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plot(1:6, rep(4.5, 6), cex=1:6, col=1:6, pch=0:5,

xlim=c(1, 6.5), ylim=c(0,5.4), xlab="", ylab="")

a b c d e f
abc <− c("a", "b", "c", "d", "e", "f")

text(1:6,rep(3.25, 6), labels=abc, cex=1:6, col=1:6)

● ●

0 1 2 3 4 5 6 7 8 9 10 11 12

plotchars <− 0:12

points((1:13)*0.48, rep(1.5,13), pch=plotchars)

text((1:13)*0.48, rep(1.75,13), paste(plotchars), pos=1, cex=0.75)

● ● ● ● ●

13 14 15 16 17 18 19 20 21 22 23 24 25

plotchars <− 13:25

## Now rerun the previous two lines of code
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Chapter 1

Introduction

Note the following web sites:

CRAN (Comprehensive R Archive Network): http://cran.r-project.org
To obtain R and associated packages, use the nearest mirror.
http://mirror.aarnet.edu.au/pub/CRAN or http://cran.ms.unimelb.edu.au/.
R homepage: http://www.r-project.org/

For other useful web pages, click on the menu item R help
& look under Resources on the browser window that pops up.

1.1 Commentary on R

General

R runs on many types of system – Windows, Mac, Unix and Linux. It is free. Obtain it from a CRAN
site (see above). It has extensive graphical abilities that are tightly linked with its analytic abilities.
Much of the power of R for statistical analysis and for specialist graphics comes from the extensive
enhancements that the packages build on top of the base system.

Other points are:

Although now relatively mature, the system gets continuing scrutiny, with improvements and
enhancements appearing with each new release, i.e., every few months.

The R code that is in the base system and in the recommended packages gets unusually careful
scrutiny. Nevertheless, there are traps. Take particular care with newer abilities, which may
not have been much tested in regular use. Note also that some of the contributed packages may
not have been much tested, except by their developers. [Such warnings apply, of course to any
statistical system.]

Though not perfect in this respect (!), the system has been developed with a keen regard to
notions of good statistical practice.

Users should expect to encounter demands to improve their statistical knowledge, in order to
use R effectively. The R community expects users to be serious about data analysis, to want
more than a quick cook-book fix!

At this time, R primarily serves two groups: statistical and allied professionals who wish to
develop or require access to cutting edge tools, and working scientists who have such substantial
and continuing data analysis problems that they justify time spent in the mastery of R.

7
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8 CHAPTER 1. INTRODUCTION

Getting help

Although there is no official support for R, the r-help mailing list serves as an informal support network
that can be highly effective. Details of this and other lists are on the home page for the R project:
http://www.r-project.org. Be sure to check the available documentation before posting to r-help.
Archives are available that can be searched for questions that have been previously answered.

Use of an editor as a run-time environment

The Windows implementation, and the Cocoa based GUI for Mac OS X, now offer a simple script
editor that has a Run Line or Selection feature. There are various editors and associated interfaces to
R that allow editing of code, again offering a single click Run Line or Selection. On Windows systems,
the Tinn-R editor (http://www.sciviews.org/Tinn-R/) is an excellent option. ESS (Emacs Speaks
Statistics), now fully operational for Windows as well as for Unix, is attractive for users who relish
the power of the Emacs editor.

The development model, and development strategies

The R system uses an open source development model that is broadly similar to that of Linux.1 Its
developer skill base is impressive.

Better than duplicating abilities that are handled well in other systems is, often, the provision of
interfaces into those systems. Systems for which there are interfaces to R include Python, SQL and
other databases, parallel computing using MPI, and Excel using the DCOM software.

Unifying ideas

Generic functions for common tasks – print, summary, plot, etc. (the Object-oriented idea; do
what that “class” of object requires)

Formulae, for specifying graphs, models and tables.

Expressions can be:

evaluated (of course)

printed on a graph (come to think of it, why not?)

Language structures can be manipulated, just like any other object (Manipulate formulae, ex-
pressions, argument lists for functions, . . . )

Trellis (lattice) graphics – graphs whose layout reflects data structure

There are many unifying computational features, e.g.

Any ‘linear’ model (lm, lme, etc) can use spline basis functions to fit spline terms. This
extends to any other system of basis functions.

These ideas are not uniformly implemented right through R, reflecting the incremental manner in
which R has developed.

Retrospect, prospect and alternatives to R

Ross Ihaka and Robert Gentleman, both at that time from the University of Auckland, developed
the initial version of R, for use in teaching tool. It implements a dialect of the S language that
was developed at AT&T Bell Laboratories for use as a general purpose scientific language, but with

1Observe that, whereas Linux competes in the shadow of Microsoft, R is not obviously in the shadow of any other
system!

http://www.r-project.org
http://www.sciviews.org/Tinn-R/
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especial strengths in data manipulation, graphical presentation and statistical analysis. Since mid-
1997, development has been overseen by a ‘core team’ of about a dozen people, drawn from many
different institutions worldwide.

The commercial S-PLUS implementation of S had popularized the use of S as a language for
scientific and statistical computation, and for graphics. The S language had, in the two decades up to
2000, a large user base among professionals and others. The R system tapped into this existing large
user base. There were a number of roughly comparable systems – including Matlab, Scilab, Gauss,
Python and Lisp-Stat – that might potentially have supplanted R. However these had much smaller
existing bases in the institutions and groups that in due course drove the development of R. Note
however the popularity of Matlab in the signal and image processing community.

Although with a syntax that looks superficially like that of C, the implementation of R has been
heavily influenced by LISP. The R interpreter uses a model that is based on the Scheme dialect
of LISP. Luke Tierney, and several others who had previously had a heavy involvement with Luke
Tierney’s Lisp-Stat system, are now actively involved in the ongoing development of R. See Tierney
(2005), and other papers in the same volume of the Journal of Statistical Software

With the release of version 1.0 in early 2000, R became a serious tool for professional use. Since
that time, the pace of development has been frenetic, with a new package appearing every week or
two. There are now more than 800 packages available through the CRAN (Comprehensive R Archive
Network) sites. Books that were specifically devoted to R began to appear in 2002.

Novice users will notice small but occasionally important differences between R and S-PLUS.
Writers of substantial functions and (especially) packages will find larger differences. R’s packages are
now more wide-ranging in scope as S-PLUS libraries. Some specialised S-PLUS abilities may not be
available in R or in R packages.

The R project has shown what is possible when experts in statistical computing work co-operatively
to push boundaries. Its language model is however now somewhat dated. Discussion on what might lie
beyond R has not so far led to the wide canvassing of proposals for replacing or radically revamping
R. Progress is likely to be evolutionary, building on and extending present abilities and high level
R language constructs. Details of the underlying computer impementation will inevitably change,
perhaps at some point radically.

Data set size, and databases

R’s evolving technical design has allowed it, taking advantage of advances in computing hardware, to
steadily improve its handling of large data sets. An important step was the move, with the release
of version 1.2, to a dynamic memory model. The flexibility of R’s memory model does however have
a cost for some computations, relative to systems that are highly efficient in the processing of data
from file to file. The difference in cost may however be small or non-existent for systems that have a
64-bit address space.

The R system’s limited database abilities are unlikely, at present, to be much extended. Instead,
the emphasis is on extending and improving connections into widely used database systems.

The statistics of data collection

The scientific context, which includes available statistical methodology, has crucial implications for the
experiments that it is useful to do, and for the analyses that are meaningful. There are, in addition,
constraints and opportunities that arise from computing software and hardware.

Statistics of data collection encompasses statistical experimental design, sampling design, and
more besides. At base, the same issues arise in field, industrial, medical, biological and laboratory
experimentation. The aim, as always, is to get maximum value from the use of all resources. The
planning that is required will be most effective if based on sound knowledge of the materials and
procedures used by experimenters. As we learn more about these issues, we gain the knowledge
needed to design better experiments.
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1.2 Installation of R and of R Packages

R & R Packages

First download and install R from a CRAN site, e.g.
http://ftp.sunet.se/pub/lang/CRAN/ or http://cran.dk.r-project.org/
Under Windows & the MacOS X, use the relevant menu item, to install packages via an
internet connection. This is (usually) easier than downloading, then installing.

Note the CRAN task views, which may help in locating packages.

Use binaries if available.

Versions of R are available, at no cost, for Windows 95 and later versions of Microsoft Windows
for Linux, for Unix and for Macintosh systems 8.6 or later. It is available through the Comprehensive
R Archive Network (CRAN).

Installation details vary between operating systems. A fresh install is typically required to take
advantage of new major releases (e.g. moving from a 2.4 series release to a 2.5 series release) when
they appear. For working through these notes, version 2.4.0 or later should be installed.

Once R has been installed, functions are available that will, from within R, install additional
packages or update packages that are already installed, via an internet connection. Packages that will
be used in these notes, and that are not included in the R binaries, include DAAG and DAAGxtras.

Help for installation under windows

Windows users will find a great deal of helpful information on the web page
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/installation.html

1.3 Documentation

Official Documentation: Users who are working through these notes on their own should have
available for reference the document
“An Introduction to R”, written by the R Development Core Team. To download an up-to-date copy,
go to CRAN.

Web-based Documentation: See Documentation on the web page http://www.r-project.org

Note the R Wiki (http://wiki.r-project.org/rwiki/doku.php) and the extensive collection of
help information that is listed under Other (http://www.r-project.org/other-docs.html).

For examples of R graphs, see http://addictedtor.free.fr/graphiques/.

R News: Successive issues of R News contain much useful information. These can be copied down
from one of the CRAN sites.

Contributed Documentation: There is an extensive collection of user-written documents on R
that can be accessed by going to this same mirror site, and clicking (under Documentation) on
Contributed. See also the links that John Fox gives on the web page for his book that is noted
under the reference for his book.

Books: Section B.1 includes references to a number of books. Recently, a number of new books on R
have appeared. See http://www.R-project.org/doc/bib/R.bib for a list that is updated regularly.

http://ftp.sunet.se/pub/lang/CRAN/
http://cran.dk.r-project.org/
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/installation.html
http://www.r-project.org
http://wiki.r-project.org/rwiki/doku.php
http://www.r-project.org/other-docs.html
http://addictedtor.free.fr/graphiques/
http://www.R-project.org/doc/bib/R.bib


Chapter 2

An Overview of R

Command Enter commands following the prompt, e.g.
prompt (>) > 2 + 2 # Calculate 2 + 2

Quitting To quit from R type
q() # NB q(), not q

Case matters volume is different from Volume

Assignment The assignment symbol is <-, e.g.
volume <- c(351, 955, 662, 1203, 557)
# Store the column of numbers in volume
# c = concatenate

Help Use it often. For example
help() # Describe the use of help()
help(plot) # help on the plot function

Other topics Simple arithmetic operations; simple plots.

2.1 Use of the console (i.e., command line) window

The command line prompt, i.e. the >, is an invitation to start entering commands. For example, type
2+2 and press the Enter key. The following appears on the screen:

> 2+2
[1] 4
>

The result is 4. The [1] says, a little strangely, “first requested element will follow”. Here, there
is just one element. The > indicates that R is ready for another command.

The exit or quit command is

> q()

Depending on the platform, alternatives may be to click on the File menu and then on Exit, or to
click on the X in the top right hand corner of the R window. There will be a message asking whether
to save the workspace image. Clicking Yes (the safe option) will save the objects that remain in the
workspace – any that were there at the start of the session and any that have been added since.

Commands may continue over more than one line. By default, the continuation prompt is
+

As with the > prompt, this is generated by R. Any attempt to include it in the code that is entered
will generate an error!

11
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For the names of R objects or commands, case is significant. Thus Myr (millions of years) is
different from myr. (Myr is a column in the data frame molclock, used in Exercises 1 and 2 in Section
4.10).

For file names on Windows systems, the Microsoft Windows conventions apply, and case does not
distinguish file names. On Unix systems (the Mac OS X version of Unix is an exception) case in file
names is significant.

Further points are:

o The quit command (“quit from the R session”) is the function call q(). Typing q on its own,
without the parentheses, displays the text of the function on the screen.

o Multiple commands may appear on a line, with the semicolon (;) as the separator.

o The # symbol indicates that what follows, on that line, is comment.

Practice with R commands

Try the following

1:5 # The numbers 1, 2, 3, 4, 5

mean (1:5)
sum (1:5) # Apply the sum function to the

# the vector of numbers 1, 2, 3, 4, 5

(2:5)^10 # 2 to the power of 10, 3 to the power of 10, ...

log2(c(0.5, 1, 2, 4, 8)) # Values that differ by a factor of 2

# are , on this scale , one unit apart.

The R language has the abilities for evaluating arithmetic and logical expressions that are available
in most languages. It uses functions to extend these basic arithmetic and logical abilities.

2.2 Demonstrations

There are a number of demonstrations that give useful indications of R’s abilities, especially for
graphics. To get a list of available demonstration, type:

demo()

Visually interesting demonstrations are:

demo(image)
demo(graphics)
demo(persp)
demo(plotmath) # Mathematical symbols can be visually interesting

library(lattice)
demo(lattice) # Demonstrates lattice graphics

Especially for demo(lattice), it pays to stretch the graphics window to cover a substantial part of
the screen. Place the cursor on the lower right corner of the graphics window, hold down the left
mouse button, and pull.

Try also

demo(package = .packages(all.available = TRUE))

Also interesting is:

library(vcd) # The vcd package must of course be installed.

demo(mosaic)
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Examples that are included on help pages

Additionally, note that most R functions have examples on their help pages. To run all the examples
that are provided for plot(), type:

example(plot)

You’ll need to press the Enter key to show the first plot and to move from one plot to the next.

2.3 A Short R Session

We will work with the data set shown in Table 2.1:

Volume (mm3) Weight (g) type
Aird’s Guide to Sydney 351.00 250.00 Guide

Moon’s Australia handbook 955.00 840.00 Guide
Explore Australia Road Atlas 662.00 550.00 Roadmaps

Australian Motoring Guide 1203.00 1360.00 Roadmaps
Penguin Touring Atlas 557.00 640.00 Roadmaps
Canberra - The Guide 460.00 420.00 Guide

Table 2.1: Weights and volumes, for six Australian travel books.

Entry of vector elements from the command line

Data may be entered from the command line, thus:

volume <- c(351, 955, 662, 1203, 557, 460)
weight <- c(250, 840, 550, 1360, 640, 420)

Now enter the descriptions:

description <- c("Aird ' s Guide to Sydney", "Moon ' s Australia handbook",
"Explore Australia Road Atlas", "Australian Motoring Guide",
"Penguin Touring Atlas", "Canberra - The Guide")

Notes:

• The assignment symbol is <-

• Read the symbol c as “concatenate”. The function c() joins elements together into a vector.
(For volume and weight the elements were numbers, while for description the elements were
text strings.)

• Typing the name of an object causes the printing of its contents. Try typing volume. This
applies to functions as well as data objects. For example, try typing q, or mean.

Operations with vectors

Here are the values of volume

> volume
[1] 351 955 662 1203 557 460
>

Here are various arithmetic operations:
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> # Final element of volume

> volume [6]
[1] 460
> ## Ratio of weight to volume , i.e., density

> round(weight/volume ,2)
[1] 0.71 0.88 0.83 1.13 1.15 0.91

Notice the use of # to preface the comment, causing it to be ignored by the command line interpreter.

A simple plot
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Figure 2.1: Weight versus volume, for six Australian travel books.

## Code

plot(weight ~ volume , pch=16, cex =1.5)
# pch =16: use solid blob as plot symbol

# cex =1.5: point size is 1.5 times default

## Alternative

plot(volume , weight , pch=16, cex =1.5)

Figure 2.1 plots weight against volume, for the six Australian travel books. The argument
weight ~ volume is a graphics formula. The “formulae” that are used in specifying models, and
in the functions xtabs() and unstack(), take a similar form.

The axes can be labeled:

plot(weight ~ volume , pch=16, cex=1.5, xlab="Volume (cubic mm)",
ylab="Weight (g)")

Labeling of the points (e.g., with the species names) can be done interactively, with the identify()
command. Type:

identify(weight ~ volume , labels=description)

Then click the left mouse button above or below a point, or on the left or right, depending on where
you wish the label to appear. Repeat for as many points as you want labelled.

Depending on the computer system, either click outside the graphics area to terminate the labelling,
or click the right mouse button outside the figure area.

Alternatively, use text() to place labels on all the points.

There are extensive abilities that may be used to control the formatting and layout of plots, and
to add features such as special symbols, fitted lines and curves, annotation (including mathematical
annotation), colors and so on. A later chapter (Chapter 5) is devoted to graphics.
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2.4 Data frames – Grouping together columns of data

Data Frames

Data frames Data frames are the preferred way to make data available to modeling functions.

Creating 1: Enter from the command line,
data frames 2: Use read.table() to input from a file.

Columns of travelbooks$weight or travelbooks[, "weight"] or travelbooks[, 4]
data frames Use the data parameter, if available, in a function call

Use attach(), e.g., attach(travelbooks)
Use with(), e.g. with(travelbooks, plot(weight volume))

The following demonstrates the use of a data frame to group together, under the name travel-
books, the several columns of Table 1.

## NB, the row names will now be shortened

travelbooks <- data.frame(
thickness = c(1.3, 3.9, 1.2, 2, 0.6, 1.5),
width = c(11.3, 13.1, 20, 21.1, 25.8, 13.1),
height = c(23.9, 18.7, 27.6, 28.5, 36, 23.4),
weight = weight , # Include values of weight , entered earlier

volume = volume , # Include values of volume , entered earlier

type = c("Guide", "Guide", "Roadmaps", "Roadmaps", "Roadmaps", "Guide"),
row.names = description

)
## Remove objects that are not now needed.

rm(volume , weight , description)

The vectors volume, weight and description had already been entered, and it was not necessary to
re-enter them. It is a matter of convenience whether the description information is used to label the
rows, or alternatively placed in a column of the data frame.

It is much tidier to have matched columns of data grouped together into a data frame, rather than
stored as separate objects in the workspace.

Accessing the columns of data frames

The following all refer directly to the name of the data frame:

travelbooks[, 4]
travelbooks[, "weight"]
travelbooks$weight
travelbooks [["weight"]] # This treats the data frame as a list.

However there are several mechanisms that avoid repeated reference to the name of the data frame.
The following all plot weight against volume:

## 1: Use the data parameter in the function call

plot( weight ~ volume , data=travelbooks)
#

## 2: Use attach () to include the column names in the search list

attach(travelbooks)
plot( weight ~ volume)
detach(travelbooks) # Detach when no longer required

#

## 3: Use with (); attaches for the duration of the statement

with(travelbooks , plot(weight ~ volume ))
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Approaches 2 and 3 are always available. Most, but not all, plotting and modeling functions accept
a data argument.

2.4.1 Input of Data

We will input the data in Table 2.1 For input into data frames, the most important function is
read.table(). We will input the data in Table 2.1. For present purposes, we can use a shortcut to
place this file in the working directory.1

The first two lines (column headings and first row of data) are:

thickness width height weight volume type

Aird’s Guide to Sydney 1.30 11.30 23.90 250 351 Guide
. . .

Notice that the first column has no header information.
We first store the file in the working directory, using the shortcut noted above:

## Place the file in the working directory

library(DAAGxtras) # DAAGxtras has the needed function

dataFile("travelbooks") # Place file in directory

file.show("travelbooks.txt") # Display travelbooks.txt

These data can be read in thus:

## Now read the file in

travelbooks <- read.table("travelbooks.txt")
# Row 1 of the file gives column names. Column 1 gives row names

The following is safer and more explicit

# Explicitly specify details of header and row name information

travelbooks <- read.table("travelbooks.txt", header=TRUE , row.names =1)

The object travelbooks to which data are assigned is a data frame. Data frames are pervasive
in R. Most datasets that are included with R packages are supplied as data frames.

This data frame has column and row names. The first seven columns are numeric. The final
column is stored as a factor. For now, it can be thought of as a character vector. There are various
ways to access the columns.

2.5 Help, and examples

Help, & examples

Help Note help(), help.search(), apropos(), and help.start()

help.start() Opens a browser interface to the help system.

Examples example(plot); examples from the help page for plot

All built-in functions have help files, which can be accessed using the help() command. Try typing

help(help) # Get help on help()

help(mean)

Often, a good way to learn how to use a function is to run the examples that are included in the
help file. The function example() checks the help page for examples, and runs them. Be warned that

1The shortcut is in the package DAAGxtras, which must be installed.
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the examples for relatively simple functions can be non-trivial. Or they may be extensive. By default,
example() invokes par(ask=TRUE) before

example(mean)
example(lowess) # Fit a smooth curve to scatterplot data

example(image)
example(contour)
example(filled.contour)
par(ask=FALSE) # From here on, plot without asking

Typically, several examples will run one after the other. The code appears on the screen. To re-run
an example, look on the screen for the code that was used, and copy or type it following the command
line prompt. The examples sometimes illustrate technical details that may puzzle novices.

Use help.search() to look for functions that include a specific word in their alias or title. For
example, in order to look for a function for bar plots, try

help.search("bar")

This draws attention to the function barplot(). As a first step in investigating the function, try

example(barplot)
par(ask=FALSE)

Several of fhe examples focus on sophisticated barplot abilities. Finally, type in help(barplot), and
read the information on the help page.

The function apropos() lists all functions (or other R objects) whose names include the text string
that is given as the function argument. For example

> apropos("str")
[1] "R.version.string" "ls.str" "lsf.str"
[4] "str" "str.POSIXt" "str.data.frame"
[7] "str.default" "str.logLik" "strftime"
[10] "strheight" "stripchart" "strptime"
[13] "strsplit" "structure" "strwidth"
[16] "strwrap" "substr" "substr <-"
[19] "substring" "substring <-"
>

Finally, note that help.start() should start a browser window that gives access to a variety of
help information and documentation.

Vignettes

Vignettes are pdf documents that describe the abilities in packages for R. To get a list of vignettes in
all installed packages type:

vignette ()

To get a name(s) of vignette(s), if any, for specific packages, type, e.g.:

vignette(package="graph")
vignette(package="e1071") # e701 includes functions for

# Support Vector Machines (SVMs)

vignette(package="mcmc") # Markov Chain Monte Carlo

The package graph has two vignettes, clusterGraph and graph, the package e1071 has the
vignette svmdoc, the package mcmc has the vignette demo. To use the default pdf viewer to display
a specific vignette, type, e.g.:

vignette("graph") # Equivalent to vignette(topic="graph")
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2.6 Summary

One use of R is as a calculator, to evaluate arithmetic expressions. Calculations can be carried
out in parallel, across all elements of a vector at once.

Use q() to quit from R. If newly created objects are to be retained, save the workspace upon
quitting.

Useful help functions are help() (for getting information on a known function), help.search()
(for searching for a word that is used in the header for the help file), and apropos() (for
identifying functions that include a particular text string as part of their names). Note also the
use of help.start(), to start a browser window from which R help information can be accessed.



Chapter 3

The Working Environment of an R
Session

The Working Environment:

Working R will by default read files from this directory,
directory or write files to it

Object Any data structure or function that R recognizes is an “object”
Functions, as well as data, exist as “objects”
Note also, e.g., formula objects, expression objects, . . .

Workspace This is the user’s “database”. It holds objects that the
user can modify or delete, or to which the user can add.
Use ls() to list contents of current workspace.

Image files Use to store R objects, e.g., workspace contents.
(The expected file extension is .RData or .rda)

save.image() Use to store or back up workspace. Use frequently!
Alternatively, use the relevant menu item.

Search Use search() to list the “databases” where R searches for objects.
list Note the use of library() and attach() to extend the search path.

3.1 The Working Directory and the Workspace

The working directory is the directory in which R by default looks for user files, and saves files that
the user outputs. It pays to have a separate working directory, and associated workspace, for each
major project.

The workspace holds, during the current session, objects that have been created or brought in by
the user.

Files that belong to the R system are by default placed somewhere that is (usually) sensible.
Novice users should not need to concern themselves with the details.

Listing Workspace Contents

To see a list of the objects or of selected objects that are in the workspace, type a command such as
the following:

> ls()
[1] "volume" "weight"
> ls(pattern="^w")

19
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[1] "weight"

Cautious users will from time to time save (back up) the current workspace image. The command
save.image()) saves everything in the workspace, by default into a file named .RData in the working
directory. Or, depending on the implementation, clicking on the relevant menu item will save an image
of the workspace.

Before saving the workspace, consider use of rm() to remove objects that are no longer required.
Saving the workspace image will then save everything that remains.

Upon quitting from R (type q(), or use the relevant menu item), users are asked whether they
wish to save the current workspace. The workspace is reloaded next time an R session is started in
the directory.

The workspace is at the base of a search list that gives access to packages, objects in other
directories, etc.

Setting the Working Directory

When working from a Unix or Linux command line, the working directory is the directory in which
the session is started. When an session is started by clicking on a Windows icon, the icon’s Properties
specify the Start In directory. The default choice, usually an R installation directory, is not satisfactory
for long-term use, and should be changed.

It is good practice to use a separate working directory for each different project. On Windows
systems, copy an existing R icon, rename it as desired, and change the Start In directory to the new
working directory.

It is also possible to change the working directory once a session has started. This can be done either from

the menu (if available) or from the command line. Before making such a change, be sure to save the existing

workspace, if it is to be kept. Then, once the working directory has been changed, load the new workspace.

3.2 Saving and retrieving R objects

Image files, created using save() or save.image(), may contain arbitrary R objects. One or more
objects can be saved to an image file at any time during a session. Upon quitting a session, the user
is offered the option of saving the workspace in the default image file. The following demonstrate the
explicit use of the save() and load() commands:

save(volume , weight , file="books.RData")
# Can save many objects in the same file

load("books.RData") # Recover the saved objects

The function save.image() is a variation on save() that saves the contents of the workspace, by
default in the file .RData. The contents of any .RData file in the working directory are automatically
loaded when a new session is started.

An alternative to saving the objects in an image file is to save them, in a text format, as dump
files:the above use of save() is:

dump(c("volume", "weight"), file="books.R")

The objects can be recreated from this “dump” file by inputting the lines of books.R one by one at
the command line. The following command restores both objects to the workspace:

source("books.R")

For day to day use, image .RData files are in general preferable to dump files. The same checks
are performed on dump files as if the text had been entered at the command line. These may be
unwanted, and they slow down entry of the data or other object.

For archival storage, dump (.R) files may be preferable. For added security, retain a printed
version. If a problem arises (from a system change, or because the file has been corrupted), it is then
possible to check through the file line by line to find what is wrong.
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Writing data frames to text files

Use the function write.table() to write a data frame to a text file. More generally, to save several
objects (data frames or any other R object) in the one file, use dump() (to save in a text format) or
save.image(), as noted above.

3.3 Installations, packages and sessions

Packages & the Search List

Packages Packages are collections of R functions and/or data.
(Binary R distributions include recommended packages.
Install other packages, as required, prior to their use.)

library() Use library() to attach a package, e.g., library(DAAG)
Once attached, a package is added to the search list, i.e., to the
list of “databases” that R searches for functions and/or data.

attach() Use attach() to attach data frames or image (.RData) files.
The data frame or image file is added to the search list,
usually in position 2, i.e., following the workspace (.Globalenv)

3.3.1 The architecture of an R installation – Packages

An R installation is structured as a library of packages.

• All installations should have the base packages (one of them is called base) , which provide the
superstructure for other packages.

• Binaries that are available from CRAN sites include, also, all the recommended packages.

• Other packages can be installed as required.

A number of packages are by default attached at the start of a session. Other packages can be
attached (use library()) as required. To discover which packages have been attached, enter:

sessionInfo ()

Installation of R packages

Installation from the R menu on a Windows or MacOS X system calls the function install.packages().
Alternatively, this function can be invoked directly. See help(install.packages)

The menu can also be used to install packages from local zip or (under MacOS X) .tar.gz files.
Note also download.packages() (this takes a list of package names and a destination direc-

tory, downloads the newest versions of the package sources and saves them in ‘destdir’) and up-
date.packages() (outdated packages are reported and for each outdated package the user can specify
if it should be automatically updated).

On Unix and Linux systems, the relevant gzipped tar files, once downloaded to a storage device,
can be installed using the shell command:

R CMD INSTALL <package (.tar.gz file)>
For installation of packages that are in a local directory from the command line, call install.packages()

with pkgs giving the files (with path, if necessary), and with the argument repos=NULL. If for example
the binary DAAG 0.91.zip has been downloaded to D:\tmp\, it can be installed thus

install.packages(pkgs="D:/DAAG_0.91. zip", repos=NULL)

In the R command line, be sure to replace the usual Windows backslashes by forward slashes.
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3.3.2 The search path: library() and attach()

The search path is important for determining where R looks for R objects (functions or data) that
are required in an R session, and that cannot be found in the workspace.

At any time in a session, the R system has a search path (or list) that determines where it looks
for objects. To get a snapshot of the search list, type:

> search ()
[1] ".GlobalEnv" "package:xtable" "package:MASS" "package:vcd"
[5] "package:methods" "package:stats" "package:graphics" "package:utils"
[9] "Autoloads" "package:base"

Technically, these are called“databases”. The search path is used to structure the search for R objects.
The database ”.GlobalEnv” is the user’s workspace, which is at the base of the search path. The

attach() and library() commands extend the search list.

Attachment of R packages

The use of library() to attach an R package extends the search list. The system then looks in the
package database for objects that are not in the user workspace.

If at some point (often the end of the session) the workspace is saved, and objects that were added
have not been explicitly removed, they will be saved as part of the workspace. If saved in the default
.RData image file in the working directory, the workspace will be automatically loaded when a new
session is next started in that working directory.

Use the function .path.package() to get the path of a currently attached package. By default,
this information is given for all loaded packages.

Attachment of image files

As noted earlier, the function attach() extends the search list, by simplifying access to the columns
of data frames or to the elements of lists, or by giving access to an image file that is stored somewhere.

Additionally, any R image file can be attached, either from the current working directory, or from
any other directory. For example:

attach("books.RData")

The workspace then has access to objects in the file books.RData. The file becomes a further
“database” on the search list, separate from the workspace. If however the object is modified, the
modified copy does become part of the workspace.

In order to detach such a database, proceed thus:

detach("file:books.RData")

3.4 Summary

Each R session has a working directory. This is the directory where R will by default look for
files or store files that are external to R.

User-created objects appear appear in the workspace. At the end of a session (and perhaps
from time to time during the session), an image of the workspace will typically be saved into
the working directory.

It is usually best to keep a separate workspace and associated working directory, for each major
project.
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Objects and Functions

Different types of data objects:

Vectors These collect together elements that are all of one mode.
(Possible modes are “logical”, “integer”, “numeric”,
“complex”, “character”) and “raw”)

Factors These identify categories (levels) in categorical data.
They make it easy to write down model formulae that
account for categorical effects
(Factors are very like vectors, but do not quite manage
to be vectors! Why?)

Data frame A list of columns – same length; modes may differ.

Lists Lists group together an arbitrary collection of objects
(These are recursive structures; elements of lists are lists.)

NAs The handling of NAs (missing values) can be tricky.
The R system does not keep a rigid separation between data objects and functions. For, example,

data that will be analyzed may be stored along with functions in the same object, usually a list.
We start this chapter by noting data objects that may appear as columns of a data frame.

4.1 Columns of Data, & Data Frames

Columns of a data frame must be vectors or factors. Factors will be discussed later. For now, note
that they do not quite meet the requirement to be a vector.

4.1.1 Vectors

Examples of vectors are

c(2,3,5,2,7,1)
3:10 # The numbers 3, 4,.., 10

c(TRUE , FALSE , FALSE , FALSE , TRUE , TRUE , FALSE)
c("cherry","mango","apple","prune")

As noted in Chapter 1, vectors may have mode logical, numeric or character. The first two vectors
above are numeric, the third is logical (i.e. a vector with elements of mode logical), and the fourth is
a string vector (i.e. a vector with elements of mode character).

The c in c(2, 3, 5, 7, 1) has the meaning is: “Join (concatenate) these numbers together into
a vector”. Existing vectors may supply some or all of the elements that are to be concatenated.

The missing value symbol, which is NA, can be included as an element of a vector.

23
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Subsets of Vectors

There are four common ways to extract subsets of vectors.
1. Specify the subscripts of the elements that are to be extracted, e.g.

> x <- c(3,11,8,15,12) # Assign to x the values

3, 11, 8, 15, 12
> x[c(2,4)] # Extract elements (rows) 2 and 4

[1] 11 15

Negative numbers may be used to omit elements:

> x <- c(3,11,8,15,12)
> x[-c(2,3)]
[1] 3 15 12

2. Specify a vector of logical values. The elements that are extracted are those for which the
logical value is TRUE. Thus suppose we want to extract values of x that are greater than 10.

> x>10 # This generates a vector of logical

(TRUE or FALSE)
[1] F T F T T
> x[x > 10]
[1] 11 15 12

Arithmetic relations that may be used in the extraction of subsets >=, ==, and !=. The first four
compare magnitudes, == tests for equality, and != tests for inequality.

3. For vectors of named elements, the elements may be identified by name:

> library(DAAG)
> cuckooEgglengths <- cuckoohosts [,1]
> cuckooEgglengths
[1] 22.3 23.1 22.5 22.6 23.1 21.1 22.6
>
> ## Assign names to the vector elements

> names(cuckooEgglengths) <- rownames(travelbooks)
> cuckooEgglengths
meadow pipit hedge sparrow robin wagtails

22.3 23.1 22.5 22.6
tree pipit wren yellow ammer

23.1 21.1 22.6
>
> ## Names can be used to extract elements

> cuckooEgglengths[c("hedge.sparrow", "robin", "wren")]
hedge sparrow robin wren

23.1 22.5 21.1

4. Use subset(), with the vector as the first argument, and a logical statement that identifies the
elements to be extracted as the second argument. For example:

> subset(cuckooEggLengths , cuckooEggLengths > 23)
[1] 23.10 23.10 23.05

4.1.2 Factors

Factors are column objects whose elements are integer values 1, 2, . . . , k, where k is the number of
levels. They are distinguished from integer vectors by having the class factor and a levels attribute.
They provide, in data frames, the default way to store text string information.
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The character vector c("cherry","mango","apple","prune","cherry","prune") might equally
well be stored as a factor, thus:

> fruit <- c("cherry","mango","apple","prune","cherry")
> fruitfac <- factor(fruit)
> as(fruitfac , "numeric")
[1] 2 3 1 4 2 4
> levels(fruitfac)
[1] "apple" "cherry" "mango" "prune"

Notice that, by default, the levels are taken in alphanumeric order.
Internally, the factor is stored as the integer vector 2, 3, 1, 4, 2, 4. It has stored with it the table:

1 2 3 4
"apple" "cherry" "mango" "prune"

Thus, the numeric values are codes for text strings, with information that matches the codes to a
unique set of text strings stored in the separate table.

The order can be specified. For example:

> ## Take fruit in order of stated glycemic index (15, 22, 38, 55)

> fruitfac <- factor(fruit , levels=c("prune","cherry","apple","mango"))
> levels(fruitfac)
[1] "prune" "cherry" "apple" "mango"

Changing the levels in this way can be useful where factor levels are used, as in some lattice graphs
that have one panel for each factor level, to determine the order in which plots appear.

Note that the function factor(), with the levels argument specified, can be used both to specify
the order of levels when the factor is created, or to make a later change to the order.

Incorrect spelling of the level names generates missing values, for the level that was mis-spelled.
Try:

fruitfac <- factor(fruitfac , levels=c("prune","cherry","Apple","mango"))
table(fruitfac) # The number of Apples is given as 0

In most places where the context seems to demand it, the integer levels are translated into text
strings, thus:

> fruitfac <- factor(c("cherry","mango","apple","prune","cherry"))
> fruitfac == "cherry"
[1] TRUE FALSE FALSE FALSE TRUE

Section 7.2 has detailed examples of the use of factors in model formulae and the resultant model
matrices.

Ordered factors

In addition to factors, note the existence of ordered factors, created using the function ordered().
For ordered factors, the order of levels implies a relational ordering. For example:

> windowTint <- ordered(rep(c("lo","med","hi"), 2),
levels=c("lo","med","hi"))

> windowTint
[1] lo med hi lo med hi
Levels: lo < med < hi
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4.1.3 Subsets of data frames

To extract the first three rows of the data frame travelbooks, specify travelbooks[1:3,]. For
columns 1 to 3, specify travelbooks[, 1:3]. Negative indices can be used to omit rows and/or
columns. However positive and negative indices cannot be mixed in the same vector of subscripts.

Additionally, a vector of logicals (TRUEs and FALSEs) may be used to extract rows and/or columns.
First observe that travelbooks$weight > 500 is a vector of logicals:

> travelbooks$weight > 500 ## Result is a vector of logicals

[1] FALSE TRUE TRUE TRUE TRUE FALSE

Thus, travelbooks[travelbooks$weight > 500, ] can be used to extract rows for which weight
is greater than 500. A more elegant approach is to use the function subset():

> subset(travelbooks , weight > 500)

thickness width height weight volume type

Moon ' s Australia handbook 3.9 13.1 18.7 840 955 Guide

Explore Australia Road Atlas 1.2 20.0 27.6 550 662 Roadmaps

Australian Motoring Guide 2.0 21.1 28.5 1360 1203 Roadmaps

Penguin Touring Atlas 0.6 25.8 36.0 640 557 Roadmaps

4.1.4 Data frames – Lists of Columns

Data frames are lists of columns. Columns can be vectors or vector-like objects.1 One consequence is
that use of the subscript notation to extract a row from a data frame gives a different data structure
from use of the subscript notation to extract a column. Specifically:

travelbooks$volume (or travelbooks[,"volume"] or travelbooks[,1]) is a vector.

The result of travelbooks["Canberra - The Guide", ] or travelbooks[6, ] is a data frame,
i.e., a special form of list. The syntax unlist(travelbooks[6, ]) can be used to turn such a
list into a vector.

Be careful to distinguish data frames from matrices. Data frames in which all elements have the
same mode (commonly, all numeric) are in certain restricted contexts exchangeable with matrices,
but that is not true in general. Matrices, although laid out in a rectangular format, have a vector
structure, where successive columns follow one after another. Matrices will be discussed further in
Section 4.4.

4.1.5 Inclusion of character vectors in data frames

When data frames are created, whether by use of read.table() from a file, or by an assignment on
the command line in which columns of data become columns in the data frame, character vectors are
converted into factors. Thus, the final column (type) of travelbooks became, by default, a factor.
To prevent such type conversions, specify as.is=TRUE.

Section 10.1 has furtehr information on the input of data, using read.table(), from a file.

4.2 Missing Values, Infinite Values and NaNs

Problems with missing values, infinite values and NaNs are a common reason why functions fail. An
understanding of the conventions for arithmetic with NAs will reduce the scope for unwelcome surprises.

Any arithmetic or logical operation with NA generates an NA. The consequences are more far-
reaching than might be immediately obvious. Use is.na() to test for a missing value: v

> is.na(c(1, NA, 3, 0, NA))
[1] FALSE TRUE FALSE FALSE TRUE

1Factors, which will be discussed later, are the vector-like objects that are in mind.
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An expression such as c(1, NA, 3, 0, NA) returns a vector of NAs, and cannot be used to test
for missing values.

> c(1, NA, 3, 0, NA) == NA
[1] NA NA NA NA NA

As the value is unknown, it might or might not be equal to 1, or to another NA, or to 3, or to 0.
Note that the attempt to assign values to an expression whose subscripts include missing values

generates an error.

> y <- c(1, NA, 3, 0, NA)
> y[y > 0]
[1] 1 NA 3 NA
> y[y > 0] <- c(11, 12)
Error: NAs are not allowed in subscripted assignments

It is best to ensure that NAs do not appear, when there is an assignment, in subscript expressions
on either side of the expression.

Inf and NaN

The expression log(0) returns -Inf, i.e., smaller than any real number. The expressions 0/0 and
log(-1) both return NaN.2

Identifying and processing rows that include missing values

The function na.omit() omits rows that contain one or more missing values. The argument may be
a data frame or a matrix. The function complete.cases() identifies such rows. Thus:

> test.df <- data.frame(x=c(1:2,NA), y=1:3)
> test.df
x y
1 1 1
2 2 2
3 NA 3
> complete.cases(test.df)
[1] TRUE TRUE FALSE
> na.omit(test.df)
x y
1 1 1
2 2 2

4.3 The Use of Data Frames in Correlation and Regression

The purpose here is to indicate how R uses data frames in statistical calculations, using the data in
the data frame travelbooks.

We will first add, to the data frame travelbooks, new columns area (area of page), and density
(weight to volume ratio):

> travelbooks$area <- with(travelbooks , width*height)
> travelbooks$density <- with(travelbooks , weight/volume)
> names(travelbooks) # Check full set of column names

[1] "thickness" "width" "height" "weight" "volume" "type"
[7] "area" "density"

2Note however that sqrt(-1+0i) returns sqrt(0+1i). R distinguishes between -1, which is a real number, and -1+0i

which is a complex number.
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A first step is to call the generic function plot with travelbooks as argument:

pairs(travelbooks[, -6]) # Omit column 6

## Alternative

plot(travelbooks [,-6])

Not unexpectedly, there are relationships between width and height, and between weight and vol-
ume. Less expected, perhaps, is the indication of a relationship between density and area.

Correlation calculations

The function cor(), with a matrix or data frame as argument, calculates the correlation matrix for
the columns. By default, it gives the Pearson product-moment linear correlation. For example:

> round(cor(travelbooks[, -6]),2)
thickness width height weight volume area density

thickness 1.00 -0.47 -0.77 0.40 0.58 -0.59 -0.16
width -0.47 1.00 0.91 0.44 0.28 0.98 0.80
height -0.77 0.91 1.00 0.13 -0.08 0.97 0.67
weight 0.40 0.44 0.13 1.00 0.97 0.30 0.69
volume 0.58 0.28 -0.08 0.97 1.00 0.12 0.51
area -0.59 0.98 0.97 0.30 0.12 1.00 0.77
density -0.16 0.80 0.67 0.69 0.51 0.77 1.00

Dependence of weight on volume

One way to investigate is to examine the regression relationship:

> wtvol.lm <- lm(weight ~ volume , data=travelbooks)
> wtvol.lm

Call:
lm(formula = weight ~ volume , data = travelbooks)

Coefficients:
(Intercept) volume

-137.768 1.167

Notice that we saved the regression (lm) object, with the name wtvol.lm. This can be printed or
summarized or used to extract other information, or be used as the basis for various graphs.

The large intercept is perhaps unexpected. We might expect weight to be proportional to volume.
To force the line through the origin, do the following:

wtvol0.lm <- lm(weight ~ -1 + volume , data=travelbooks)
wtvol0.lm

Summary information – print(), summary() and plot()

All three functions are generic. The effect of the function depends on the class of object that is printed
(on the screen) or summarized (again, on the screen), or plotted.

The function print() typically displays relatively terse output, while summary() may display more
extensive output. This varies from one type of model object to another.

When used with lm objects, print() calls print.lm(), while summary() calls summary.lm(). Ac-
tually summary(wtvol.lm) calls Usemethod("summary"), which notes that wtvol.lm is an lm object
and therefore calls summary.lm().

Compare the outputs from the following:
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print(wtvol.lm) # Equivalent to typing wtvol.lm at the command line

summary(wtvol.lm)

Note also the generic extractor functions residuals(), coefficients(), and fitted.values().
These can be abbreviated to resid(), coef(), and fitted().

The following gives diagnostic plots

par(mfrow=c(2,2)) # Subsequent plots appear in a 2 x 2 layout

plot(wtvol.lm)
par(mfrow=c(1,1)) # Reset to 1 plot per page , for any later plots

4.4 Matrices – Vectors with a Dimension Attribute

Data frames versus matrices

Matrices are rectangular arrays in which all elements have the same class. Internally, matrices are
one long vector in which the columns follow one after the other. Depending on the calculation that is
to be performed, matrices and data frames may require a different syntax, or even explicit conversion
from one to the other. Thus for a regression calculation, a data frame is necessary.

The dimension attribute can be examined thus:

> travelmat <- as.matrix(travelbooks[, 1:4])
> dim(travelmat) # Equivalent to attr(travelmat , "dim")

[1] 6 4
> attr(travelmat , "dim")
[1] 6 4

Removal of the dimension attribute

The dimension attribute can be changed or removed, thus:

> travelvec <- as.matrix(travelbooks[, 1:4])
> dim(travelvec) <- NULL # Columns of travelmat become one long

# vector , stacked in order of columns.

> travelvec
[1] 1.3 3.9 1.2 2.0 0.6 1.5 11.3 13.1 20.0

21.1
[11] 25.8 13.1 23.9 18.7 27.6 28.5 36.0 23.4 250.0 840.0
[21] 550.0 1360.0 640.0 420.0
> # Use of as(travelmat , "vector ") is however preferable

> # For these data , why would one do this?

Submatrices

To extract the first three rows of the matrix travelmat, specify travelmat[1:3,]. For columns 1 to
3, specify travelmat[, 1:3]. Negative indices can be used, as for data frames to omit rows and/or
columns.3

3Note that the $ notation is designed for use with data frames and other list objects, and is not relevant to matrices.
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4.4.1 Matrix Manipulations

Let X, Y and B be numeric matrices. Some of the possibilities are:

X + Y # Elementwise addition (The dimensions must agree)

X * Y # Elementwise multiplication (The dimensions must agree)

X %*% B # Matrix multiplication (X is n by k; B k by m)

solve(X, Y) # Solve X B = Y (X is n by k, Y n by m, B k by m)

svd(X) # Singular value decomposition of X

qr(X) # QR decomposition of X.

Use matrices for efficient computation For working with large numerical arrays, the matrix
structure can allow much faster computations than are possible with data frames. See Section 10.4

4.4.2 Data frames versus matrices

Data frames that consist entirely of numeric data are in some (but not all) contexts interchangeable
with numeric matrices. There are however important differences. In some applications, e.g., the
analysis of microarray data, both of these types of object are in wide use.

Note that for a matrix length() returns the number of elements, while for a matrix it retuens the
number of columns:

> length(travelbooks) # travelbooks is a list of 7 vectors

[1] 5
> length(as(travelbooks [,1:4], "matrix")) # matrix has 28 elements

[1] 28

Functions are available to convert data frames into matrices, and vice versa. For example:

travelmat <- as.matrix(travelbooks[, 1:4])
# From data frame to matrix

newtravelbooks <- as.data.frame(travelmat)
# From matrix to data frame

Use as.data.frame.table() to convert from a table to a data frame. This can also be called with a
matrix argument, giving a result that is different from the use of as.data.frame()

4.5 Lists

A list is a collection of arbitrary objects. Above, we noted that a data frame is a specialised form of
list. The list elements hold the columns of the data frame, which must all be of the same length. Here
we note two other common types of list, the first of importance for microarray data, and the second
of general importance.

Lists of matrices

Included with the data in the sma package are the objects mouse.data and mouse.lratio. These
hold data from a microarray experiment, in which gene expression intensities for knockout mice were
compared with expression intensities for normal mice. Assuming that the sma package is installed,
the following will bring it into the workspace:

library(sma)
data(MouseArray) # MouseArray holds several data objects

ls() # Check contents of workspace
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The object mouse.data is a list. It has four elements, with names R, G, Rb and Gb. Each of these
elements is a matrix, with dimensions 6384 spots by 6 slides. The object mouse.lratio is a list with
elements A and M. Again each element is a matrix with dimensions 6384 spots by 6 slides. [The values
in M are the logarithms to base 2 of the ratios of “red” to “green” intensities, while the values in M are
averages of the logarithms of the “red” and “green” intensities.]

4.5.1 Model objects are lists

Model objects are typically lists, consisting of elements that can be of very different types. We will
use the output from the regression calculation with data in travelbooks, stored in the lm object
wtvol.lm, as an example. Note first that lm is, in effect, a mnemonic for linear model.

Regression objects hold output structures from the regression output that can be used for further
calculations. It stores the information in a list, with named elements. To see the names of the list
elements in wtvol.lm, type:

> names(wtvol.lm)
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

To extract individual list elements type, e.g.:

> wtvol.lm$call
lm(formula = weight ~ volume , data = travelbooks)

Where an extractor function is available, use this in preference to accessing the specific list ele-
ments. Thus use:

> coef(wtvol.lm)
(Intercept) volume
-137.767923 1.166812
> resid(wtvol.lm)

Aird ' s Guide to Sydney Moon ' s Australia handbook
-21.78300 -136.53728

Explore Australia Road Atlas Australian Motoring Guide
-84.66144 94.09341

Penguin Touring Atlas Canberra - The Guide
127.85379 21.03453

Notice that the residuals carry the row names. We might prefer shorter row names.

The various R modeling functions all return their own particular type of model object, always
stored as a list. Note also that data frames are a specialized form of list, with the restriction that all
columns must be vectors that all have the same length.
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4.6 Functions

Different Kinds of Functions
Generic They examine the object given as argument, before
functions deciding what action is needed. Examples include

print(), plot() & summary()

Modeling Use to fit statistical models. Thus note lm() for linear
functions modeling. Output may be stored in a model object.

Extractor Use extractor functions to obtain specific types of
functions information (summary, coefficients, residuals, etc.)

from model objects. Examples are summary(),
residuals(), etc

User Create functions that automate & document computations

Anonymous Functions that are defined in place do not need a name

4.6.1 Built-In Functions

Common useful functions, for use with vectors

Common Useful Functions are

print() # Prints a single R object
cat() # Prints multiple objects, one after the other
length() # Number of elements in a vector or of a list
mean()
median()
range()
unique() # Gives the vector of distinct values
diff() # Vector of first differences

# N. B. diff(x) has one less element than x
sort() # Sort elements into order, but omitting NAs
order() # x[order(x)] orders elements of x, with NAs last
cumsum()
cumprod()
rev() # reverse the order of vector elements
any() # Returns TRUE if there are any missing values
as() # Coerce argument 1 to class given by argument 2

# e.g. as(1:6, "factor")
is() # Is argument 1 of class given by argument 2?

# is(1:6, "factor") returns FALSE
# is(TRUE, "logical") returns TRUE

is.na() # Returns TRUE if the argument is an NA
str() # Information on an R object
args() # Information on arguments to a function
numeric() # numeric(5) creates a numeric vector of length 5,

# with all elements 0.
# numeric(0) (length 0) can be useful.

character() # Create character vector; c.f. also logical()

The functions mean(), median(), range(), and a number of other functions, take the argument
na.rm=TRUE; i.e., remove NAs, then proceed with the calculation. For example

> mean(c(1, NA, 3, 0, NA), na.rm=T)
[1] 1.3
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Note that the function as() cannot be used to coerce a matrix to a data frame; use as.data.frame().
The function as() has, at present, no method for coercing a matrix to a data frame.

4.6.2 User-defined functions

The R language is a functional language. The function mean() calculates means, The function sd()
calculates standard deviations. Here is a function that calculates mean and standard deviation at the
same time:

mean.and.sd <- function(x){
av <- mean(x)
sdev <- sd(x)
c(mean=av, sd = sdev) # The function returns this vector

}

The parameter x is the argument that the user must supply. The body of the function is enclosed
between curly braces. The value that the function returns is given on its final line. Here the return
value is a vector that has two named elements.

The following calculates the mean and standard deviation of heterozygosity estimates for seven
different Drosophila species.4

> hetero <- c(.43 ,.25 ,.53 ,.47 ,.81 ,.42 ,.61)
> mean.and.sd(hetero)

mean sd
0.5028571 0.1749966

It is useful to give the function argument a default value, so that it can be run without user-supplied
parameters, in order to see what it does. A possible choice is a set of random normal numbers, perhaps
generated using the rnorm() function.

Here is a revised function definition. The function body has been reduced to a single line, so that
the curly braces are not needed.

> mean.and.sd <- function(x = rnorm (20)) c(mean=mean(x), sd=sd(x))
> mean.and.sd()

mean sd
0.05013396 0.68567644
> mean.and.sd()

mean sd
0.1067355 1.1383779

We get a different set of random numbers, and hence a different mean and SD, each time that the
function is run with its default argument.

4.6.3 Information on R Objects

Information on data objects

The function str() gives basic information on the object that is given as argument.

> str(travelbooks)
' data.frame ' : 6 obs. of 6 variables:
$ thickness: num 1.3 3.9 1.2 2 0.6 1.5
$ width : num 11.3 13.1 20 21.1 25.8 13.1
$ height : num 23.9 18.7 27.6 28.5 36 23.4
$ weight : num 250 840 550 1360 640 420
$ volume : num 351 955 662 1203 557 ...

4Data are from Lewontin, R. 1974. The Genetic Basis of Evolutionary Change.
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$ type : Factor w/ 2 levels "Guide","Roadmaps": 1 1 2 2 2 1

Information on function arguments

A useful function is args(). It lists function arguments, together with default values, if any.

4.6.4 Tables and Cross-Tabulation

Use the function table() to make a table of counts. Use xtabs() for cross-tabulation, i.e., to
determine totals of numeric values for each table category.

table()

The function table() makes a table of counts. Specify one vector of values (often a factor) for each
table margin that is required. A simple example is:

library(DAAG)
> table(possum$Pop , possum$sex)

f m
Vic 24 22
other 19 39

Here is a use of table() to count the number of NAs in the column bp (blood pressure) from the
data frame Pima.tr2 that is in the MASS package.

> library(MASS)
> table(is.na(Pima.tr2$bp))

FALSE TRUE
287 13

By default, table() ignores NAs. Hence the need for a check of the following type, here using
sapply() function. This can be used with a data frame as its first argument to apply the function
specified as its second argument in parallel to all columns of the data frame, to give the number of
NAs in each column of the data frame Pima.tr2

> sapply(Pima.tr2 , function(x)sum(is.na(x)))
npreg glu bp skin bmi ped age type

0 0 13 98 3 0 0 0

The action needed to get NAs tabulated under a separate NA category depends, annoyingly, on
whether or not the vector is a factor. If the vector is not a factor, specify exclude=NULL. If the vector
is a factor then it is necessary to generate a new factor that includes NA as a level. Specify

x <- factor(x, exclude=NULL)

Creating groups

The following uses the cut() function to group data in the column bp in the data frame Pima.tr2,
into four categories, then tabulating the numbers in the four categories:

> catBP <- cut(Pima.tr2$bp, breaks =4)
> table(catBP)
catBP
(37.9 ,57] (57 ,76] (76 ,95] (95 ,114]
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22 170 87 8
> sum(table(catBP))
[1] 287

Notice that the 13 missing values, out of the total of 300, are not included in the table. This can be
a trap. They are in catBP, as we can easily verify:

> table(is.na(catBP))

FALSE TRUE
287 13

Thus, above, we can do the following

> catBP <- factor(catBP , exclude=NULL)
> table(catBP)
catBP
(37.9 ,57] (57 ,76] (76 ,95] (95 ,114] <NA>

22 170 87 8 13
> sum(table(catBP))

4.7 Option Settings

Setting the number of significant digits in output

Often, the printed result of calculations will, unless the default is changed (as has sometimes been
done for the output in this document) show more decimal places of output than are useful. The
options() function can be used to change to make a global (until further notice) change to the
number of significant digits that are printed. For example:

> sqrt (10)
[1] 3.162278
> options(digits =2) # Change until further notice ,

> # or until end of session.

> sqrt (10)
[1] 3.2

Notice that options(digits=2) expresses a wish, which R will not always obey!
Rounding will sometimes introduce small inconsistencies. For example, with results rounded to

two decimal places

> round(sqrt (372/12), 2)
[1] 5.57
> round(sqrt (2) * sqrt (372/12), 2)
[1] 7.87
> round(sqrt (2) * 5.57, 2)
[1] 7.88

Other option settings

Type in help(options) to get further details. I prefer to use the setting options(show.signif.stars=FALSE).
(The default is TRUE.)
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4.8 Common Sources of Difficulty

In the use of read.table() for the entry of data that has a rectangular layout, it is important
to tune the parameter settings to the input data set. See the discussion of read.table() in
Section 10.1 for comments on common issues.

The function count.fields() can be a useful way to determine how many fields read.table()
thinks it has found in each record. Alternatively, use read.table() with the parameter setting
fill=TRUE, and carefully check the input data frame. Blank fields will be implicitly added, as
needed, in order to ensure that all records have an equal number of fields.

Character vectors that are included as columns in data frames become, by default, factors.
There are implications for the use of read.table().

Factors can often be treated as vectors of text strings, with values given by the factor levels.
There are several, potentially annoying, exceptions.

The handling of missing values is a common source of difficulty. Refer back to Section 4.2.

The syntax elasticband[,2], extracts the second column from the data frame elasticband,
yielding a numeric vector. Observe however that elasticband[2, ] yields a data frame, rather
than the numeric vector that the user may require. Specify unlist(elasticband[2, ]) to
obtain the vector of numeric values in the second row of the data frame. For another instance
(use of sapply()) where the difference between a numeric data frame and a numeric matrix is
important, see Section 4.4.2.

It is inadvisable to assign new values to a data frame, thus creating a new local data frame with
the same name, while it is attached. There is obvious potential for confusion and erroneous
calculations. The new local copy replaces the original when the data frame is detached.

4.9 Summary

Important R data structures are vectors, factors, data frames and lists. Vectors may be of mode
numeric, logical, character or complex.

Factors, used for categorical data, are fundamental to the use of many of the R modeling
functions. Ordered factors are appropriate for use with ordered categorical data.

The function c() (concatenate) joins vector elements together into vectors. It may be used for
logical and character vectors, as well as for numeric vectors.
[It is in fact more general than this. It may be used to join lists, which are non-atomic vectors]

Missing Values, Infinite Values and NaNs can require special care.

Data frames group columns that all have the same length, together as a single R object. A data
frame may have columns that are any mix of logical, numeric, character, factor or complex.

For simple forms of scatterplot, note the plot() function. There is a wide range of plotting
abilities, beyond those offered by plot().

Matrices, and data frames whose elements are all of one type (typically all numeric) are in some
contexts handled similarly. In other contexts, they are handled quite differently. A matrix is a
vector (with matrix elements stacked column upon column) that has a dimension attribute.

read.table() is the function of first recourse for inputting rectangular files.

Where access is required to columns of a data frame for one or two lines of code only, it is often
convenient to use the function with().
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Attachment of a data frame (use the function attach()) can be where there are a number of
lines of code that require access to its columns. Give the name of the data frame, i.e., no quotes.

Note also the use of attach() to give access to objects in an image (.RData) file. Include the
name of the file (optionally preceded by a path) in quotes, as in:

## Attach an archive that was created in an earlier session

attach("archive.RData")
## Attach the image file from another directory

attach("c:/drosophila/.RData") # NB, forward slashes

The search path determines the order of search for objects that are accessed from the command
line, or that are not found in the environment of a function that accesses them.

The R system has a wide range of generic functions, including print(), plot() and summary(),
For such functions, the result depends on the class of object that is given as argument.

Modeling functions typically output a list, known as a model object, that holds enough informa-
tion from the model fit that it is straightford to obtain output such as is provided by generic
model functions. Generic functions that are available for use with model objects typically include
print(), summary(), fitted(), coef() and resid().

Use table() for tables of counts, and xtabs() for tables of totals.

There are various options settings that control such matters as the number of significant digits
that will be displayed in output. See help(options).

4.10 Exercises

Table 4.1: Estimates of amino acid replacements per 100 million years, for the three genes GPDH,
SOD, and XDH. The column Ave is a weighted average of these three, with weights proportional to
sequence length. The final column (Myr) gives time since divergence in millions of years.

Gpdh Sod Xdh AvRate Myr
Drosophila subgroups 1.50 25.70 30.40 22.40 55.00
Drosophila subgenera 2.00 30.70 29.20 22.30 60.00

Drosophial genera 4.40 34.90 31.70 24.90 65.00
dipteran families 9.25 33.70 25.30 22.00 120.00

mammalian orders 11.60 46.00 17.10 18.70 70.00
animal phyla 13.20 19.20 19.20 17.50 600.00

fungi 40.00 24.90 13.70 21.40 300.00
kingdoms 13.00 12.60 11.50 11.90 1100.00

1. Read the data that is stored in the file molclock1.txt (shown in Table 4.1), into the data frame
molclock1.5. Examine molclock2.txt and note how it differs from molclock1.txt. Modify
the arguments to read.table() so that the file molclock2.txt is input correctly

2. For the data in Table 4.1, plot graphs of Sod against Myr, and of Xdh against Myr. Use
abbreviate() to create abbreviated versions of the row names, and use these to label the
points.
[Hint: Use readLines("molclock.txt", n=-1) to inspect, from the R command line, the con-
tents of molclock.txt.]

5With the package DAAGxtras attached, typing dataFile() will store molclock1.txt, molclock2.txt, and also
travelbooks.txt, in your working directory
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1. Modify the function mean.and.sd() so that it outputs, in addition to the mean and standard
deviation, the number of vector elements.

2. Find an R function that will sort a vector. Give an example of its use.

3. Type library() and check that the DAAG package is installed. Attach the DAAG package.
Type library(DAAG) to see the help page for the data frame elasticband. Plot distance
against stretch. Regress distance against stretch and explain how to interpret the coefficient.
Examine the diagnostic plot and check whether there is anything that calls for special attention.

4. Find out what the function substring() does.

5. Find two ways to split a text string into a vector that holds its individual characters, using
substring(), and using strsplit(). Use the function on the text strings

gi14786865 <- "LNLFFAGTETVSTTLRYGFLLLMKHPEVEAKVHEEI"

o4cka3 <- "LNIMVAGRDTTAGLLSFAMFELARNPKIWNKLREEV"



Chapter 5

Base Graphics

Base Graphics:

Base graphics implements a relatively “traditional” style of graphics

Functions plot(), points(), lines(), text(), mtext(), axis(),
identify() etc. form a suite (plot points, lines, text, etc.)

Plot y vs x with(women, plot(height, weight))
(older syntax)
Or: plot(weight ∼ height, data=women)
(uses graphics formula)

Caveat Some base graphics functions do not take a data parameter

In addition to base graphics there is
(i) lattice (trellis) graphics, using the lattice package,
and (ii) the low-level grid package on which lattice is built.

To see some of the possibilities that traditional (or base) R graphics offers, enter

demo(graphics)

Press the Enter key to move to each new graph.
For lattice graphics, enter

library(lattice)
demo(lattice)

Our discussion will start with an exposition of traditional graphics.

5.1 plot() and allied functions

The following both plot y against x:

plot(y ~ x) # Use a formula to specify the graph

plot(x, y) # Horizontal ordinate , then vertical

Obviously x and y must be the same length.
Try

plot ((0:20)*pi/10, sin ((0:20)*pi/10))
plot ((1:30)*0.92, sin ((1:30)*0.92))

39
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Is it obvious that these points lie on a sine curve? (To make this obvious, place the cursor over the
lower border of the graph sheet, until it becomes a double-sided arror. Drag the border in towards
the top border, making the graph sheet short and wide.)

Here are two further examples.

library(DAAG)
attach(elasticband) # R can now find distance & stretch

plot(distance ~ stretch)
plot(ACT ~ year , data=austpop , type="l")
plot(ACT ~ year , data=austpop , type="b")
detach(elasticband)

The points() function adds points to a plot. The lines() function adds lines to a plot1. The
text() function adds text at specified locations. The mtext() function places text in one of the
margins. The axis() function gives fine control over axis ticks and labels.

Here is a further possibility

with(austpop ,
plot(spline(Year , ACT), type="l") # Fit smooth curve through points

)

Newer plot methods

Above, I described the default plot method. The plot function is a generic function that has special
methods for“plotting”various different classes of object. For example, as we saw in chapter 2, plotting
an lm object (created by the use of the lm() modelling function) gives diagnostic and other information
that can help in the interpretation of regression results.

Recall also

plot(travelbooks [ ,1:5])
# Has the same effect as pairs(travelbooks[, 1:5])

Note also the function splom() from the lattice package. For this, specify

library(lattice)
splom(~ travelbooks[, 1:5]) # Lattice alternative to pairs plot

5.2 Fine control – Parameter settings

For plot(), points() and text(), the parameter cex (“character expansion”) controls the size, while
col (”color”) controls the colour. The parameter pch controls the choice of plotting symbol.

The default settings of parameters, such as character size, are often adequate. When it is necessary
to change parameter settings, alternatives may be to supply the values required as parameters to the
plotting function, or to use par() to make the change, prior to calling the plotting function. For some
parameters, the first method must be used, while for others the second method is necessary. In some
case, the reasons for this are obvious. One that is not obvious is pty="s" (specify using par()), which
gives a square plotting region.

On the first use of par() to make changes to the current device, it is often useful to store existing
settings, so that they can be restored later. For this, specify, e.g.:

oldpar <- par(cex=1.25, col="red")

1Actually these functions differ only in the default setting for the parameter type. The default setting for points()
is type = "p", and for lines() is type = "l". Explicitly setting type = "p" causes either function to plot points, type
= "l" gives lines.
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This stores the existing settings in oldpar, then changes parameters (here cex and col) as requested.
To restore the original parameter settings at some later time, enter par(oldpar). See below (“Multiple
plots on the one page”) for an example

Type help(par) to get details of all the parameter settings that are available.

Adding Text in the Margin

mtext(side, line, text,..) adds text in the margin of the current plot. The sides are numbered
1(x-axis), 2(y-axis), 3(top) and 4.

5.3 Adding points, lines and text – examples

Here is a simple example (Figure 5.1) that uses the function text() to label the points on a plot.
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Figure 5.1: Plot of brain weight against
body weight, for selected primates.

> ## Data used in plot

> primates # DAAG package

Bodywt Brainwt
Potar monkey 10.0 115
Gorilla 207.0 406
Human 62.0 1320
Rhesus monkey 6.8 179
Chimp 52.2 440

Code that gives the above plot is:

attach(primates)
plot(Bodywt , Brainwt , xlim=c(0, 250),

xlab="Body weight (kg)", ylab="Brain weight (g)")
# Specify xlim so that there is room for the labels

text(x=Bodywt , y=Brainwt , labels=rownames(primates), pos=4)
# Alternatives are pos=1 (below), 2 (left), 3 (above)

detach(primates)

Example – Labels that locate possum study sites

Where are the possums? The oz package plots an outline of the Australian coast and state boundaries.
As it uses standard plot functions, we can use text() to add information about specific locations.

> possumsites # DAAG package

latitude longitude altitude
Cambarville 145.9 -37.55 800
Bellbird 148.8 -37.62 300
Allyn River 151.5 -32.12 300
Whian Whian 153.3 -28.62 400
Byrangery 153.4 -28.62 200
Conondale 152.6 -26.43 400
Bulburin 151.5 -24.55 600

A plot that shows the sites, on a map of the Eastern coast of Australia, may be obtained thus:
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attach(possumsites)
## Ensure that the oz package is installed

library(oz)
oz()
text(longitude ~ latitude , labels=rownames(possumsites), adj=1, col="red")

Figure 5.2 improves somewhat on this simple code:
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Figure 5.2: Sites at which possums were collected.

## Code used for plot:

oz(sections=c(3:5, 11:16) ,

col="gray", xlim=c(130, 165))

chh <- par()$cxy[2]

points(latitude ,

longitude+c(0,0,0,.2,-.2, 0,0)*chh ,

col="blue")

text(longitude ~ latitude ,

labels=rownames(possumsites),

pos=c(2,4,2,1,3,2,2),

col="red", xpd=TRUE)

# pos = 1: below , 2: left , 3:above , 4: right

# xpd=TRUE may plot outside figure region

detach(possumsites)

Multiple plots on the one page

The parameter mfrow can be used to configure the graphics sheet so that subsequent plots appear
row by row, one after the other in a rectangular layout, on the one page. For a column by column
layout, use mfcol instead. The following presents four different transformations of the primates data,
in a two by two layout:

oldpar <- par(mfrow=c(2,2), pch =16)
library(MASS)
with(Animals , { # bracket several R statements

plot(body , brain)
plot(sqrt(body), sqrt(brain))
plot((body )^0.1, (brain )^0.1)
plot(log(body),log(brain))

}) # close both sets of brackets

par(oldpar) # Restore to 1 figure per page , and pch=1

Color palettes

A variety of color palettes are available. Here is a function that displays some of the possibilities:

view.colours <- function (){
plot(1, 1, xlim=c(0,14), ylim=c(0,3), type="n", axes=F, xlab="",ylab="")
text (1:6, rep(2.5,6), paste (1:6), col=palette ()[1:6] , cex =2.5)
text(10, 2.5, "Default palette", adj=0)
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rainchars <- c("R","O","Y","G","B","I","V")
text (1:7, rep(1.5,7), rainchars , col=rainbow (7), cex =2.5)
text(10, 1.5, "rainbow (7)", adj =0)
cmtxt <- substring("cm.colors", 1:9 ,1:9)
# Split "cm.colors" into its 9 characters

text (1:9, rep(0.5,9), cmtxt , col=cm.colors (9), cex=3)
text(10, 0.5, "cm.colors (9)", adj=0)

}

To run the function, enter

view.colours ()

The shape of the graph sheet

There is provision to specify the size and shape of the graph page, e.g. so that the individual plots are
rectangular rather than square. The R for Windows functions win.graph() or x11() that set up the
Windows screen take the parameters width (in inches), height (in inches) and pointsize (in 1/72
of an inch). The setting of pointsize (default =12) determines character heights. It is the relative
sizes of these parameters that matter for screen display or for incorporation into Word and similar
programs. Graphs can be enlarged or shrunk by pointing at one corner, holding down the left mouse
button, and pulling.

5.4 Identification and Location on the Figure Region

Two functions are available for this purpose. Draw the graph first, then call one or other of these
functions.

o identify() labels points. Position the cursor near the point that is to be identified, and click
the left mouse button.

o locator() prints out the co-ordinates of points. One positions the cursor at the location for
which coordinates are required, and clicks the left mouse button.

A click with the right mouse button signifies that the identification or location task is complete,
unless the setting of the parameter n is reached first. For identify() the default setting of n is the
number of data points, while for locator() the default setting is n = 500.

An example of the use of identify() was given in Section 2.3. The use of identify() is even
simpler.

with(travelbooks , plot(weight ~ volume)
locator ()

Now, left click at the locations whose coordinates are required, terminating as for identify(). Alter-
natively or additionally, specify the number of points to be located as an argument to the function.

5.5 Plots that show the distribution of data values

We discuss histograms, density plots, boxplots and normal probability plots. Density plots are on the
whole preferable to histograms, as they do not use breakpoints that are inevitably chosen somewhat
arbitrarily. Density plots can be useful in identifying the mode, which is the data value with the
highest estimated density. Neither histograms nor density plots are a good tool for checking whether
a distribution is normal. For that purpose, use a normal probability plot.

The function rug() can be used to add, to any of these plots, lines that show the distribution of
the data values.



44 CHAPTER 5. BASE GRAPHICS

Histograms and density plots

The shapes of histograms depend on the placement of the breaks, as Figure 5.3 illustrates:
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Figure 5.3: The two graphs show
the same data, but with a different
choice of breakpoints.

Here is the code used to plot the histograms:

par(mfrow = c(1, 2), pty="s") # pty="s"; square plots

attach(possum)
here <- sex == "f"
hist(totlngth[here], breaks = 72.5 + (0:5) * 5, ylim = c(0, 22),

xlab="Total length", main ="A: Breaks at 72.5, 77.5 ,...")
hist(totlngth[here], breaks = 75 + (0:5) * 5, ylim = c(0, 22),

xlab="Total length", main="B: Breaks at 75, 80,...")
par(mfrow=c(1,1))
detach(possum)

As noted above, do not place much reliance on histograms, unless the sample size is vary large.

with(subset(possum , sex=="f"), hist(totlngth ))
with(subset(possum , sex=="f"), rug(totlngth ))

Note the use of with() to attach the relevant subset of possum for the duration of the calculation.
One of the following can sometimes be insightful:

with(subset(possum , sex=="f"), dotchart(totlngth ))
with(subset(possum , sex=="f"), stripchart(totlngth ))

Density Plots

The density at each point is an estimate of the number of points per unit interval. A histogram
is a crude form of density estimate, one in which the density estimate changes discretely at class
boundaries. Density plots are in general preferable to histograms, because they give a density estimate
that changes smoothly. Density plots do not depend on a choice of breakpoints. They do require the
choice of a bandwidth parameter and a choice between different types of window; often the default
choices are acceptable.

The following gives a density plot:

with(possum , plot(density(totlngth[here]),type="l"))

Note that in the overlaid density plot in 5.3 the y-axis for the histogram is labelled so that the
area of a rectangle is the frequency for that rectangle. To get the plot on the left, specify:
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attach(possum)
here <- sex == "f"
dens <- density(totlngth[here])
xlim <- range(dens$x)
ylim <- range(dens$y)
hist(totlngth[here], breaks = 72.5 + (0:5) * 5,

probability = T, xlim = xlim , ylim = ylim ,
xlab="Total length", main="")

lines(dens)
detach(possum)

With data that have sharp lower and/or upper cutoff limits, it may be necessary to specify the
limit or limits. For example, a failure time distribution may have a mode close to zero, with a sharp
cutoff at zero. Use the parameters from and/or to for this purpose. This issue most commonly arises
with a lower cutoff at 0.

Boxplots

Figure 5.4: Distribution of lengths of female possums. The bars (rugs) show actual data values.
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## Code

with(subset(possum , sex=="f"),
boxplot(totlngth ,

horizontal=TRUE))
with(subset(possum , sex=="f"),

rug(totlngth ))

Boxplots use a small number of characteristics of a distribution to characterize it. Look up
help(boxplot) for details. Here is code that gives a boxplot of the above possum data:

It can be insightful to add a “rug” that shows the individual values, by default along the horizontal
axis (side=1). To add a rug to the above plot, type

with(subset(possum , sex=="f"), rug(totlngth ))

Figure 5.4 shows the result.

Side by side boxplots

Boxplots allow convenient side-by-side comparisons of different groups, as in the cuckoo egg data that
we now present (from Latter1902; Tippett 1931 presents them in a summarized form.) Cuckoos lay
eggs in the nests of other birds. The eggs are then unwittingly adopted and hatched by the host birds.
Figure5.5 shows side by side boxplots of these data.

Normal probability plots

The function qqnorm(y) gives a normal probability plot of the elements of y. The points of this plot
will lie approximately on a straight line if the distribution is Normal. To calibrate the eye to recognise
plots that indicate non-normal variation, it helps to do several normal probability plots for random
samples of the relevant size from a normal distribution, obtained using the function rnorm().
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Figure 5.5: Side by side boxplots of egg length data.

## Code used for plot:

boxplot(length ~ species , data=cuckoos ,

xlab="Length of egg", horizontal=TRUE ,

las=2)

## las=2: Plot labels perpendicular to axis.

x11(width=8, height =6) # This is a better shape for this plot

attach(possum)
here <- sex == "f"
par(mfrow=c(3,4)) # 3 by 4 layout of plots

y <- totlngth[here]
qqnorm(y,xlab="", ylab="Length", main="Possums")
for(i in 1:11) qqnorm(rnorm (43), xlab="", ylab="Simulated lengths",

main="Simulated")
par(mfrow=c(1,1))
# By default , rnorm() generates random samples from a normal

# distribution with mean 0 and standard deviation equal to 1.

detach(possum)
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Figure 5.6: Normal
probability plots. For
data from a normal dis-
tribution points should
fall, approximately,
along a line. The top
left panel shows the
43 lengths of female
possums. Other panels
are for independent
normal random samples
of size 43.

Figure 5.6 shows the plots. There is one unusually small value. Otherwise the points for the female
possum lengths are as close to a straight line as in many of the plots for random normal data.

In order to judge whether data are normally distributed, examine a number of randomly generated
samples of the same size from a normal distribution, thus training the eye. This is an important idea.

5.6 Scatterplot Smoothing

Figure 5.7 shows miles per gallon (mpg), plotted against piston displacement (disp), for 32 cars whose
detailed characteristics were described in the US 1974 magazine Motor Trends.
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It can be useful to make a comparison with a curve provided by a data smoothing routine that is
not restricted to using a particular mathematical form of curve.
[R has both a lowess() function and the more general loess() function. The lowess() function
does smoothing in one dimension only, while loess() will handle multi-dimensional smoothing. For
technical details of lowess() and loess(), see Cleveland (1981), and references given in that paper.]

Figure 5.7: Plot showing change in fuel usage (miles per gallon) with displacement (disp).
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## Code

attach(mtcars) # From the datasets package

plot(mpg ~ disp ,

xlab=expression("Displacement ("

* " in"^3

* ")"),

ylab="Miles per gallon")

lines(lowess(mpg ~ disp , f=0.75))

detach(mtcars)

A smooth trend curve that has been superimposed on a scatterplot, as in Figure 5.7, can be a
useful aid to interpretation. When the data appear to scatter about a simple mathematical curve,
the curve-fitting methods that are discussed in other sections can be used to obtain a ‘best-fit’ or
regression line or curve to pass through the points.

The female athletes (AIS) data

Here we use data on the heights of 100 female athletes2. First load the data frame ais, if necessary
from http://www.maths.anu.edu.au/~johnm/r/workshop.

The function panel.smooth() plots points, then adds a smooth curve. For example:

attach(ais)
here <- sex=="f"
plot(pcBfat[here]~ht[here], xlab = "Height", ylab = "% Body fat")
panel.smooth(ht[here],pcBfat[here])
abline(lm(pcBfat[here] ~ ht[here ]))
detach(ais)

The least squares regression line (abline()) has been added for comparison.

5.7 Plotting Mathematical Symbols

Both text() and mtext() will take an expression rather than a text string, as in the x-axis label of
Figure 5.7. Note that = must appear as ==, as in:

## Code used for plot:

r <- seq(0.1, 8.0, by=0.1)
plot(r, pi * r^2, xlab=expression(Radius == r),

ylab=expression(Area == pi*r^2), type="l")
# NB: Use ==, within an expression , to print =

2Data relate to the paper: Telford, R.D. and Cunningham, R.B. 1991: Sex, sport and body-size dependency of
hematology in highly trained athletes. Medicine and Science in Sports and Exercise 23: 788-794.

http://www.maths.anu.edu.au/~johnm/r/workshop
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See Section 9.3.2 (Figure 9.1) for another and much more complicated example of the plotting of
mathematical expressions.

See help(plotmath) for detailed information. The final plot from

demo(graphics)

shows some of the possibilities for plotting mathematical symbols.

5.8 Multi-way Tables – Mosaic Plots

Here is a more interesting example, using the multi-way table UCBAdmissions that is in the base
package. This holds admission data, from University of California at Berkeley in 1973. First, we will
get information about the data:

> class(UCBAdmissions)
[1] "table"
> dim(UCBAdmissions)
[1] 2 2 6
> dimnames(UCBAdmissions)
$Admit
[1] "Admitted" "Rejected"
$Gender
[1] "Male" "Female"

$Dept
[1] "A" "B" "C" "D" "E" "F"

Finally while we explore around this table, here is the table for department A:

> UCBAdmissions[, , "A"] # Equivalent to UCBAdmissions[, , 1]

Gender
Admit Male Female
Admitted 512 89
Rejected 313 19

To get a mosaic plot, type

mosaicplot(UCBAdmissions , color=TRUE)

For a direct comparison between male and female admission rates, it is helpful to permute the
dimensions:

mosaicplot(aperm(UCBAdmissions , c(2,1,3)), color=TRUE)

Note also the function mosaic(), from the vcd package.

5.9 Regular Graphics Functions – Additional Points

The variety of R graphics functions

For other plotting possibilities, look under the help for the functions hist(), coplot(), contour(),
filled.contour(), image(), etc. Use of example() with these functions gives some impressive plots.

Functions that handle smoothing and density estimation can be useful adjuncts to the graphics
functions. These include lowess() and density() and scatter.smooth(), and bkde2D() in the
KernSmooth package.

Additionally, there are several specialist graphics packages. Assuming that it is installed, examine
the help information for the package scatterplot3d.
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Plots with Large Numbers of Points

When the number of points is large, such standard forms of presentation as scatterplots can be
problematic. Graphs may appear as a dense uninformative mass of black ink. The graphics files may
be so large that they take an inordinate time to print. It is necessary to use a form of graphic that
addresses these issues.

Histograms, density curves and boxplots present highly summarized information. The density of
points on the graph is small, so that there should not be a problem. Normal probability plots can be
problematic, because they try to present each point individually. The central part of the plot, in the
region where points overlap, can without loss of information be replaced by a curve through the data.
The function qqthin() in the DAAGxtras package implements this approach.

For scatterplots, note the function smoothScatter() that is included in the geneplotter package
from Bioconductor. The web page http://addictedtor.free.fr/graphiques/allgraph.php has
a link to a number of examples, due to Florian Hahne, of graphs created using this function. See
under 139: Scatterplots with smoothed densities color representation. For further examples, install
the package, and type example(smoothScatter).

Inclusion of Graphs in Other Documents

Both on PC and Mac systems, writing to a pdf file that is then included in a latex document, or
directly inserted into a pdf file, gives a high quality result.

Graphs do not import well from the clipboard into Word on the Macintosh under OS X. Alterna-
tives that work well are described on the web page:
http://wiki.r-project.org/rwiki/doku.php?id=tips:using-platform:macosx-graphics#producing_graphics_

to_incorporate_in_ms_word

5.10 Exercises

1. The data set LakeHuron (datasets package) has mean July average water surface elevations, in
feet, IGLD (1955) for Harbor Beach, Michigan, on Lake Huron, Station 5014, for 1875-1972.
Use the following to create a data frame that has the same information:

huron <- data.frame(year=as(time(LakeHuron), "vector"),
mean.height=LakeHuron)

a) Plot mean.height against year.

b) Use the identify function to determine which years correspond to the lowest and highest mean
levels. That is, type

identify(huron$year , huron$mean.height , labels=huron$year)

and use the left mouse button to click on the lowest point and highest point on the plot. To
quit, press both mouse buttons simultaneously.

c) As in the case of many time series, the mean levels are correlated from year to year. To see
how each year’s mean level is related to the previous year’s mean level, use

lag.plot(huron$mean.height)

This plots the mean level at year i against the mean level at year i-1.

d) Now explain why the following code achieves the same effect:

plot(LakeHuron)
identify(LakeHuron , labels=time(LakeHuron ))

http://addictedtor.free.fr/graphiques/allgraph.php
http://wiki.r-project.org/rwiki/doku.php?id=tips:using-platform:macosx-graphics#producing_graphics_to_incorporate_in_ms_word
http://wiki.r-project.org/rwiki/doku.php?id=tips:using-platform:macosx-graphics#producing_graphics_to_incorporate_in_ms_word
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2. Check the distributions of head lengths (hdlngth) in the possum data set. Compare the following
forms of display:

a) a histogram (hist(possum$hdlngth));

b) a stem and leaf plot (stem(qqnorm(possum$hdlngth));

c) a normal probability plot (qqnorm(possum$hdlngth)); and

d) a density plot (plot(density(possum$hdlngth)).

What are the advantages and disadvantages of these different forms of display?

3. Use mfrow() to set up the layout for a 3 by 4 array of plots. In the top 4 rows, show normal
probability plots for four separate ‘random’ samples of size 10, all from a normal distribution.
In the middle 4 rows, display plots for samples of size 100. In the bottom four rows, display
plots for samples of size 1000. Comment on how the appearance of the plots changes as the
sample size changes.

4. The function runif() can be used to generate a sample from a uniform distribution, by default
on the interval 0 to 1. Try x <- runif(10), and print out the numbers you get. Then repeat
exercise 6 above, but taking samples from a uniform distribution rather than from a normal
distribution. What shape do the points follow?

5. Repeat exercise 4, but for other distributions. For example x <- rchisq(10,1) will generate
10 random values from a chi-squared distribution with degrees of freedom 1. The statement x
<- rt(10,1) will generate 10 random values from a t distribution with degrees of freedom one.
Make normal probability plots for samples of various sizes from these distributions.

6. For the first two columns of the data frame hills, examine the distribution using:

(a) histograms

(b) density plots

(c) normal probability plots.

Repeat (a), (b) and (c), now working with the logarithms of the data values.

7. The following data gives milk volume (g/day) for smoking and nonsmoking mothers3:

Smoking Mothers: 621, 793, 593, 545, 753, 655, 895, 767, 714, 598, 693

Nonsmoking Mothers: 947, 945, 1086, 1202, 973, 981, 930, 745, 903, 899, 961

Present the data (i) in side by side boxplots; (ii) using a dotplot form of display.

8. The frame airquality that is in the base package has columns Ozone, Solar.R, Wind, Temp,
Month and Day. Plot Ozone against Solar.R for each of three temperature ranges, and each of
three wind ranges.

3Data are from the paper “Smoking During Pregnancy and Lactation and Its Effects on Breast Milk Volume” (Amer.
J. of Clinical Nutrition).



Chapter 6

Lattice Graphics

Lattice Graphics:

Lattice Lattice is a flavour of trellis graphics
(the S-PLUS flavour was the original implementation)

Grid grid is a low-level graphics system. It was used to build lattice.
For grid, see Part II of Paul Murrell’s R Graphics

Lattice Lattice is more structured, automated and stylized.
vs base Much is done automatically, without user intervention.

Changes to the default style are harder than for base.

Lattice Lattice syntax is consistent and tightly regulated
syntax For use of lattice, graphics formulae are mandatory.

Lattice (trellis) graphics allow the use of the layout on the page to reflect meaningful aspects of
data structure. They offer abilities similar to those in the S-PLUS trellis package.

6.1 Panels of Scatterplots – Examples of the Use of xyplot()

The function xyplot() creates a scatterplot, or multiple scatterplots. We will use the data frame
tinting (supplied) to demonstrate its use. These data are from an experiment that investigated the
effects of tinting of car windows on visual performance1. The authors were mainly interested in visual
recognition tasks that would be performed when looking through side windows.

In this data frame, csoa (critical stimulus onset asynchrony, i.e. the time in milliseconds required
to recognise an alphanumeric target), it (inspection time, i. e. the time required for a simple
discrimination task) and age are variables, tint (level of tinting: no, lo, hi) and target (contrast:
locon, hicon) are ordered factors, sex (1 = male, 2 = female) and agegp (1 = younger, in the early
20s; 2 = an older participant, in the early 70s) are factors. Attaching the DAAG package makes these
data available:

library(DAAG)

A simple graph, that does not distinguish the two different targets, can be obtained with:

xyplot(csoa~it|sex*agegp , data=tinting)

Figure 6.1 shows a graph that makes more extensive use of the function’s abilities, using differ-
ent symbols (and, if available, different colors) for different targets. It uses the parameter setting

1Data relate to the paper: Burns, N. R., Nettlebeck, T., White, M. and Willson, J. 1999. Effects of car
window tinting on visual performance: a comparison of elderly and young drivers. Ergonomics 42: 428-443.
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Figure 6.1: csoa versus it, for each com-
bination of females/males and older/y-
ounger. The two targets (o = low, + =
high contrast) are shown with different
symbols.

## The code is:

xyplot(csoa~it|sex*agegp ,

data=tinting ,

auto.key=list(columns =2),

groups=target)

auto.key=list(columns=2) to obtain a simple key. (Setting columns=2 places the two key items in
separate columns, i.e., side by side rather than in a single column.) Setting groups=target automati-
cally invokes the use of panel.superpose. If the device supports color, different colors are by default
used for the different groups.

A striking feature is that the very high values, for both csoa and it, occur only for elderly
males. It is apparent that the long response times for some of the elderly males occur, as we might
have expected, with the low contrast target. The following puts smooth curves through the data,
separately for the two target types:

xyplot(csoa~it|sex*agegp , data=tinting ,
groups=target , auto.key=list(columns =3),
type=c("p","smooth"))

The relationship between csoa and it seems much the same for both levels of contrast.
The following plot uses different symbols (in black and white) or different colours for different

levels of tinting. The longest times are for the high level of tinting.

xyplot(csoa ~ it|sex*agegp , data=tinting , groups=tint ,
auto.key=list(columns =3))

6.2 Annotation – the auto.key, key and legend arguments

For a key is required that identifies the colours, plotting symbols and names for the groups, the
easiest mechanism is to use the setting auto.key=TRUE. For greater flexibility, auto.key can be a list.
Settings that are often useful are:

• x and y, where these are coordinates with respect to the whole display area, together with
corner, which is one of c(0,0) (bottom left corner of legend), c(1,0), c(1,1) and c(0,1).

• space: one of "above", "below", "left", "right".

• points, lines: in each case set to TRUE or FALSE. columns: number of columns of keys.
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Colours, plotting symbols, line type are then taken from the trellis settings for the device used. Unless
text is supplied as a parameter, levels(groups) provides the legends.

Alternatives are to supply a list of arguments to the parameter key, or to use the argument
key=simpleKey(). If key is supplied as a list, at least one of lines, points and text must be
supplied. Arguments to simpleKey() are the names of list elements when auto.key is used. When
the parameter key is supplied, arguments that are not otherwise specified use the trellis settings that
were in place when the trellis object was created.

See help(xyplot) for further details.

6.3 Trellis settings

To ensure that changes from defaults affect both the graph and the legend, they can be made by using
the function trellis.par.set(), which changes the default settings. Alternatively, the settings can
be specified in the par.settings argument to the trellis function. To find what settings might be
changed, type:

> names(trellis.par.get ())

[1] "fontsize" "background" "clip"

[4] "add.line" "add.text" "bar.fill"

. . .

[28] "par.sub.text"

The settings that are of interest can then be inspected individually. When groups=TRUE, settings
for the symbols are controlled by the superpose.symbol list item, and for lines by the superpose.line
list item. Inspection of the settings for superpose.symbol gives:

> trellis.par.get("superpose.symbol")
$cex
[1] 0.8 0.8 0.8 0.8 0.8 0.8 0.8

$col
[1] "grey" "steelblue" "black"

$font
[1] 1 1 1 1 1 1 1

$pch
[1] 16 16 16

For superpose.line, the list elements are col, lty and lwd. The superpose.line settings apply
when a line is used to join the points (specify type="l"), or a smooth curve is passed through them
(specify type=c("p", smooth ) to get points, with a smooth curve added).

par.settings – an example

Figure 6.2 uses the parameter par.settings to make changes to parameter settings. Such settings
affect both the graph and the key. It adds smooth curves, and includes information about the line
type and color in the legend.
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Figure 6.2: csoa versus it, for each com-
bination of females/males and elderly/y-
oung. Here, par.settings has been
used to make point and line settings. Dif-
ferent line and point styles are used for
different levels of tint. The different lev-
els of tint (no=no, +=lo, >=high) are
shown with different symbols. Smooth
curves are fitted, one for each level of
tinting.

Code is:

trellis.device ()

xyplot(csoa ~ it|sex*agegp , data=tinting ,

groups=tint , type=c("p","smooth"), span =0.9,

par.settings=list(superpose.symbol=list(col=c("gray","gray","black"),

pch=c(1,16,16)),

superpose.line=list(col=c("grey", "gray", "black"),

lty=c(1,2,4), lwd=c(2,2,1))),

auto.key=list(columns=3, lines=TRUE))

# The parameter "span" controls the extent of smoothing.

6.4 Overlaid plots

The data frame jobs (DAAG) has the number of workers in the Canadian labour force, for each of
six different regions, over the period January 1995 to December 1996. The regions (columns of jobs)
are BC, Alberta, Prairies, Ontario, Quebec and Atlantic. In order to plot all these columns in
parallel, the six column names are given, separated by +’s, thus:

xyplot(BC+Alberta+Prairies+Ontario+Quebec+Atlantic ~ Date , data=jobs ,
ylab="Number of jobs", type="l")

The argument outer=TRUE gives separate panels. In the following, data are plotted on a sliced
scale:

xyplot(BC+Alberta+Prairies+Ontario+Quebec+Atlantic ~ Date , data=jobs ,
type="l", layout=c(3,2),
scales=list(y=list(relation="sliced", log=TRUE)), outer=TRUE)

For a sliced scale, each panel uses the slice of the scale that is appropriate for its own graph.
Here is a version (Figure 6.3) in which dates of the form Jan95 are used to label the x-axis:

ylabpos <- exp(pretty(log(unlist(jobs[,-7])), 100))
ylabels <- paste(round(ylabpos),"\n(", log(ylabpos), ")", sep="")
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Figure 6.3: Labor force numbers (1000s) for various regions of Canada, all on the same logarithmic
scale. Labels on the vertical axis show both numbers and loge of numbers. Distances between ticks
are 0.02 on the loge scale, i.e., a change of almost exactly 2%.
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## Create a date object ' startofmonth '; use this instead of ' Date '
startofmonth <- seq(from=as.Date("1Jan1995", format="%d%b%Y"),

by="1 month", length =24)
atdates <- seq(from=as.Date("1Jan1995", format="%d%b%Y"),

by="6 month", length =4)
datelabs <- format(atdates , "%b%y")
xyplot(BC+Alberta+Prairies+Ontario+Quebec+Atlantic ~ startofmonth ,

data=jobs , type="l", layout=c(3,2),
scales=list(x=list(at=atdates , labels=datelabs),

y=list(relation="sliced", log=TRUE ,
at=ylabpos , labels=ylabels)),

xlab="Month", ylab="Number of workers", outer=TRUE)

6.5 Lattice Style Stripplots and Boxplots

The following stripplot (cuckoos, from DAAG) has a different ‘strip’ for each different host species:

## The first two lines ensure display of the species name

levels(cuckoos$species) <- sub(".", " ",
levels(cuckoos$species), fixed=T)

stripplot(species ~ length , xlab="Length of egg", aspect =0.5,
data=cuckoos)

Compare the above with a boxplot form of presentation

## NB. The lattice function is bwplot ()
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bwplot(species ~ length , xlab="Length of egg", data=cuckoos)

The aspect argument determines the ratio of distance in the y-direction to distance in the x-direction.

Inclusion of lattice graphics functions in user functions

The function xyplot() does not itself print the graph. Instead, it returns an object of class trellis
which, if the statement is typed on the command line, is then“printed”by the function print.trellis().
Thus, typing

xyplot(csoa ~ it | sex * agegp , data=tinting)

on the command line is equivalent to

print(xyplot(csoa ~ it | sex * agegp , data=tinting ))

In a function, unless the lattice command appears as the final statement of the function, the print
statement must be explicit, i.e.

print(xyplot(csoa ~ it | sex * agegp , data=tinting ))

or equivalently:

tinting.trellis <- xyplot(csoa ~ it | sex * agegp , data=tinting)
print(tinting.trellis)

6.6 Dotplots

Dotplots are typically used to show the variation in values of a response variable, at each of a number
of levels of a factor. Try for example:

dotplot(variety ~ yield | site , data = barley , groups = year ,
key = simpleKey(levels(barley$year), space = "right"),
xlab = "Barley Yield (bushels/acre) ",
aspect = 0.5, layout = c(1, 6), ylab = NULL)

Try stretching the plot vertically so that the labels do not overlap.
Where there is just one point per factor level, the argument type="h") gives a line from the origin

to the point. Both a line and a point may be given. This can be used to provide a graph that can be
quite striking in its effect, as in the following example:

deathrate <- c(40.7, 36 ,27 ,30.5 ,27.6 ,83.5)
ord <- order(deathrate)
hosp <- c("Cliniques of Vienna (1834 -63)\n(> 2000 cases pa)",

"Enfans Trouves at Petersburg\n(1845-59 , 1000 -2000 cases pa)",
"Pesth (500 -1000 cases pa)",
"Edinburgh (200 -500 cases pa)",
"Frankfort (100 -200 cases pa)", "Lund (< 100 cases pa)")

hosp <- factor(hosp , levels=hosp[order(deathrate )])
dotplot(hosp ~ deathrate , xlim=c(0,110), cex=1.5,

scale=list(cex =1.25) , type=c("h","p"),
xlab=list("Death rate per 1000 ", cex=1.5),
sub="From Nightingale (1871) - data from Dr Le Fort")

Data are from Nightingale, F. (1871): Notes on Lying-in Institutions.
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6.7 Lattice Style Density Plots

Here is a density plot, for data from the possum data set (DAAG), that compares sexes and Vic/other
populations.

densityplot(~earconch | Pop , groups=sex , data=possum)

Different labeling for different sites would be helpful. For this, merge information from the data
frame possum, with information from possumsites (DAAG), allowing the sites to be labeled by name.

possumsites$site <- 1:7
possumsites$Site <- factor(rownames(possumsites ))
possums <- merge(possum , possumsites[, 4:5], by="site")

Here then is the code for the density plots:

densityplot(~earconch | sex , group=Site , data=possums , aspect =1.5)

We can include a key, thus:

densityplot(~earconch | sex , group=Site , data=possums , aspect =1.5,
key=simpleKey(text=levels(possums$Site), points=TRUE))

Note that histogram() ignores the parameter group.

6.8 An incomplete list of lattice Functions

dotplot(factor ~ numeric,..) # 1-dim. Display
stripplot(factor ~ numeric,..) # 1-dim. Display
barchart(character ~ numeric,..)
histogram( ~ numeric,..)
densityplot( ~ numeric,..) # Density plot
bwplot(factor ~ numeric,..) # Box and whisker plot
qqmath(factor ~ numeric,..) # normal probability plots
splom( ~ dataframe,..) # Scatterplot matrix
parallel( ~ dataframe,..) # Parallel coordinate plots
cloud(numeric ~ numeric * numeric, ...) # 3D surface
wireframe(numeric ~ numeric * numeric, ...) # 3D scatterplot

In each instance, users can add conditioning variables.
To get a succession of examples of the use of bwplot(), type:

example(bwplot)

Similarly for qqmath(), dotplot(), etc. The examples are in each instance taken from the relevant
help page.

6.9 Summary

The functions plot(), points(), lines(), text(), mtext(), axis(), identify() etc. form
a suite that plots points, lines and text.

Note the alternatives plot(x, y), plot(y ∼ x)
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Chapter 7

Fitting Statistical Models

Linear Models, in the style of lm():

Linear model Any model that lm() will fit is a “linear” model.
lm() can fit highly non-linear forms of response!

Diagnostic Use plot() with the model object as argument,
plots to get a basic set of diagnostic plots.

termplot() If there are no interaction terms, use termplot() to
visualize the contributions of the different terms.
(Why are interactions a problem for lm()?

Factors In model terms, use factors to model qualitative effects.

Model How should coefficients be interpreted? Examine the
matrices model matrix. (This is an especial issue for factors.)

GLMs Generalized Linear Models are an extension of linear
models, commonly used for analyzing counts.

[NB: lm() assumes independently & identically distributed (iid) errors,
perhaps after applying a weighting function.]

The various R packages provide a huge range of model fitting abilities. The first such function
that will be described is lm(), i.e., linear model. The example below is designed to demonstrate the
far reach of models that may be fitted using this function. Linear models are linear in the model
parameters, not necessarily in the variables. The lm() function will fit any model for which the fitted
values are a linear combination of basis functions. Each basis function can in principle be an arbitrary
transformation of one or more explanatory variables.

The lm() function assumes that the random term is i.i.d. (independently and identically dis-
tributed) normal. Various R packages, of which nlme is (or was, until lme4 came along) perhaps the
most important, include functions that allow a more general form of random term. In the example
in Section 7.3 below, there are i.i.d. random (“error”) terms at two levels, between units and between
groups to which the units belong. (In this case, the groups were different sites where experiments
were conducted.) This simple example shows how important it can be to take proper account of the
random structure, and to illustrate the possibilities for misleading inference when this structure is
ignored, effectively assuming an i.i.d. model.

Among other models that handle non-i.i.d. random structure, note:

• Time series models, where the random term typically has a sequential correlation structure;

• Repeated measures models, which model the time profiles of multiple “individuals”.

59
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• Spatial models, where there is a correlation structure that depends on the separation of obser-
vations in space.

7.1 A Regression Model

The data that will be used are a subset of the races2000 data set that is in the DAAG package. To
make the data available, do the following:

library(DAAG)
names(hills2000) # Require dist , climb , time and timef

@%

An initial step is to obtain scatterplot matrices that shows
all of the pairwise scatterplots for the variables that are of interest:
\begin{verbcode}
plot(hills2000[, 7:10]) # Equivalent to pairs(hills2k)

plot(log(hills2000[, 7:10])) # Check what difference this makes

The diagonal panel in the same column as the graph gives the x -axis label. The diagonal panel in the
same row gives the y-axis label. Such a graph may be examined, if there are enough points, for evidence
of: (1) Strong clustering in the data, and/or obvious outliers; (2) Clear non-linear relationships, so that
a correlation1 will underestimate the strength of any relationship; (3) Severely skewed distributions,
so that the correlation is a biased measure of the strength of relationship.

The graph should be used only as an initial coarse screening device. Skewness in the individual
distributions is better checked with the use of plots of density estimates.

The row names store the names of the hillraces. The time for the Caerketton race seems anoma-
lously small, dist should possibly be 1.5mi not 2.5mi. My reading of various web-based information
on these races suggested that there may have been two different Caerketton races. For later reference,
note the row number:

> match("Caerketton", rownames(hills2000 ))
[1] 42
> hills2000 [42, "dist"]
[1] 2.5

The interest is in prediction of time as a function of dist and climb. First examine the scatterplot
matrices, for the untransformed variables, and for the log transformed variables. The pattern of rela-
tionship between the two explanatory variables – dist and climb – is much closer to linear for the log
transformed data, i.e., the log transformed data are consistent with a form of parsimony that is advan-
tageous if we hope to find a relatively simple form of model. Note also that the graphs of log(dist)
against log(time) and of log(climb) against log(time) are consistent with approximately linear
relationships. Thus, we will work with the logged data:

loghills2k <- log(hills2[, 7:10])
names(loghills2k) <- c("ldist", "lclimb", "ltime", "ltimef")
loghills2k.lm <- lm(ltime ~ ldist + lclimb , data=loghills2k)
par(mfrow=c(2,2))
plot(loghills2k.lm) # Diagnostic plot

We pause at this point and look more closely at the model that has been fitted. Does log(time)
really depend linearly on the terms ldist and log(lclimb)? The function termplot() gives a good
graphical indication (Figure 7.1).

## Plot the terms in the model

1There are several alternative forms of correlation coefficient. The usual form of correlation coefficient, such as we
discuss here, is the “product-moment” correlation, which measures linear association.
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Figure 7.1: In these “term
plots” the vertical scales in
both panels show log(time),
but centered to a mean of
zero. The left panel shows par-
tial residuals for ldist, while
the right panel shows partial
residuals for lclimb. Smooth
curves (dashes) have been
passed through the points.

termplot(loghills2k.lm, col.term="gray", partial=TRUE ,
col.res="black", smooth=panel.smooth)

The vertical scales show changes in ltime, about the mean of ltime. The lines show the effect
of each explanatory variable when the other variable is held at its mean value. The lines, which are
the contributions of the individual linear terms (“effects”) in this model, are shown in gray so that
they do not obtrude unduly. The dashed curves, which are smooth curves that are passed through
the residuals, are the primary feature of interest in these plots. Both panels show clear indications
of curvature; note however that removal of the curvature from one of these plots may be enough to
deal with the apparent curvature in both plots. Note also that until we have modeled effectively the
clear trend or trends that are evident in these plots, there is not too much point in worrying about
possible outliers.

Two possibilities are:

• Quadratics or possibly cubics (allowing for some departure from a strict quadratic response)
may be enough to deal with the curvature.

• More flexibly, we might use a regression spline model.2

Here are some of the alternatives:

loghills2k.lm <- lm(ltime ~ poly(ldist ,3) + poly(lclimb ,2),
data=loghills2k)

summary(loghills2k.lm)
# poly(ldist ,2) + lclimb is adequate

library(splines) # Attach the splines package

loghills2k.ns <- lm(ltime ~ ns(ldist ,3) + ns(lclimb ,2),
data=loghills2k)

# Actually ns(ldist ,2) + lclimb is enough

At this point, one should refit using rlm() (robust linear model), and check the diagnostics.

library(MASS)
loghills2k.rlm <- rlm(ltime ~ poly(ldist ,2) + lclimb ,

data=loghills2k)
par(mfrow=c(2,2))
plot(loghills2k.rlm) # Diagnostic plot , from rlm fit

termplot(loghills2k.rlm , col.term="gray", partial=TRUE ,

2The splines package has provision for two types of spline basis functions – B-splines and normal splines. A normal
spline of degree 3 has two internal knots, and so allows for a very flexible curve. Boundary conditions, so that the slope
of the curve is constrained to be zero at and beyond the boundary points, have the results that the number of degrees
of freedom after allowing for the constant term is is 3, as for a quartic.
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col.res="black", smooth=panel.smooth)
par(mfrow=c(1,1))

Caerketton stands out clearly as an outlier.
Omit Caerketton, refit. and again check residuals.

par(mfrow=c(2,2))
loghills2k.lm <- lm(ltime ~ poly(ldist ,2) + lclimb ,

data=loghills2k ,
subset=row.names(loghills2k)!="Caerketton")

plot(loghills2k.lm)
termplot(loghills2k.lm, col.term="gray", partial=TRUE ,

col.res="black", smooth=panel.smooth)
summary(loghills2k.lm)
par(mfrow=c(1,1))

7.2 Models that Include Factor Terms – Contrasts

Control (Wild Type) A (Modified 1) B (Modified 2) C (Modified 3)
82.0 58.3 68.1 50.7
97.8 67.9 70.8 47.1
69.9 59.3 63.6 48.9

Mean = 83.2 61.8 67.5 48.9

Table 7.1: Comparison of weights (weight) of sugar in a control (wild type) plant and in three different
genetically modified plant types.

7.2.1 Example – sugar weight

Table 7.1 displays data (in the data set sugar in the DAAG package) from an experiment that
compared an unmodified wild type plant with three different genetically modified forms. The mea-
surements are weights (mg) of sugar that were obtained by breaking down the cellulose. There is
a single explanatory factor (treatment), with one level for each of the different control agents. For
convenience, we will call the factor levels Control, A (Modified 1), B (Modified 2) and C (Modified
3).

A plot will show differences in variability between treatments. We could reduce the apparent
difference in variability between treatments by working with the log(weight). For present illustrative
purposes, we will however work with the variable weight, leaving as an exercise for the reader the
analysis that works with log(weight).

The model can be fitted either using the function lm() or using the function aov(). The two
functions give different default output.

For any problem that involves factor(s), there are several different ways to set up the model matrix.
The default, for R and for many other computer programs, is to set up one of the treatment levels
as a baseline or reference, with the effects of other treatment levels then measured from the baseline.
Here it makes sense to set Control (Wild ) as the baseline. With Control as baseline, the model
matrix for the data in Table 7.1 is given in Table 7.2; values of the response (sugar$weight) have
been added in the final column. Also included, in the column headers, is information from the least
squares fit.

The model matrix is obtained thus:

## Display model matrix: uses data frame sugar (DAAG)

sugar.aov <- aov(weight ~ trt , data=sugar)
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Control: 83.2 A: −21.4 B: −15.7 C: −34.3 Fitted value
1 0 0 0 83.2
1 0 0 0 83.2
1 0 0 0 83.2
1 1 0 0 61.8
1 1 0 0 61.8
1 1 0 0 61.8
1 0 1 0 67.5
1 0 1 0 67.5
1 0 1 0 67.5
1 0 0 1 48.9
1 0 0 1 48.9
1 0 0 1 48.9

Table 7.2: Model matrix for the analysis of variance calculation for the data in Table 7.1. The values
of the response are in the final column. At the head of each column is the multiple, as determined by
least squares, that is taken in forming the fitted values.

model.matrix(sugar.aov)

In Table 7.2, the multiples determined by least squares calculations are shown above each column.
Also shown is ŷ, which is the predicted value, and can be calculated either as fitted(sugar.aov) or
as predict(sugar.aov).

Residuals can be obtained by subtracting the predicted values (ŷ) in Table 7.2 from the observed
values (y) in Table 7.2. Here are the coefficient estimates, from the output summary from R:

> summary(sugar.aov)
. . .
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 83.23 4.47 18.61 7.2e-08
trtA -21.40 6.33 -3.38 0.00960
trtB -15.73 6.33 -2.49 0.03768
trtC -34.33 6.33 -5.43 0.00062
. . .

The row labeled (Intercept) gives the estimate (= 83.23) for the baseline, i.e., Control. The
remaining coefficients (differences from the baseline) are:

A: weight differs by −21.40.

B: weight differs by −15.73.

C: weight differs by −34.33.

Regression calculations have given us a relatively complicated way to calculate the treatment means!
The methodology shows its power to better effect in more complex forms of model, where there is no
such simple alternative.

7.2.2 Different choices for the model matrix when there are factors

In the language used in the R help pages, different choices of contrasts are available, with each
different choice leading to a different model matrix. These different choices lead to different regression
parameters, but the same fitted values, and the same analysis of variance table.

Note first that the constant term can be omitted (effectively forced to equal zero), so that the
parameters are the estimated treatment means. This is alright when there is just one factor, but
makes for complication when there is more than one factor and/or factor interaction. Specify:
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## Omit constant term from fit;

## force parameters to estimate treatment means

sugar.aov <- aov(weight ~ -1 + trt , data=sugar)
model.matrix(sugar.aov)

The default (treatment) choice of contrasts uses the initial factor level as baseline, as we have noted.
Different choices of the baseline or reference level lead to different versions of the model matrix. The
other common choice, i.e., sum contrasts, uses the average of treatment effects as the baseline. The
choice of contrasts may call for careful consideration, in order to obtain the output that will be most
helpful for the problem in hand. Or, more than one run of the analysis may be necessary, in order to
gain information on all effects that are of interest.

Here is the output when the baseline is the average of the treatment effects, i.e., from using the
sum contrasts:

. . .
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 65.37 2.24 29.23 2.0e-09
trt1 17.87 3.87 4.61 0.0017
trt2 -3.53 3.87 -0.91 0.3883
trt3 2.13 3.87 0.55 0.5968
. . .
> options(oldoptions) # Restore default treatment contrasts

The baseline, labeled (Intercept), is now the treatment mean. This equals 65.37. Remaining
coefficients are differences, for Control and for treatment levels A and B, from this mean. The sum
of the differences for all three treatments is zero. Thus the difference for C is (rounding up)

−(17.87− 3.53 + 2.13) = −16.5.

The estimates (means) are:

Control: 65.37 + 17.87 = 83.2.

A: 65.37− 3.53 = 61.8.

B: 65.37 + 2.13 = 67.5.

C: 65.37− 16.5 = 48.9.

Note finally the possibility of using helmert contrasts (these are the S-PLUS default). Problems
where these address the questions that are of direct scientific interest are unusual.

Interaction terms

Suppose there is a covariate x, and that the coefficient of x varies according to the treatment. This
can be modeled by multiplying the column of values for x, by columns that code for the factor levels.
See DAAGUR, pp. 227-231 for an example.
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7.3 Hierarchical Multi-level Models

Models with Non-iid Errors:
Error Term Errors do not have to be (and often are not) iid

Multi-level Multi-level models are a (relatively) simple type of non-iid
models model, implemented using lme() (nlme) or lmer()

(lme4 package).
Such models allow different errors of prediction, depending
on the intended prediction. (The error term does matter!)

Time Points that are close together in time are likely to show a
series (usually, positive) correlation. R’s acf() and arima()

functions are powerful tools for working with time series.
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Figure 7.2: Yields from blocks on eight sites
on the Caribbean island of Antigua. Data
are a summarized version of a subset of
data given in Andrews and Herzberg 1985,
pp.3̃39-353.

# ant111b is in DAAG

stripplot(site ~ harvwt , data=ant111b)
stripplot(harvwt ~ site , data=ant111b ,

scales=list(x=list(rot =90)))

Figure 7.2 shows corn yield data from the Caribbean island of Antigua. Depending on the use that
will be made of the results, it may be essential to correctly model the structure of the random part of
the model. The analysis will use the abilities of the lme() function in the nlme package, though the
example is one where it is easy to get the needed sums of squares from a linear model calculation. The
data give results for each of several blocks at a number of different locations (sites). A prediction for a
new block at one of the existing locations is likely to be more accurate than a prediction for a totally
new location. Multi-level models are able to account for such differences in predictive accuracy.

7.3.1 Analysis of the Antiguan corn yield data

The data that will be analyzed are in the second column of Table 7.3, which has the block means
for the Antiguan data. In comparing yields from different blocks, there are two sorts of comparison.
Blocks on the same location should be relatively similar, while blocks on different locations should be
relatively more different. Figure 7.2 suggests that this is indeed the case.

Comparison with analysis of variance:

In an analysis of variance formalization, the two-level structure of variation is handled by splitting
variation, as measured by the total sum of squares about the grand mean, into two parts – variation
within locations, and variation between location means. The final two columns in Table 7.3 indicate
how to calculate the relevant sums of squares and (by dividing by degrees of freedom) mean squares.
The division of the sum of squares into two parts mirrors two different types of predictions that
can be based on these data.
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Location Location means Location effect Residuals from
location mean

DBAN 5.16, 4.8, 5.07, 4.51 +0.59 0.28, −0.08, 0.18, −0.38
LFAN 2.93, 4.77, 4.33, 4.8 −0.08 −1.28, 0.56, 0.12, 0.59
NSAN 1.73, 3.17, 1.49, 1.97 −2.2 −0.36, 1.08, −0.6, −0.12
ORAN 6.79, 7.37, 6.44, 7.07 (4.29) +2.62 −0.13, 0.45, −0.48, 0.15
OVAN 3.25, 4.28, 5.56, 6.24 +0.54 −1.58, −0.56, 0.73, 1.4
TEAN 2.65, 3.19, 2.79, 3.51 −1.26 −0.39, 0.15, −0.25, 0.48
WEAN 5.04, 4.6, 6.34, 6.12 +1.23 −0.49, −0.93, 0.81, 0.6
WLAN 2.02, 2.66, 3.16, 3.52 −1.45 −0.82, −0.18, 0.32, 0.68

square, add, square, add, divide by
multiply by 4, d.f.=24, to give ms
divide by d.f.=7,
to give ms

Table 7.3: The leftmost column has harvest weights (harvwt), for the blocks in each location, for the
Antiguan corn data. Each of these harvest weights can be expressed as the sum of the overall mean
(= 4.29), location effect (third column), and residual from the location effect (final column). This
information that can be used to create the analysis of variance table.)

Variance components – a multi-level model

The model that is used is:

yield = overall mean + location effect
(random) + block effect

(random)

In formal mathematical language:

yij = µ + αi
(location, random) + βij

(block, random) (i = 1, . . . , 8; j = 1, . . . , 4)

with var[αi] = σ2
L, var[βij] = σ2

B.
The quantities σ2

L and σ2
B are known, technically, as variance components. The variance compo-

nents analysis allows inferences that are not immediately available from the breakdown of the sums of
squares in the analysis of variance table. Importantly, the variance components provide information
that can help design another experiment.

Analysis using lme

The modeling command takes the form:

library(nlme)
ant111b.lme <- lme(fixed=harvwt ~ 1, random = ~1 | site ,

data=ant111b)

The only fixed effect is the overall mean. The parameter random = ~1 | site fits random variation
between locations. Variation between the individual units that are nested within locations, i.e.,
between blocks, are by default treated as random. Here is the default output:

> ant111b.lme
Linear mixed -effects model fit by REML

Data: ant111b
Log -restricted -likelihood: -47.208
Fixed: harvwt ~ 1

(Intercept)
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4.2917

Random effects:
Formula: ~1 | site

(Intercept) Residual
StdDev: 1.5387 0.75996

Number of Observations: 32
Number of Groups: 8

Notice that lme gives, not the components of variance, but the standard deviations (StdDev) which
are their square roots. Observe that, according to lme, σ̂2

B/n = 0.759962 = 0.57754, and σ̂2
L = 1.53872

= 2.3676.
Those who are familiar with an analysis of variance table for such data should note that lme does not give

the mean square at any level higher than level 0, not even in this balanced case.

The take-home message from this analysis is:

o For prediction for a new block at one of the existing sites, the standard error is 0.76

o For prediction for a new block at a new site, the standard error is
√

1.53872 + .762 = 1.72

o For prediction of the mean of n blocks at a new site, the standard error is
√

1.53872 + 0.762/n

Where there are multiple levels of variation, the predictive accuracy can be dramatically different,
depending on what is to be predicted. Similar issues are arise in repeated measures contexts, and in
time series. Repeated measures data has multiple profiles, i.e., many small time series.

Additional Calculations

Fitted values and residuals in lme

By default fitted values account for all random effects, except those at level 0. In the example under
discussion fitted(ant111b.lme) calculates fitted values at level 1, which can be regarded as estimates
of the location means. They are not however the location means, as the graph given by the following
calculation demonstrates:

hat.lm <- fitted(lm(harvwt ~ site , data=ant111b ))
hat.lme <- fitted(ant111b.lme) # By default , level =1)

plot(hat.lme ~ hat.lm, xlab="Location means",
ylab="Fitted values (BLUPS) from lme")

abline(0,1,col="red") # Show the line y=x

The fitted values are known as BLUPs (Best Linear Unbiased Predictors). Relative to the location
means, they are pulled in toward the overall mean. The most extreme location means will on average,
because of random variation, be more extreme than the corresponding“true”means for those locations.
There is a theory that gives the factor by which they should be shrunk in towards the true mean.

Residuals are by default the residuals from the block means, i.e., they are residuals from the fitted
values at the highest level available. To get fitted values and residuals at level 0, enter:

hat0.lme <- fitted(ant111b.lme , level =0)
res0.lme <- resid(ant111b.lme , level =0)
plot(res0.lme , ant111b$harvwt - hat0.lme) # Points lie on y=x

abline(0,1,col="red")
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Analysis using lmer(), from lme4

See Subsection 9.1.1 for code that demonstrates the syntax used by lmer().
For futher details of calculations with these data, see DAAGUR, pp. 301-311. That text uses

lmer() rather than lme().

Classification models

These are in effect regression models in which the outcome is a categorical variable. They will be
discussed in Chapter 8, as multivariate models.

7.4 Models & methods – a more complete list

Models & methods – a more complete list:

linear (lm) Models that are linear in the parameters

anova (aov) Models for designed experiments etc
More flexibly (less insight?), use multi-level approach.

Multi-level lme (nlme) and lmer (lme4 ) models

Multivariate Principal components, multi-dimensional scaling [Ch 8]

Discriminant Discriminant analysis [Ch 8] & tree-based methods for
methods classification [Ch 7]

7.5 Exercises

1. (a) Investigate the pairwise relationships between variables in the data frame oddbooks.

(b) Fit the models

volume <- apply(oddbooks[, 1:3], 1, prod)
area <- apply(oddbooks[, 2:3], 1, prod)
lob1.lm <- lm(log(weight) ~ log(volume), data=oddbooks)
lob2.lm <- lm(log(weight) ~ log(thick)+log(area), data=oddbooks)
lob3.lm <- lm(log(weight) ~ log(thick)+log(breadth )+log(height),

data=oddbooks)

Comment on what you find, i.e., comment both on the estimates and on the standard
errors.

(c) Can weight be completely explained as a function of volume? Is there another relevant
variable?
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Multivariate methods

Multivariate Methods:
Distances Use phylogenetic distances as an example

Ordination Seek a low-dimensional representation?
Distances should reflect time from LCA!
The 2D or 3D ordination can be rotated arbitrarily.
Don’t ordinate if it makes sense to classify first!

Classification Linear Discriminant Analysis: simple
neural nets, SVMs: Check that apparent gains are real
trees: simple to fit; may be hard to interpret
random forests: easy to fit, may give high accuracy.

Classification Use results from a classification
+ ordination to determine axes.

8.1 Ordination

The following are road distances between major Australian cities:

> audists # From DAAGxtras

Adelaide Alice Brisbane Broome Cairns Canberra Darwin Melbourne Perth

Alice 1690

Brisbane 2130 3060

Broome 4035 2770 4320

Cairns 2865 2415 1840 4125

Canberra 1210 2755 1295 5100 3140

Darwin 3215 1525 3495 1965 2795 4230

Melbourne 755 2435 1735 4780 3235 655 3960

Perth 2750 3770 4390 2415 6015 3815 4345 3495

Sydney 1430 2930 1030 4885 2870 305 4060 895 3990

Can we find a two-dimensional representation of these data? Here is how it can be done:

aupoints <- cmdscale(audists)
library(MASS)
eqscplot(aupoints)
text(aupoints , labels = paste(rownames(aupoints )))

We can do the same kind of thing with genetic distances. The matrix primateDNA, from the
DAAGbio packages, gives the DNA base at each of 232 mitochondrial DNA loci, for each of 14 primate

69
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species.1 Alternatively, the function read.dna() from the apepackage can be used to download it
directly from a web page:

library(ape)
webpage <- "http://evolution.genetics.washington.edu/book/primates.dna"
primates.dna <- read.dna(url(webpage ))

Now use dist.dna(), also from the apepackage, to calculate distances:

primates.dist <- dist.dna(primates.dna , model = "F84")
## Use Kimura ' s F84 model

Now look for a low-diemnsional representation:

primates.cmd <- cmdscale(primates.dist)
eqscplot(primates.cmd)
rtleft <- c(4, 2, 4, 2)[ unclass(cut(primates.cmd[, 1], breaks = 4))]
text(primates.cmd[, 1], primates.cmd[, 2], row.names(primates.cmd),

pos = rtleft)

Now see how well the distances are reproduced:

> d <- dist(primates.cmd)
> sum((d - primates.dist )^2)/sum(primates.dist ^2)
[1] 0.1977

This is large enough (20%, which is a fraction of the total sum of squares) that it may be worth
examining a 3-dimensional representation.

> primates.cmd <- cmdscale(primates.dist , k = 3)
> library(lattice)
> cloud(primates.cmd[, 3] ~ primates.cmd[, 1] * primates.cmd[, 2])
> d <- dist(primates.cmd)
> sum((d - primates.dist )^2)/sum(primates.dist ^2)
[1] 0.1045

8.2 Classification

Look at use of lda() (MASS ), rpart() (rpart), and randomForest() (randomForest). See DAAGUR,
Section 12.2 (pp.384-390), Chapter 11 (pp.350-374). See also Section 12.3 (pp.390-407), on the analysis
of high-dimensional data.

In classification problems, observations belong to one of several classes or groups. The aim is to
find a rule, based on values of explanatory variables, that will, as far as possible, assign observations
to their correct classes. This rule may then be used to classify new observations whose class may be
unknown or unclear. An obvious way to evaluate classification rules is to examine their predictive
accuracy, i.e., the accuracy with which they can be expected to assign new observations.

Strongly parametric methods

Logistic discrimination and linear discriminant analysis are closely analagous methods. Both make
strong parametric assumptions. Logistic discrimination can be handled using the function multinom()
in the nnet package, or if there are just two groups using glm() from the base R stats package. Linear
discriminant analysis can be handled using the function lda() in MASS. Note also qda(), which
allows the variance-covariance matrix for predictor variables to differ between groups.

1Data are due to Hasegawa.
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Note that “linear” means “linear in the parameters”. Commonly models are used that are linear in
the explanatory variables, perhaps after transformation. Linearity in the explanatory variables is not
however a necessary restriction. The functionality needed to fit polynomial and/or regression spline
terms is implemented in R.

Nonparametric methods

Tree-based methods, and methods that generate ensembles of trees, are at the opposite extreme, in
their avoidance of parametric assumptions. They automatically incorporate departures from linearity
and/or complex interactions. On the other hand, there is no necessary requirement that assignment
probabilites should vary continuously with values of continuous explanatory variables. They make
assumptions that, often, are weaker than what is known to be true.

Dats set used

To illustrate linear and quadratic dsicriminant analysis, we will use the data set cuckoos from the
DAAG package, in the first instance limiting attention to hedge sparrow and wren nests. The following
(Figure 8.1) plots length versus breadth, for these two species:
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Figure 8.1: Length versus breadth, compared between
cuckoo eggs laid in hedge sparrow and those laid in wren
nests.

xyplot(length ~ breadth , groups=species ,
data=cuckoos , type=c("p","r"),
subset=species%in%c("hedge.sparrow","wren"),
auto.key=list(columns =2))

8.2.1 Linear and quadratic discriminant analysis

Here is suitable code

cuckoos2 <- subset(cuckoos , species%in%c("hedge.sparrow","wren"))
cuckoos2$species <- factor(cuckoos2$species)
cuckoos2.lda <- lda(species ~ length + breadth ,

subset=species%in%c("hedge.sparrow","wren"),
data=cuckoos2)

cuckoos2.lda
## Leave -one -out cross -validation

cuckoos2.class <- lda(species ~ length + breadth ,
subset=species%in%c("hedge.sparrow","wren"),
data=cuckoos2 , CV=TRUE)$class

table(cuckoos2.class , cuckoos2$species)
plot(length ~ breadth , data=cuckoos2 , pch=unclass(cuckoos2$species ))
## Now calculate discriminant line

av <- sapply(cuckoos2[, 1:2], mean)
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tab <- table(cuckoos2$species)
relfreq <- tab[2]/tab[1]
b <- cuckoos2.lda$scaling
rhs <- sum(b*av) - log(relfreq)
abline(rhs/b[1], -b[2]/b[1])

For quadratic discriminant analysis, use qda() in place of lda().

8.2.2 Tree-Based Methods and Random Forest

To be completed.
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Common Uses for Key Language
Ideas

Key language constructs:

Classes Classes make generic functions (methods) possible.

Methods Examples are print(), plot(), summary(), etc.

S4 vs S3 S3 is the original implementation of classes & methods
S4, which uses the methods package, is more recent.

Formulae As of now, there are model, graphics and table formulae.
Formulae can be manipulated, just as with other objects.

Expressions They can be evaluated (of course!). They can also
be printed (on a graph)

Argument Argument lists can be constucted in advance, as a
lists list of named values, with do.call() then used

to pass the argument list to the function

Environments Environments hold various subtleties. There are basic
matters that it helps to know.

While there is much that users can do without understanding in too much detail what happens
“under the hood”, a knowledge of important aspects of R’s “construction kit” can be a great help,
both in understanding why some things work the way they do, and in getting R to do things that
otherwise would be impossible.

9.1 Generic Functions (Classes and Methods)

All objects have a class. Use the function class() to get this information. For many common tasks
there are generic functions – print(), summary(), plot(), etc., whose action varies according to the
class of object to which they are applied.

Thus consider print(). For a factor, print.factor() is used, for a data frame print.data.frame()
is used, and so on. Ordered factors“inherit” the print method for factors. For objects (such as numeric
vectors) that do not otherwise have a print method, print.default() handles the printing.

Generic functions do not call the specific method, such as print.factor(), directly. Instead they
call the UseMethod() function, which then calls the relevant method for that class of object, e.g., the
factor method (such as print.factor()) for a factor object.

Thus, here is the function print().
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> print
function (x,...)
UseMethod("print")

The function UseMethod() notes the class of the object, now identified as x, and calls the print
function for that class.

To get a list of the S3 methods that are available for a generic function such as plot(), type, e.g.:

methods(plot)

Namespaces

Packages can have their own namespaces, with private functions and classes that are not ordinarily
visible from the command line, or from other packages. For example, the function intervals.lme()
that is part of the lme package must be called via the generic function intervals().

The function intervals.lme() does however have its own help page that can be accessed with
help(intervals.lme). For accessing the code for this function, specify getAnywhere(intervals.lme).

9.1.1 S4 Classes and Methods – the methods package

There are two sets of conventions and mechanisms – those of version 3 of the S language (S3), and
those of version 4 of the S language (S4). The methods package makes available S4 style methods,
which offer various advantages The S4 conventions and mechanisms extend the abilities available
under S3, build in checks that are not available with S3, and are more conducive to good software
engineering practice. The Bioconductor bundle of packages makes extensive use of S4 style classes
and methods. See help(Methods) (note the upper case M) for a brief overview of S4 classes and
methods.

Users of packages (e.g., lme4, or Bioconductor packages) may need to access the slots of S4 objects.
Use the function slotNames() to obtain the names of the slots, and either the function slot() or the
operator @ to extract or replace a slot. For example, consider the following example

> ## ant111b is in the DAAG package

> library(lme4) # lme4 must be installed

> ant111b.lmer <- lmer(harvwt ~ 1 + (1 | site), data = ant111b)
> slotNames(ant111b.lmer)
[1] "assign" "call" "family" "fitted" "fixed" "frame"
[7] "logLik" "residuals" "terms" "flist" "perm" "Parent"

[13] "D" "bVar" "L" "ZZpO" "Omega" "method"
[19] "RXX" "RZX" "XtX" "ZtZ" "ZtX" "cnames"
[25] "devComp" "deviance" "nc" "Gp" "status"
> slot(ant111b.lmer , "assign")
[1] 0
> slot(ant111b.lmer , "call")
lmer(formula = harvwt ~ 1 + (1 | site), data = ant111b)
> ant111b.lmer@call
lmer(formula = harvwt ~ 1 + (1 | site), data = ant111b)

Most often, an extractor function will be used to extract some relevant part of the output. For
example:

> VarCorr(ant111b.lmer)
Groups Name Variance Std.Dev.
site (Intercept) 2.368 1.54
Residual 0.578 0.76

For moderately simple examples of the definition and use of S4 classes and methods, see help(setClass)
and help(setMethod).
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Model, Graphics and Table Formulae

Formulae are a key idea in R., though their implementation is incomplete. They are widely available
for specifying graphs, models and tables. Details will be given below.

Expressions

Expressions can be:

evaluated (of course)

printed on a graph (come to think of it, why not?)

Manipulation of Language Constructs

Language structures can be manipulated, just like any other object. Below, we will show how formulae,
expressions, and argument lists for functions, can be pasted together.

9.2 Manipulation of Formulae

Model and Graphics Formulae

We demonstrate the construction of model or graphics formulae from text strings. For example, here
is a function that takes two named columns from the data frame mtcars (in the datasets package that
is part of the default installation), plotting them one against another:

plot.mtcars <- function(xvar="disp", yvar="mpg"){
mt.txt <- paste(yvar , "~", xvar)
plot(formula(mt.txt), xlab=xvar , ylab=yvar)

}

We can, when we call the function, set xvar and yvar to be any columns we choose:

> attach(mtcars)
> names(mtcars)
[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
[11] "carb"
> plot.mtcars(xvar="hp", yvar="mpg")

Extraction of Variable Names from Formula Objects

The function all.vars() takes a formula as argument, and returns the names of the variables that
appear in the formula. For example:

> all.vars(mpg ~ disp)
[1] "mpg" "disp"

As well as allowing the use of a formula to specify the graph, the following gives more informative x-
and y-labels:

plot.mtcars <- function(form = mpg~disp){
yvar <- all.vars(form )[1]
xvar <- all.vars(form )[2]
## Include information that allows a meaningful label

mtcars.info <- c(mpg= "Miles/(US) gallon",
cyl= "Number of cylinders",
disp= "Displacement (cu.in.)",
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hp= "Gross horsepower",
drat= "Rear axle ratio",
wt= "Weight (lb/1000)",
qsec= "1/4 mile time",
vs= "V/S",
am= "Transmission (0 = automatic , 1 = manual)",
gear= "Number of forward gears",
carb= "Number of carburettors")

xlab <- mtcars.info[xvar]
ylab <- mtcars.info[yvar]
plot(form , xlab=xlab , ylab=ylab)

}

9.3 Expressions

An expression is anything that can be evaluated. Thus x^2 Is an expression, and y == x^2 is an
expression.

A simple use of expression() is to extract a text string representation of a function argument.

plot.mtcars <- function(x = disp , y = mpg){
xvar <- deparse(expression(x))
yvar <- deparse(expression(y))
plot(y ~ x, xlab=xvar , ylab=yvar)

}

Formatting and plotting of text and equations

The construction

expr <- expression(x^2)

creates an expression that can be evaluated later. For example

> expr <- expression(x^2)
> x <- 5
> eval(expr)
[1] 25
> eval(expr , list(x=7))
[1] 49

Moreover, such an expression can be plotted:

x <- 1:10
plot(x, x^2, ylab=expression(x^2))

9.3.1 Plotting expressions – detailed examples

Some expressions that cannot be evaluated can nevertheless be plotted. For example the following is
a legitimate expression:

italic("Acmena smithii") * ":" * phantom (0) * "wood vs dbd"

The sub-expression italic("Acmena smithii") gives italic text; The sub-expression phantom(0)
inserts a space. The asterisks are left out. The reasoning is that expression(x*y) is written xy,
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whether x and y are quoted or unquoted. Such “expressions” can be included in any of the functions
text() or mtext() or title().

We will now create a graph to which various annotation can be added, becoming in due course
Figure 9.1:

## Plot Acmena smithii data (subset of rainforest , from DAAG)

Acmena <- subset(rainforest , species =="Acmena smithii")
## Plot the graph

plot(wood~dbh , data=Acmena , xlim=c(0, max(Acmena$dbh )))
## In fitting the curve , omit the point where dbh is largest

b <- coef(lm(log(wood) ~ log(dbh), data=Acmena , subset=dbh <40))
largest2 <- sort(Acmena$dbh , decreasing=TRUE )[2:1]
curve(exp(b[1])*x^b[2], from=min(Acmena$dbh), to=largest2 [1], add=TRUE)
curve(exp(b[1])*x^b[2], from=largest2 [1], to=largest2 [2],

lty=2, add=TRUE)
## Finally , use the code given below to add the legend and title

Now add the title:

mtext(side=3, line =1.5, cex=1.1,
italic("Acmena smithii") * ":" * phantom (0) * "wood vs dbd)

9.3.2 Symbolic substitution in expressions

The following might have been used to print the title in Figure 9.1:

mtext(side=3, line =1.5, substitute(italic(tx) * ": " * "wood vs dbh",
list(tx="Acmena smithii")), cex =1.1)

The list provides an environment (see below) in which the expression is evaluated. As that environment
has a value to tx, "Acmena smithii" is substituted for tx.

Addition of the legend to Figure 9.1 requires the use of a list of “quoted” unevaluated expressions.
The list is passed, using do.call() to expression(), which returns a list of expressions that can
then be plotted. The functions quote() returns a quoted unevaluated expression, while bquote() is
an extension of quote() that allows symbolic substitution. These functions are used to provide the
legend in Figure 9.1.

The object arg2 that is created by the call to quote() has class call; it can be included as a list
element in the args parameter to do.call(), for passing to the function that is specified by the what
argument to do.call()

The call to bquote() that creates arg1 adds a further feature – the substitution of values for the
variables A and B. The values of A in .(A), and of B in .(B), are each taken from the environment,
here specified by list(A=b[1], B=b[2]).

Another example of the use of substitute()

The following generates random numbers from the Weibull distribution, and gives a plot of the density:

random.weibull <- function(n=100, shape =1.75){
x <- rweibull(n=100, shape=shape)
simden <- density(x, from =0)
xval <- pretty(x,50)
theoryden <- list(x=xval , y=dweibull(pretty(x,50), shape=shape))
plot(simden , ylim=range(c(simden$y, theoryden$y)))
lines(theoryden , col="red")
topright <- par()$usr[c(2,4)] - c(0, 1.5*par()$cxy [2])
text(topright [1], topright [2],
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Figure 9.1: Plot of wood (wood biomass) vs dbh (diameter at breast height), for the species Acmena
smithii (rainforest).
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Acmena smithii : wood vs dbh
## Code used to add legend to graph

b <- round(b,3)

arg1 <- bquote(italic(y) == .(A)

* italic(x)^.(B),

list(A=b[1], B=b[2]))

arg2 <- quote("(" * italic(y) * "=wood; "

* italic(x) * "=dbh)")

legend("topleft",

legend=do.call("expression",

c(arg1 , arg2)),

bty="n")

mtext(side=3, line =1.5,

substitute(italic(tx) * ": "

* "wood vs dbh",

list(tx="Acmena smithii")),

cex =1.1)

substitute(atop("Density is" * phantom (0) *
f(x) == (a/b) (x/b)^(a-1) * exp(- (x/b)^a),
"with"*phantom (0)*list(a==z, b==1)),

list(z=shape)), adj=1)
}
## Run function

random.weibull ()

See help(plotmath) for further details on the printing of expressions on graphs.

9.4 The use of a list to pass parameter values

The following are equivalent:

mean(rnorm (20))
do.call("mean", args=list(x=rnorm (20)))

Use of do.call() allows the parameter list to be set up in advance of the call. The following
shows the use of do.call() to achieve the same effect as mean(possum$totlngth):

do.call("mean", list(x=possum$totlngth ))

This makes more sense in a function, thus:

`average ` <-
function(x=possum$chest , FUN=function(x)mean(x)){

fun <- deparse(substitute(FUN))
do.call(fun , list(x=x))

}

Now you can do the following:

average ()
average(FUN=median)
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See the function simulate.distribution() on pp.452-453 of DAAGUR for a more complicated
example.

Note also call(), which sets up an unevaluated expression. The expression can be evaluated at
some later time, using eval(). Here is an example:

> mean.call <- call("mean", x=rnorm (5))
> eval(mean.call)
[1] -0.6276536
> eval(mean.call)
[1] -0.6276536

Notice that the argument x was evaluated when call() was evoked. Hence the result is unchanged
upon repeating the use of eval(). This can be verified by printing out the expression:

> mean.call
mean(x = c( -0.68467334794551 , -0.376091734366091 , -0.289459988631994 ,

-3.04694266628697 , 1.25889972957396))

9.5 Environments

Every call to a function creates a frame that contains the local variables created in the function. This
combines with the environment in which the function was defined to create a new environment.

The global environment, .Globalenv, is the workspace. This is frame number 0. The frame
number increases by 1 with each new function call. Additionally, frames may be referred to by name.
Use

sys.nframe() to get the number of the current evaluation frame

sys.frame(sys.nframe()) to identify the frame by name

sys.parent() to get the number of the parent frame.

There are many other such functions, but these will do for now!
Here is a function that determines, from within the function, its name:

> test <- function (){
+ fname <- as(sys.call(sys.parent ())[[1]] , "character")
+ fname
+ }
> test()
[1] "test"
> newtest <- test
> newtest ()
[1] "newtest"

I like to call my figures, in the directory that relates to a paper that I am writing, fig1(), fig2(),
etc. These functions will in turn call a function gf() that calls the graphics device, and specifies the
file that will be used to store the graph. The definition of gf() is:

gf <-
function(width =2.25, height =2.25, color=F, pointsize =8){

funtxt <- sys.call (1) # Sea

fnam <- paste(funtxt , ".pdf", sep="")
print(paste("Output will be to the file ' ",

fnam , " ' ", sep=""))
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pdf(file=fnam , width=width , height=height , pointsize=
pointsize)

}

Now create a function that calls gf():

graph1 <- function (){
gf() # Call with default parameters

curve(sin , -pi, 2*pi)
dev.off()

}

Output goes to the file graph1.pdf. For a function graph2() that calls gf(), the file name will be
graph2.pdf. Similarly for fig1() or fig2() or any other function that calls gf().

Bound and Unbound Variables

Variables that are passed as formal arguments to a function are bound variables. Local variables are
those that are created within the body of the function. Unbound variables are first searched for in
the frame of the function, then in the parent frame, and so on. If they are not found in any of the
frames, then they are sought in the search list.

9.6 Summary

Language structures (formulae and expressions) can be manipulated, just like any other object.

R uses formulae to specify models, graphs and (xtabs() only) tables.

The expression syntax allows the plotting of juxtaposed text strings, which may include math-
ematical text.

9.7 Exercises

1. Write a function that takes a vector of numerical values x and gives, in a 2 by layout
a. a density plot
b. a boxplot
c. a cumulative probability plot
d. a quantile-quantile plot, against some specified reference distribution.
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Additional Notes on R

Additional Notes:
Errors in My attempt to input data has generated an error.
data input How can I locate it?

scan() scan() is a more flexible alternative to read.table()

sapply() sapply(), lapply() and apply() apply functions
& friends in parallel across all columns of a data frame

or ((apply()) across all rows or columns of a matrix.
Apply any function that will not generate an error.
[e.g., log("Hobart") is not allowed.]

Inf & friends The logarithm of zero returns -Inf. Take care!

Large datasets A little knowhow can save a load of time.

Workspaces Manage them carefully!

10.1 Entry of data using read.table() and scan()

read.table() – Errors when reading in data

Carefully check the option settings for the version of the input command that is in use. If some text
strings have embedded single quotes, it may be necessary to set quote = "". There may be text
strings that have a # embedded; the default (which can of course be changed) is then to ignore the
rest of the input line.

The function count.fields() can be a useful way to determine how many fields the input function
thinks it has found in each record. Alternatively, use read.table() with the parameter setting
fill=TRUE, and carefully check the input data frame. Blank fields will be implicitly added, as needed,
in order to ensure that all records have an equal number of fields.

read.table() – Additional points

Users can set parameters that give a great deal of detailed control over the way that read.table()
works. These allow control over: the character(s) used to separate fields (specify sep), the missing
value character(s) (specify na.strings), the quote character(s) (specify quote), the number of lines
to skip at the beginning of the file (specify skip), etc. There are a number of aliases for read.table()
that have different settings for these and other defaults. See help(read.table). Note however that
non-default option settings can, for large files, severely slow down data input.

Points to note are:

81
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If there is one less column heading than there are columns, the first column of input is by default
used for row names. Use of the argument heading=FALSE overrides this default.

Character vectors are converted into factors. Thus, the final column (type) of travelbooks
became, by default, a factor. To prevent such type conversions, specify as.is=TRUE.

If the first row of the file has the same number of fields as later rows, it is assumed that this
is the first row of data, not a header row. Alternatively, specify header=FALSE to ensure this.
The default is then to give the columns the names V1, V2, . . . .

Use the parameter row.names, then specifying a column number, to specify a column for use to
provide row names.

Where a column that should be numeric is converted to a factor, this is commonly an indication
that it has one or more characters that cannot be taken as part of a number. For example, a ”1”
(one) may have been mistyped as an ”l” (ell), or ”0” (zero) as ”O” (oh). Or ”.” may have been used as
the missing value symbol, but without indicating to read.table() that it has been used as a missing
value symbol.

If any of the input lines include #, anything that follows on that line will be ignored. To change
this behaviour, specify comment.char appropriately.

There are several alternatives to read.table() that have different defaults. See the help page for
read.table().

*The use of scan() for flexible data input

Data records may for example spread over several rows. There seems no way for read.table() to
handle this. The function scan() has the necessary flexibility. There may be other reasons for using
scan(). With large files, data input is much faster than with read.table().

The following code demonstrates the use of scan() to read in the file molclock.txt.

col.names <- scan("molclock.txt", nlines=1, what="")
molclock <- scan("molclock.txt", skip=1, what=c(list(""),

rep(list (1) ,5)))
molclock <- data.frame(molclock , row.names =1)

# Column 1 supplies row names

names(molclock) <- col.names

This could easily be put into a function that accepts as parameters the file name, the number of
lines per record, and the what list.

Notice that that there were two calls to scan(), each time with the same file molclock.txt. The
first (with nlines=1 and what=""), recovered the column names, while the second [with skip=1 and
what=c(list(""), rep(list(1),5)))], recovered the entries for the several rows of data. The calls
introduces the use of a the what parameter, which expects a list as argument. There is one list element
for each column that is to be input. The ”” in the first list element indicates that the data is to be
input as character. The remaining five list elements hold 1’s, indicating numeric data.

Where there are a number of data files that have the same format, it makes sense to put the code
into a function, probably with the what list as a parameter. Where records extend over several lines,
it will be necessary to set multi.line=TRUE. The length of the what list gives the number of fields in
each record.

Large files – Reading in part of a file

Difficulties with large files can often be eased by reading in part only of a file at any time. Both
read.table() and scan() allow this. Give skip the value needed to get to the point where you will
start reading. For read.table() set nrows to the number of lines to be read, while for scan() use
nlines for this purpose.
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10.2 The apply family of functions

The function apply() handles operations that are carried out across rows (dimension 1) or down
columns (dimension 2) of matrices. The function sapply() is primarily for use with data frames.
Thus, for work with microarrays, it is usually apply() that is required.

The apply() function

The function apply() may be used both with data frames and matrices.1 It has three mandatory
arguments, a matrix or data frame, the dimension (1 for rows; 2 for columns) or dimensions, and a
function that will be applied across that dimension of the matrix or data frame.

apply(molclock , 2, range)

Here is a more interesting example, using the multi-way table UCBAdmissions that is in the base
package. We’d like to see how the admission rates, for males and females separately, compare across
the departments. Here is how to do it:

> apply(UCBAdmissions , c(2,3), function(x)x[1]/sum(x))

Dept
Gender A B C D E F
Male 0.620606 0.6303571 0.3692308 0.3309353 0.2774869 0.05898123

Female 0.824074 0.6800000 0.3406408 0.3493333 0.2391858 0.07038123

Compare this with

> apply(UCBAdmissions , c(1,2), sum)
Gender
Admit Male Female
Admitted 1198 557
Rejected 1493 1278

Next, to get the overall admission rates, we demonstrate a double use of apply().

> apply(apply(UCBAdmissions , c(1,2), sum), 2, function(x)x[1]/sum(x))

Male Female
0.4451877 0.3035422

The sapply() function

The function sapply() makes it possible to apply functions such as mean(), range(), etc., in parallel
to all columns of a data frame. It takes as arguments the name of the data frame, and the function
that is to be applied. Here are examples:

> sapply(molclock , range)
AvRate Myr Gpdh Sod Xdh
[1,] 12 55 1.5 13 12
[2,] 25 1100 40.0 46 32

One can specify na.rm=T as a third argument to the function sapply. This argument is then auto-
matically passed to the function that is given in the second argument position. The following shows
the syntax:

1More generally, it can be used with arrays. Arrays are a generalization of matrices to allow an arbitrary number of
dimensions.
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> sapply(molclock , range , na.rm=T)
AvRate Myr Gpdh Sod Xdh
[1,] 12 55 1.5 13 12
[2,] 25 1100 40.0 46 32

The function lapply() has the same syntax as sapply(), but returns a list that has one element
corresponding to each element of the argument. It is the appropriate function to use when the
function that is the second argument either
(i) does not return a vector, or
(ii) returns vectors that are of different lengths for different elements of the list or data frame that is
the first parameter.
(For a data frame, the different columns of the data frame count as different list elements.)

More generally, the first argument to sapply() or lapply() can be any vector.

Warning: It is possible to use sapply() or lapply() with a matrix. However the result is different
to that from use of these functions with a data frame that has the same dimensions. The functions
sapply() and lapply() treat the matrix as a vector that has as many elements as there are matrix
elements, applying the function that is specified as the second argument to each element in turn. This
can be a trap for functions that return one or more of their output structures as matrices rather than
data frames, and is particularly disastrous if the matrix is large. For example, the scores that are
returned by the principal components function prcomp() are stored in a matrix. To find the ranges of
each of the columns either use apply(), which is designed for use with matrices, or else first convert
the matrix to a data frame.

More efficient alternatives to apply() and sapply()

The apply() family of functions may take an unreasonably long time when data sets are large, e.g.,
depending on available memory, 50,000 or 100,000 rows. If there is a ready alternative that uses
matrix multiplication or sweep(), this is likely to be much faster. The speed of execution of these
functions may improve greatly at some future time, with the implementation of major components of
the calculations in compiled C code.

10.3 Logarithms, with some zero or negative numbers

This can be a particular issue for microarrray data. Numbers that are zero or negative require
careful attention when data are to be transformed to a logarithmic scale, to avoid unnecessary loss
of information and to avoid numerical problems that may arise if logarithms are taken regardless of
zero or negative arguments. Zeros are an issue for the mouse.data data in the sma package. There
are, adding over all six slides, 74 spots where R, Rb, G and Gb are all zero. For all other spots R>Rb
and G>Gb.

Calculation of log(0) yields –Inf, which R treats, for some purposes at least, as a number. The
attempt to calculate, e.g., log(-1) generates an NaN, which is for most purposes treated as an NA.
The quantities –Inf and Inf are not missing values, and are not treated as such. Some calculations
that cope with NAs by omitting them before proceeding will however fail if they encounter –Inf or Inf.
Perhaps the easiest way to deal with them is to turn all such quantities into NAs, which can then be
detected and omitted using na.omit(). There is some loss of information.

The sma package has a function log.na() that is a replacement for log(). This returns NA
whenever the function argument is zero or negative. Points where there are NAs are then omitted in
plots and in subsequent calculations.

Rather than omitting negative or zero numbers prior to taking logarithms, we might prefer to
retain the information that these are the smallest of the expression values. For zeros, this can be
achieved by replacing zero values by a suitable small number, smaller for background values than for
the signal.
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In replacing the zeros by small numbers, how might we proceed? In order to get an idea of suitable
small numbers for data in the mouse.data object we find, for each of R, Rb, G and Gb, the smallest
non-zero value. These are:

> attach(mouse.data)
> min(R[R>0])
[1] 929.2
> min(Rb[Rb >0])
[1] 688
> min(G[G>0])
[1] 231.63
> min(Gb[Gb >0])
[1] 100.04
> detach(mouse.data)

It might be reasonable to replace zeros of R with 475 (around half of 929.2), zeros of Rb with 350,
zeros of G with 115, and zeros of Gb with 50.

Note that different functions handle NAs in different ways. The plot() function is accepting of
NAs, infinities and NaNs, handling such points by omitting them. If however we wish to use lowess()
to put a smooth curve through the plot, we need first to remove NAs.

10.4 Computations with Large Datasets

Most of R’s modeling functions (regression, smoothing, discriminant analysis, etc.) are designed to
work with data frames. If the data set is so large that these calculations are slow, consider whether
it makes sense to run the function separately on different subsets of the data, or on a random subset
of the data, or on some suitably summarized version of the data. Where a random subset is used, it
can be advantageous to repeat the analysis for several different random subsets.

Functions that are specifically written for use with large data sets may prefer data that are stored
in matrix form. Microarray applications, where it would not make sense to run calculations on a
subset of spots (“genes”), are an example. The matrix or matrices may be list element(s) in a more
complex data structure.

Note the following points:

Use matrices, if possible, in preference to data frames: Computations with large matrices
are typically much faster than the equivalent computations with large data frames.

Matrix operations can be more efficient even for such a simple operation as adding a constant
quantity to each element of the array, or taking logarithms of all elements. Here is an example:

> xy <- matrix(rnorm (500000) , ncol =50)
> dim(xy)
[1] 10000 50
> system.time(xy+1)
[1] 0.05 0.00 0.08 0.00 0.00
> ## Times are: user cpu , system cpu , elapsed , subproc1 , subproc2

> xy.df <- data.frame(xy)
> system.time(xy.df+1)
[1] 3.24 0.00 8.23 0.00 0.00

The two non-zero numbers are of interest to us. The first is processor time and the second is elapsed
time. The above was on a 4Mhz Macintosh G4 laptop with 768MB of random access memory.

Use the most efficient coding: Matrix arithmetic can be much faster than the equivalent com-
putations that use apply(). Here are timings for some alternative ways to find the sums of rows of a
matrix:
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> xy <- matrix(rnorm (200000) , nrow =2000)
> system.time(apply(xy ,1,sum))
[1] 0.25 0.00 0.60 0.00 0.00
> system.time(xy %*% rep (1 ,100))
[1] 0.01 0.00 0.06 0.00 0.00
> system.time(rowSums(xy))
[1] 0.01 0.00 0.01 0.00 0.00
>
> xy2 <- matrix(rnorm (200000) , nrow =100)

> system.time(apply(xy2 ,1,sum))
[1] 0.10 0.00 0.25 0.00 0.00
> system.time(xy2%*%rep (1 ,2000))
[1] 0.01 0.00 0.02 0.00 0.00
> system.time(rowSums(xy2))
[1] 0.01 0.00 0.02 0.00 0.00

The first time is processor time, in seconds. The third is elapsed time.
Unnecessary formation of a diagonal matrix should however be avoided. The following are equiv-

alent:

> xy <- matrix(rnorm (200000) , nrow =2000)
> dd <- sample (2000)
> system.time(diag(dd)%*%xy)
[1] 3.26 0.00 8.44 0.00 0.00
> system.time(sweep(xy, 1, dd , "*"))
[1] 0.42 0.00 1.07 0.00 0.00
> system.time(xy*dd)
[1] 0.02 0.00 0.10 0.00 0.00

Suppose however that we want to multiply each column of xy by a constant. Is it helpful to
transpose xy?

> dd100 <- sample (100)
> system.time(xy%*%diag(dd100))
[1] 0.12 0.00 0.45 0.00 0.00
> system.time(sweep(xy, 2, dd100 , "*"))
[1] 0.12 0.00 0.19 0.00 0.00
> system.time(t(xy)*dd100)
[1] 0.06 0.00 0.29 0.00 0.00

Observe that processor time decreases, but elapsed time increases, between methods 2 and 3.

Skinny Matrices can be Advantageous Processing can be more efficient for skinny matrices
(many rows and few columns). Internally, successive elements in a column are stored in sequence.
The requirement for fresh memory access is reduced when elements are accessed one after another
down a column.

The singular value decomposition gives the same information whether applied to the matrix X or
to its transpose. Calculation of X = U D VT is equivalent to

XT = V D UT ,
where U and V are orthogonal matrices and D is diagonal.

> system.time(sv---d(xy)) # xy is 2000 x 100

[1] 1.28 0.00 3.35 0.00 0.00
> xyt <- t(xy)
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> system.time(svd(xyt)) # xy2 is 100 x 2000

[1] 1.90 0.00 4.81 0.00 0.00

Data Base Connections

The relevant tables can be huge, so that bringing them across into R may involve huge delay. Ripley
and Fei Chen (2003) discuss ways to make such manipulations tractable.

10.5 Workspace management

Even with careful housekeeping, the workspace may soon become cluttered, and data and other objects
that are in use must be identified from among the clutter. Large data objects, such as are common
in expression array work, take up what may for some tasks be a scarce memory resource.

There are two complementary strategies:

Objects that cannot easily be reconstructed or copied from elsewhere, but are not for the time
being required, are conveniently saved to an image file, using the save() function.

Use a separate working directory for each major project.

It is straightforward to move, within an R session, from one working directory to another. Use
save.image() to save the contents of the current workspace in the current working directory, rm(list=ls())
to clear the workspace, setwd("newdir") to set the new working directory to, e.g., newdir, and
load(".Rdata") to load the new workspace. These operations can all be carried out from the menu,
where available. The effect is to change .Globalenv.

Use getwd() to check the name and path of the current working directory. Note also the utility
function dir() (get the names of files, by default in the current working directory).

Several image files (“workspaces”) that have distinct names can live in the one working directory.
The image file, if any, that is called .RData is the file whose contents will be loaded at the beginning
of a new session in the directory.

Under Windows, and under the Mac OSX/Carbon version of R, there are File menu items Save
Workspace..., Change Dir... and Load Workspace.... These can be used to save the current
workspace, then moving to a new workspace in a new directory.

The removal of clutter

Use a command of the form rm(x, y, tmp) to remove objects (here x, y, tmp) that are no longer
required. A good precaution, before removing any objects, is to make an archive of the workspace.
For this, type:

save.image(file="archive.Rdata")

In place of archive, it might be better to use, e.g., the date when the file was created, e.g.

save.image(file="a31 -1-03. Rdata")

Objects can then be removed without too much worry. If some objects that were removed turn
out to be needed, they can be recovered from the “archive”.

Movement of files between computers

Files that are saved in the default binary save file format can usually be moved between different
computer systems. There may be unusual platforms where the XDR binary interchange format used
by R is unavailable; in this case use save() with the parameter setting ascii = TRUE.
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*Further possibilities – saving objects in text form

Data frames and vectors can be dumped to disk with a command such as

dump("molclock", file="molclock.R")
source("molclock.R") # Use to retrieve molclock

The same form of source() command can be used to input R script files, i.e., files that contain R
code. It can in principle be used with any R objects. However there are checks on dependencies that
can cause strife. Problems can usually be resolved by editing the R source file to remove lines that
lead to problems.

10.6 Debugging

Use of an editor that has syntax highlighting is a huge help when writing R code. On Windows,
consider tinn-R (free), or WinEdt. The Windows and Max OS X implementations both have their
own simple editors. The Windows editor does not have syntax highlighting. The Mac OS X editor
does.

When an error occurs in a calculation, steps that may be considered are:

• Examine output error information, if this seems informative;

• Type traceback(). This may give additional information.

• Identify the function in which the error occurred. (This is not always easy.) Edit the function,
placing browser() statements at crucial points. If the function is from an attached package or
database, the effect is to create a new local copy of the function. When the function is executed,
execution stops at any browser() statement. Values of variables at the breakpoint can then
be inspected. Type c to continue, or Q to quit. See the help page for browser() for more
information.

See also the help pages for debug() and trace().

10.7 Summary

scan() can be a useful alternative to read.table() when large data sets are input, or when
row spreads over more than one line of the file.

apply(), sapply() and reshape() can be useful for manipulations with data frames and
matrices

Specific action may be needed, when some numbers are zero or negative, in taking logarithms

In computations with large datasets, operations that are formally equivalent can differ greatly
in their use of computational resources.

Careful workspace management is important when files are large. It pays to use separate working
directories for each different project, and to save important data objects as image files when
they are, for the time being, no longer required.

10.8 References
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Packages

Base Packages

These are base, methods, stats, graphics, grDevices, utils and datasets. These are all, in a custom
installation, attached by default at startup:

The methods package has formally defined methods and classes for R objects, plus other pro-
gramming tools, as described in the “Green Book”
(“Programming with Data” (1998), by John M. Chambers, Springer.)

The graphics package has R’s regular graphics functions.

The stats package has basic abilities for handling density estimation, tests, linear models, multi-
variate analysis, smoothing, time series, maximum likelihood maximization and profiling, non-
linear least squares, etc.

Utility functions in the utils package include Sweave(), and functions for editing data.

The grDevices package has device drivers.

The datasets package has datasets.

Recommended packages

“Recommended” packages are included along with base packages in all binary distributions:

boot : Functions and datasets for bootstrapping from the book “Bootstrap Methods and Their
Applications” by A. C. Davison and D. V. Hinkley, 1997, Cambridge University Press.

class: Functions for classification (k-nearest neighbor and LVQ). Contained in the VR bundle.

cluster : Functions for cluster analysis.

foreign: Functions for reading and writing data stored by statistical software like Minitab, SAS,
SPSS, Stata, etc.

grid: This provides a framework, alternative to that of the graphics package, for graphics. The
lattice package uses this framework.

tcltk: Interface and language bindings to Tcl/Tk GUI elements.

nlme: Linear and non-linear maximum likelihood estimation, including multi-level models and
repeated measures models. The lme4 package replaces, and to some extent supersedes, most of
the ”linear” part of this package.

KernSmooth: Functions for kernel smoothing (and density estimation) corresponding to the
book “Kernel Smoothing” by M. P. Wand and M. C. Jones, 1995.
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lattice: Lattice graphics, an implementation of trellis Graphics.

MASS : Functions and datasets from the main package of Venables and Ripley, “Modern Applied
Statistics with S”. This is part of the VR bundle

mgcv : Routines for GAMs and other genralized ridge regression problems with multiple smooth-
ing parameter selection by GCV or UBRE.

nnet : Software for single hidden layer perceptrons (“feed-forward neural networks”), and for
multinomial log-linear models. This is part of the VR bundle.

rpart : Recursive PARTitioning and regression trees.

spatial : Functions for kriging and point pattern analysis from “Modern Applied Statistics with
S” by W. Venables and B. Ripley. This is part of the VR bundle

survival: Functions for survival analysis, proportional hazards regression and related analyses.

Genetics and molecular biology

Genetics

See the CRAN task view for Genetics
[Go to http://cran.ms.unimelb.edu.au/ and click on Task View | Genetics]

Phylogenetics

ape: Analysis of Phylogenetics & Evolution with R.

Analysis of expression array data

The limma package, available both as part of the Bioconductor bundle and as a stand-alone package
from CRAN, is strongly recommended.

The BioConductor bundle

Bioconductor ”is an open source and open development software project for the analysis and compre-
hension of genomic data.”

“Although initial efforts focused primarily on DNA microarray data analysis, many of the software
tools are general and can be used broadly for the analysis of genomic data, such as SAGE, sequence,
or SNP data.”
See http://www.bioconductor.org/

To see the list of available packages, go to
http://www.bioconductor.org/packages/1.9/Software.html.

A.1 Graphics packages, including graphics, lattice and grid

See the CRAN task view for Graphics
[Go to http://cran.ms.unimelb.edu.au/ and click on Task View | Graphics]

A.2 Other contributed packages – a small selection

Bayesian methods

gbayes:
GLMMGibbs: Generalized Linear Mixed Models

http://cran.ms.unimelb.edu.au/
http://www.bioconductor.org/
http://www.bioconductor.org/packages/1.9/Software.html
http://cran.ms.unimelb.edu.au/
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lmm: Linear mixed models, using Bayesian methods
mcmc: Markov Chain Monte Carlo.
ordinal: Models and utilities for categorical data.

Categorical data

cat: Analysis of categorical data where some data are missing.
repeated: Models for non-normal repeated measurements, including categorical measurements
vcd: Functions and data sets based on the book ”Visualizing Categorical Data” by Michael Friendly.

GUI interface for statistics

Rcmdr: A basic-statistics graphical user interface to R.

Time series

In addition to abilities in stats and nlme, note:
pear: for modeling periodic time series
tseries: for modeling nonlinear time series
fracdiff: for modeling long-memory time series
strucchange: for estimation of change points in time series

Design of Experiments

AlgDesign: Algorithmic experimental designs. “Calculates exact and approximate theory experimental
designs for D, A and I criteria. Very large designs may be created. Experimental designs may be
blocked or blocked designs created from a candidate list, using several criteria. The blocking can be
done when whole and within plot factors interact.”
conf.design: Construction of factorial designs
crossdes: Design and Randomization in Crossover Studies

Design – population genetics

ldDesign: Design of experiments for detection of linkage disequilibrium
powerpkg : Power analyses for the affected sib pair and the TDT design
qtlDesign: Design of QTL experiments

The brewing and use of colors

dichromat: Simulate two different types of red-green color blindness
RColorBrewer: Discrete color combinations that are effective for coloring maps and images.

Fun and recreational packages

fortunes: R fortunes. Attach the package and type fortunes()
magic: Create and investigate magic squares.

Miscellaneous

classPP : Projection Pursuit for supervised classification.
clim.pact: Climate analysis and downscaling for monthly and daily data
clines: Calculates Contour Lines
nlmeODE : Mixed-effects modelling using differential equations. (Uses nlme & odesolve)
nlrq : Nonlinear quantile regression.
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corpora: Statistical analysis of corpus frequency data.
TeachingDemos: Demonstrations for teaching and learning.

A.3 Multivariate analysis

Packages that have functions for multivariate analysis include stats, cluster and MASS. Selected
functions from these libraries are listed below. For more complete details, type in commands of
the form help(package=cluster), and then look at help pages for individual functions that are of
interest. See also Venables and Ripley (2002). Additionally, multivariate abilities are available in
various of the Bioconductor packages.

cluster

agnes: Agglomerative Nesting
clara: Clustering Large Applications
daisy: Dissimilarity Matrix Calculation
diana: Divisive Analysis
fanny: Fuzzy Analysis
mona: Monothetic Analysis
pam: Partitioning Around Medoids

Multivariate abilities in package stats

as.hclust: Convert Objects to Class hclust
biplot: Biplot of Multivariate Data
biplot.princomp: Biplot for Principal Components
cancor: Canonical Correlations
cmdscale: Classical (Metric) Multidimensional Scaling
cutree: Cut a tree into groups of data
dist: Distance Matrix Computation
hclust: Hierarchical Clustering
identify.hclust: Identify Clusters in a Dendrogram
kmeans: K-Means Clustering
prcomp: Principal Components Analysis
princomp: Principal Components Analysis
rect.hclust: Draw Rectangles Around Hierarchical Clusters

MASS

isoMDS: Kruskal’s Non-metric Multidimensional Scaling
kde2d: Two-dimensional Kernel Density Estimation
lda: Linear Discriminant Analysis
ldahist: Histograms or Density Plots of Multiple Groups
lqs: Linear Quantile Smoothing, i.e., resistant regression and covariance estimation, which aims to
identify and use the “good” points in the data.
pairs.lda: Produce pairwise scatterplots from an ‘lda’ Fit
parcoord: Parallel Coordinates plot
plot.lda: Plot method for class ‘lda’
predict.lda: Classify multivariate observations by Linear Discrimination
predict.qda: Classify using Quadratic Discriminant Analysis
qda: Quadratic Discriminant Analysis
sammon: Sammon’s non-linear mapping.
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