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Framework

General framework:
Algorithms typically find a single interpretation of the data.

m Alternative interpretations could exist.
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Framework

General framework:
Algorithms typically find a single interpretation of the data.

m Alternative interpretations could exist.

Clustering framework:

Clustering is unsupervised classification and returns a set of clusters.
What if prior knowledge is available?

m Alternative clustering(s) might be desirable.

m Semi-supervised methods.
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Example — Automatic Lane Finding from GPS Traces
Where is the lane? [Wagstaff2001]

m Lane-level navigation (e.g. advance notification for taking exits).

m Lane-keeping suggestions (e.g. lane departure warning).
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m Lane-level navigation (e.g. advance notification for taking exits).
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Constraints: width of a lane (maximum separation), points from the same
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Problem Description

Singular Alternative Clustering Problem

Given an objective function f, an existing clustering 7 so that f(7) = x, does
there exist another clustering 7’ that is different from 7 and where f(7') ~ f(7)?
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Problem Description

Singular Alternative Clustering Problem

Given an objective function f, an existing clustering 7 so that f(7) = x, does
there exist another clustering 7’ that is different from 7 and where f(7') ~ f(7)?

Key factors:

m Alternativeness

m Quality

Issues:

m Trade-off between alternativeness and quality of a new clustering.

m Retain certain clusters or chunklets?

m Alternative clustering just for a subspace of the data?
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Algorithm-Independent Approach

Given: data X = {x1,...,x,} C R? and clustering 7 = {Cy, ..., Cx} (with
centroids m;) found in X

clustering 7
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Algorithm-Independent Approach

Given: data X = {x1,...,x,} C R? and clustering 7 = {Cy, ..., Cx} (with
centroids m;) found in X

X Y = DX

clustering 7

Idea:

m transform X into new space Y with transformation matrix D € RY*?
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Algorithm-Independent Approach

Given: data X = {x1,...,x,} C R? and clustering 7 = {Cy, ..., Cx} (with
centroids m;) found in X

clustering 7 new clustering 7’

Idea:

m transform X into new space Y with transformation matrix D € RY*?

m find a new clustering 7’ = {C{,...,C,} in Y
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Solution to the Problem
Key factors:

m Quality: retain data properties = minimise Kullback-Leibler divergence
between probability distributions of X and Y: px(x), py(y)

m Alternativeness: properties from m to keep or not keep = constraints
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Solution to the Problem
Key factors:

m Quality: retain data properties = minimise Kullback-Leibler divergence
between probability distributions of X and Y: px(x), py(y)

m Alternativeness: properties from m to keep or not keep = constraints

Constraint Optimisation Problem

?ﬁ'% Drw(py (¥)lIpx(x))

1 n k
S.t.;Z Z ||x,-—mj||f3§ﬁ

i=1 j=1,%¢C;

where B =D'D and ||x — y||sg = \/(x — y)TB(x — y) (Mahalanobis distance).
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i=1 j=1,%¢C;

where B =D'D and ||x — y||sg = \/(x — y)TB(x — y) (Mahalanobis distance).
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Solution: D = ¥~ where ¥ = I JI.(:LX&CJ(X; —m;)(x; —m;)T
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Learning Techniques

unsupervised: e.g. clustering, association analysis

supervised: e.g. decision trees, neural networks, logistic regression, support
vector machines
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Learning Techniques

unsupervised: e.g. clustering, association analysis
semi-supervised: clustering with constraints

supervised: e.g. decision trees, neural networks, logistic regression, support
vector machines

Eike Brechmann Finding Alternative Clusterings October 29, 2009 14 /20



Assets and Drawbacks

Advantages:

m Algorithm-independent and easy to implement (closed-form solution).
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Advantages:

m Algorithm-independent and easy to implement (closed-form solution).
m Trade-off between alternativeness and quality can be controlled.
m Easy to specify what properties of a given clusterings to keep or not keep.

m Distance matrix can be used in any distance-based method (cp. ordination
methods with distance metrics).

m Approach can be used along with ordination methods in order to analyse
classification methods (e.g. reveal additional classes or misclassified points).
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Assets and Drawbacks

Disadvantages:

m Algorithm-independent approach, i.e. the approach inherits the drawbacks of
the algorithm used,

m e.g. k-means: efficient, but it is sensitive to outliers, it often terminates
at a local optimum and an inappropriate choice of k may yield poor
results.
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Assets and Drawbacks

Disadvantages:

m Algorithm-independent approach, i.e. the approach inherits the drawbacks of
the algorithm used,

m e.g. k-means: efficient, but it is sensitive to outliers, it often terminates
at a local optimum and an inappropriate choice of k may yield poor
results.

m Assumptions: clusters in 7’ are multivariate Gaussian, same cluster sizes,
constant variances, dimensions highly independent,. ..

m Sometimes a non-linear transformation might be more appropriate (~ future
work).

m Approach is very general; special algorithms such as COP k-means might be
more efficient [Wagstaff2001].

m Expert guidance becomes impractical in very large datasets.
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Variations of the Constrained Optimisation Problem

Specifiying the trade-off between alternativeness and quality:
New constraint:

1 n k
72 Z [|xi — mj||z < B where o > 1
n

i=1 j:l,X,'%Cj
« T= alternativeness |
Specifiying which clusters to keep and not keep:
. . 2 .
m Retain cluster G: 3, ¢ [|xi — mp||z < & with 6 small

m Retain clusters Cy = {G,..., G} (1 <r < k)
New constraint:

r k
Do ke mllE+ Y Y Ik-mlE <8

x;i€Cy p:l,X,‘ECP X;QCyj:l,X,'%Cj
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