 Data Objects

Although it is often convenient to distinguish data objects from functions, there is not a rigid dis-
tinction. For, example, data that will be analyzed may be stored along with functions in the same
object.

4.4.1 Vectors

Examples of vectors are
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c(2,3,5,2,7,1)

3:10 # The numbers 3, 4,.., 10
c(T,F,F,F,T,T,F)
c("cherry","mango","apple","prune")

As noted in Chapter 1, vectors may have mode logical, numeric or character. The first two vectors
above are numeric, the third is logical (i.e. a vector with elements of mode logical), and the fourth is
a string vector (i.e. a vector with elements of mode character).

The cin c(2, 3, 5, 7, 1) has the meaning is: “Join (concatenate) these numbers together into
a vector”. Existing vectors may supply some or all of the elements that are to be concatenated.

The missing value symbol, which is NA, can be included as an element of a vector.

Factors will be discussed in Subsection There is one important respect (the use of c()) in
which they differ from vector.

Subsets of Vectors

There are three common ways to extract subsets of vectors.
1. Specify the subscripts of the elements that are to be extracted, e.g.

> x <- ¢(3,11,8,15,12) # Assign to z the wvalues

3, 11, 8, 15, 12

> x[c(2,4)] # Eztract elements (rows) 2 and 4
[1] 11 15

Negative numbers may be used to omit elements:

> x <- ¢(3,11,8,15,12)
> x[-c(2,3)]
[1] 3 15 12

2. Specify a vector of logical values. The elements that are extracted are those for which the
logical value is TRUE. Thus suppose we want to extract values of x that are greater than 10.

> x>10 # This generates a wvector of logical
(TRUE or FALSE)

[1] FTFTT

> x[x > 10]

[1] 11 15 12

Arithmetic relations that may be used in the extraction of subsets >=, ==, and !=. The first four
compare magnitudes, == tests for equality, and != tests for inequality.
3. For vectors of named elements, the elements may be identified by name:

> library (DAAG)

> cuckooEgglengths <- cuckoohosts[,1]

> cuckooEgglengths

[1] 22.3 23.1 22.5 22.6 23.1 21.1 22.6

>

> ## Assign names to the wvector elements

> names (cuckooEgglengths) <- rownames (travelbooks)
> cuckooEgglengths

meadow pipit hedge sparrow robin wagtails
22.3 23.1 22.5 22.6
tree pipit wren yellow ammer
23.1 21.1 22.6
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> ## Names can be used to exztract elements

> cuckooEgglengths [c("hedge.sparrow", "robin", "wren")]
hedge sparrow robin wren
23.1 22.5 21.1

4.4.2 Matrices as vectors

A matrix is a vector that is laid out in a two-dimensional tabular format and has a dimension attribute.
The dimension attribute can be examined thus:

> travelmat <- as.matrix(travelbooks[, 1:4])

> dim(travelmat) # Equivalent to attr(molmat, "dim")
[1] 6 4

> attr(travelmat, "dim")

[1]1 7 4

The dimension attribute can be changed or removed, thus:

> dim(travelmat) <- NULL # Columns of travelmat become omne long
# wector, stacked in order of columns.
> travelmat
[1] 1.3 3.9 1.2 2.0 0.6 1.5 11.3 13.1 20.0
21.1
[11] 25.8 13.1 23.9 18.7 27.6 28.5 36.0 23.4 250.0 840.0
[21] 550.0 1360.0 640.0 420.0
> # Use of as.vector(travelmat) is however preferable to the above
> # For these data, why would one do thts?

Matrix Manipulations
Let X, Y and B be numeric matrices. Some of the possibilities are:

X+Y # Elementwise addition (The dimensions must agree)

X *xY # Elementwise multiplication (The dimensions must agree)
X %*% B # Matrix multiplication (X is n by k; B k by m)

solve(X, Y) # Solve X B =Y (X is n by k, Yn by m, B k by m)

svd (X) # Singular value decomposition of X

qr(X) # QR decomposition of X.

Use of matrices for efficient computation For working with large numerical arrays, the matrix
structure can allow much faster computations than are possible with data frames. See Section

4.4.3 Data frames versus matrices

Data frames that consist entirely of numeric data are in some (but not all) contexts interchangeable
with numeric matrices. There are however important differences. In some applications, and notably
in the analysis of microarray data, it is likely to be necessary to work with both of these types of
object.

One way to check whether an object is a data frame or matrix is to see what value the function
length() returns:

> length(travelbooks) # travelbooks is a list of 7 wectors
(1] 5
> length(as.matrix(travelbooks[,1:4])) # matriz has 28 elements

[1]1 28
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Functions are available to convert data frames into matrices, and vice versa. For example:

travelmat <- as.matrix(travelbooks[, 1:4])
# From data frame to matriz

newtravelbooks <- as.data.frame(travelmat)
# From matrixz to data frame

Tables may similarly be converted into data frames. Use as.data.frame.table().

Subsets of data frames and matrices

To extract the first three rows of the data frame travelbooks, specify travelbooks[1:3,]. For
columns 1 to 3, specify travelbooks[1:3,]. Additionally, a vector of logicals (TRUEs and FALSEs)
may be used to extract rows and/or columns, thus:

> travelbooks$weight > 500 ## Result <s a vector of logicals
[1] FALSE TRUE TRUE TRUE TRUE FALSE
> travelbooks [travelbooks$weight > 500, ]
thickness width height weight volume

kind

Moon’s Australia handbook 3.9 13.1 18.7 840 955 Guide
Explore Australia Road Atlas 1.2 20.0 27.6 550 662 Roadmaps
Australian Motoring Guide 2.0 21.1 28.5 1360 1203 Roadmaps
Penguin Touring Atlas 0.6 25.8 36.0 640 557 Roadmaps

4.4.4 Lists

A list is a collection of arbitrary objects. Above, we encountered data frames. A data frame is a
specialised form of list. The list elements hold the columns of the data frame, which must all be of
the same length. Here we note two other common types of list, the first of importance for microarray
work, and the second of general importance.

Lists of matrices

Included with the data in the sma package are the objects mouse.data and mouse.lratio. These
hold data from a microarray experiment, in which gene expression intensities for knockout mice were
compared with expression intensities for normal mice. Assuming that the sma package is installed,
the following will bring it into the workspace:

library (sma)
data(MouseArray) # MousedArray holds several data objects
1s () # Check contents of workspace

The object mouse.data is a list. It has four elements, with names R, G, Rb and Gb. Each of these
elements is a matrix, with dimensions 6384 spots by 6 slides. The object mouse.lratio is a list with
elements A and M. Again each element is a matrix with dimensions 6384 spots by 6 slides. [The values
in M are the logarithms to base 2 of the ratios of “red” to “green” intensities, while the values in M
are averages of the logarithms of the “red” and “green” intensities.]

4.4.5 Model objects are lists

Model objects are typically lists, consisting of elements that can be of very different types. We will
use the output from the regression calculation with data in travelbooks, stored in the 1lm object
wtvol.lm, as an example. Note first that 1m is, in effect, a mnemonic for linear model.

Regression objects hold output structures from the regression output that can be used for further
calculations. It stores the information in a list, with named elements. To see the names of the list
elements in clock.1m, type:
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> names (wtvol.1lm)

[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df .residual"
[9] "xlevels" "call" "terms" "model"

To extract individual list elements type, e.g.:

> wtvol.lm$call
Im(formula = weight ~ volume, data = travelbooks)

Where an extractor function is available, use this in preference to accessing the specific list ele-
ments. Thus use:

> coef (wtvol.1lm)

(Intercept) volume
-137.767923 1.166812
> resid(wtvol.lm)
Aird’s Guide to Sydney Moon’s Australia handbook
-21.78300 -136.53728
Explore Australia Road Atlas Australian Motoring Guide
-84.66144 94.09341
Penguin Touring Atlas Canberra - The Guide
127.85379 21.03453

Notice that the residuals carry the row names. We might prefer shorter row names.

The various R modeling functions all return their own particular type of model object, always
stored as a list. Note also that data frames are a specialized form of list, with the restriction that all
columns must be vectors that all have the same length.

4.4.6 Factors

Factors are column objects whose elements are integer values 1, 2, ..., k, where k is the number of
levels. They are distinguished from integer vectors by having the class factor and a levels attribute.
They provide, in data frames, the default way to store text string information.

The character vector ¢ ("cherry", "mango", "apple","prune","cherry","prune") might equally
well be stored as a factor, thus:

> fruit <- c("cherry","mango","apple","prune","cherry")
> fruitfac <- factor(fruit)

> as.numeric(fruitfac)

[1] 2 3 1 4 2 4

> levels (fruitfac)

[1] "apple" “"cherry" "mango" ‘"prune"

Notice that, by default, the levels are taken in alphanumeric order.
Internally, the factor is stored as the integer vector 2, 3, 1, 4, 2, 4. It has stored with it the table:

1 2 3 4
"apple" ‘'"cherry" '"mango" '"prune"

Thus, the numeric values are codes for text strings, with information that matches the codes to
a unique set of text strings stored in the separate table. Once stored as a factor, the space required
for storage can, depending on the lengths of the text strings and their frequencies of occurrence, be
greatly reduced.

The order can be specified. For example:

> ## Take frutt in order of stated glycemic indexr (15, 22, 38, 55)
> fruitfac <- factor (fruit, levels=c("prune","cherry","apple", "mango"))
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> levels (fruitfac)
[1] "prune" ‘"cherry" "apple" "mango"

Changing the levels in this way can be useful where factor levels are used, as in some lattice graphs
that have one panel for each factor level, to determine the order in which plots appear.

Note that the function factor (), with the levels argument specified, can be used both to specify
the order of levels when the factor is created, or to make a later change to the order.

Incorrect spelling of the level names generates missing values, for the level that was mis-spelled.
Try:

fruitfac <- factor(fruitfac, levels=c("prune","cherry","Apple","mango"))
table (fruitfac) # The number of Apples is given as O

In most places where the context seems to demand it, the integer levels are translated into text
strings, thus:

> fruitfac <- factor(c("cherry","mango","apple","prune","cherry"))
> fruitfac == "cherry"
[1] TRUE FALSE FALSE FALSE TRUE

Subsection has detailed examples of the use of factors in model formulae and the resultant
model matrices.

Ordered factors

In addition to factors, note the existence of ordered factors, created using the function ordered().
For ordered factors, the order of levels implies a relational ordering. For example:

> windowTint <- ordered(rep(c("lo","med","hi"), 2), levels=c("lo","med","hi"))
> windowTint

[1] 10 med hi 1o med hi

Levels: lo < med < hi

4.4.7 Missing Values, Infinite Values and NaNs

Problems with missing values, infinite values and NaNs are a common reason why functions fail.
An understanding of the conventions for arithmetic with NAs will reduce the scope for unwelcome
surprises.

The missing value symbol is NA. Any arithmetic or logical operation with NA generates an NA. The
consequences are more far-reaching than might be immediately obvious. Use is.na() to test for a
missing value:

> is.na(c(1, NA, 3, 0, NA))
[1] FALSE TRUE FALSE FALSE TRUE

The expression NA == NA returns NA, and cannot be used to test for a missing value.
> NA == NA
[1] NA

Note that the attempt to assign values to an expression whose subscripts include missing values
generates an error.

>y <- c(1, NA, 3, 0, NA)

> yly > 0]

[1] 1 NA 3 NA

> yly > 0] <- c(11, 12)

Error: NAs are not allowed in subscripted assignments
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It is best to ensure that NAs do not appear, when there is an assignment, in subscript expressions
on either side of the expression.

Identifying and processing rows that include missing values

The function na.omit () omits rows that contain one or more missing values. The argument may be
a data frame or a matrix. The function complete.cases() identifies such rows. Thus:

test.df <- data.frame(x=c(1:2,NA), y=1:3)
test.df
y
11
2 2
NA 3
complete.cases (test.df)
1] TRUE TRUE FALSE
na.omit (test.df)

NP, X VAV WNDER X VYV

N =<

1
2

4.4.8 Information on Data Objects

We will make later work with the possum data frame. The function str() gives basic information on
the object that is given as argument.

> str(possum)
‘data.frame’: 104 obs. of 14 variables:

$ case : num 1 2 3 4 5 6 7 8 9 10...

$ site : num 1 1 1 1 1 1 1 1 1 1...

$ Pop : Factor w/ 2 levels "Vic","other": 1 1 1 1 1 1 1 1 1 1...

$ sex : Factor w/ 2 levels "f","m": 2 1 1 1 1 1 2 1 1 1...

$ age : num 8 6 6 6 2 1 2 6 9 6...

$ hdlngth : num 94.1 92.5 94 93.2 91.5 93.1 95.3 94.8 93.4 91.8...
$ skullw : num 60.4 57.6 60 57.1 56.3 54.8 58.2 57.6 56.3 58...

$ totlngth: num 89 91.5 95.5 92 85.5 90.5 89.5 91 91.5 89.5...

$ taill : num 36 36.5 39 38 36 35.5 36 37 37 37.5...

$ footlgth: num 74.5 72.5 75.4 76.1 71 73.2 71.5 72.7 72.4 70.9...
$ earconch: num 54.5 51.2 51.9 52.2 53.2 53.6 52 53.9 52.9 53.4...
$ eye : num 15.2 16 15.5 15.2 15.1 14.2 14.2 14.5 15.5 14.4...

$ chest : num 28 28.5 30 28 28.5 30 30 29 28 27.5...

$ belly : num 36 33 34 34 33 32 34.5 34 33 32...

4.5 Functions
4.5.1 Built-In Functions
Common useful functions, for use with vectors

Common Useful Functions are

print () # Prints a single R object
cat () # Prints multiple objects, one after the other
length() # Number of elements in a vector or of a list

mean ()
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median()
range ()
unique() # Gives the vector of distinct values
diff () # Vector of first differences

# N. B. diff(x) has one less element than x
sort () # Sort elements into order, but omitting NAs
order () # x[order(x)] orders elements of x, with NAs last
cumsum ()
cumprod ()
rev() # reverse the order of vector elements
any () # Returns TRUE if there are any missing values
is.factor() # Returns TRUE if the argument is a factor
is.na() # Returns TRUE if the argument is an NA

# NB also is.logical(), is.matrix(), etc.
str() # Information on an R object
args() # Information on arguments to a function

The functions mean(), median(), range(), and a number of other functions, take the argument

na.rm=T; i.e., remove NAs, then proceed with the calculation. For example

>

mean(c(1, NA, 3, 0, NA), na.rm=T)

[1] 1.3

4.5.2 User-defined functions

The R language is a functional language. The function mean() calculates means, The function sd()
calculates standard deviations. Here is a function that calculates mean and standard deviation at the
same time:

mean.and.sd <- function(x){

3

av <- mean(x)
sdev <- sd(x)
c(mean=av, sd = sdev) # The function returns this wvector

The parameter x is the argument that the user must supply. The body of the function is enclosed
between curly braces. The value that the function returns is given on its final line. Here the return
value is a vector that has two named elements.

The following calculates the mean and standard deviation of heterozygosity estimates for seven

different Drosophila speciesE]

>

hetero <- c(.43,.25,.53,.47,.81,.42,.61)

> mean.and.sd(hetero)

mean sd

.5028571 0.1749966

It is useful to give the function argument a default value, so that it can be run without user-

supplied parameters, in order to see what it does. A possible choice is a set of random normal
numbers, perhaps generated using the rnorm() function.

Here is a revised function definition. The function body has been reduced to a single line, so that

the curly braces are not needed.

>
>

mean.and.sd <- function(x = rnorm(20)) c(mean=mean(x), sd=sd(x))
mean . and.sd ()
mean sd

?Data are from Lewontin, R. 1974. The Genetic Basis of Evolutionary Change.
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0.05013396 0.68567644
> mean.and.sd()

mean sd
0.1067355 1.1383779

We get a different set of random numbers, and hence a different mean and SD, each time that the
function is run with its default argument.

Information on Functions

A useful function is args (). It lists function arguments, together with default values, if any.

4.6 Tables and Cross-Tabulation

Use the function table() to make a table of counts. Use xtabs() for cross-tabulation, i.e., to
determine totals of numeric values for each table category.

table()

The function table() makes a table of counts. Specify one vector of values (often a factor) for each
table margin that is required. A simple example is:

library (DAAG)
> table(possum$Pop, possum$sex)

f m
Vic 24 22
other 19 39

Here is a use of table() to count the number of NAs in the column bp (blood pressure) from the
data frame Pima.tr2 that is in the MASS package.

> library (MASS)
> table(is.na(Pima.tr2$bp))

FALSE TRUE
287 13

By default, table() ignores NAs. Hence the need for a check of the following type, here using
sapply () function. This can be used with a data frame as its first argument to apply the function
specified as its second argument in parallel to all columns of the data frame, to give the number of
NAs in each column of the data frame Pima.tr2

> sapply(Pima.tr2, function(x)sum(is.na(x)))

npreg glu bp skin bmi ped age type
0 0 13 98 3 0 0 0

The action needed to get NAs tabulated under a separate NA category depends, annoyingly, on
whether or not the vector is a factor. If the vector is not a factor, specify exclude=NULL. If the vector
is a factor then it is necessary to generate a new factor that includes NA as a level. Specify

x <- factor(x, exclude=NULL)
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Creating Groups

The following uses the cut () function to group data in the column bp in the data frame Pima.tr2,
into four categories, then tabulating the numbers in the four categories:

> catBP <- cut(Pima.tr2$bp, breaks=4)
> table(catBP)

catBP

(37.9,57] (57,76] (76,95] (95,114]
22 170 87 8

> sum(table (catBP))

[11 287

Notice that the 13 missing values, out of the total of 300, are not included in the table. This can be
a trap. They are in catBP, as we can easily verify:

> table(is.na(catBP))

FALSE TRUE
287 13

Thus, above, we can do the following

> catBP <- factor(catBP, exclude=NULL)

> table(catBP)

catBP

(37.9,57] (57,76] (76 ,95] (95,114] <NA>

22 170 87 8 13
> sum(table(catBP))

4.7 Option Settings
Setting the number of significant digits in output

Often, the printed result of calculations will, unless the default is changed (as has sometimes been
done for the output in this document) show more decimal places of output than are useful. The

options() function can be used to change to make a global (until further notice) change to the
number of significant digits that are printed. For example:

> sqrt (10)

[1] 3.162278

> options(digits=2) # Change until further notice,
> # or until end of session.

> sqrt (10)

[1] 3.2

Notice that options(digits=2) expresses a wish, which R will not always obey!

Rounding will sometimes introduce small inconsistencies. For example, with results rounded to
two decimal places

> round(sqrt (372/12), 2)

[1] 5.57
> round (sqrt(2) * sqrt(372/12), 2)
[1] 7.87

> round(sqrt(2) * 5.57, 2)
[1] 7.88
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Other option settings

Type in help(options) to get further details. I prefer to use the setting options(show.signif.stars=FALSE).
(The default is TRUE.)

4.8 Common sources of difficulty

In the use of read.table() for the entry of data that has a rectangular layout, it is important
to tune the parameter settings to the input data set. See the discussion of read.table() in
Subsection for comments on common issues.

The function count.fields() can be a useful way to determine how many fields read.table ()
thinks it has found in each record. Alternatively, use read.table() with the parameter setting
£i11=TRUE, and carefully check the input data frame. Blank fields will be implicitly added, as
needed, in order to ensure that all records have an equal number of fields.

Character vectors that are included as columns in data frames become, by default, factors.
There are implications for the use of read.table().

Factors can often be treated as vectors of text strings, with values given by the factor levels.
There are several, potentially annoying, exceptions. If a factor is used to provide labels when
using the function text(), use as.character() to turn the factor into a text string whose
elements are the factor levels.

The handling of missing values is a common source of difficulty. Refer back to Subsection [£.4.7]

The syntax elasticbandl[,2], extracts the second column from the data frame elasticband,
yielding a numeric vector. Observe however that elasticband[2, ] yields a data frame, rather
than the numeric vector that the user may require. The structure is different, depending on
whether a column or a row is extracted. Specify unlist(elasticband[2, ]) to obtain the
vector of numeric values in the second row of the data frame. For another instance (use of
sapply () where the difference between a numeric data frame and a numeric matrix is impor-
tant, see Subsection [4.4.3

It is inadvisable to assign new values to a data frame, thus creating a new local data frame with
the same name, while it is attached. Use of the name of the data frame accesses the new local
copy, while the column names that are in the search path are for the original data frame. There
is obvious potential for confusion and erroneous calculations. The new local copy replaces the
original when the data frame is detached.

Data objects that individually or in combination occupy a large part of the available computer
memory can slow down all memory intensive computations. See further Subsection [9.4] for
comment on associated workspace management issues. Note that most of the data objects that
are used for our examples are small and thus will not, except where memory is very small, make
much individual contribution to demands on memory.

4.9 Summary

Important R data structures are vectors, factors, data frames and lists. Vectors may be of mode
numeric, logical, character or complex.

Factors, used for categorical data, are fundamental to the use of many of the R modeling
functions. Ordered factors are appropriate for use with ordered categorical data.

The function c() (concatenate) joins vector elements together into vectors. It may be used for
logical and character vectors, as well as for numeric vectors.
[It is in fact more general than this. It may be used to join lists, which are non-atomic vectors]
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Missing Values, Infinite Values and NalNs can require special care.

Data frames group columns that all have the same length, together as a single R object. A data
frame may have columns that are any mix of logical, numeric, character, factor or complex.

For simple forms of scatterplot, note the plot() function. There is a wide range of plotting
abilities, beyond those offered by plot ().

Matrices, and data frames whose elements are all of one type (typically all numeric) are in some
contexts handled similarly. In other contexts, they are handled quite differently. A matrix is a
vector (with matrix elements stacked column upon column) that has a dimension attribute.

read.table() is the function of first recourse for inputting rectangular files.

Where access is required to columns of a data frame for one or two lines of code only, it is often
convenient to use the function with().

Attachment of a data frame (use the function attach()) can be where there are a number of
lines of code that require access to its columns. Give the name of the data frame, i.e., no quotes.

Note also the use of attach() to give access to objects in an image (.RData) file. Include the
name of the file in quotes.

The search path determines the order of search for objects that are accessed from the command
line, or that are not found in the environment of a function that accesses them.

The R system has a wide range of generic functions, including print (), plot () and summary (),
For such functions, the result depends on the class of object that is given as argument.

Modeling functions typically output a list, known as a model object, that holds key output
information from the analysis.

Use table() for tables of counts, and xtabs () for tables of totals.

Various options settings control such matters as the number of significant digits that will be
displayed in output.

4.10 Exercises

Table 2: Estimates of amino acid replacements per 100 million years, for the three genes GPDH,
SOD, and XDH. The column Ave is a weighted average of these three, with weights proportional to
sequence length. The final column (Myr) gives time since divergence in millions of years.

Gpdh Sod  Xdh AvRate Myr

Drosophila subgroups 1.50 25.70 30.40 22.40 55.00

Drosophila subgenera 2.00 30.70 29.20 22.30 60.00

Drosophial genera 4.40 34.90 31.70 24.90 65.00

dipteran families 9.25 33.70 25.30 22.00  120.00

mammalian orders 11.60 46.00 17.10 18.70 70.00

animal phyla 13.20 19.20 19.20 17.50  600.00

fungi  40.00 24.90 13.70 21.40  300.00

kingdoms 13.00 12.60 11.50 11.90 1100.00

1. Read the data that is stored in the file molclock.txt (shown in Table [2)), into the data frame
molclock. Modify the arguments to read.table() so that:

e The file molclockl.txt is input correctly
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e The file molclock2.txt is input correctly.

2. For the data in Table[2] plot graphs of Sod against Myr, and of Xdh against Myr. Use abbreviate ()
to create abbreviated versions of the row names, and use these to label the points.
[Hint: Use readLines("molclock.txt", n=-1) to inspect, from the R command line, the con-
tents of molclock.txt.]

3. Modify the function mean.and.sd() so that it outputs, in addition to the mean and standard
deviation, the number of vector elements.

4. Find an R function that will sort a vector. Give an example of its use.

5. Type library() and check that the DAAG package is installed. Attach the DAAG package.
Type library(DAAG) to see the help page for the data frame elasticband. Plot distance
against stretch. Regress distance against stretch and explain how to interpret the coefficient.
Examine the diagnostic plot and check whether there is anything that calls for special attention.

6. Find out what the function substring() does.

7. Find two ways to split a text string into a vector that holds its individual characters, using
substring(), and using strsplit(). Use the function on the text strings

gil4786865 <- "LNLFFAGTETVSTTLRYGFLLLMKHPEVEAKVHEEI"

o4cka3 <- "LNIMVAGRDTTAGLLSFAMFELARNPKIWNKLREEV"
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5 Base Graphics

Base graphics implements a relatively “traditional” style of graphics

Functions plot (), points(), lines(), text (), mtext (), axis(), identify() etc.
form a suite that plots points, lines and text.
Plot y vs x  Either: with(women, plot(height, weight)) (older syntax)
Or: plot(weight ~ height, data=women) (uses graphics formula)
Caveat Some base graphics functions do not take a data parameter

Note also (i) the lattice flavour of trellis graphics, implemented in the lattice package,
and (ii) the low-level grid package on which lattice is built.
Lattice graphics will be the subject of the next chapter.

To see some of the possibilities that traditional (or base) R graphics offers, enter

demo (graphics)

Press the Enter key to move to each new graph.
For lattice graphics, enter

library(lattice)
demo (lattice)

Our discussion will start with an exposition of traditional graphics.

5.1 plot() and allied functions
The following both plot y against x:

plot(y ~ x) # Use a formula to specify the graph
plot(x, y) # Horizontal ordinate, then verhills20-Otical

Obviously x and y must be the same length.
Try

plot ((0:20) *pi/10, sin((0:20)*pi/10))
plot ((1:30)*0.92, sin((1:30)%*0.92))

Is it obvious that these points lie on a sine curve? (To make this obvious, place the cursor over the
lower border of the graph sheet, until it becomes a double-sided arror. Drag the border in towards
the top border, making the graph sheet short and wide.)

Here are two further examples.

library (DAAG)

attach(elasticband) # R can now find distance & stretch
plot(distance ~ stretch)

plot (ACT ~ year, data=austpop, type="1")

plot (ACT ~ year, data=austpop, type="b")
detach(elasticband)

The points() function adds points to a plot. The 1lines() function adds lines to a plotﬂ The
text () function adds text at specified locations. The mtext() function places text in one of the
margins. The axis() function gives fine control over axis ticks and labels.

Here is a further possibility

3 Actually these functions differ only in the default setting for the parameter type. The default setting for points()
is type = "p", and for lines() is type = "1". Explicitly setting type = "p" causes either function to plot points, type
= "1" gives lines.
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with Caustpop,
plot (spline(Year, ACT), type="1") # Fit smooth curve through points
)

Newer plot methods

Above, I described the default plot method. The plot function is a generic function that has special
methods for “plotting” various different classes of object. For example, as we saw in chapter 2,
plotting an 1m object (created by the use of the 1m() modelling function) gives diagnostic and other
information that can help in the interpretation of regression results.

Recall also

plot(travelbooks [,1:5])
# Has the same effect as pairs(travelbooks[, 1:5])

Note also the function splom() from the lattice package. For this, specify

library(lattice)
splom(~ travelbooks[, 1:5]) # Lattice alternative to pairs plot

5.2 Fine control — Parameter settings

For plot (), points() and text (), the parameter cex (“character expansion”) controls the size, while
col ("color”) controls the colour. The parameter pch controls the choice of plotting symbol.
Figure [2] shows some of the possibilities:

plot(1:6, rep(4.5, 6), cex=1:6, col=1:6, pch=0:5,
n - xlim=c(1, 6.5), ylim=c(0,5.4), xlab="", ylab="")

DOA+<>

abc <~ c("a", "b", "c", "d", "e", "f")
text(1:6,rep(3.25, 6), labels=abc, cex=1:6, col=1:6)

“1° b C d f Figure 2: Different plot

symbols, colours and
plotchars <- 0:12 sizes.

o - points((1:13)*0.48, rep(1.5,13), pch=plotchars)
text((1:13)*0.48, rep(1.75,13), paste(plotchars), pos=1, cex=0.75)
° A + X <o v = * & 4 )44 -]
1 2 3 4 5 6 7 8 9 10 11 12
-
plotchars <- 13:25
## Now rerun the previous two lines of code
] [ ° A - . . ° o < A v
14 15 16 17 18 19 20 21 22 23 24 25
o -
T T T T T T
1 2 3 4 5 6

The default settings of parameters, such as character size, are often adequate. When it is necessary
to change parameter settings, alternatives may be to supply the values required as parameters to the
plotting function, or to use par() to make the change, prior to calling the plotting function. For
some parameters, the first method must be used, while for others the second method is necessary. In
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some case, the reasons for this are obvious. One that is not obvious is pty="s" (specify using par()),
which gives a square plotting region.

On the first use of par() to make changes to the current device, it is often useful to store existing
settings, so that they can be restored later. For this, specify, e.g.:

oldpar <- par(cex=1.25, col="red")

This stores the existing settings in oldpar, then changes parameters (here cex and col) as requested.
To restore the original parameter settings at some later time, enter par (oldpar). See below (“Multiple
plots on the one page”) for an example

Type help(par) to get details of all the parameter settings that are available.

Adding Text in the Margin

mtext(side, line, text,..) adds text in the margin of the current plot. The sides are numbered
1(x-axis), 2(y-axis), 3(top) and 4.

5.3 Adding points, lines and text — examples

Here is a simple example that uses the function text () to label the points on a plot.
Figure [3] has the plot:

o
§_
* Human > ## Data used in plot
C) g > primates # DAAG package
% = Bodywt Brainwt
z o Potar monkey 10.0 115
g B o Chimp o Gorilla Gorilla 207.0 406
. Rhesus monkey Human 62.0 1320
o | © Potarmonkey Rhesus monkey 6.8 179
L Chimp 52.2 440
0 50 100 200
Body weight (kg)

Figure 3: Plot of brain weight against body weight, for selected primates.

Code that gives the above plot is:

attach(primates)
plot (Bodywt , Brainwt, xlim=c(0, 250),
xlab="Body weight (kg)", ylab="Brain weight (g)")
# Specify zlim so that there is rToom for the labels
text (x=Bodywt , y=Brainwt, labels=rownames (primates), pos=4)
# Alternatives are pos=1 (below), 2 (left), 3 (above)
detach(primates)

Example — Labels that locate possum study sites

Where are the possums? The oz package plots an outline of the Australian coast and state boundaries.
As it uses standard plot functions, we can use text () to add information about specific locations.

> possumsites # DAAG package
latitude longitude altitude
Cambarville 145.9 -37.55 800
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Bellbird 148.8 -37.62 300
Allyn River 151.5 -32.12 300
Whian Whian 153.3 -28.62 400
Byrangery 163.4 -28.62 200
Conondale 152.6 -26.43 400
Bulburin 151.5 -24.55 600

A plot that shows the sites, on a map of the Fastern coast of Australia, may be obtained thus:

attach(possumsites)

## Ensure that the oz package %1s installed
library (oz)

oz ()

text (longitude ~ latitude, labels=rownames (possumsites), adj=1, col="red")

Figure {] improves somewhat on this simple code:

Bulburin @

Figure 4: Sites at
which possums were
collected.

Conondale @

Byrakgery

[Cambarville, ©

## Code wused for plot:
oz(sections=c(3:5, 11:16), col="gray", xlim=c(130, 165))
chh <- par () $cxy[2]
points(latitude, longitude+c(0,0,0,.2,-.2, 0,0)*chh, col="blue")
text (longitude ~ latitude, labels=rownames (possumsites),
pos=c(2,4,2,1,3,2,2), col="red", xpd=TRUE)
# Settings for pos are 1: below, 2: left, 3:above and 4: right
# With zpd=TRUE plotting <s allowed outside the figure Tegion

Multiple plots on the one page

The parameter mfrow can be used to configure the graphics sheet so that subsequent plots appear
row by row, one after the other in a rectangular layout, on the one page. For a column by column
layout, use mfcol instead. The following presents four different transformations of the primates data,
in a two by two layout:
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oldpar <- par(mfrow=c(2,2), pch=16)
library (MASS)
with(Animals, { # bracket several R statements
plot (body, brain)
plot (sqrt(body), sqrt(brain))
plot ((body)~0.1, (brain)~0.1)
plot (log(body),log(brain))
B # close both sets of brackets
par (oldpar) # Restore to 1 figure per page, and pch=1

Color palettes
A variety of color palettes are available. Here is a function that displays some of the possibilities:

view.colours <- function (){
plot(l, 1, xlim=c(0,14), ylim=c(0,3), type="n", axes=F, xlab="",ylab="")
text(1:6, rep(2.5,6), paste(l1:6), col=palette()[1:6], cex=2.5)
text (10, 2.5, "Default palette", adj=0)
rainchars <- c("R","Q","Y","G","B","I","V")
text(1:7, rep(1.5,7), rainchars, col=rainbow(7), cex=2.5)
text (10, 1.5, "rainbow(7)", adj=0)
cmtxt <- substring("cm.colors", 1:9,1:9)
# Split "cm.colors"” into its 9 characters
text(1:9, rep(0.5,9), cmtxt, col=cm.colors(9), cex=3)
text (10, 0.5, "cm.colors(9)", adj=0)
+

To run the function, enter

view.colours ()

The shape of the graph sheet

There is provision to specify the size and shape of the graph page, e.g. so that the individual plots are
rectangular rather than square. The R for Windows functions win.graph() or x11() that set up the
Windows screen take the parameters width (in inches), height (in inches) and pointsize (in 1/72
of an inch). The setting of pointsize (default =12) determines character heights. It is the relative
sizes of these parameters that matter for screen display or for incorporation into Word and similar
programs. Graphs can be enlarged or shrunk by pointing at one corner, holding down the left mouse
button, and pulling.

5.4 Identification and Location on the Figure Region

Two functions are available for this purpose. Draw the graph first, then call one or other of these
functions.

o identify() labels points. Position the cursor near the point that is to be identified, and click
the left mouse button.

o locator() prints out the co-ordinates of points. One positions the cursor at the location for
which coordinates are required, and clicks the left mouse button.

A click with the right mouse button signifies that the identification or location task is complete,
unless the setting of the parameter n is reached first. For identify() the default setting of n is the
number of data points, while for locator () the default setting is n = 500.

An example of the use of identify() was given in Subsection[2.4} The use of identify () is even
simpler.
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with(travelbooks, plot(weight ~ volume)
locator ()

Now, left click at the locations whose coordinates are required, terminating as for identify (). Alter-
natively or additionally, specify the number of points to be located as an argument to the function.

5.5 Plots that show the distribution of data values
We discuss histograms, density plots, boxplots and normal probability plots.

Histograms and density plots
The shapes of histograms depend on the placement of the breaks, as Figure |5|illustrates:

25 g
o o
[e) o
S S
o o
© ©
2 S - > O
23 23
8 3] 8 3] Figure 5: The two graphs show
° ° the same data, but with a differ-
o () . .
2 2 ent choice of breakpoints.
o o
S S
S o T T T T T 1 S T T T T T 1
70 75 80 85 90 95 100 70 75 80 85 90 95 100
Total length Total length

Here is the code used to plot the histograms:

par (mfrow = c(1, 2), pty="s" # pty="s"; square plots

attach(possum)

here <- sex == "f"

hist(totlngth[here], breaks = 72.5 + (0:5) * 5, ylim = c(0, 22),
xlab="Total length", main ="A: Breaks at 72.5, 77.5,...")

hist (totlngth [here], breaks = 75 + (0:5) * 5, ylim = c(0, 22),
xlab="Total length", main="B: Breaks at 75, 80,...")

par (mfrow=c(1,1))
detach (possum)

Below, I argue against placing much reliance on histograms. Some may prefer them on the grounds
that they are derived very directly and simply from the actual data. In that case, why not show the
actual distribution of data values. The following uses the function rug() to show the distribution of
the data values along the horizontal axis:

with(subset (possum, sex=="f"), hist(totlngth))
with (subset (possum, sex=="f"), rug(totlngth))

One of the following can sometimes be insightful:

with(subset (possum, sex=="f"), dotchart(totlngth))
with (subset (possum, sex=="f"), stripchart(totlngth))



5 BASE GRAPHICS 41

Density Plots

The density at each point is an estimate of the number of points per unit interval. A histogram
is a crude form of density estimate, one in which the density estimate changes discretely at class
boundaries. Density plots are in general preferable to histograms, because they give a density estimate
that changes smoothly. Density plots do not depend on a choice of breakpoints. They do require the
choice of a bandwidth parameter and a choice between different types of window; often the default
choices are acceptable.

The following gives a density plot:

with(possum, plot(density(totlngth[herel),type="1"))

Note that in the overlaid density plot in [5| the y-axis for the histogram is labelled so that the area
of a rectangle is the frequency for that rectangle. To get the plot on the left, specify:

attach(possum)

here <- sex == "f"

dens <- density(totlngth[here])

xlim <- range(dens$x)

ylim <- range(dens$y)

hist(totlngth [here], breaks = 72.5 + (0:5) * 5,
probability = T, xlim = xlim, ylim = ylim,
xlab="Total length", main="")

lines (dens)

detach (possum)

With data that have sharp lower and/or upper cutoff limits, it may be necessary to specify the
limit or limits. For example, a failure time distribution may have a mode close to zero, with a sharp
cutoff at zero. Use the parameters from and/or to for this purpose. This issue most commonly arises
with a lower cutoff at 0.

Boxplots

Figure 6: Distribution
° F-- ---4 of lengths of female
possums. The bars
| TTTRTTETTIT T TR A (rugs) show actual

! data values.
75 80 85 90 95

Boxplots use a small number of characteristics of a distribution to characterize it. Look up
help(boxplot) for details. Here is code that gives a boxplot of the above possum data:

with (subset (possum, sex=="f"), boxplot(totlngth, horizontal=TRUE))

It can be insightful to add a “rug” that shows the individual values, by default along the horizontal
axis (side=1). To add a rug to the above plot, type

with(subset (possum, sex=="f"), rug(totlngth))

Figure [6] shows the result.
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Side by side boxplots

Boxplots allow convenient side-by-side comparisons of different groups, as in the cuckoo egg data that
we now present (from Latter1902; Tippett 1931 presents them in a summarized form.) Cuckoos lay
eggs in the nests of other birds. The eggs are then unwittingly adopted and hatched by the host birds.
Figurd7] shows side by side boxplots of these data.
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## Code used for plot:
boxplot (length species, data=cuckoos,
xlab="Length of egg", horizontal=TRUE,
las=2) # las=2 => Plot labels perpendicular to axts

Normal probability plots
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The function qgnorm(y) gives a normal probability plot of the elements of y. The points of this
plot will lie approximately on a straight line if the distribution is Normal. In order to calibrate the
eye to recognise plots that indicate non-normal variation, it is helpful to do several normal probability
plots for random samples of the relevant size from a normal distribution, obtained using the function
rnorm().

x11(width=8,

attach(possum)

here <-
par (mfrow=c(3,4))

sex

llfll

# 3 by 4 layout of plots

height=6) # This ts a better shape for this plot
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y <- totlngth[here]

gqqnorm (y,xlab="", ylab="Length", main="Possums")

for(i in 1:11)qqnorm(rnorm(43), xlab="", ylab="Simulated lengths",
main="Simulated")

par (mfrow=c(1,1))

# By default, rnorm() generates random samples from a normal

# distribution with mean O and standard deviation equal to 1.

detach (possum)

Figure [§] shows the plots. There is one unusually small value. Otherwise the points for the female
possum lengths are as close to a straight line as in many of the plots for random normal data.

The idea is an important one. In order to judge whether data are normally distributed, examine
a number of randomly generated samples of the same size from a normal distribution. It is a way to
train the eye.

5.6 Scatterplot Smoothing

Figure @] shows miles per gallon (mpg), plotted against piston displacement (disp), for 32 cars whose
detailed characteristics were described in the US 1974 magazine Motor Trends.

It can be useful to make a comparison with a curve provided by a data smoothing routine that is
not restricted to using a particular mathematical form of curve.
[R has both a lowess() function and the more general loess() function. The lowess() function
does smoothing in one dimension only, while loess() will handle multi-dimensional smoothing. For
technical details of lowess() and loess (), see Cleveland (1981), and references given in that paper.]

% Figure 9: Plot showing
g change in fuel wusage
g (miles per gallon) with
8 displacement (disp).
Code is:
T T Io T T T
10 20 30 40 50 60
Apparent juice content (%)
attach(mtcars) # From the datasets package

plot (mpg disp,
xlab=expression("Displacement ("*"in"~"3x%x")"),
ylab="Miles per gallon")

lines (lowess (mpg ~ disp, £=0.5))

detach(mtcars)

A smooth trend curve that has been superimposed on a scatterplot can be a useful aid to inter-
pretation. When the data appear to scatter about a simple mathematical curve, the curve-fitting
methods that are discussed in other sections can be used to obtain a ‘best-fit’ or regression line or
curve to pass through the points.
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The female athletes (AIS) data

Here we use data on the heights of 100 female athletesﬂ First load the data frame ais, if necessary
from http://www.maths.anu.edu.au/~johnm/r/workshop.
The function panel.smooth() plots points, then adds a smooth curve. For example:

attach(ais)

here<- sex=="f"

plot (pcBfat [here] "ht [here], xlab = "Height", ylab = " Body fat")
panel.smooth (ht [here] ,pcBfat [herel)

abline (lm(pcBfat [here] ~ ht[here]))

detach (ais)

The least squares regression line (abline()) has been added for comparison.

5.7 Plotting Mathematical Symbols

Both text() and mtext() will take an expression rather than a text string. In plot(), either or
both of x1ab and ylab can be an expression. Figure[10]is an example.

-
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|

Figure 10: The =z-axis
4 and y-axis labels are both
mathematical expressions.

Area
50

Radius =r

## Code used for plot:
r <- seq(0.1, 8.0, by=0.1)

plot(r, pi * r~2, xlab=expression(Radius == r),
ylab=expression(Area == pi*r~2), type="1")
# NB: Use ==, within an exzpression, to print =

See Subsection (Figure for another and much more complicated example of the plotting of
mathematical expressions.
See help(plotmath) for detailed information. The final plot from

demo (graphics)

shows some of the possibilities for plotting mathematical symbols.

5.8 Multi-way Tables — Mosaic Plots

Here is a more interesting example, using the multi-way table UCBAdmissions that is in the base
package. This holds admission data, from University of California at Berkeley in 1973. First, we will
get information about the data:

4Data relate to the paper: Telford, R.D. and Cunningham, R.B. 1991: Sex, sport and body-size dependency of
hematology in highly trained athletes. Medicine and Science in Sports and Exercise 23: 788-794.
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> class (UCBAdmissions)
[1] "table"

> dim (UCBAdmissions)

[1] 2 2 6

> dimnames (UCBAdmissions)
$Admit

[1] "Admitted" "Rejected"
$Gender

[1] "Male" "Female"

$Dept
[1] IIAH llBH HC" IIDII IIE" IIFH

Finally while we explore around this table, here is the table for department A:

> UCBAdmissions[, , "A"] # Equivalent to UCBAdmissions/[, , 1]
Gender

Admit Male Female

Admitted 512 89

Rejected 313 19

To get a mosaic plot, type

mosaicplot (UCBAdmissions, color=TRUE)

For a direct comparison between male and female admission rates, it is helpful to permute the
dimensions:

mosaicplot (aperm (UCBAdmissions, c(2,1,3)), color=TRUE)

Note also the functionmosaic(), from the ved package.

5.9 Regular Graphics Functions — Additional Points
The variety of R graphics functions

For other plotting possibilities, look under the help for the functions hist (), coplot(), contour(),
filled.contour (), image(), etc. Use of example () with these functions gives some impressive plots.
Functions that handle smoothing and density estimation can be useful adjuncts to the graphics
functions. These include lowess() and density() and scatter.smooth(), and bkde2D() in the
KernSmooth package.
Additionally, there are several specialist graphics packages. Assuming that it is installed, examine
the help information for the package scatterplot3d.

Plots with Large Numbers of Points

When the number of points is large, such standard forms of presentation as scatterplots can be
problematic. Graphs may appear as a dense uninformative mass of black ink. The graphics files may
be so large that they take an inordinate time to print. There are ways to address these issues, but
they require the use of a different form of graphic.

Histograms, density curves and boxplots present highly summarized information. The density of
points on the graph is small, so that there should not be a problem. Normal probability plots can be
problematic, because they try to present each point individually. The central part of the plot, e.g., in
the region where points overlap, might, in most instances be replaced by a curve through the data.
There need not be any loss of visual information.
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For two-dimensional data, one approach is to use a two-dimensional analogue of a density plot.
The function bkde2D () in the KernSmooth package may be used. Here is an example of its use. We
take the range of each of the variables to be about a tenth of the range of the data:

library (KernSmooth)

attach (mouse.lratio)

M13 <- bkde2D(na.omit(M[,c(1,3)]), bandwidth=c(1,1))
attach(M13)

filled.contour (x1,x2,fhat, xlab="Slide 1", ylab="Slide 3")
detach (M13)

detach (mouse.lratio)

Inclusion of Graphs in Other Documents

Both on PC and Mac systems, writing to a pdf file that is then included in a latex document, or
directly inserted into a pdf file, gives a high quality result.

Graphs do not, for some reason, import well from the clipboard into Word on the Macintosh under
OS X. I have used png() to write to a file that is then inserted as a picture. I have left width and
height at their defaults, except when the shape of the graph sheet needs to be changed. I have mostly
used pointsize=18 or pointsize=16. Within Word, graphs are then shrunk to the requisite size.

5.10 Exercises

1. The data set LakeHuron (datasets package) has mean July average water surface elevations, in
feet, IGLD (1955) for Harbor Beach, Michigan, on Lake Huron, Station 5014, for 1875-1972.
Use the following to create a data frame that has the same information:

huron <- data.frame(year=as.vector (time(LakeHuron)),
mean.height=LakeHuron)

a) Plot mean.height against year.

b) Use the identify function to determine which years correspond to the lowest and highest mean
levels. That is, type

identify (huron$year, huron$mean.height, labels=huron$year)

and use the left mouse button to click on the lowest point and highest point on the plot. To
quit, press both mouse buttons simultaneously.

c¢) As in the case of many time series, the mean levels are correlated from year to year. To see
how each year’s mean level is related to the previous year’s mean level, use

lag.plot (huron$mean.height)

This plots the mean level at year i against the mean level at year i-1.

d) Now explain why the following code achieves the same effect:

plot (LakeHuron)
identify (LakeHuron, labels=time (LakeHuron))

2. Check the distributions of head lengths (hdlngth) in the possum data set. Compare the following
forms of display:

a) a histogram (hist (possum$hdlngth));
b) a stem and leaf plot (stem(qgnorm(possum$hdlngth));
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¢) a normal probability plot (qgnorm(possum$hdlngth)); and
d) a density plot (plot(density(possum$hdlngth)).
What are the advantages and disadvantages of these different forms of display?

3. Use mfrow() to set up the layout for a 3 by 4 array of plots. In the top 4 rows, show normal
probability plots for four separate ‘random’ samples of size 10, all from a normal distribution.
In the middle 4 rows, display plots for samples of size 100. In the bottom four rows, display

plots for samples of size 1000. Comment on how the appearance of the plots changes as the
sample size changes.

4. The function runif () can be used to generate a sample from a uniform distribution, by default
on the interval 0 to 1. Try x <- runif (10), and print out the numbers you get. Then repeat
exercise 6 above, but taking samples from a uniform distribution rather than from a normal
distribution. What shape do the points follow?

5. Repeat exercise 4, but for other distributions. For example x <- rchisq(10,1) will generate
10 random values from a chi-squared distribution with degrees of freedom 1. The statement x
<- rt(10,1) will generate 10 random values from a t distribution with degrees of freedom one.
Make normal probability plots for samples of various sizes from these distributions.

6. For the first two columns of the data frame hills, examine the distribution using:

(a) histograms

(b) density plots

(¢) normal probability plots.

Repeat (a), (b) and (c), now working with the logarithms of the data values.

7. The following data gives milk volume (g/day) for smoking and nonsmoking mothersﬂ
Smoking Mothers: 621, 793, 593, 545, 753, 655, 895, 767, 714, 598, 693
Nonsmoking Mothers: 947, 945, 1086, 1202, 973, 981, 930, 745, 903, 899, 961
Present the data (i) in side by side boxplots; (ii) using a dotplot form of display.

8. The frame airquality that is in the base package has columns Ozone, Solar.R, Wind, Temp,

Month and Day. Plot Ozone against Solar.R for each of three temperature ranges, and each of
three wind ranges.

5Data are from the paper “Smoking During Pregnancy and Lactation and Tts Effects on Breast Milk Volume” (Amer.
J. of Clinical Nutrition).
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6 Lattice Graphics

Lattice Lattice is a flavour of trellis graphics (cf the earlier S-PLUS flavour)

Grid grid is the low-level graphics system on which lattice is built.

Part IT of Paul Murrell’s R Graphics has an accessible introduction to grid.

Lattice vs base Lattice graphics is more structured, automated and stylized.

Lattice syntax  Lattice type graphics formulae are mandatory for lattice plots, e.g.,
xyplot(csoa ~ it | sex * agegp, groups = target, data = tinting)
csoa ~ 1it: Plot csoa vs it
| sex * agegp: Condition on sex * agegp,

(a different panel for each combination of sex and agegp)
groups: Within each panel, group by levels (Locon, hicon) of target
auto.key Use auto.key for a basic key to the group labeling (groups parameter).

Lattice (trellis) graphics allow the use of the layout on the page to reflect meaningful aspects of
data structure. They offer abilities similar to those in the S-PLUS trellis package.

6.1 Panels of Scatterplots — Examples of the Use of xyplot()

The basic function for drawing panels of scatterplots is xyplot (). We will use the data frame tinting
(supplied) to demonstrate its use. These data are from an experiment that investigated the effects
of tinting of car windows on visual performanceﬂ The authors were mainly interested in visual
recognition tasks that would be performed when looking through side windows.

In this data frame, csoa (critical stimulus onset asynchrony, i.e. the time in milliseconds required
to recognise an alphanumeric target), it (inspection time, i. e. the time required for a simple
discrimination task) and age are variables, tint (level of tinting: no, lo, hi) and target (contrast:
locon, hicon) are ordered factors, sex (1 = male, 2 = female) and agegp (1 = younger, in the early
20s; 2 = an older participant, in the early 70s) are factors. Attaching the DAAG package makes these
data available:

library (DAAG)

A simple graph, that does not distinguish the two different targets, can be obtained with:

xyplot (csoa”it|sex*agegp, data=tinting)

Figure shows a graph that makes more extensive use of the function’s abilities, using differ-
ent symbols (and, if available, different colors) for different targets. It uses the parameter setting
auto.key=list (columns=2) to obtain a simple key. (Setting columns=2 places the two key items in
separate columns, i.e., side by side rather than in a single column.) The code is:

xyplot (csoa”it|sex*agegp, data=tinting,
auto.key=1list (columns=2), groups=target)

Setting groups=target automatically invokes the use of panel.superpose. If the device supports
color, different colors are by default used for the different groups.

A striking feature is that the very high values, for both csoa and it, occur only for elderly males.
It is apparent that the long response times for some of the elderly males occur, as we might have
expected, with the low contrast target. The following puts smooth curves through the data, separately
for the two target types:

xyplot (csoa”it|sex*xagegp, data=tinting,
groups=target, auto.key=1list(columns=3),
type=c("p","smooth"))

6Data relate to the paper: Burns, N. R., Nettlebeck, T., White, M. and Willson, J. 1999. Effects of car
window tinting on visual performance: a comparison of elderly and young drivers. Ergonomics 42: 428-443.
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The relationship between csoa and it seems much the same for both levels of contrast.
The following plot uses different symbols (in black and white) or different colours for different
levels of tinting. The longest times are for the high level of tinting.

xyplot (csoa ~ it|sex*agegp, data=tinting, groups=tint,
auto.key=1list (columns=3))

6.2 Annotation — the auto.key, key and legend arguments

For a key is required that identifies the colours, plotting symbols and names for the groups, the
easiest mechanism is to use the setting auto.key=TRUE. For greater flexibility, auto.key can be a list.
Settings that are often useful are:

e x and y, where these are coordinates with respect to the whole display area, together with
corner, which is one of c(0,0) (bottom left corner of legend), c(1,0), c(1,1) and c(0,1).

e space: one of "above", "below", "left", "right".
e points, lines: in each case set to TRUE or FALSE. columns: number of columns of keys.

Colours, plotting symbols, line type are then taken from the trellis settings for the device used. Unless
text is supplied as a parameter, levels (groups) provides the legends.

Alternatives are to supply a list of arguments to the parameter key, or to use the argument
key=simpleKey (). If key is supplied as a list, at least one of lines, points and text must be
supplied. Arguments to simpleKey() are the names of list elements when auto.key is used. When
the parameter key is supplied, arguments that are not otherwise specified use the trellis settings that
were in place when the trellis object was created.

See help(xyplot) for further details.

6.3 Trellis settings

To ensure that changes from defaults affect both the graph and the legend, they can be made by
using the function trellis.par.set(), which changes the default settings for the current device.
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Alternatively, the settings can be specified in the par.settings argument to the trellis function. To
find what settings might be changed, type:

> names (trellis.par.get())

[1] "fontsize" "background" "clip"

[4] "add.line" "add.text" "bar.fill"

[7] "box.dot" "box.rectangle" "box .umbrella"
[10] "dot.line" "dot .symbol" "plot.line"

[13] "plot.symbol" "reference.line" "strip.background"
[16] "strip.shingle" "superpose.line" "regions"
[19] "shade.colors" "superpose.symbol" "axis.line"
[22] "axis.text" "box .34" "par.xlab.text"
[25] "par.ylab.text" "par.zlab.text" "par.main.text"

[28] "par.sub.text"

The settings that are of interest can then be inspected individually. When groups=TRUE, settings
for the symbols are controlled by the superpose.symbol list item, and for lines by the superpose.line
list item. Inspection of the settings for superpose.symbol gives:

> trellis.par.get("superpose.symbol")
$cex
[1] 0.8 0.8 0.8 0.8 0.8 0.8 0.8

$col
[1] "grey" "steelblue" "black"

$font
[1] 111 1111

$pch
[1] 16 16 16

For superpose.line, the list elements are col, 1ty and 1lwd. The superpose.line settings apply
when a line is used to join the points (specify type="1"), or a smooth curve is passed through them
(specify type=c("p", ‘‘smooth’’) to get points, with a smooth curve added).

6.4 An example

The code that now follows uses the parameter par.settings to make changes to these settings. It
adds smooth curves, and includes information about the line type and color in the legend. Figure
shows the result:

trellis.device ()

xyplot (csoa ~ it|sex*agegp, data=tinting,
par.settings=1ist (superpose.symbol=1list(col=c("gray","gray","black"),

pch=c(1,16,16)),
superpose.line=1list (col=c("grey", "gray", "black"),
lty=c(1,2,4), 1lwd=c(2,2,1))),
groups=tint, type=c("p","smooth"), span=0.9,
auto.key=1list (columns=3, lines=TRUE))
# The parameter "span'" controls the extent of smoothing.

The different levels of tinting (o=no, +=low, >=high) are shown with different symbols. Annotation
is now included on the plot. Smooth curves are fitted, one for each level of tinting.
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6.5 Lattice Style Stripplots and Boxplots

The following stripplot (for the cuckoos data set is from DAAG) has a different ‘strip’ for each different
host species:

## The two lines that follow ensure display of the species name

levnam <- strsplit(levels(cuckoos$species), "\\.")

levels (cuckoos$species) <- sapply(levnam, paste, collapse="")

stripplot (species ~ length, xlab="Length of egg", aspect=0.5,
data=cuckoos)

Compare the above with a boxplot form of presentation

## NB. The lattice function %s bwplot ()
bwplot (species ~ length, xlab="Length of egg", data=cuckoos)

The aspect argument determines the ratio of distance in the y-direction to distance in the x-direction.

Inclusion of lattice graphics functions in user functions

The function xyplot() does not itself print the graph. Instead, it returns an object of class trellis
which, if the statement is typed on the command line, is then “printed” by the function print.trellis().
Thus, typing

xyplot(csoa ~ it | sex * agegp, data=tinting)
on the command line is equivalent to

print (xyplot (csoa ~ it | sex * age