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Part VI

Populations & Samples – Theoretical &
Empirical Distributions
R functions that will be used in this laboratory include:

(a) dnorm(): Obtain the density values for the theoretical normal distribution;

(b) pnorm(): Given a normal deviate or deviates, obtain the cumulative probability;

(c) qnorm(): Given the cumulative probabilty. calculate the normal deviate;

(d) sample(): take a sample from a vector of values. Values may be taken without replacement
(once taken from the vector, the value is not available for subsequent draws), or with replacement
(values may be repeated);

(e) density(): fit an empirical density curve to a set of values;

(f) rnorm(): Take a random sample from a theoretical normal distribution;

(g) runif(): similar to rnorm(), but sampling is from a uniform distribution;

(h) rt(): similar to rnorm(), but sampling is from a t-distribution (the degrees of freedom must be
given as the second parameter);

(i) rexp(): similar to rnorm(), but sampling is from an exponential distribution;

(j) qqnorm(): Compare the empirical distribution of a set of values with the empirical normal
distribution.

1 Populations and Theoretical Distributions

Exercise 1

(a) Plot the density and the cumulative probability curve for a normal distribution with a mean
of 2.5 and SD = 1.5.
Code that will plot the curve is

> curve(dnorm(x, mean = 2.5, sd = 1.5), from = 2.5 - 3 * 1.5, to = 2.5 +
+ 3 * 1.5)
> curve(pnorm(x, mean = 2.5, sd = 1.5), from = 2.5 - 3 * 1.5, to = 2.5 +
+ 3 * 1.5)

(b) From the cumulative probability curve in (a), read off the area under the density curve between
x=0.5 and x=4. Check your answer by doing the calculation

> pnorm(4, mean = 2.5, sd = 1.5) - pnorm(0.5, mean = 2.5, sd = 1.5)

[1] 0.7501335
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Exercise 1, continued

(a) The density for the distribution in items (i) and (ii), given by dnorm(x, 2.5, 1.5), gives the
relative number of observations per unit interval that can be expected at the value x. For
example dnorm(x=2, 2.5, 1.5) ! 0.2516. Hence

(i) In a sample of 100 the expected number of observations per unit interval, in the immediate
vicinity of x = 2, is 25.16

(ii) In a sample of 1000 the expected number of observations per unit interval, in the imme-
diate vicinity of x = 2, is 251.6

(iii) The expected number of values from a sample of 100, between 1.9 amd 2.1, is approxi-
mately 0.2 × 251.6 = 50.32
[

The number can be calculated more exactly as
(pnorm(2.1, 2.5, 1.5) - pnorm(1.9, 2.5, 1.5)) * 1000

]

Repeat the calculation to get approximate and more exact values for the expected number

(i) between 0.9 and 1.1
(ii) between 2.9 and 3.1
(iii) between 3.9 and 4.1

By way of example, here is the code for (a):

> curve(dnorm(x, mean = 2.5, sd = 1.5), from = 2.5 - 3 * 1.5, to = 2.5 +
+ 3 * 1.5)
> curve(pnorm(x, mean = 2.5, sd = 1.5), from = 2.5 - 3 * 1.5, to = 2.5 +
+ 3 * 1.5)

Exercise 2

(a) Plot the density and the cumulative probability curve for a t-distribution with 3 degrees of
freedom. Overlay, in each case, a normal distribution with a mean of 0 and SD=1.
[Replace dnorm by dt, and specify df=10]

(b) Plot the density and the cumulative probability curve for an exponential distribution with a
rate parameter equal to 1 (the default). Repeat, with a rate parameter equal to 2. (When
used as a failure time distribution; the rate parameter is the expected number of failures per
unit time.)

2 Samples and Estimated Density Curves

Exercise 3
Use the function rnorm() to draw a random sample of 25 values from a normal distribution with
a mean of 0 and a standard deviation equal to 1.0. Use a histogram, with probability=TRUE to
display the values. Overlay the histogram with: (a) an estimated density curve; (b) the theoretical
density curve for a normal distribution with mean 0 and standard deviation equal to 1.0. Repeat
with samples of 100 and 500 values, showing the different displays in different panels on the same
graphics page.

> par(mfrow = c(1, 3), pty = "s")
> x <- rnorm(50)
> hist(x, probability = TRUE)
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> lines(density(x))
> xval <- pretty(c(-3, 3), 50)
> lines(xval, dnorm(xval), col = "red")

Exercise 4
Data whose distribution is close to lognormal are common. Size measurements of biological organ-
isms often have this character. As an example, consider the measurements of body weight (body),
in the data frame Animals (MASS ). Begin by drawing a histogram of the untransformed values,
and overlaying a density curve. Then

(a) Draw an estimated density curve for the logarithms of the values. Code is given immediately
below.

(b) Determine the mean and standard deviation of log(Animals$body). Overlay the estimated
density with the theoretical density for a normal distribution with the mean and standard
deviation just obtained.

Does the distribution seem normal, after transformation to a logarithmic scale?

> library(MASS)
> plot(density(Animals$body))
> logbody <- log(Animals$body)
> plot(density(logbody))
> av <- mean(logbody)
> sdev <- sd(logbody)
> xval <- pretty(c(av - 3 * sdev, av + 3 * sdev), 50)
> lines(xval, dnorm(xval, mean = av, sd = sdev))

Exercise 5
The following plots an estimated density curve for a random sample of 50 values from a normal
distribution:

> plot(density(rnorm(50)), type = "l")

(a) Plot estimated density curves, for random samples of 50 values, from (a) the normal dis-
tribution; (b) the uniform distribution (runif(50)); (c) the t-distribution with 3 degrees of
freedom. Overlay the three plots (use lines() in place of plot() for densities after the first).

(b) Repeat the previous exercise, but taking random samples of 500 values.

Exercise 6
There are two ways to make an estimated density smoother:

(a) One is to increase the number of samples, For example:

> plot(density(rnorm(500)), type = "l")
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Exercise 6, continued

(b) The other is to increase the bandwidth. For example

> plot(density(rnorm(50), bw = 0.2), type = "l")
> plot(density(rnorm(50), bw = 0.6), type = "l")

Repeat each of these with bandwidths (bw) of 0.15, with the default choice of bandwidth, and with
the bandwidth set to 0.75.

Exercise 7
Here we experiment with the use of sample() to take a sample from an empirical distribution, i.e.,
from a vector of values that is given as argument. Here, the sample size will be the number of values
in the argument. Any size of sample is however permissible.

> sample(1:5, replace = TRUE)
> for (i in 1:10) print(sample(1:5, replace = TRUE))
> plot(density(log10(Animals$body)))
> lines(density(sample(log10(Animals$body), replace = TRUE)), col = "red")

Repeat the final density plot several times, perhaps using different colours for the curve on each
occasion. This gives an indication of the stability of the estimated density curve with respect to
sample variation.

3 *Normal Probability Plots

Exercise 8
Partly because of the issues with bandwidth and choice of kernel, and partly because it is hard to
density estimates are not a very effective means for judging normality. A much better tool is the
normal probability plot, which works with cumulative probability distributions. Try

> qqnorm(rnorm(10))
> qqnorm(rnorm(50))
> qqnorm(rnorm(200))

For samples of modest to large sizes, the points lie close to a line.
The function qreference() (DAAG) takes one sample as a reference (by default it uses a random
sample) and by default provides 5 other random normal samples for comparison. For example:

> library(DAAG)
> qreference(m = 10)
> qreference(m = 50)
> qreference(m = 200)

Exercise 9
The intended use of qreference() is to draw a normal probability for a set of data, and place
alongside it some number of normal probability plots for random normal data. For example

> qreference(possum$totlngth)

Obtain similar plots for each of the variables taill, footlgth and earconch in the possum data.
Repeat the exercise for males and females separately



4 BOXPLOTS – SIMPLE SUMMARY INFORMATION ON A DISTRIBUTION 31

Exercise 10
Use normal probability plots to assess whether the following sets of values, all from data sets in
the DAAG package, have distributions that seem consistent with the assumption that they have been
sampled from a normal distribution?

(a) the difference heated - ambient, in the data frame pair65 (DAAG)?

(b) the values of earconch, in the possum data frame (DAAG)?

(c) the values of body, in the data frame Animals (MASS )?

(d) the values of log(body), in the data frame Animals (MASS )?

4 Boxplots – Simple Summary Information on a Distribution
In the data frame cfseal (DAAG), several of the columns have a number of missing values. A relevant
question is: “Do missing and non-missing rows have similar values, for columns that are complete?”

Exercise 11
Use the following to find, for each column of the data frame cfseal, the number of missing values:

sapply(cfseal, function(x)sum(is.na(x)))

Observe that for lung, leftkid, rightkid, and intestines values are missing in the same six rows.
For each of the remaining columns compare, do boxplots that compare the distribution of values
for the 24 rows that had no missing values with the distribution of values for the 6 rows that had
missing values.

Here is code that can be used to get started:

present <- complete.cases(cfseal)
boxplot(age ~ present, data=cfseal)

Or you might use the lattice function and do the following:

present <- complete.cases(cfseal)
library(lattice)
present <- complete.cases(cfseal)
bwplot(present ~ age, data=cfseal)

Exercise 12
Tabulate, for the same set of columns for which boxplots were obtained in Exercise 2, differences in
medians, starting with:

median(age[present]) - median(age[!present]))

Calculate also the ratios of the two interquartile ranges, i.e.

IQR(age[present]) - IQR(age[!present]))
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Part VII

Informal Uses of Resampling Methods

1 Bootstrap Assessments of Sampling Variability

Exercise 1
The following takes a with replacement sample of the rows of Pima.tr2.

> rows <- sample(1:dim(Pima.tr2)[1], replace=TRUE)
> densityplot(~ bmi, groups=type, data=Pima.tr2[rows, ],
+ scales=list(relation="free"), xlab="Measure")

Repeat, but using anymiss as the grouping factor, and with different panels for the two levels
of type. Repeat for several different bootstrap samples. Are there differences between levels of
anymiss that seem consistent over repeated bootstrap samples?

Exercise 2
The following compares density plots, for several of the variables in the data frame Pima.tr2,
between rows that had one or more missing values and those that had no missing values.

> missIND <- complete.cases(Pima.tr2)
> Pima.tr2$anymiss <- c("miss","nomiss")[missIND+1]
> library(lattice)
> stripplot(anymiss ~ npreg + glu | type, data=Pima.tr2, outer=TRUE,
+ scales=list(relation="free"), xlab="Measure")

The distribution for bmi gives the impression that it has a different shape, between rows where one
or more values was missing and rows where no values were missing, at least for type=="Yes". The
bootstrap methodology can be used to give a rough check of the consistency of apparent differences
under sampling variation. The idea is to treat the sample as representative of the population,
and takes repeated with replacement (“bootstrap”) samples from it. The following compares the
qq-plots between rows that had missing data (anymiss=="miss") and rows that were complete
(anymiss=="nomiss"), for a single bootstrap sample, separately for the non-diabetics (type=="No")
and the diabetics (type=="Yes").

> rownum <- 1:dim(Pima.tr2)[1] # generate row numbers
> chooserows <- sample(rownum, replace=TRUE)
> qq(anymiss ~ bmi | type, data=Pima.tr2[chooserows, ],
+ auto.key=list(columns=2))

Wrap these lines of code in a function. Repeat the formation of the bootstrap samples and the plots
several times. Does the shift in the distribution seem consistent under repeating sampling?

Judgements based on examination of graphs are inevitably subjective. They do however make it
possible to compare differences in the shapes of distributions. Here, the shape difference is of more
note than any difference in mean or median.

Exercise 3
In the data frame nswdemo (DAAGxtras package), compare the distribution of re78 for those who
received work training (trt==1) with controls (trt==0) who did not.

> library(DAAGxtras)
> densityplot(~ re78, groups=trt, data=nswdemo, from=0,
+ auto.key=list(columns=2))
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Exercise 3, continued
The distributions are highly skew. A few very large values may unduly affect the comparison. A
reasonable alternative is to compare values of log(re78+23). The value 23 is chosen because it is
half the minimum non-zero value of re78. Here is the density plot.

> unique(sort(nswdemo$re78))[1:3] # Examine the 3 smallest values
> densityplot(~ log(re78+23), groups=trt, data=nswdemo,
+ auto.key=list(columns=2))

Do the distribution for control and treated have similar shapes?

Exercise 4
Now examine the displacement, under repeated bootstrap sampling, of one mean relative to the
other. Here is code for the calculation:

> twoBoot <- function(n=999, df=nswdemo, ynam="re78", gp="trt"){
+ fac <- df[, gp]; if(!is.factor(fac))fac <- factor(fac)
+ if(length(levels(fac)) != 2) stop(paste(gp, "must have 2 levels"))
+ y <- df[, ynam]
+ d2 <- c(diff(tapply(y, fac, mean)), rep(0, n))
+ for(i in 1:n){
+ chooserows <- sample(1:length(y), replace=TRUE)
+ faci <- fac[chooserows]; yi <- y[chooserows]
+ d2[i+1] <- diff(tapply(yi, faci, mean))
+ }
+ d2
+ }
> ##
> d2 <- twoBoot()
> quantile(d2, c(.025,.975)) # 95% confidence interval

Note that a confidence interval should not be interpreted as a probability statement. It takes no
account of prior probability. Rather, 95% of intervals that are calculated in this way can be expected
to contain the true probability.

2 Use of the Permutation Distribution as a Standard

Exercise 5
If the difference is entirely due to sampling variation, then permuting the treatment labels will give
another sample from the same null distribution. The permutation distribution is the distribution of
differences of means from repeated samples, obtained by permuting the labels.
This offers a standard against which to compare the difference between treated and controls. Does
the observed difference between treated and controls seem “extreme”, relative to this permutation
distribution? Note that the difference between treat==1 and treat==1 might go in either direction.
Hence the multiplication of the tail probability by 2. Here is code:

> dnsw <- numeric(1000);
> y <- nswdemo$re78; treat <- nswdemo$trt
> dnsw[1] <- mean(y[treat==1]) - mean(y[treat==0])
> for(i in 2:1000){
+ trti <- sample(treat)
+ dnsw[i] <- mean(y[trti==1]) - mean(y[trti==0])
+ }
> 2*min(sum(d2<0)/length(d2), sum(d2>0)/length(d2)) # 2-sided comparison

Replace re78 with log(re78+23) and repeat the calculations.
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Part VIII

Sampling Distributions, & the Central
Limit Theorem
Package: DAAGxtras

1 Sampling Distributions
The exercises that follow demonstrate the sampling distribution of the mean, for various different
population distributions. More generally, sampling distributions of other statistics may be important.

Inference with respect to means is commonly based on the sampling distribution of the mean,
or of a difference of means, perhaps scaled suitably. The ideas extend to the statistics (coefficients,
etc) that arise in regression or discriminant or other such calculations. These ideas are important in
themselves, and will be useful background for later laboratories and lectures.

Here, it will be assumed that sample values are independent. There are several ways to proceed.

• The distribution from which the sample is taken, although not normal, is assumed to follow a
common standard form. For example, in the life testing of industrial components, an exponential
or Weibull distribution might be assumed. The relevant sampling distribution can be estimated
by taking repeated random samples from this distribution, and calculating the statistic for each
such sample.

• If the distribution is normal, then the sample distribution of the mean will also be normal. Thus,
taking repeated random samples is unnecessary; theory tells us the shape of the distribution.

• Even if the distribution is not normal, the Central Limit Theorem states that, by taking a large
enough sample, the sampling distribution can be made arbitrarily close to normal. Often, given
a population distribution that is symmetric, a sample of 4 or 5 is enough, to give a sampling
distribution that is for all practical purposes normal.

• The final method [the ”bootstrap”] that will be described is empirical. The distribution of sample
values is treated as if it were the population distribution. The form of the sampling distribution
is then determined by taking repeated random with replacement samples (bootstrap samples),
of the same size as the one available sample, from that sample. The value of the statistic is
calculated for each such bootstrap sample. The repeated bootstrap values of the statistic are
used to build a picture of the sampling distribution.
With replacement samples are taken because this is equivalent to sampling from a population
in which each of the avaialble sample values is repeated an infinite number of times.

The bootstrap method obviously works best if the one available sample is large, thus providing
an accurate estimate of the population distribution. Likewise, the assumption that the sampling
distribution is normal is in general most reasonable if the one available sample is of modest size, or
large. Inference is inevitably hazardous for small samples, unless there is prior information on the
likely form of the distribution. As a rough summary:

• Simulation (repeated resampling from a theoretical distribution or distributions) is useful

– as a check on theory (the theory may be approximate, or of doubtful relevance)
– where there is no adequate theory
– to provide insight, especially in a learning context.

• The bootstrap (repeated resampling from an empirical distribution or distributions) can be
useful
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– when the sample size is modest and uncertainty about the distributional form may mate-
rially affect the assessment of the shape of the sampling distribution;

– when standard theoretical models for the population distribution seem unsatisfactory.

The idea of a sampling distribution is wider than that of a sampling distribution of a statistic. It
can be useful to examine the sampling distribution of a graph, i.e., to examine how the shape of a
graph changes under repeated bootstrap sampling.

Exercise 1
First, take a random sample from the normal distribution, and plot the estimated density function:

> y <- rnorm(100)
> plot(density(y), type = "l")

Now take repeated samples of size 4, calculate the mean for each such sample, and plot the density
function for the distribution of means:

> av <- numeric(100)
> for (i in 1:100) {
+ av[i] <- mean(rnorm(4))
+ }
> lines(density(av), col = "red")

Repeat the above: taking samples of size 9, and of size 25.

Exercise 2
It is also possible to take random samples, usually with replacement, from a vector of values, i.e.,
from an empirical distribution. This is the bootstrap idea. Again, it may of interest to study the
sampling distributions of means of different sizes. Consider the distribution of heights of female
Adelaide University students, in the data frame survey (MASS package). The following takes 100
bootstrap samples of size 4, calculating the mean for each such sample:

> library(MASS)
> y <- na.omit(survey[survey$Sex == "Female", "Height"])
> av <- numeric(100)
> for (i in 1:100) av[i] <- mean(sample(y, 4, replace = TRUE))

Repeat, taking samples of sizes 9 and 16. In each case, use a density plot to display the (empirical)
sampling distribution.

Exercise 3
Repeat exercise 1 above: (a) taking values from a uniform distribution (replace rnorm(4) by
runif(4)); (b) from an exponential distribution with rate 1 (replace rnorm(4) by rexp(4,
rate=1)).
[As noted above, density plots are not a good tool for assessing distributional form. They are how-
ever quite effective, as here, for showing the reduction in the standard deviation of the sampling
distribution of the mean as the sample size increases. The next exercise but one will repeat the
comparisons, using normal probability plots in place of density curves.]
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Exercise 4
Laboratory 3 examined the distribution of bmi in the data frame Pima2 (MASS package). The
distribution looked as though it might have shifted, for data where one or more rows was missing,
relative to other rows. We can check whether this apparent shift is consistent under repeated
sampling. Here again is code for the graph for bmi

> library(MASS)
> library(lattice)
> complete <- complete.cases(Pima.tr2)
> completeF <- factor(c("oneORmore", "none")[as.numeric(complete) +
+ 1])
> Pima.tr2$completeF <- completeF
> densityplot(~bmi, groups = completeF, data = Pima.tr2, auto.key = list(columns = 2))

Now take one bootstrap sample from each of the two categories of row, then repeating the density
plot.

> rownum <- seq(along = complete)
> allpresSample <- sample(rownum[complete], replace = TRUE)
> NApresSample <- sample(rownum[!complete], replace = TRUE)
> densityplot(~bmi, groups = completeF, data = Pima.tr2, auto.key = list(columns = 2),
+ subset = c(allpresSample, NApresSample))

Wrap these lines of code in a function. Repeat the formation of the bootstrap samples and the plots
several times. Does the shift in the distribution seem consistent under repeating sampling?

Exercise 5
More commonly, one compares examines the displacement, under repeated sampling, of one mean
relative to the other. Here is code for the calculation:

> twot <- function(n = 99) {
+ complete <- complete.cases(Pima.tr2)
+ rownum <- seq(along = complete)
+ d2 <- numeric(n + 1)
+ d2[1] <- with(Pima.tr2, mean(bmi[complete], na.rm = TRUE) -
+ mean(bmi[!complete], na.rm = TRUE))
+ for (i in 1:n) {
+ allpresSample <- sample(rownum[complete], replace = TRUE)
+ NApresSample <- sample(rownum[!complete], replace = TRUE)
+ d2[i + 1] <- with(Pima.tr2, mean(bmi[allpresSample],
+ na.rm = TRUE) - mean(bmi[NApresSample], na.rm = TRUE))
+ }
+ d2
+ }
> d2 <- twot(n = 999)
> dens <- density(d2)
> plot(dens)
> sum(d2 < 0)/length(d2)

[1] 0.185

Those who are familiar with t-tests may recognize the final calculation as a bootstrap equivalent of
the t-test.
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Exercise 6
The range that contains the central 95% of values of d2 gives a 95% confidence (or coverage) interval
for the mean difference. Given that there are 1000 values in total, the interval is the range from the
26th to the 975th value, when values are sorted in order of magnitude, thus:

> round(sort(d2)[c(26, 975)], 2)

[1] -1.06 2.43

Repeat the calculation of d2 and the calculation of the resulting 95% confidence interval, several
times.

2 The Central Limit Theorem
Theoretically based t-statistic and related calculations rely on the assumption that the sampling
distribution of the mean is normal. The Central Limit Theorem assures that the distribution will for
a large enough sample be arbitrarily close to normal, providing only that the population distribution
has a finite variance. Simulation of the sampling distribution is especially useful if the population
distribution is not normal, providing an indication of the size of sample needed for the sampling
distribution to be acceptably close to normal.

Exercise 7
The function simulateSampDist() (DAAGxtras) allows investigation of the sampling distribution
of the mean or other stastistic, for an arbitrary population distribution and sample size. Figure 1
shows sampling distributions for samples of sizes 4 and 9, from a normal population. The function
call is

> library(DAAGxtras)
> sampvalues <- simulateSampDist(numINsamp = c(4, 9))
> plotSampDist(sampvalues = sampvalues, graph = "density", titletext = NULL)

Experiment with sampling from normal, uniform, exponential and t2-distributions. What is the
effect of varying the value of numsamp?
[To vary the kernel and/or the bandwidth used by density(), just add the relevant arguments in
the call to to simulateSampDist(), e.g. sampdist(numINsamp=4, bw=0.5). Any such additional
arguments (here, bw) are passed via the ... part of the parameter list.]
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4 and 9 from that population.
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Exercise 8
The function simulateSampDist() has an option (graph="qq") that allows the plotting of a normal
probability plot. Alternatively, by using the argument graph=c("density","qq"), the two types
of plot appear side by side, as in Figure 2. Figure 2 is an example of its use.

> sampvalues <- simulateSampDist()
> plotSampDist(sampvalues = sampvalues, graph = c("density", "qq"))

In the right panel, the slope is proportional to the standard deviation of the distribution. For means
of a sample size equal to 4, the slope is reduced by a factor of 2, while for a sample size equal to 9,
the slope is reduced by a factor of 3.
Comment in each case on how the spread of the density curve changes with increasing sample size.
How does the qq-plot change with increasing sample size? Comment both on the slope of a line that
might be passed through the points, and on variability about that line.
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Figure 2: Empirical density curves, for a normal population and for the sampling distributions of
means of samples of sizes 4 and 9, are in the left panel. The corresponding normal probability plots
are shown in the right panel.

Exercise 9
How large is ”large enough”, so that the sampling distribution of the mean is close to normal? This
will depend on the population distribution. Obtain the equivalent for Figure 2, for the following
populations:

(a) A t-distribution with 2 degrees of freedom
[rpop = function(n)rt(n, df=2)]

(b) A log-normal distribution, i.e., the logarithms of values have a normal distribution
[rpop = function(n, c=4)exp(rnorm(n)+c)]

(c) The empirical distribution of heights of female Adelaide University students, in the data frame
survey (MASS package). In the call to simulateSampDist(), the parameter rpop can specify
a vector of numeric values. Samples are then obtained by sampling with replacement from
these numbers. For example:

> library(MASS)
> y <- na.omit(survey[survey$Sex == "Female", "Height"])
> sampvalues <- simulateSampDist(y)
> plotSampDist(sampvalues = sampvalues)

How large a sample seems needed, in each instance, so that the sampling distribution is approxi-
mately normal – around 4, around 9, or greater than 9?
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Part IX

Simple Linear Regression Models
The primary function for fitting linear models is lm(), where the lm stands for linear model.3

R’s implementation of linear models uses a symbolic notation4 that gives a straightforward powerful
means for describing models, including quite complex models. Models are encapsulated in a model
formula. Model formulae that extend and/or adapt this notation are used in R’s modeling functions
more generally.

1 Fitting Straight Lines to Data

Exercise 1
In each of the data frames elastic1 and elastic2, fit straight lines that show the dependence of
distance on stretch. Plot the two sets of data, using different colours, on the same graph. Add
the two separate fitted lines. Also, fit one line for all the data, and add this to the graph.

Exercise 2
In the data set pressure (datasets), the relevant theory is that associated with the Claudius-
Clapeyron equation, by which the logarithm of the vapor pressure is approximately inversely propor-
tional to the absolute temperature. Transform the data in the manner suggested by this theoretical
relationship, plot the data, fit a regression line, and add the line to the graph. Does the fit seem
adequate?
[For further details of the Claudius-Clapeyron equation, search on the internet, or look in a suitable
reference text.]

Exercise 3
Run the function plotIntersalt(), which plots data from the data frame intersalt (DAAGxtras
package). Data are population average values of blood pressure and of salt in the body as measured
from urine samples, from 52 different studies. Is the fitted line reasonable? Or is it a misinterpreta-
tion of the data? Suggest alternatives to regression analysis, for getting a sense of how these results
should be interpreted? What are the populations where levels are very low? What is special about
these countries?
[The function plotIntersalt() is available from
http://www.maths.anu.edu.au/~johnm/r/functions/]
Enter

> webfile <- "http://www.maths.anu.edu.au/~johnm/r/functions/plotIntersalt.RData"
> load(con <- url(webfile))
> close(con)

3The methodology that lm() implements takes a very expansive view of linear models. While models must be linear
in the parameters, responses can be highly non-linear in the explanatory variables. For the present attention will be
limited to examples where the explanatory variables (”covariates”) enter linearly.

4The notation is a version of that described in “Wilkinson G.N. and Rogers, C. E. (1973) Symbolic description of
factorial models for analysis of variance. Appl. Statist., 22, 392-9.”
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Exercise 4
A plot of heart weight (heart) versus body weight (weight), for Cape Fur Seal data in the data
set cfseal (DAAG) shows a relationship that is approximately linear. Check this. However vari-
ability about the line increases with increasaing weight. It is better to work with log(heart) and
log(weight), where the relationship is again close to linear, but variability about the line is more
homogeneous. Such a linear relationship is consistent with biological allometry, here across different
individuals. Allometric relationships are pairwise linear on a logarithmic scale.
Plot log(heart) against log(weight), and fit the least squares regression line for log(heart) on
log(weight).

> library(DAAG)
> cflog <- log(cfseal[, c("heart", "weight")])
> names(cflog) <- c("logheart", "logweight")
> plot(logheart ~ logweight, data=cflog)
> cfseal.lm <- lm(logheart ~ logweight, data=cflog)
> abline(cfseal.lm)

Use model.matrix(cfseal.lm) to examine the model matrix, and explain the role of its columns
in the regression calculations.

2 Multiple Explanatory Variables

Exercise 5
For the data frame oddbooks (DAAG),

(a) Add a further column that gives the density.

(b) Use the function pairs(), or the lattice function splom(), to display the scatterplot matrix.
Which pairs of variables show evidence of a strong relationship?

(c) In each panel of the scatterplot matrix, record the correlation for that panel. (Use cor()) to
calculate correlations).

(d) Fit the following regression relationships:

(i) log(weight) on log(thick), log(height) and log(breadth).
(ii) log(weight) on log(thick) and 0.5*(log(height) + log(breadth)). What feature

of the scatterplot matrix suggests that this might make sense to use this form of equation?

(e) Take whichever of the two forms of equation seems preferable and rewrite it in a form that as
far as possible separates effects that arise from changes in the linear dimensions from effects
that arise from changes in page density.

[NB: To regress log(weight) on log(thick) and 0.5*(log(height)+log(breadth)), the model
formula needed is log(weight) ~ log(thick) + I(0.5*(log(height)+log(breadth)))
The reason for the use of the wrapper function I() is to prevent the parser from giving * the special
meaning that it would otherwise have in a model formula.]



43

Part X

Extending the Linear Model
Package: DAAG,

Ideas that will be important in the expansive view of linear models that will now be illustrated
include: basis function, factor, and interaction. The reach of R’s model formulae is wide.

1 A One-way Classification – Eggs in the Cuckoo’s Nest
This demonstrates the use of linear models to fit qualitative effects.

Like many of nature’s creatures, cuckoos have a nasty habit. They lay their eggs in the nests of
other birds. First, let’s see how egg length changes with the host species. This will use the graphics
function stripplot() from the lattice package. The data frame cuckoos is in the DAAG package.

> par(mfrow=c(1,2))
> library(DAAG)
> library(lattice)
> names(cuckoos)[1] <- "length"
> table(cuckoos$species)

hedge.sparrow meadow.pipit pied.wagtail robin tree.pipit
14 45 15 16 15

wren
15

> stripplot(species ~ length, data=cuckoos)
> ## Look also at the relationship between length and breadth;
> ## is it the same for all species?
> cuckoo.strip <- stripplot(breadth ~ length, groups=species,
+ data=cuckoos, auto.key=list(columns=3))
> print(cuckoo.strip)
> par(mfrow=c(1,1))

Exercise 1
Now estimate the means and standard deviations for each of the groups, using direct calculation:

> with(cuckoos, sapply(split(length, species), mean))

hedge.sparrow meadow.pipit pied.wagtail robin tree.pipit
23.11 22.29 22.89 22.56 23.08
wren
21.12

> with(cuckoos, sapply(split(length, species), sd))

hedge.sparrow meadow.pipit pied.wagtail robin tree.pipit
1.0494 0.9196 1.0723 0.6821 0.8801
wren

0.7542

[The function split() splits the lengths into six sublists, one for each species. The function
sapply() applies the function calculation to the vectors of lengths in each separate sublist.]
Check that the SD seems smallest for those species where the SD seems, visually, to be smallest.
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Exercise 2
Obtain, for each species, the standard error of the mean. This is obtained by dividing the standard
deviation by the square root of the number of values:

> sdev <- with(cuckoos, sapply(split(length, species), sd))
> n <- with(cuckoos, sapply(split(length, species), length))
> sdev/sqrt(n)

hedge.sparrow meadow.pipit pied.wagtail robin tree.pipit
0.2805 0.1371 0.2769 0.1705 0.2272
wren

0.1947

Exercise 3
Now estimate obtain the means for each of the groups froam a model that fits a separate con-
stant term for each species. The model can be specified using several different, but equivalent,
formulations, or parameterizations.

• The following the species means directly, as parameters for the model. It forces all parameters
to be species means

> lm(length ~ -1 + species, data=cuckoos)

• In the following alternative parameterization, the first parameter estimate is the mean for the
first species, while later estimates are differences from the first species. In other words, the
first species becomes the baseline.

> lm(length ~ species, data=cuckoos)

Now answer the following

(a) Use the function fitted() to calculate the fitted values in each case, and check that they are
the same. Reconcile the two sets of results.

(b) Examine and interpret the model matrices for the two different parameterizations.

(c) Use the termplot() function to show the effects of the different factor levels. Be sure to call
the function with partial.resid=TRUE and with se=TRUE. Does the variability seem similar
for all host species?

Exercise 4
The following creates (in the first line) and uses (second line) a function that calculates the standard
error of the mean.

> se <- function(x)sd(x)/sqrt(length(x))
> with(cuckoos, sapply(split(length, species), se))

hedge.sparrow meadow.pipit pied.wagtail robin tree.pipit
0.2805 0.1371 0.2769 0.1705 0.2272
wren

0.1947
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Exercise 4, continued
The standard error calculation can be done in a single line of code, without formally creating the
function se(). Instead, the function definition can be inserted as an anonymous function, so that it
does not need a name. The function definition is inserted where the function name would otherwise
appear:

> with(cuckoos, sapply(split(length, species),
+ function(x)sd(x)/sqrt(length(x))))

hedge.sparrow meadow.pipit pied.wagtail robin tree.pipit
0.2805 0.1371 0.2769 0.1705 0.2272
wren

0.1947

2 Regression Splines – one explanatory variable
This pursues the use of smoothing methods, here formally within a regression context.

Exercise 5
The following is based on the fruitohms data frame (in DAAG)

(a) Plot ohms against juice.

(b) Try the following:

> plot(ohms ~ juice, data=fruitohms)
> with(fruitohms, lines(lowess(juice, ohms)))
> with(fruitohms, lines(lowess(juice, ohms, f=0.2), col="red"))

Which of the two fitted curves best captures the pattern of change?

(c) Now fit a natural regression spline. Try for example:

> library(splines)
> plot(ohms ~ juice, data=fruitohms)
> hat <- with(fruitohms, fitted(lm(ohms ~ ns(juice, 4))))
> with(fruitohms, lines(juice,hat, col=3))
> ## Check the locations of the internaal knots.
> attributes(ns(fruitohms$juice, 4))$knots

25% 50% 75%
18.62 41.00 48.00

Experiment with different choices for the number of degrees of freedom. How many degrees
of freedom seem needed to adequately capture the pattern of change? Plot the spline basis
functions. Add vertical lines to the plot that show the knot locations.

Exercise 6
In the geophones data frame (DAAG), plot thickness against distance. Use regression splines, as
in Exercise 6, to fit a suitable curve through the data. How many degrees of freedom seem needed?
Add vertical lines to the plot that show the locatons of the knots.
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3 Regression Splines – Two or More Explanatory Variables
We begin by using the hills2000 data (DAAG version 0.84 or later) to fit a model that is linear in
log(dist) and log(climb), thus

> lhills2k <- log(hills2000[, 2:4])
> names(lhills2k) <- c("ldist", "lclimb", "ltime")
> lhills2k.lm <- lm(ltime ~ ldist + lclimb, data = lhills2k)

Use termplot() to check departures from linearity in lhills2k.lm. Note whether there seem to be
any evident outliers.

Exercise 7
Now use regression splines to take out the curvature that was evident when ltime was modeled as
a linear function of ldist and lclimb. Use termplot() to guide your choice of degrees of freedom
for the spline bases. For example, you might try

> lhills2k.ns <- lm(ltime ~ ns(ldist,2) + lclimb, data = lhills2k)

Again, examine the diagnostic plots? Are there any points that should perhaps be regarded as
outliers?
Does a normal spline of degree 2 in ldist seem to give any benefit above a polynomial of degree 2.

Note: The coefficients of the spline basis terms do not give useful information on what degree of spline
curve is required. See exercise 9 below. If one fits a spline of degree 3 to a relationship that is esentially
linear, all three coefficients are likely to be highly significant. Rather, check how the residual sum of
squares changes as the number of degrees of freedom for the spline curve increases. [F-tests are not
strictly valid, as successive models are not nested (the basis functions change), but they may be a
helpful guide.]

Exercise 8
The MASS package has the function lqs() that can be used for a resistant regression fit, i.e., the
effect of outlying points is attenuated. Try the following

> library(MASS)
> lhills2k.lqs <- lqs(ltime ~ ns(ldist,2) + lclimb, data = lhills2k)
> plot(resid(lhills2k.lqs) ~ fitted(lhills2k.lqs))
> big4 <- order(abs(resid(lhills2k.lqs)), decreasing=TRUE)[1:4]
> text(resid(lhills2k.lqs)[big4] ~ fitted(lhills2k.lqs)[big4],
+ labels=rownames(lhills2k)[big4], pos=4)

Try the plot without the two largest outliers. Does this make any difference of consequence to the
fitted values?

Exercise 10
Try the following:

x <- 11:20
y <- 5 + 1.25*x+rnorm(10)
summary(lm(y ~ ns(x,2)))$coef
summary(lm(y ~ ns(x,3)))$coef
summary(lm(y ~ ns(x,4)))$coef

Note that the coefficents are in all cases very mcuh larger than their standard errors. It takes both
degree 2 spline basis terms, additional to the constant, to fit a line. All three degree 3 terms are
required, and so on! Splines do not give a parsimonious representation, if the form of the model is
known.
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4 Errors in Variables

Exercise 10
Run the accompanying function errorsINx() several times. Comment on the results. The under-
lying relationship between y and x is the same in all cases. The error in x is varied, from values of
x that are exact to values of x that have random errors added with a variance that is twice that of
the variance of x.

4.1 Function used

This is available from http://www.maths.anu.edu.au/~johnm/r/functions/

"errorsINx" <-
function(mu = 8.25, n = 100, a = 5, b = 2.5, SDx=1, sigma = 2,

timesSDx=(1:5)/2.5){
mat <- matrix(0, nrow=n, ncol=length(timesSDx)+2)

x0 <- mu*exp(rnorm(n,0,SDx/mu))/exp(0)

y <- a + b*x0+rnorm(n,0,sigma)
mat[, length(timesSDx)+2] <- y
mat[,2] <- x0
mat[,1] <- y
sx <- sd(x0)
k <- 2
for(i in timesSDx){
k <- k+1
xWITHerror <- x0+rnorm(n, 0, sx*i)
mat[, k] <- xWITHerror

}
df <- as.data.frame(mat)
names(df) <- c("y", "x", paste("x",timesSDx,sep=""))
df

}

## Now use function to simulate y vs x relationships, with several
## different values of timesSDx, which specifies the ratio of the
## errors in x variance to SD[x]

oldpar <- par(mar=c(3.6,3.1,1.6,0.6), mgp=c(2.5,0.75,0),
oma=c(1,1,0.6,1),
mfrow=c(2,3), pty="s")

mu <- 20; n <- 100; a <- 15; b <- 2.5; sigma <- 12.5; timesSigma<-(1:5)/2.5
mat <- errorsINx(mu = 20, n = 100, a = 15, b = 2.5, sigma = 5,

timesSDx=(1:5)/2.5)
beta <- numeric(dim(mat)[2]-1)
sx <- sd(mat[,2])
y <- mat[, 1]
for(j in 1:length(beta)){
xj <- mat[,j+1]
plot(y ~ xj, xlab="", ylab="", col="gray30")
if(j==1)
mtext(side=3, line=0.5, "No error in x") else{
xm <- timesSigma[j-1]
mtext(side=3, line=0.5, substitute(tau == xm*s[z], list(xm=xm)))

}
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if(j>=4)mtext(side=1, line=2, "x")
if(j%%3 == 1)mtext(side=2, line=2, "y")
errors.lm <- lm(y ~ xj)
abline(errors.lm)
beta[j] <- coef(errors.lm)[2]
bigsigma <- summary(errors.lm)$sigma
print(bigsigma/sigma)
abline(a, b, lty=2)

}
print(round(beta, 3))

plotIntersalt <-
function (dset = intersalt1, figno = 2)
{

oldpar <- par(oma = c(6.5, 0, 0, 0), mar = par()$mar - c(0,
0, 3.5, 0))

on.exit(par(oldpar))
lowna <- c(4, 5, 24, 28)
plot(dset$na, dset$bp, pch = 15, ylim = c(50, 85),

xlab = "Median sodium excretion (mmol/24hr)",
ylab = "Median diastolic BP (mm Hg)", type = "n")

points(dset$na[-lowna], dset$bp[-lowna], pch = 16)
points(dset$na[lowna], dset$bp[lowna], pch = 1, lwd = 3)
u <- lm(bp ~ na, data = dset)
abline(u$coef[1], u$coef[2])

figtxt <-
paste("Fig. ", figno, ": Plot of median blood pressure versus salt",

"\\n(measured by sodium excretion) for 52 human",
"\\npopulations. Four results (open circles) are for",
"\\nnon-industrialised societies with very low salt intake,",
"\\nwhile other results are for industrialised societies.",

sep = "")
mtext(side = 1, line = 6, figtxt, cex = 1.1, adj = 0, at = -20)

}
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Part XI

Multi-level Models

1 Description and Display of the Data
1.1 Description

This laboratory will work with data on corn yields from the Caribbean islands of Antigua and St
Vincent. Data are yields from packages on eight sites on the Caribbean island of Antigua. The data
frames ant111b and vince111b hold yields for the standard treatment, here identified as 111, for sites
on Antigua and St Vincent respectively. Additionally, there will be some use of the more extensive
data in the data frame antigua. All three data frames are in recent versions (≥ 0.84) of the DAAG
package. See help(ant11b) for details of the source of these data.

The data frame ant111b has data for n=4 packages of land at each of eight sites, while vince111b
data for four packages at each of nine sites. As will be described below, two possible predictions are:

(a) Predictions for new packages of land in one of the existing sites.

(b) Predictions for new packages in a new site.

The accuracies for the second type of prediction may be much less accurate than for the first type. A
major purpose of this laboratory is to show how such differences in accuracy can be modeled.

1.2 Display

We begin by examining plots, for the treatment 111, from the combined data for the two islands.
This information for the separate islands is summarized in the datasets ant111b and vince111b in
the DAAG package.

A first step is to combine common columns of ant111b and vince111b into the single data frame
corn111b.

> library(lattice)
> library(DAAG)
> corn111b <- rbind(ant111b[, -8], vince111b)
> corn111b$island <- c("Antigua", "StVincent")[corn111b$island]

• The following plot uses different panels for the two islands:

> corn.strip1 <- stripplot(site ~ harvwt | island, data = corn111b,
+ xlab = "Harvest weight")

• The following plot uses different panels for the two islands, but allows separate (”free” = no
relation) vertical scales for the two plots.

> corn.strip2 <- stripplot(site ~ harvwt | island, data = corn111b,
+ xlab = "Harvest weight", scale = list(y = list(relation = "free")))

• The following uses a single panel, but uses different colours (or, on a black and white device,
different symbols) to distinguish the two islands. Notice the use of auto.key to generate an
automatic key:

> corn.strip3 <- stripplot(site ~ harvwt, data = corn111b, groups = island,
+ xlab = "Harvest weight", auto.key = list(columns = 2))
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Figure 3: Yields for the four packages of corn on sites on the islands of Antigua and St Vincent.

Next, we will obtain package means for the Antiguan data, for all treatments.

> with(antigua, antp <<- aggregate(harvwt, by = list(site = site,
+ package = block, trt = trt), FUN = mean))
> names(antp)[4] <- "harvwt"

Notice the use of the version <<- of the assignment symbol to ensure that assignment takes place in
the workspace.

Now plot mean harvest weights for each treatment, by site:
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Figure 4: Yields for the four packages of corn on each of eight sites on the island of Antigua.

Questions and Exercises

(a) Which set of sites (Antigua or St Vincent) shows the largest yields?

(b) Create a plot that compares the logarithms of the yields, within and between sites on the two
islands. From this plot, what, if anything, can you say about the differet variabilities in yield,
within and between sites on each island?

2 Multi-level Modeling
*Analysis using lme: The modeling command takes the form:

> library(nlme)
> ant111b.lme <- lme(fixed = harvwt ~ 1, random = ~1 | site, data = ant111b)

The only fixed effect is the overall mean. The argument random = ~1|site fits random variation
between sites. Variation between the individual units that are nested within sites, i.e., between
packages, are by default treated as random. Here is the default output:

> options(digits = 4)
> ant111b.lme

Linear mixed-effects model fit by REML
Data: ant111b
Log-restricted-likelihood: -47.21
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Fixed: harvwt ~ 1
(Intercept)

4.292

Random effects:
Formula: ~1 | site

(Intercept) Residual
StdDev: 1.539 0.76

Number of Observations: 32
Number of Groups: 8

Notice that lme gives, not the components of variance, but the standard deviations (StdDev) which
are their square roots. Observe that, according to lme, σ̂2

B = 0.762 = 0.578, and σ̂2
L = 1.5392 = 2.369.

The variance for an individual package is σ̂2
B + σ̂2

L.
Those who are familiar with an analysis of variance table for such data should note that lme does not give the

mean square at any level higher than level 0, not even in this balanced case.

Note that the yields are not independent between different packages on the same site, in the
population that has packages from multiple sites. (Conditional on coming from one particular site,
package yields are however independent.)

The take-home message from this analysis is:

o For prediction for a new package at one of the existing sites, the standard error is 0.76

o For prediction for a new package at a new site, the standard error is
√

1.5392 + .762 = 1.72

o For prediction of the mean of n packages at a new site, the standard error is
√

1.5392 + 0.762/n.
This is NOT inversely proportional to n, as would happen if the yields were independent within
sites.

Where there are multiple levels of variation, the predictive accuracy can be dramatically different,
depending on what is to be predicted. Similar issues are arise in repeated measures contexts, and in
time series. Repeated measures data has multiple profiles, i.e., many small time series.

2.1 Simulation

The following function simulates results from a multilevel model for the case where there are npackages
packages at each of nplots plots.

> "simMlevel" <- function(nsites = 8, npackages = 4, mu = 4, sigmaL = 1.54,
+ sigmaB = 0.76) {
+ facSites <- factor(1:nsites)
+ facPackages <- factor(1:npackages)
+ dframe <- expand.grid(facPackages = facPackages, facSites = facSites)
+ nall <- nsites * npackages
+ siteEffects <- rnorm(nsites, 0, sigmaL)
+ err <- rnorm(nall, 0, sigmaB) + siteEffects[unclass(dframe$facSites)]
+ dframe$yield <- mu + err
+ dframe
+ }

The default arguments are sigmaB = 0.76 and sigma = 1.54, as for the Antiguan data.
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2.2 Questions and Exercises

(a) Repeat the analysis

(a) for the Antiguan data, now using a logarithmic scale.
(b) for the St Vincent data, using a logarithmic scale.

(b) Overlay plots, for each of the two islands, that show how the variance of the mean can be
expected to change with the number of packages n.

(c) Are there evident differences between islands in the contributions of the two components of vari-
ance? What are the practical implications that flow from such differences as you may observe?

(d) Use the function simMlevel() to simulate a new set of data, using the default arguments.
Analyse the simulated data. Repeat this exercise 25 or more times. How closely do you reproduce
the values of sigmaL=1.54 and sigmaB=0.76 that were used for the simulation?

3 Multi-level Modeling – Attitudes to Science Data
These data are from in the DAAG package for R. The data are measurements of attitudes to science,
from a survey where there were results from 20 classes in 12 private schools and 46 classes in 29 public
(i.e. state) schools, all in and around Canberra, Australia. Results are from a total of 1385 year 7
students. The variable like is a summary score based on two of the questions. It is on a scale from
1 (dislike) to 12 (like). The number in each class from whom scores were available ranged from 3 to
50, with a median of 21.5.

There are three variance components:

Between schools 0.00105
Between classes 0.318
Between students 3.05

The between schools component can be neglected. The variance for a class mean is 0.318+3.05/n,
where n is the size of the class. The two contributions are about equal when n =10.

4 *Additional Calculations
We return again to the corn yield data.

Is variability between packages similar at all sites?:

> if (dev.cur() == 2) invisible(dev.set(3))
> vars <- sapply(split(ant111b$harvwt, ant111b$site), var)
> vars <- vars/mean(vars)
> qqplot(qchisq(ppoints(vars), 3), 3 * vars)

Does variation within sites follow a normal distribution?:

> qqnorm(residuals(ant111b.lme))

What is the pattern of variation between sites?

> locmean <- sapply(split(log(ant111b$harvwt), ant111b$site), mean)
> qqnorm(locmean)

The distribution seems remarkably close to normal.
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Fitted values and residuals in lme: By default fitted values account for all random effects, except
those at level 0. In the example under discussion fitted(ant111b.lme) calculates fitted values at
level 1, which can be regarded as estimates of the site means. They are not however the site means,
as the graph given by the following calculation demonstrates:

> hat.lm <- fitted(lm(harvwt ~ site, data = ant111b))
> hat.lme <- fitted(ant111b.lme)
> plot(hat.lme ~ hat.lm, xlab = "Site means", ylab = "Fitted values (BLUPS) from lme")
> abline(0, 1, col = "red")

The fitted values are known as BLUPs (Best Linear Unbiased Predictors). Relative to the site
means, they are pulled in toward the overall mean. The most extreme site means will on average,
because of random variation, be more extreme than the corresponding “true” means for those sites.
There is a theoretical result that gives the factor by which they should be shrunk in towards the true
mean.

Residuals are by default the residuals from the package means, i.e., they are residuals from the
fitted values at the highest level available. To get fitted values and residuals at level 0, enter:

> hat0.lme <- fitted(ant111b.lme, level = 0)
> res0.lme <- resid(ant111b.lme, level = 0)
> plot(res0.lme, ant111b$harvwt - hat0.lme)

5 Notes – Other Forms of Complex Error Structure
Time series are another important special case. A first step is, often, to subtract off any trend, and
base further analysis on residuals about this trend. Observations that are close together in time are
typically more closely correlated than observations that are widely separated in time.

The variances of the mean of n observations with variance σ2 will, assuming that positive corre-
lation between neighbouring observations makes the major contribution to the correlation structure,
be greater than σ2

n .
Here is a simple way to generate data that are sequentially correlated. The autocorrelation plot

shows how the estimated correlation changes as observations move further apart.

> y <- rnorm(200)
> y1 <- y[-1] + 0.5 * y[-length(y)]
> acf(y1)

Of course the multiplier in y1 <- y[-1] + 0.5*y[-1000] can be any number at all, and more complex
correlation structures can be generated by incorporating further lags of y.


