
Exercises that Practice and Extend Skills with R

John Maindonald

April 15, 2009

Note: Asterisked exercises (or in the case of “IV: ấLŮExamples that Extend or Challenge”, set
of exercises) are intended for those who want to explore more widely or to be challenged. The
subdirectory scripts at http://www.math.anu.edu.au/~/courses/r/exercises/scripts/ has the
script files.

Also available are Sweave (.Rnw) files that can be processed through R to generate the LATEX files
from which pdf’s for all or some subset of exercises can be generated. The LATEX files hold the R code
that is included in the pdf’s, output from R, and graphics files.

There is extensive use of datasets from the DAAG and DAAGxtras packages. Other required
packages, aside from the packages supplied with all binaries, are:
randomForest (XII:rdiscrim-lda; XI:rdiscrim-ord; XIII: rdiscrim-trees; XVI:r-largish), mlbench (XIII:rdiscrim-
ord), e1071 (XIII:rdiscrim-ord; XV:rdiscrim-trees), ggplot2 (XIII: rdiscrim-ord), ape (XIV: r-ordination),
mclust (XIV: r-ordination), oz (XIV: r-ordination).

Contents

I R Basics 5
1 Data Input 5

2 Missing Values 5

3 Useful Functions 6

4 Subsets of Dataframes 6

5 Scatterplots 7

6 Factors 8

7 Dotplots and Stripplots (lattice) 8

8 Tabulation 9

9 Sorting 9

10 For Loops 10

11 The paste() Function 10

12 A Function 10

II Further Practice with R 11
1 Information about the Columns of Data Frames 11

2 Tabulation Exercises 11

3 Data Exploration – Distributions of Data Values 12

4 The paste() Function 12

5 Random Samples 13

6 *Further Practice with Data Input 14

1

CONTENTS 2

III Informal and Formal Data Exploration 15
1 Rows with Missing Data – Are they Different 15

2 Comparisons Using Q-Q Plots 16

IV ∗Examples that Extend or Challenge 17
1 Further Practice with Data Input 17

2 Graphs with logarithmic scales 17

3 Information on Workspace Objects 18

4 Different Ways to Do a Calculation – Timings 18

5 Functions – Making Sense of the Code 19

6 A Regression Estimate of the Age of the Universe 20

7 Use of sapply() to Give Multiple Graphs 21

8 The Internals of R – Functions are Pervasive 21

V Data Summary – Traps for the Unwary 23
1 Multi-way Tables 23

2 Weighting Effects – Example with a Continous Outcome 25

3 Extraction of nassCDS 26

VI Populations & Samples – Theoretical & Empirical Distributions 27
1 Populations and Theoretical Distributions 27

2 Samples and Estimated Density Curves 28

3 *Normal Probability Plots 30

4 Boxplots – Simple Summary Information on a Distribution 31

VII Informal Uses of Resampling Methods 33
1 Bootstrap Assessments of Sampling Variability 33

2 Use of the Permutation Distribution as a Standard 34

VIII Sampling Distributions, & the Central Limit Theorem 35
1 Sampling Distributions 35

2 The Central Limit Theorem 38

IX Simple Linear Regression Models 41
1 Fitting Straight Lines to Data 41

2 Multiple Explanatory Variables 42

X Extending the Linear Model 43
1 A One-way Classification – Eggs in the Cuckoo’s Nest 43

2 Regression Splines – one explanatory variable 45

3 Regression Splines – Two or More Explanatory Variables 46

4 Errors in Variables 47

XI Multi-level Models 49
1 Description and Display of the Data 49

CONTENTS 3

2 Multi-level Modeling 51

3 Multi-level Modeling – Attitudes to Science Data 53

4 *Additional Calculations 53

5 Notes – Other Forms of Complex Error Structure 54

XII Linear Discriminant Analysis vs Random Forests 55
1 Accuracy for Classification Models – the Pima Data 55

2 Logistic regression – an alternative to lda 60

3 Data that are More Challenging – the crx Dataset 61

4 Use of Random Forest Results for Comparison 62

5 Note – The Handling of NAs 63

XIII Discriminant Methods & Associated Ordinations 65
1 Discrimination with Multiple Groups 65

XIV Ordination 71
1 Australian road distances 71

2 If distances must first be calculated . . . 73

3 Genetic Distances 73

4 *Distances between fly species 75

5 *Rock Art 76

XV Trees, SVM, and Random Forest Discriminants 77
1 rpart Analyses – the Pima Dataset 77

2 rpart Analyses – Pima.tr and Pima.te 79

3 Analysis Using svm 81

4 Analysis Using randomForest 82

5 Class Weights 83

6 Plots that show the “distances” between points 83

7 Further Examples 84

XVI Data Exploration and Discrimination – Largish Dataset 85
1 Data Input and Exploration 85

2 Tree-Based Classification 88

3 Use of randomForest() 89

4 Further comments 90

A Appendix – Use of the Sweave (.Rnw) Exercise Files 91

CONTENTS 4

5

Part I

R Basics

1 Data Input

Exercise 1
The file fuel.txt is one of several files that the function datafile() (from DAAG), when called
with a suitable argument, has been designed to place in the working directory. On the R command
line, type library(DAAG), then datafile("fuel"), thus:a

> library(DAAG)
> datafile(file="fuel") # NB datafile, not dataFile

Alternatively, copy fuel.txt from the directory data on the DVD to the working directory.
Use file.show() to examine the file.b Check carefully whether there is a header line. Use the
R Commander menu to input the data into R, with the name fuel. Then, as an alternative, use
read.table() directly. (If necessary use the code generated by the R Commander as a crib.) In
each case, display the data frame and check that data have been input correctly.
Note: If the file is elsewhere than in the working directory a fully specified file name, including the path, is
necessary. For example, to input travelbooks.txt from the directory data on drive D:, type

> travelbooks <- read.table("D:/data/travelbooks.txt")

For input to R functions, forward slashes replace backslashes.

aThis and other files used in these notes for practice in data input are also available from the web page
http://www.maths.anu.edu.au/~johnm/datasets/text/.

bAlternatively, open the file in R’s script editor (under Windows, go to File | Open script...), or in another editor.

Exercise 2
The files molclock1.txt and molclock1.txt are in the data directory on the DVD.a

As in Exercise 1, use the R Commander to input each of these, then using read.table() directly
to achieve the same result. Check, in each case, that data have been input correctly.

aAgain, these are among the files that you can use the function datafile() to place in the working directory.

2 Missing Values

Exercise 3
The following counts, for each species, the number of missing values for the column root of the data
frame rainforest (DAAG):

> library(DAAG)
> with(rainforest, table(complete.cases(root), species))

For each species, how many rows are “complete”, i.e., have no values that are missing?

Exercise 4
For each column of the data frame Pima.tr2 (MASS), determine the number of missing values.

3 USEFUL FUNCTIONS 6

3 Useful Functions

Exercise 5
The function dim() returns the dimensions (a vector that has the number of rows, then number of
columns) of data frames and matrices. Use this function to find the number of rows in the data
frames tinting, possum and possumsites (all in the DAAG package).

Exercise 6
Use the functions mean() and range() to find the mean and range of:

(a) the numbers 1, 2, . . . , 21

(b) the sample of 50 random normal values, that can be generated from a normaL distribution
with mean 0 and variance 1 using the assignment y <- rnorm(50).

(c) the columns height and weight in the data frame women.
[The datasets package that has this data frame is by default attached when R is started.]

Repeat (b) several times, on each occasion generating a nwe set of 50 random numbers.

Exercise 7
Repeat exercise 6, now applying the functions median() and sum().

4 Subsets of Dataframes

Exercise 8
Use head() to check the names of the columns, and the first few rows of data, in the data frame
rainforest (DAAG). Use table(rainforest$species) to check the names and numbers of each
species that are present in the data. The following extracts the rows for the species Acmena smithii

> library(DAAG)
> Acmena <- subset(rainforest, species=="Acmena smithii")

The following extracts the rows for the species Acacia mabellae and Acmena smithii

> AcSpecies <- subset(rainforest, species %in% c("Acacia mabellae",
+ "Acmena smithii"))

Now extract the rows for all species except C. fraseri.

Exercise 9
Extract the following subsets from the data frame ais (DAAG):

(a) Extract the data for the rowers.

(b) Extract the data for the rowers, the netballers and the tennis players.

(c) Extract the data for the female basketabllers and rowers.

5 SCATTERPLOTS 7

5 Scatterplots

Exercise 10
Using the Acmena data from the data frame rainforest, plot wood (wood biomass) vs dbh (diameter
at breast height), trying both untransformed scales and logarithmic scales. Here is suitable code:

> Acmena <- subset(rainforest, species=="Acmena smithii")
> plot(wood ~ dbh, data=Acmena)
> plot(wood ~ dbh, data=Acmena, log="xy")

Exercise 11*
Use of the argument log="xy" to the function plot() gives logarithmic scales on both the x and y
axes. For purposes of adding a line, or other additional features that use x and y coordinates, note
that logarithms are to base 10.

> plot(wood~dbh, data=Acmena, log="xy")
> ## Use lm() to fit a line, and abline() to add it to the plot
> Acmena10.lm <- lm(log10(wood) ~ log10(dbh), data=Acmena)
> abline(Acmena10.lm)

> ## Now print the coefficents, for a log10 scale
> coef(Acmena10.lm)
> ## For comparison, print the coefficients for a natural log scale
> Acmena.lm <- lm(log(wood) ~ log(dbh), data=Acmena)
> coef(Acmena.lm)

Write down the equation that gives the fitted relationship between wood and dbh.

Exercise 12
The orings data frame gives data on the damage that had occurred in US space shuttle launches
prior to the disastrous Challenger launch of January 28, 1986. Only the observations in rows 1, 2,
4, 11, 13, and 18 were included in the pre-launch charts used in deciding whether to proceed with
the launch. Add a new column to the data frame that identifies rows that were included in the
pre-launch charts. Now make three plots of Total incidents against Temperature:

(a) Plot only the rows that were included in the pre-launch charts.

(b) Plot all rows.

(c) Plot all rows, using different symbols or colors to indicate whether or not points were included
in the pre-launch charts.

Comment, for each of the first two graphs, whether and open or closed symbol is preferable. For
the third graph, comment on the your reasons for choice of symbols.

Use the following to identify rows that hold the data that were presented in the pre-launch charts:

> included <- logical(23) # orings has 23 rows
> included[c(1,2,4,11,13,18)] <- TRUE

The construct logical(23) creates a vector of length 23 in which all values are FALSE. The following
are two possibilities for the third plot; can you improve on these choices of symbols and/or colors?

> plot(Total ~ Temperature, data=orings, pch=included+1)
> plot(Total ~ Temperature, data=orings, col=included+1)

6 FACTORS 8

Exercise 13
Using the data frame oddbooks, use graphs to investigate the relationships between:
(a) weight and volume; (b) density and volume; (c) density and page area.

6 Factors

Exercise 14
Investigate the use of the function unclass() with a factor argument. Comment on its use in the
following code:

> par(mfrow=c(1,2), pty="s")
> plot(weight ~ volume, pch=unclass(cover), data=allbacks)
> plot(weight ~ volume, col=unclass(cover), data=allbacks)
> par(mfrow=c(1,1))

[mfrow=c(1,2): plot layout is 1 row × 2 columns; pty="s": square plotting region.]

Exercise 15
Run the following code:

> gender <- factor(c(rep("female", 91), rep("male", 92)))
> table(gender)
> gender <- factor(gender, levels=c("male", "female"))
> table(gender)
> gender <- factor(gender, levels=c("Male", "female")) # Note the mistake
> # The level was "male", not "Male"
> table(gender)
> rm(gender) # Remove gender

The output from the final table(gender) is

gender
Male female

0 91

Explain the numbers that appear.

7 Dotplots and Stripplots (lattice)

Exercise 16
Look up the help for the lattice functions dotplot() and stripplot(). Compare the following:

> with(ant111b, stripchart(harvwt ~ site)) # Base graphics
> library(lattice)
> stripplot(site ~ harvwt, data=ant111b)
> stripplot(harvwt ~ site, data=ant111b)
> stripplot(harvwt ~ site, data=ant111b)
> stripplot(site ~ harvwt, data=ant111b)

8 TABULATION 9

Exercise 17
Check the class of each of the columns of the data frame cabbages (MASS). Do side by side plots
of HeadWt against Date, for each of the levels of Cult.

> stripplot(Date ~ HeadWt | Cult, data=cabbages)

The lattice graphics function stripplot() seems generally preferable to the base graphics function
stripchart(). It has functionality that stripchart() lacks, and a consistent syntax that it shares
with other lattice functions.

Exercise 18
In the data frame nsw74psid3, use stripplot() to compare, between levels of trt, the continuous
variables age, educ, re74 and re75
It is possible to generate all the plots at once, side by side. A simplified version of the plot is:

> stripplot(trt ~ age + educ, data=nsw74psid1, outer=T, scale="free")

What are the effects of scale = "free", and outer = TRUE? (Try leaving these at their defaults.)

8 Tabulation

Exercise 19
In the data set nswpsdi1 (DAAGxtras), do the following for each of the two levels of trt:

(a) Determine the numbers for each of the levels of black;

(b) Determine the numbers for each of the levels of hispanic; item Determine the numbers for
each of the levels of marr (married).

9 Sorting

Exercise 20
Sort the rows in the data frame Acmena in order of increasing values of dbh.
[Hint: Use the function order(), applied to age to determine the order of row numbers required to
sort rows in increasing order of age. Reorder rows of Acmena to appear in this order.]

> Acmena <- subset(rainforest, species=="Acmena smithii")
> ord <- order(Acmena$dbh)
> acm <- Acmena[ord,]

Sort the row names of possumsites (DAAG) into alphanumeric order. Reorder the rows of pos-
sumsites in order of the row names.

10 FOR LOOPS 10

10 For Loops

Exercise 22
(a) Create a for loop that, given a numeric vector, prints out one number per line, with its square

and cube alongside.

(b) Look up help(while). Show how to use a while loop to achieve the same result.

(c) Show how to achieve the same result without the use of an explicit loop.

11 The paste() Function

Exercise 21
Here are examples that illustrate the use of paste():

> paste("Leo", "the", "lion")
> paste("a", "b")
> paste("a", "b", sep="")
> paste(1:5)
> paste(1:5, collapse="")

What are the respective effects of the parameters sep and collapse?

12 A Function

Exercise 23
The following function calculates the mean and standard deviation of a numeric vector.

> meanANDsd <- function(x){
+ av <- mean(x)
+ sdev <- sd(x)
+ c(mean=av, sd = sdev) # The function returns this vector
+ }

Modify the function so that: (a) the default is to use rnorm() to generate 20 random normal
numbers, and return the standard deviation; (b) if there are missing values, the mean and standard
deviation are calculated for the remaining values.

11

Part II

Further Practice with R

1 Information about the Columns of Data Frames

Exercise 1
Try the following:

> class(2)
> class("a")
> class(cabbages$HeadWt) # cabbages is in the datasets package
> class(cabbages$Cult)

Now do sapply(cabbages, class), and note which columns hold numerical data. Extract those
columns into a separate data frame, perhaps named numtinting.
[Hint: cabbages[, c(2,3)] is not the correct answer, but it is, after a manner of speaking, close!]

Exercise 2
Functions that may be used to get information about data frames include str(), dim(),
row.names() and names(). Try each of these functions with the data frames allbacks, ant111b
and tinting (all in DAAG).
For getting information about each column of a data frame, use sapply(). For example, the
following applies the function class() to each column of the data frame ant111b.

> library(DAAG)
> sapply(ant111b, class)

For columns in the data frame tinting that are factors, use table() to tabulate the number of
values for each level.

2 Tabulation Exercises

Exercise 3
In the data set nswpsdi1 (DAAGxtras) create a factor that categorizes subjects as: (i) black; (ii)
hispanic; (iii) neither black nor hispanic. You can do this as follows:

> gps <- with(nswpsid1, 1 + black + hisp*2)
> table(gps) # Check that there are no 3s, ie black and hispanic!

gps
1 2 3

1816 862 109

> grouping <- c("other", "black", "hisp")[gps]
> table(grouping)

grouping
black hisp other
862 109 1816

3 DATA EXPLORATION – DISTRIBUTIONS OF DATA VALUES 12

Exercise 4
Tabulate the number of observations in each of the different districts in the data frame rockArt
(DAAGxtras). Create a factor groupDis in which all Districts with less than 5 observations are
grouped together into the category other.

> library(DAAGxtras)
> groupDis <- as.character(rockArt$District)
> tab <- table(rockArt$District)
> le4 <- rockArt$District %in% names(tab)[tab <= 4]
> groupDis[le4] <- "other"
> groupDis <- factor(groupDis)

3 Data Exploration – Distributions of Data Values

Exercise 5
The data frame rainforest (DAAG package) has data on four different rainforest species. Use
table(rainforest$species) to check the names and numbers of the species present. In the sequel,
attention will be limited to the species Acmena smithii. The following plots a histogram showing
the distribution of the diameter at base height:

> library(DAAG) # The data frame rainforest is from DAAG
> Acmena <- subset(rainforest, species=="Acmena smithii")
> hist(Acmena$dbh)

Above, frequencies were used to label the the vertical axis (this is the default). An alternative is to
use a density scale (prob=TRUE). The histogram is interpreted as a crude density plot. The density,
which estimates the number of values per unit interval, changes in discrete jumps at the breakpoints
(= class boundaries). The histogram can then be directly overlaid with a density plot, thus:

> hist(Acmena$dbh, prob=TRUE, xlim=c(0,50)) # Use a density scale
> lines(density(Acmena$dbh, from=0))

Why use the argument from=0? What is the effect of omitting it?
[Density estimates, as given by R’s function density(), change smoothly and do not depend on an
arbitrary choice of breakpoints, making them generally preferable to histograms. They do sometimes
require tuning to give a sensible result. Note especially the parameter bw, which determines how
the bandwidth is chosen, and hence affects the smoothness of the density estimate.]

4 The paste() Function

Exercise 6
Here are examples that illustrate the use of paste():

> paste("Leo", "the", "lion")
> paste("a", "b")
> paste("a", "b", sep="")

5 RANDOM SAMPLES 13

Exercise 6, continued

> paste(1:5)
> paste("a", 1:5)
> paste("a", 1:5, sep="")
> paste(1:5, collapse="")
> paste(letters[1:5], collapse="")
> ## possumsites is from the DAAG package
> with(possumsites, paste(row.names(possumsites), " (", altitude, ")", sep=""))

What are the respective effects of the parameters sep and collapse?

5 Random Samples

Exercise 7
By taking repeated random samples from the normal distribution, and plotting the distribution for
each such sample, one can get an idea of the effect of sampling variation on the sample distribution.
A random sample of 100 values from a normal distribution (with mean 0 and standard deviation 1)
can be obtained, and a histogram and overlaid density plot shown, thus:

> y <- rnorm(100)
> hist(y, probability=TRUE) # probability=TRUE gives a y density scale
> lines(density(y))

Repeat several times
In place of the 100 sample values:

(a) Take 5 samples of size 25, then showing the plots.

(b) Take 5 samples of size 100, then showing the plots.

(c) Take 5 samples of size 500, then showing the plots.

(d) Take 5 samples of size 2000, then showing the plots.

(Hint: By preceding the plots with par(mfrow=c(4,5)), all 20 plots can be displayed on
the one graphics page. To bunch the graphs up more closely, make the further settings
par(mar=c(3.1,3.1,0.6,0.6), mgp=c(2.25,0.5,0)))
Comment on the usefulness of a sample histogram and/or density plot for judging whether the
population distribution is likely to be close to normal.

Histograms and density plots are, for “small” samples, notoriously variable under repeated sampling.
This is true even for sample sizes as large as 50 or 100.

Exercise 8
This explores the function sample(), used to take a sample of values that are stored or enumerated
in a vector. Samples may be with or without replacement; specify replace = FALSE (the default)
or replace = TRUE. The parameter size determines the size of the sample. By default the sample
has the same size (length) as the vector from which samples are taken. Take several samples of size 5
from the vector 1:5, with replace=FALSE. Then repeat the exercise, this time with replace=TRUE.
Note how the two sets of samples differ.

6 *FURTHER PRACTICE WITH DATA INPUT 14

Exercise 9∗
If in Exercise 4 above a new random sample of trees could be taken, the histogram and density plot
would change. How much might we expect them to change?
The boostrap approach treats the one available sample as a microcosm of the population. Repeated
with replacement samples are taken from the one available sample. This is equivalent to repeating
each sample value and infinite number of times, then taking random samples from the population
that is thus created. The expectation is that variation between those samples will be comparable
to variation between samples from the original population.

(a) Take repeated (5 or more) bootstrap samples from the Acmena dataset of Exercise 5, and
show the density plots. [Use sample(Acmena$dbh, replace=TRUE)].

(b) Repeat, now with the cerealsugar data from DAAG.

6 *Further Practice with Data Input
One option is to experiment with using the R Commander GUI to input these data.

Exercise 10*
With a live internet connection, files can be read directly from a web page. Here is an example:

> webfolder <- "http://www.maths.anu.edu.au/~johnm/datasets/text/"
> webpage <- paste(webfolder, "molclock.txt", sep="")
> molclock <- read.table(url(webpage))

With a live internet connection available, use this approach to input the file travelbooks.txt that
is available from this same web page.

15

Part III

Informal and Formal Data Exploration
Package: DAAGxtras

1 Rows with Missing Data – Are they Different

Exercise 1
Look up the help page for the data frame Pima.tr2 (MASS package), and note the columns in
the data frame. The eventual interest is in using use variables in the first seven column to classify
diabetes according to type. Here, we explore the individual columns of the data frame.

(a) Several columns have missing values. Analysis methods inevitably ignore or handle in some
special way rows that have one or more missing values. It is therefore desirable to check
whether rows with missing values seem to differ systematically from other rows.

Determine the number of missing values in each column, broken down by type, thus:

> library(MASS)
> ## Create a function that counts NAs
> count.na <- function(x)sum(is.na(x))
> ## Check function
> count.na(c(1, NA, 5, 4, NA))
> ## For each level of type, count the number of NAs in each column
> for(lev in levels(Pima.tr2$type))
+ print(sapply(subset(Pima.tr2, type==lev), count.na))

The function by() can be used to break the calculation down by levels of a factor, avoiding
the use of the for loop, thus:

> by(Pima.tr2, Pima.tr2$type, function(x)sapply(x, count.na))

(b) Create a version of the data frame Pima.tr2 that has anymiss as an additional column:

> missIND <- complete.cases(Pima.tr2)
> Pima.tr2$anymiss <- c("miss","nomiss")[missIND+1]

For remaining columns, compare the means for the two levels of anymiss, separately for each
level of type. Compare also, for each level of type, the number of missing values.

Exercise 2
(a) Use strip plots to compare values of the various measures for the levels of anymiss, for each of

the levels of type. Are there any columns where the distribution of differences seems shifted
for the rows that have one or more missing values, relative to rows where there are no missing
values?
Hint: The following indicates how this might be done efficiently:

> library(lattice)
> stripplot(anymiss ~ npreg + glu | type, data=Pima.tr2, outer=TRUE,
+ scales=list(relation="free"), xlab="Measure")

2 COMPARISONS USING Q-Q PLOTS 16

Exercise 2, continued

(b) Density plots are in general better than strip plots for comparing the distributions. Try the
following, first with the variable npreg as shown, and then with each of the other columns
except type. Note that for skin, the comparison makes sense only for type=="No". Why?

> library(lattice)
> ## npreg & glu side by side (add other variables, as convenient)
> densityplot(~ npreg + glu | type, groups=anymiss, data=Pima.tr2,
+ auto.key=list(columns=2), scales=list(relation="free"))

2 Comparisons Using Q-Q Plots

Exercise 3
Better than either strip plots or density plots may be Q-Q plots. Using qq() from lattice, investigate
their use. In this exercise, we use random samples from normal distributions to help develop an
intuitive understanding of Q-Q plots, as they compare with density plots.

(a) First consider comparison using (i) a density plot and (ii) a Q-Q plot when samples are from
populations in which one of the means is shifted relative to the other. Repeat the following
several times,

> y1 <- rnorm(100, mean=0)
> y2 <- rnorm(150, mean=0.5) # NB, the samples can be of different sizes
> df <- data.frame(gp=rep(c("first","second"), c(100,150)), y=c(y1, y2))
> densityplot(~y, groups=gp, data=df)
> qq(gp ~ y, data=df)

(b) Now make the comparison, from populations that have different standard deviations. For this,
try, e.g.

> y1 <- rnorm(100, sd=1)
> y2 <- rnorm(150, sd=1.5)

Again, make the comparisons using both density plots and Q-Q plots.

Exercise 4
Now consider the data set Pima.tr2, with the column anymiss added as above.

(a) First make the comparison for type="No".

> qq(anymiss ~ npreg, data=Pima.tr2, subset=type=="No")

Compare this with the equivalent density plot, and explain how one translates into the other.
Comment on what these graphs seem to say.

(b) The following places the comparisons for the two levels of type side by side:

> qq(anymiss ~ npreg | type, data=Pima.tr2)

Comment on what this graph seems to say.

NB: With qq(), use of “+” to get plots for the different columns all at once will not, in the current
version of lattice, work.

17

Part IV

∗Examples that Extend or Challenge

1 Further Practice with Data Input

Exercise 1*
For a challenging data input task, input the data from bostonc.txt.a
Examine the contents of the initial lines of the file carefully before trying to read it in. It will be
necessary to change sep, comment.char and skip from their defaults. Note that \t denotes a tab
character.

aUse datafile("bostonc") to place it in the working directory, or access the copy on the DVD.

Exercise 2*
The function read.csv() is a variant of read.table() that is designed to read in comma delimited
files such as may be obtained from Excel. Use this function to read in the file crx.data that is
available from the web page http://mlearn.ics.uci.edu/databases/credit-screening/.
Check the file crx.names to see which columns should be numeric, which categorical and which
logical. Make sure that the numbers of missing values in each column are the number given in the
file crx.names

With a live connection to the internet, the data can be input thus:

> crxpage <- "http://mlearn.ics.uci.edu/databases/credit-screening/crx.data"
> crx <- read.csv(url(crxpage), header=TRUE)

2 Graphs with logarithmic scales

Exercise 3*
Use of the argument log="xy" gives logarithmic scales on both the x and y axes. For purposes of
adding a line, or other additional features that use x and y coordinates, note that logarithms are to
base 10.

> plot(wood~dbh, data=Acmena, log="xy")
> ## Use lm() to fit a line, and abline() to add it to the plot
> Acmena10.lm <- lm(log10(wood) ~ log10(dbh), data=Acmena)
> abline(Acmena10.lm)

> ## Now print the coefficents, for a log10 scale
> coef(Acmena10.lm)
> ## For comparison, print the coefficients for a natural log scale
> Acmena.lm <- lm(log(wood) ~ log(dbh), data=Acmena)
> coef(Acmena.lm)

Write down the equation that gives the fitted relationship between wood and dbh.

3 INFORMATION ON WORKSPACE OBJECTS 18

3 Information on Workspace Objects

Exercise 4*
The function ls() lists, by default, the names of objects in the current environment. If used from
the command line, it lists the objects in the workspace. If used in a function, it lists the names of
the function’s local variables
The following function lists the contents of the workspace:

> workls <- function()ls(name=".GlobalEnv")
> workls()

(a) If ls(name=".GlobalEnv") is replaced by ls(), the function lists the names of its local
variables. Modify workls() so that you can use it to demonstrate this.
[Hint: Consider adapting if(is.null(name))ls()) for the purpose.]

(b) Write a function that calculates the sizes of all objects in the workspace, then listing the names
and sizes of the largest ten objects.

4 Different Ways to Do a Calculation – Timings

Exercise 5*
This exercise will investigate the relative times for alternative ways to do a calculation. The function
system.time() will provide timings. The numbers that are printed on the command line, if results
are not assigned to an output object, are the user cpu time, the system cpu time, and the elapsed
time.
First, create both matrix and data frame versions of a largish data set.

> xxMAT <- matrix(runif(480000), ncol=50)
> xxDF <- as.data.frame(xxMAT)

Repeat each of the calculations that follow several times, noting the extent of variation between
repeats. If there is noticeable variation, make the setting options(gcFirst=TRUE), and check
whether this leads to more consistent timings.
NB: If your computer chokes on these calculations, reduce the dimensions of xxMAT and xxDF

(a) The following compares the times taken to increase each element by 1:

> system.time(invisible(xxMAT+1))[1:3]
> system.time(invisible(xxDF+1))[1:3]

(b) Now compare the following alternative ways to calculate the means of the 50 columns:

> ## Use apply() [matrix argument], or sapply() [data frame argument]
> system.time(av1 <- apply(xxMAT, 2, mean))[1:3]
> system.time(av1 <- sapply(xxDF, mean))[1:3]
> ## Use a loop that does the calculation for each column separately
> system.time({av2 <- numeric(50);
+ for(i in 1:50)av[i] <- mean(xxMAT[,i])
+ })[1:3]
> system.time({av2 <- numeric(50);
+ for(i in 1:50)av[i] <- mean(xxDF[,i])
+ })[1:3]

.

5 FUNCTIONS – MAKING SENSE OF THE CODE 19

Exercise 5*, continued
> ## Matrix multiplication
> system.time({colOFones <- rep(1, dim(xxMAT)[2])
+ av3 <- xxMAT %*% colOFones / dim(xxMAT)[2]
+ })[1:3]

Why is matrix multiplication so efficient, relative to equivalent calculations that use apply(), or
that use for loops?

Exercise 6*
Pick one of the calculations in Exercise 5. Vary the number of rows in the matrix, keeping the
number of columns constant, and plot each of user CPU time and system CPU time against number
of rows of data.

5 Functions – Making Sense of the Code

Exercise 7*
Data in the data frame fumig (DAAGxtras) are from a series of trials in which produce was exposed
to a fumigant over a 2-hour time period. Concentrations of fumigant were measured at times 5, 10,
30, 60, 90 and 120 minutes. Code given following this exercise calculates a concentration-time (c-t)
product that measures exposure to the fumigant, leading to the measure ctsum.
Examine the code in the three alternative functions given below, and the data frame fumig (in the
DAAGxtras package) that is given as the default argument for the parameter df. Do the following:

(a) Run all three functions, and check that they give the same result.

(b) Annotate the code for calcCT1() to explain what each line does.

(c) Are fumigant concentration measurements noticeably more variable at some times than at
others?

(d) Which function is fastest? [In order to see much difference, it will be necessary to put the
functions in loops that run perhaps 1000 or more times.]

Code for 3 functions that do equivalent calculations
> ## Function "calcCT1"
> "calcCT1" <-
+ function(df=fumig, times=c(5,10,30,60,90,120), ctcols=3:8){
+ multiplier <- c(7.5,12.5,25,30,30,15)
+ m <- dim(df)[1]
+ ctsum <- numeric(m)
+ for(i in 1:m){
+ y <- unlist(df[i, ctcols])
+ ctsum[i] <- sum(multiplier*y)/60
+ }
+ df <- cbind(ctsum=ctsum, df[,-ctcols])
+ df
+ }

6 A REGRESSION ESTIMATE OF THE AGE OF THE UNIVERSE 20

> ##
> ## Function "calcCT2"
> "calcCT2" <-
+ function(df=fumig, times=c(5,10,30,60,90,120), ctcols=3:8){
+ multiplier <- c(7.5,12.5,25,30,30,15)
+ mat <- as.matrix(df[, ctcols])
+ ctsum <- mat%*%multiplier/60
+ cbind(ctsum=ctsum, df[,-ctcols])
+ }
> ##
> ## Function "calcCT3"
> "calcCT3" <-
+ function(df=fumig, times=c(5,10,30,60,90,120), ctcols=3:8){
+ multiplier <- c(7.5,12.5,25,30,30,15)
+ mat <- as.matrix(df[, ctcols])
+ ctsum <- apply(mat, 1, function(x)sum(x*multiplier))/60
+ cbind(ctsum=ctsum, df[,-ctcols])
+ }

6 A Regression Estimate of the Age of the Universe

Exercise 8*
Install the package gamair (from CRAN) and examine the help page for the data frame hubble.
Type data(hubble) to bring the data into the workspace. (This is necessary because the gamair
package, unlike most other packages, does not use the lazy loading mechanism for data.)

(a) Plot y (Velocity in km sec−1) versus x (Distance in Mega-parsec = 3.09 × 10−19 km).

(b) Fit a line, omitting the constant term; for this the lm() function call is

kmTOmegaparsec <- 3.09*10^(-19)
lm(I(y*kmTOmegaparsec) ~ -1 + x, data=hubble) # y & x both mega-parsecs

The inverse of the slope is then the age of the universe, in seconds. Divide this by 602×24×365
to get an estimate for the age of the earth in years.
[The answer should be around 13 × 109 years.]

(c) Repeat the plot, now using logarithmic scales for both axes. Fit a line, now insisting that the
coefficient of log(x) is 1.0 (Why?) For this, specify

lm(log(y) ~ 1 + offset(log(x)), data=hubble)

Add this line to the plot. Again, obtain an estimate of the age of the universe. Does this give
a substantially different estimate for the age of the universe?

(d) In each of the previous fits, on an untransformed scale and using logarithmic scales, do any of
the points seem outliers? Investigate the effect of omitting any points that seem to be outliers?

(e) Does either plot seem to show evidence of curvature?
[See further the note at the end of this set of exercises.]

Note: According to the relevant cosmological model, the velocity of recession of any galaxy from any other

galaxy has been constant, independent of time. Those parts of the universe that started with the largest

velocities of recession from our galaxy have moved furthest, with no change from the velocity just after after

7 USE OF SAPPLY() TO GIVE MULTIPLE GRAPHS 21

time 0. Thus the time from the beginning should be s/v, where s is distance, and v is velocity. The slope of

the least squares line gives a combined estimate, taken over all the galaxies included in the data frame gamair.

More recent data suggests, in fact, that the velocity of recession is not strictly proportional to distance.

7 Use of sapply() to Give Multiple Graphs

Exercise 9*
Here is code for the calculations that compare the relative population growth rates for the Australian
states and territories, but avoiding the use of a loop:

> oldpar <- par(mfrow=c(2,4))
> invisible(
+ sapply(2:9, function(i, df)
+ plot(df[,1], log(df[, i]),
+ xlab="Year", ylab=names(df)[i], pch=16, ylim=c(0,10)),
+ df=austpop)
+)
> par(oldpar)

Run the code, and check that it does indeed give the same result as an explicit loop.
[Use of invisible() as a wrapper suppresses printed output that gives no useful information.]
Note that lapply() could be used in place of sapply().

There are several subtleties here:

(i) The first argument to sapply() can be either a list (which is, technically, a non-atomic vector)
or a vector.1 Here, we have supplied the vector 2:9

(ii) The second argument is a function. Here we have supplied an anonymous function that has
two arguments. The argument i takes as its values, in turn, the sucessive elements in the first
argument to sapply

(iii) Where as here the anonymous function has further arguments, they are supplied as additional
arguments to sapply(). Hence the parameter df=austpop.

8 The Internals of R – Functions are Pervasive

Exercise 10*
The internals of the R parser’s handling of arithmetic and related computations are close enough to
the surface that users can experiment with them. This exercise will take a peek.
The binary arithmetic operators +, -, *, / and ^ are implemented as functions. (R is a functional
language; albeit with features that compromise its purity as a member of this genre!) Try:

> "+"(2,5)
> "-"(10,3)
> "/"(2,5)
> "*"("+"(5,2), "-"(3,7))

1By “vector” we usually mean an atomic vector, with “atoms” that are of one of the modes ”logical”, ”integer”,
”numeric”, ”complex”, ”character”’ or ”raw”. (Vectors of mode ”raw” can for our purposes be ignored.)

8 THE INTERNALS OF R – FUNCTIONS ARE PERVASIVE 22

Exercise 10*, continued
There are two other binary arithmetic operators – %% and %/%. Look up the relevant help page, and
explain, with examples, what they do. Try

> (0:25) %/% 5
> (0:25) %% 5

Of course, these are also implemented as functions. Write code that demonstrates this.
Note also that [is implemented as a function. Try

> z <- c(2, 6, -3, NA, 14, 19)
> "["(z, 5)
> heights <- c(Andreas=178, John=185, Jeff=183)
> "["(heights, c("Jeff", "John"))

Rewrite these using the usual syntax.
Use the function "["() to extract, from the data frame possumsites (DAAG), the altitudes for
Byrangery and Conondale.

Note: Expressions in which arithmetic operators appear as explicit functions with binary arguments translate

directly into postfix reverse Polish notation, introduced in 1920 by the Polish logician and mathematician Jan

Lukasiewicz. Postfix notation is widely used in interpreters and compilers as a first step in the processing of

arithmetic expressions. See the Wikipedia article “Reverse Polish Notation”.

23

Part V

Data Summary – Traps for the Unwary
Package: DAAGxtras

1 Multi-way Tables

Small (<2cm) Large (>=2cm) Total

open ultrasound open ultrasound open ultrasound
yes 81 234 yes 192 55 yes 273 289
no 6 36 no 71 25 no 77 61

Success rate 93% 87% 73% 69% 78% 83%

Table 1: Outcomes for two different types of surgery for kidney stones. The overall success rates (78%
for open surgery as opposed to 83% for ultrasound) favor ultrasound. Comparison of the success rates
for each size of stone separately favors, in each case, open surgery.

Exercise 1
Table 1 illustrates the potential hazards of adding a multiway table over one of its margins. Data
are from a studya that compared outcomes for two different types of surgery for kidney stones; A:
open, which used open surgery, and B: ultrasound, which used a small incision, with the stone
destroyed by ultrasound. The data can be entered into R, thus:

> stones <- array(c(81, 6, 234, 36, 192, 71, 55, 25), dim = c(2,
+ 2, 2), dimnames = list(Sucess = c("yes", "no"), Method = c("open",
+ "ultrasound"), Size = c("<2cm", ">=2cm")))

(a) Determine the success rate that is obtained from combining the data for the two different sizes
of stone. Also determine the success rates for the two different stone sizes separately.

(b) Use the following code to give a visual representation of the information in the three-way table:

mosaicplot(stones, sort=3:1)
Re-ordering the margins gives a more interpretable plot.

Annotate the graph to show the success rates?

(c) Observe that the overall rate is, for open surgery, biased toward the open surgery outcome for
large stones, while for ultrasound it is biased toward the outcome for small stones. What are
the implications for the interpretation of these data?

[Without additional information, the results are impossible to interpret. Different surgeons will
have preferred different surgery types, and the prior condition of patients will have affected the
choice of surgery type. The consequences of unsuccessful surgery may have been less serious than
for ultrasound than for open surgery.]

aCharig, C. R., 1986. Comparison of treatment of renal calculi by operative surgery, percutaneous nephrolithotomy,
and extracorporeal shock wave lithotripsy. British Medical Journal, 292:879–882

The relative success rates for the two different types of surgery, for the two stone sizes separately,
can be calculated thus:

> stones[1, ,]/(stones[1, ,] + stones[2, ,])

1 MULTI-WAY TABLES 24

To perform the same calculation after adding over the two stone sizes (the third dimension of the
table), do

> stones2 <- stones[, , 1] + stones[, , 2]
> stones2[1,]/(stones2[1,] + stones2[2,])

1.1 Which multi-way table? It can be important!

Each year the National Highway Traffic Safety Administration (NHTSA) in the USA collects, using a
random sampling method, data from all police-reported crashes in which there is a harmful event (peo-
ple or property), and from which at least one vehicle is towed. The data frame nassCDS (DAAGxtras)
is derived from NHTSA data.2

The data are a sample. The use of a complex sampling scheme has the consequence that the
sampling fraction differs between observations. Each point has to be multiplied by the relevant sam-
pling fraction, in order to get a proper estimate of its contribution to the total number of accidents.
The column weight (national = national inflation factor in the SAS dataset) gives the relevant
multiplier.

Other variables than those included in nassCDS might be investigated – those extracted into
nassCDS are enough for present purposes.

The following uses xtabs() to estimate numbers of front seat passengers alive and dead, classified
by airbag use:

library(DAAGxtras)
> abtab <- xtabs(weight ~ dead + airbag, data=nassCDS)
> abtab

airbag
dead none airbag
alive 5445245.90 6622690.98
dead 39676.02 25919.11

The function prop.table() can then be used to obtain the proportions in margin 1, i.e., the propor-
tions dead, according to airbag use:

> round(prop.table(abtab, margin=2)["dead",], 4)
none airbag

0.0072 0.0039
Alternatively, the following gives proportions alive & dead
round(prop.table(abtab, margin=2), 4)

The above might suggest that the deployment of an airbag substantially reduces the risk of mor-
tality. Consider however:

> abSBtab <- xtabs(weight ~ dead + seatbelt + airbag, data=nassCDS)
> ## Take proportions, retain margins 2 & 3, i.e. airbag & seatbelt
> round(prop.table(abSBtab, margin=2:3)["dead", ,], 4)

seatbelt
airbag none belted
none 0.0176 0.0038
airbag 0.0155 0.0021

The results are now much less favorable to airbags. The clue comes from examination of:
2They hold a subset of the columns from a corrected version of the data analyzed in the Meyer (2005) paper that is

referenced on the help page for nassCDS. More complete data are available from one of the web pages
http://www.stat.uga.edu/~mmeyer/airbags.htm (SAS transport file)
or http://www.maths.anu.edu.au/~johnm/datasets/airbags/ (R image file).

2 WEIGHTING EFFECTS – EXAMPLE WITH A CONTINOUS OUTCOME 25

> margin.table(AStab, margin=2:3) # Add over margin 1
airbag

seatbelt none airbag
none 1366088.6 885635.3
belted 4118833.4 5762974.8

In the overall table, the results without airbags are mildly skewed (4.12:1.37) to the results for belted,
while with airbags they are highly skewed (57.6:8.86) to the results for belted.

Exercise 2
Do an analysis that accounts, additionally, for estimated force of impact (dvcat):

ASdvtab <- xtabs(weight ~ dead + seatbelt + airbag + dvcat,
data=nassCDS)

round(prop.table(ASdvtab, margin=2:4)["dead", , ,], 6)
Alternative: compact, flattened version of the table
round(ftable(prop.table(ASdvtab, margin=2:4)["dead", , ,]), 6)

It will be apparent that differences between none and airbag are now below any reasonable threshold
of statistical detectability.

Exercise 3
The package DAAGxtras includes the function excessRisk(). Run it with the default arguments,
i.e. type

> excessRisk()

Compare the output with that obtained in Exercise 2 when the classification was a/c seatbelt (and
airbag), and check that the output agrees.
Now do the following calculations, in turn:

(a) Classify according to dvcat as well as seatbelt. All you need do is add dvcat to the first
argument to excessRisk(). What is now the total number of excess deaths?
[The categories are 0-9 kph, 10-24 kph, 25-39 kph, 40-54 kph, and 55+ kph]

(b) Classify according to dvcat, seatbelt and frontal, and repeat the calculations. What is
now the total number of excess deaths?

Explain the dependence of the estimates of numbers of excess deaths on the choice of factors for the
classification.

Note: ? argues that these data, tabulated as above, have too many uncertainties and potential
sources of bias to give reliable results. He presents a different analysis, based on the use of front
seat passenger mortality as a standard against which to compare driver mortality, and limited to cars
without passenger airbags. In the absence of any effect from airbags, the ratio of driver mortality to
passenger mortality should be the same, irrespective of whether or not there was a driver airbag. In
fact the ratio of driver fatalities to passenger fatalities was 11% lower in the cars with driver airbags.

2 Weighting Effects – Example with a Continous Outcome

Exercise 4
Table 2, shows data from the data frame gaba (DAAGxtras). For background, see
the Gordon (1995) paper that is referenced on the help page for gaba. [Image
files that hold the functions plotGaba() and compareGaba() are in the subdirectory
http://www.maths.anu.edu.au/~johnm/r/functions/]

3 EXTRACTION OF NASSCDS 26

min mbac mpl fbac fpl
2 10 1.76 1.76 2.18 2.55
3 30 1.31 1.65 3.48 4.15
4 50 0.05 0.67 3.13 3.66
5 70 −0.57 −0.25 3.03 2.05
6 90 −1.26 −0.50 2.08 0.61
7 110 −2.15 −2.22 1.60 0.34
8 130 −1.65 −2.18 1.38 0.67
9 150 −1.68 −2.86 1.76 0.76

10 170 −1.68 −3.23 1.06 0.39

Table 2: Data (average VAS pain scores)
are from a trial that investigated the effect
of pentazocine on post-operative pain, with
(mbac and fbac) and without (mpl and fpl)
preoperatively administered baclofen. Data
are in the data frame gaba (DAAGxtras
package). Numbers of males and females
on the two treatments were:

baclofen placebo
females 15 7

males 3 16

Exercise 4, continued

(a) What do you notice about the relative numbers on the two treatments?

(b) For each treatment, obtain overall weighted averages at each time point, using the numbers
in Table 2 as weights. (These are the numbers you would get if you divided the total over all
patients on that treatment by the total number of patients.) This will give columns avbac
and avplac that can be added the data frame.

(c) Plot avbac and avplac against time, on the same graph. On separate graphs, repeat the
comparisons (a) for females alone and (b) for males alone. Which of these graphs make a
correct and relevant comparison between baclofen and placebo (albeit both in the presence of
pentazocine)?

3 Extraction of nassCDS
Here are details of the code used to extract these data.

nassCDS <- nass9702cor[,c("dvcat", "national", "dead", "airbag", "seatbelt",
"frontal", "male", "age.of.o", "yearacc")]

nassCDS$dead <- 2-nass_cds$dead # Ensures 0 = survive; 1 = dead
Now make dead a factor
nassCDS$dead <- factor(c("alive", "dead")[nassCDS$dead+1])
names(nassCDS)[8] <- "ageOFocc"
names(nassCDS)[2] <- "weight"
table(nassCDS$seatbelt) # Check the values of seatbelt, & their order
Now make seatbelt a factor. The first value, here 0, becomes "none"
The second value, here 1, becomes "belted"
nassCDS$seatbelt <- factor(nassCDS$seatbelt, labels=c("none","belted"))
NB labels (unlike levels) matches only the order, not the values

nassCDS$airbag <- factor(nassCDS$airbag, labels=c("none","airbag"))

