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Nothing is as it seems

Images by M.C. Escher
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Framework

General framework:
Algorithms typically find a single interpretation of the data.

Alternative interpretations could exist.

Clustering framework:
Clustering is unsupervised classification and returns a set of clusters.
What if prior knowledge is available?

Alternative clustering(s) might be desirable.

Semi-supervised methods.
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Reminder – k-Means Clustering

(a) Initialise means
randomly

(b) Assign points to
clusters

(c) Re-estimate Means

(d) Re-assign points to
clusters

(e) Re-estimate Means

(f) Re-assign points to
clusters

(g) Re-estimate Means

(h) Re-assign points to
clusters

(i) Convergence
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Example – Automatic Lane Finding from GPS Traces

Where is the lane? [Wagstaff2001]

Lane-level navigation (e.g. advance notification for taking exits).

Lane-keeping suggestions (e.g. lane departure warning).

Constraints: width of a lane (maximum separation), points from the same
vehicle end on the same lane if there are no lane changes (trace contiguity)
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Problem Description

Singular Alternative Clustering Problem

Given an objective function f , an existing clustering π so that f (π) = x , does
there exist another clustering π′ that is different from π and where f (π′) ≈ f (π)?

Key factors:

Alternativeness

Quality

Issues:

Trade-off between alternativeness and quality of a new clustering.

Retain certain clusters or chunklets?

Alternative clustering just for a subspace of the data?
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Algorithm-Independent Approach

Given: data X = {x1, . . . , xn} ⊆ Rd and clustering π = {C1, . . . ,Ck} (with
centroids mj) found in X

X

C1

C2

C3

clustering π

Idea:

transform X into new space Y with transformation matrix D ∈ Rd×d

find a new clustering π′ = {C ′1, . . . ,C ′k} in Y
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Solution to the Problem

Key factors:

Quality: retain data properties ⇒ minimise Kullback-Leibler divergence
between probability distributions of X and Y : pX (x), pY (y)

Alternativeness: properties from π to keep or not keep ⇒ constraints

Constraint Optimisation Problem

min
B�0

DKL(pY (y)||pX (x))

s.t.
1

n

n∑
i=1

k∑
j=1,xi /∈Cj

||xi −mj ||2B ≤ β

where B = DT D and ||x − y ||B =
√

(x − y)T B(x − y) (Mahalanobis distance).

Solution: D = Σ̃−
1
2 where Σ̃ = 1

n

∑n
i=1

∑k
j=1,xi /∈Cj

(xi −mj)(xi −mj)
T
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Example

Σ̃ =

(
9.7419 0.1801
0.1801 36.6461

)

⇒ D =

(
0.3204 −0.0010
−0.0010 0.1652

)
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Learning Techniques

unsupervised: e.g. clustering, association analysis

semi-supervised: clustering with constraints

supervised: e.g. decision trees, neural networks, logistic regression, support
vector machines
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Assets and Drawbacks

Advantages:

Algorithm-independent and easy to implement (closed-form solution).

Trade-off between alternativeness and quality can be controlled.

Easy to specify what properties of a given clusterings to keep or not keep.

Distance matrix can be used in any distance-based method (cp. ordination
methods with distance metrics).

Approach can be used along with ordination methods in order to analyse
classification methods (e.g. reveal additional classes or misclassified points).
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Assets and Drawbacks

Disadvantages:

Algorithm-independent approach, i.e. the approach inherits the drawbacks of
the algorithm used,

e.g. k-means: efficient, but it is sensitive to outliers, it often terminates
at a local optimum and an inappropriate choice of k may yield poor
results.

Assumptions: clusters in π′ are multivariate Gaussian, same cluster sizes,
constant variances, dimensions highly independent,. . .

Sometimes a non-linear transformation might be more appropriate ( future
work).

Approach is very general; special algorithms such as COP k-means might be
more efficient [Wagstaff2001].

Expert guidance becomes impractical in very large datasets.

Eike Brechmann Finding Alternative Clusterings October 29, 2009 16 / 20



Assets and Drawbacks

Disadvantages:

Algorithm-independent approach, i.e. the approach inherits the drawbacks of
the algorithm used,

e.g. k-means: efficient, but it is sensitive to outliers, it often terminates
at a local optimum and an inappropriate choice of k may yield poor
results.

Assumptions: clusters in π′ are multivariate Gaussian, same cluster sizes,
constant variances, dimensions highly independent,. . .

Sometimes a non-linear transformation might be more appropriate ( future
work).

Approach is very general; special algorithms such as COP k-means might be
more efficient [Wagstaff2001].

Expert guidance becomes impractical in very large datasets.

Eike Brechmann Finding Alternative Clusterings October 29, 2009 16 / 20



Assets and Drawbacks

Disadvantages:

Algorithm-independent approach, i.e. the approach inherits the drawbacks of
the algorithm used,

e.g. k-means: efficient, but it is sensitive to outliers, it often terminates
at a local optimum and an inappropriate choice of k may yield poor
results.

Assumptions: clusters in π′ are multivariate Gaussian, same cluster sizes,
constant variances, dimensions highly independent,. . .

Sometimes a non-linear transformation might be more appropriate ( future
work).

Approach is very general; special algorithms such as COP k-means might be
more efficient [Wagstaff2001].

Expert guidance becomes impractical in very large datasets.

Eike Brechmann Finding Alternative Clusterings October 29, 2009 16 / 20



Assets and Drawbacks

Disadvantages:

Algorithm-independent approach, i.e. the approach inherits the drawbacks of
the algorithm used,

e.g. k-means: efficient, but it is sensitive to outliers, it often terminates
at a local optimum and an inappropriate choice of k may yield poor
results.

Assumptions: clusters in π′ are multivariate Gaussian, same cluster sizes,
constant variances, dimensions highly independent,. . .

Sometimes a non-linear transformation might be more appropriate ( future
work).

Approach is very general; special algorithms such as COP k-means might be
more efficient [Wagstaff2001].

Expert guidance becomes impractical in very large datasets.

Eike Brechmann Finding Alternative Clusterings October 29, 2009 16 / 20



Assets and Drawbacks

Disadvantages:

Algorithm-independent approach, i.e. the approach inherits the drawbacks of
the algorithm used,

e.g. k-means: efficient, but it is sensitive to outliers, it often terminates
at a local optimum and an inappropriate choice of k may yield poor
results.

Assumptions: clusters in π′ are multivariate Gaussian, same cluster sizes,
constant variances, dimensions highly independent,. . .

Sometimes a non-linear transformation might be more appropriate ( future
work).

Approach is very general; special algorithms such as COP k-means might be
more efficient [Wagstaff2001].

Expert guidance becomes impractical in very large datasets.

Eike Brechmann Finding Alternative Clusterings October 29, 2009 16 / 20



Table of Contents

1 Introduction

2 Approach

3 Evaluation

4 Bibliography

5 Appendix

Eike Brechmann Finding Alternative Clusterings October 29, 2009 17 / 20



Bibliography

Z. Qi, I. Davidson.

A principled and flexible framework for finding alternative clusterings.

KDD 2009, 717-726, 2009.

K. Wagstaff, C. Cardie, S. Rogers and S. Schroedl.

Constrained K-means Clustering with Background Knowledge..

ICML 2001, 577–584, 2001.

Eike Brechmann Finding Alternative Clusterings October 29, 2009 18 / 20



Table of Contents

1 Introduction

2 Approach

3 Evaluation

4 Bibliography

5 Appendix

Eike Brechmann Finding Alternative Clusterings October 29, 2009 19 / 20



Variations of the Constrained Optimisation Problem

Specifiying the trade-off between alternativeness and quality:
New constraint:

1

n

n∑
i=1

k∑
j=1,xi /∈Cj

||xi −mj ||αB ≤ β where α ≥ 1

α ↑⇒ alternativeness ↑

Specifiying which clusters to keep and not keep:

Retain cluster Cp:
∑

xi∈Cp
||xi −mp||2B ≤ δ with δ small

Retain clusters CY = {C1, . . . ,Cr} (1 < r < k):
New constraint:

∑
xi∈CY

r∑
p=1,xi∈Cp

||xi −mp||2B +
∑

xi /∈CY

k∑
j=1,xi /∈Cj

||xi −mj ||2B ≤ β
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