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Introduction

• Wu, Xiong and Chen evaluate the performance of 16 validation
measures for K-means clustering (e.g. entropy, mutual information,
classification error etc).

• Criteria based upon whether certain properties are satisfied, sensitivity
to differences in the data and the ability to detect misclassification

• Measures are shown to be identical, equivalent or improvements upon
other measures.

• Measures are normalised, and it is verified that this improves their
performance.
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Validation Measure Properties

• Mathematical properties:

1 Symmetry (swapping actual classes and predicted clusters)
2 N-Invariance (multiplying the confusion matrix by a constant)
3 Convex-Additivity (convex combinations of partitions of data)
4 Left-Domain-Completeness (0 when cols and rows of conf. matrix are

statistically independent)
5 Right-Domain-Completeness (1 when clustering matches classes)

• Sensitivity to differences in the data.

• Ability to capture the optimal cluster size.
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Measure Equivalence and Normalisation

• Many validation measures were shown to be identical or equivalent.

• Validation measures normalised, e.g.

Sn =
S −min(S)

max(S)−min(S)
or Sn =

S − E(S)

max(S)− E(S)

• Normalisation improves performance of most measures at detecting
misclassification, and makes the measures more consistent with each
other.
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Critical Analysis – Normalisation

• Normalisation only involved a simple affine transformation. Nonlinear
monotonic transformations were not considered.

• By observing that normalised measures are more correlated with each
other, the authors conclude that the normalised measures are more
robust. It is not obvious why this is so.
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K-means Clustering

• A classification method discussed in this course.

• K-means tends to create clusters of equal sizes.

• Results in misclassification for data with imbalanced class sizes.

Class 1 Class 2 Class 3 Total

Cluster 1 70 2 1 73

Cluster 2 52 12 3 67

Cluster 3 53 7 10 70

Total 109 21 20
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DCV

• Paper uses the Coefficient of Variation (CV) to measure class/cluster
size imbalance. Given sizes X = {x1, , . . . , xn},

CV = σ(X )/X .

• The difference in CV for the class size CV0 and cluster sizes CV1 from
K-means, DCV = CV1 − CV0, gives a measure for this type of
misclassification.

• For the matrix shown in the last slide, DCV = 0.48− 1.02 = −0.54.
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Detection of K-means Misclassification

• The validation measures were applied to clusters that were poorly and
well classified where the class sizes were imbalanced (high DCV).

• Performance based upon whether the validation measures could
correctly score the clustering.

• The correlation between the validation measures and DCV was
calculated using various real and simulated data sets.
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Best Performing Validation Measure

• The normalised van Dongen criterion:

VDn :
2n −

∑
i maxj nij −

∑
j maxi nij

2n −maxi xi −maxj xj

where n is the confusion matrix, {xi} are the class sizes.

• Chosen because it is easy to compute, satisfies the mathematical
properties and performs well for imbalanced class distributions.

• Not sensitive to data differences, which can be a disadvantage.
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Critical Analysis – Narrowness of Study

• Performance based upon narrow criteria (detection of
misclassification by K-means due to imbalanced class distributions).

• Other classification methods and criteria may yield different results.

• No analysis related to accuracy, false positive rate, true negative rate
etc.

• Single examples were used to justify conclusions.
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