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ABSTRACT
Given a spatial data set placed on an n × n grid, our goal is to find
the rectangular regions within which subsets of the data set exhibit
anomalous behavior. We develop algorithms that, given any user-
supplied arbitrary likelihood function, conduct a likelihood ratio
hypothesis test (LRT) over each rectangular region in the grid, rank
all of the rectangles based on the computed LRT statistics, and re-
turn the top few most interesting rectangles. To speed this process,
we develop methods to prune rectangles without computing their
associated LRT statistics.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database application—data min-
ing, spatial databases and GIS

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Discovering subsets of database data that are spatially close to

one another and exhibit anomalous behavior is of key importance
in many application areas. For example, consider our motivat-
ing application of mining antimicrobial (antibiotic) resistance pat-
terns. Antimicrobial resistance in nosocomial (hospital acquired)
bacterial infections is a key public health problem. Antimicrobial
drugs are the first and sometimes only means of attacking bac-
terial infection, but due to use and misuse over time, antimicro-
bials become less useful as bugs become resistant due to selective
pressures. The result is that common, often mild, nosocomial in-
fections such as staph can become deadly with no effective treat-
ment. The Antimicrobial Resistance Management (ARM) database
(http://www.armprogram.com) consists of antimicrobial resistance
data for nearly 400 hospitals over a 15-year period, and presents an
opportunity to study the epidemiology of antimicrobial resistance.
Over those 15 years, the trend in resistance rates is generally up-
ward. However, a key question that we would like to answer is: Is
the trend uniformly upward over time, or are there spatial regions
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where a set of hospitals have significantly different trends? Know-
ing the answer would provide key insight into the epidemiology
of antimicrobial resistance, indicating, for example, how “mobile"
the bugs are, or how the evolution of bugs in a hospital’s general
region affects local resistance rates. If resistance trends show a
strong geographic affinity, then it might indicate that resistance is
a local phenomenon, and so local programs at individual hospitals
aimed at careful antimicrobial stewardship could be useful. How-
ever, if resistance trends are uniform over a wide area, then it might
indicate that antimicrobial stewardship must be a wider effort.

Applying a Spatial Likelihood Ratio Test. Using classical statis-
tics, we can mine the ARM database for regions of the country with
anomalous or unique resistance trends. Given a spatial region, we
might treat the number of resistant cases in year y as the result of a
single binomial trial, with an unknown probability of resistance py

and the number of experimented isolations of the bug as a known,
fixed input ny . Since we are interested in trends, we could link all
of the py values over time for a given region using a linear model
over the years, py = y∆ + p0. Then, using a likelihood ratio test
[12], we could check whether the trend ∆ for the given spatial re-
gion is significantly different from the trend that would be used for
the entire country. By breaking the country into a grid and check-
ing each contiguous region in the grid for a difference in the local
trend, we will locate any locally anomalous resistance trends.

So, what’s the problem? As long as checking whether each con-
tiguous region is anomalous is computationally inexpensive, then
a brute-force search is feasible. There are O(n4) rectangular re-
gions in an n × n grid. For example, if n = 32, then there are
278,784 regions. This is not too many regions, but the overall cost
to search the grid using a brute-force method is O(cn4), where c
is the average cost to check a given area by computing a single
likelihood ratio test. The likelihood ratio test resulting from trend-
based search described above may require seconds to run for each
region that is searched, requiring weeks to run on a 32 by 32 grid.
Therefore, the problem is not enumerating all of the local regions
to check; the problem is actually having to run the likelihood ratio
test on all of them.

Our Contributions. The primary contribution in this paper is to
generalize the set of statistical models that can be used for this sort
of spatial search. We propose using the classic likelihood ratio test
(LRT) statistic as a score function to evaluate the “anomalousness”
of a given spatial region with respect to the rest spatial data. The
LRT is quite general: it works with virtually any underlying statis-
tical model. A user of our framework need only supply implemen-
tations of a few specific functions to instantiate our framework. But
a key problem in practice is that computing even one test statistic
value can be very expensive. Thus, we propose a pruning strategy
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that works for almost any underlying likelihood function, that can
be used to radically cut down on the number of likelihood ratio tests
that must be run when searching for anomalous spatial regions.

2. BACKGROUND

2.1 The LRT Statistic
The LRT is a hypothesis test that facilitates the comparison of

two models: one parametric stochastic model associated with the
hypothesis that there is an anomaly, and another associated with the
hypothesis that there is no anomaly—the so-called “null model".
Both parametric models are embodied by identical likelihood func-
tions L(θ|X), where X contains the values output by the underly-
ing stochastic process, and θ is a set of parameters coming from the
parameter space Θ. The (restricted) parameter space Θ0 allowed
under the null model is the complement of the parameter space al-
lowed in the case of anomalous data, denoted as Θ−Θ0. To check
for an anomaly using the LRT, two hypotheses H0 : θ ∈ Θ0 and
Ha : θ ∈ Θ − Θ0 are compared by computing the statistic:

λ(X) =
sup
Θ0

L(θ|X)

sup
Θ

L(θ|X)
(1)

This statistic is computed by first computing a maximum like-
lihood estimate (MLE) under both parameter spaces Θ0 and Θ,
and then computing the ratio of the likelihoods obtained via the
two MLEs. Wilks [12] showed that the asymptotic distribution of
Λ(X) = −2 log λ (which we subsequently refer to as the LRT
statistic) is chi-squared with (p − q) degrees of freedom under the
null hypothesis that θ ∈ Θ0. p is the number of dimensions (or free
parameters) in Θ, and q is the number of dimensions in Θ0. Thus,
to check for an anomaly at confidence level α, one checks whether
Λ(X) ≥ c, where c is a non-negative number computed by finding
how far out in the tail of a chi-square distribution one has to go to
find (1 − α)% of the mass.

For a very simple example of the sort of case where the LRT is
applicable, imagine that we wish to test whether the disease rate
within a spatial area A is different than the disease rate outside of
the area. We assume that the underlying stochastic process that
generates the number of cases of disease is binomial: each person
who lives in A has a certain, unknown probability of becoming ill in
a given time period, and we wish to check whether this probability
is different in A than it is outside of A. For each A, X = {kA}
where kA is the number of observed diseased individuals inside of
A. The set of model parameters θ contains an unknown probability
or rate of infection pA, and the known number of individuals nA

who live inside of A. For a given A, if the null hypothesis holds
and θ ∈ Θ0, then pA = pĀ and the disease rates are the same
within and without the given spatial area.

The likelihood function L() would then be a binomial function:

L(θ|X) ∝ pkA
A (1 − pA)nA−kAp

kĀ

Ā
(1 − pĀ)nĀ−kĀ

The degrees of freedom of the null distribution is one, since there
is one more free parameter allowed in Θ than in Θ0.

One can easily use the LRT as a basis for spatial anomaly search.
First, all contiguous, rectangular areas in a grid are searched, and
the value of the LRT statistic is computed over each of them. Those
areas with the greatest value for the statistic are returned to the user
for further examination as potential anomalous areas.

2.2 The Spatial Scan Statistic
The LRT has been used before for spatial anomaly detection. For

example, the LRT test forms the basis for the spatial scan statistic

(SSS), which is useful for detecting a cluster of event occurrences
in a spatial area. The SSS was first proposed in the statistics liter-
ature [6]. The model underlying the SSS assumes that each sub-
region has a Poisson process controlling the number of event oc-
currences within it. SSS-related work in the KDD literature has
focused on searching for an anomalous area in an efficient fashion
[9, 8, 1].

As we will discuss subsequently, our framework is similar to
the SSS in that it utilizes the LRT to perform spatial anomaly de-
tection, but it is far more general, admitting a very wide range of
stochastic models, and so work on speeding detection via SSS is
not obviously relevant. For example, existing SSS algorithms gen-
erally make extensive use of the fact that adding more data to an
area while keeping the ratio of the number of observed events to
the area measure constant must cause the “interestingness” of the
area to increase. This is true in the case of a Poisson model, but not
in the sort of general model that we consider. Thus, new ways to
speeding up the computation are required.

3. PROPOSED LRT FRAMEWORK
We begin by assuming that the spatial area over which we search

for anomalies has been pre-partitioned into an n × n spatial grid.
For each rectangular area A in the grid, we wish to answer the
question, “Does A differ significantly from the remainder of the
area in the grid?” This question is answered by computing a LRT
statistic that compares A to Ā. If the value of the LRT statistic is
large, then A is returned to the user as an anomalous region.

Our framework can be thought of as a generic template, which
requires that a user supplies a few functions which instantiate a par-
ticular anomaly detection problem. We now describe the process
that a typical user would undertake in order to apply our frame-
work to a particular problem.

3.1 Choosing a PDF
The first thing that a user must do is to postulate an appropri-

ate stochastic model to describe the data generation process within
each cell. A cell is a minimum spatial unit within which we assume
that there is no spatial variation, and so it does not make sense to
subdivide a cell spatially when performing anomaly detection. The
model used on a per-cell basis may be simple, such as a classical
Poisson or Bernoulli model, or it may be an arbitrary, user-defined
model of significant complexity. The stochastic model for a cell c
is characterized by a probability density function (PDF), denoted
by f(Xc|θc). The likelihood of a model given the data is then
L(θc|Xc) = f(Xc|θc). In order to make use of the LRT statistic,
we must be able to calculate the likelihood of the entire grid. As-
suming the generative processes within each cell are independent
of each other1 , the likelihood of the entire grid is given by:

L∗ =
Y

c∈Grid

L(θc|Xc) (2)

3.2 Defining the Test Set
Once the likelihood function has been defined, the second step

in employing the LRT framework is specifying two competing hy-
potheses in such a way that LRT can be used to decide whether a
testing rectangle is a spatial anomaly. Informally, given a test area
A, the two competing hypotheses take the form:

1The cell independence assumption is made to keep the scope of
the paper manageable. In practice, this assumption may not be too
restrictive. For example, the Poisson model underlying the SSS
assumes independence.
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• H0 : the process generating the data in the cells of A is not
substantially different from the process generating the data
in the cells outside of A.

• Ha : the process generating the data in the cells within A is
substantially different from the process outside of A.

Since the generative process is modeled via a PDF that is assumed
to be the same across all cells, determining whether the genera-
tive process differs from cell-to-cell is equivalent to determining
whether the parameters to the process differ within and without A.

Note the word “substantially” in the definition of the two hy-
potheses. When we are trying to test whether the generative pro-
cess in two different cells (or two groups of cells) differs, we are
not interested in comparing every aspect of the generative process
(or every parameter). There will be natural spatial variations in the
generative process that we want to ignore. For example, when we
are testing whether the trend of antimicrobial resistance is the same
inside of an area A as it is outside of A, differences in the starting
point of the trend are uninteresting.

As a result, our framework differentiates two types of parame-
ters for a cell’s PDF: the “shared parameters” and the “local pa-
rameters”. The set of “shared parameters” is the subset of θ that is
forced to be identical among each member of a group of cells. The
shared parameters are used to model within-group cell-similarity,
and it is from within the set of shared parameters where we find
the particular data property or properties that are indicative of an
anomaly. Those shared parameters that the user is actually inter-
ested in testing to see whether they are the same within a region A
and outside of the region A are called the “test set”, and are denoted
by T . The test set is a non-empty subset of the shared parameters.

The “local parameters” are those parameters within θ that are
customizable to each cell. They generally capture the uninteresting
or anticipated spatial variation of the data across different cells.
Sometimes, the precise values for local parameters may be known
and supplied beforehand by the user (such as the number of people
living in a spatial region). Other times, local parameters may be
unknown before the test is run, and their values are inferred (such
as the initial resistance rate when checking for different trends in
antimicrobial resistance rates).

Example. Recall that in our motivating application, we want to
find a spatial area where the trend in antimicrobial resistance is
different inside of the area than it is outside of the area. We assume
that the observed number of resistant cases in a cell is generated
via a sample from a binomial random variable, where the number
of microbes observed in year y is ny , the probability of resistance
in a given year y is py, and the linear function py = ∆× y + p0 is
used to model the trend of antimicrobial resistance rate over many
years. In this case, for a given cell c, θc = {∆, p0, n0, n1, n2...}.
When detecting anomalous regions, we want to know whether there
is an area A where the rate of change in resistance over time differs
within A and outside of A. In this case, the rate of change ∆ is
a shared parameter that is assumed to be uniform inside of A, and
uniform outside of A. The question is whether ∆ has a single value
for the entire grid. Thus, the test set T = {∆}. In contrast, p0 is
a local parameter that allows the trend to have a different starting
point in each cell. p0 for each cell is unknown and must be inferred
from the data. The number of microbes ny observed in year y is
also a local parameter, but it is available to the testing framework
and need not be inferred.

In this case, the two hypotheses that we are comparing become:

• H0: ∆A = ∆Ā

1. For each rectangle A in the grid
2. Let θG = MLE0(f(G))
3. Let (θA, θĀ) = MLE1(f(G), A)
4. Let Λ = −2 log L(θG|XG) + 2 log L(θA|XA)

+2 log L(θĀ|XĀ)
5. If Λ is in the top k found so far, then remember A

Figure 1: Naive top-k LRT search (Algorithm 1)

• Ha: ∆A &= ∆Ā

where ∆A denotes the shared ∆ within the current rectangle A and
∆Ā denotes the shared ∆ outside of the rectangle A.

In general, the framework considers the following two compet-
ing hypotheses for each rectangular area A:

• H0 : ∀t ∈ T , tA = tĀ

• Ha: ∃t ∈ T where tA &= tĀ

3.3 Instantiating the Framework
Once the user has developed a likelihood function and deter-

mined what parameters are in the test set, he or she must imple-
ment four functions in order for our framework to be used. These
functions are as follows:

• The summarizing function f(A) that returns the set of sum-
mary data XA for a region A in the grid, as well as all local
parameters whose values are known constants.

• A likelihood function L(θc|Xc) that accepts a set of cell
summary statistics as well as a set of cell parameter values,
and returns the associated likelihood.

• The null-space MLE procedure MLE0(f(A)) that per-
forms MLE in the null parameter space for an area A. That
is, this MLE procedure accepts the output of f(A): a set
of summary statistics XA over some spatial region A, as
well as any local parameters for cells in A whose values are
known constants. It then computes the set of non-constant
parameter values in θA that maximize the likelihood function
L(θA|XA). This maximization is done under the constraint
that for every two cells c1 and c2 in A, and for every shared
parameter s, sc1 = sc2 .

• The complete-space MLE procedure MLE1(A, f(G)) that
accepts a region A as well as all data and constant-valued
local parameters from the entire spatial grid G, and then
chooses the non-constant values in θA and θĀ that maximize
the entire grid’s likelihood: L(θA|XA)× L(θĀ|XĀ). This
is done under the constraint that all shared parameters not in
the test set must have the same value for each and every cell.
However, parameters in the test set T may differ inside of A
and outside of A. For t ∈ T , we only require that tc1 = tc2

if both c1 and c2 are inside of A or both c1 and c2 are outside
of A; otherwise, tc1 need not equal tc2 .

Once the user has defined these four functions, our algorithms
then look for the k regions that most strongly reject the null hy-
pothesis. Logically, this is done by performing the computation
given in Algorithm 1.

Example. Continuing with our antimicrobial resistance trend ex-
ample, we would instantiate f , L, MLE1, and MLE0 as follows:
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1. f(A) would return the number of microbial infections in
each cell in A for each year (n0, n1, ...) as well as the num-
ber of resistant microbial infections for each cell in the area
for each of the years (k0, k1, ...).

2. For a cell c in a spatial area A, L accepts each ny and ky,
as well as the rate of infection for the initial year p0 and a
change rate ∆. It then computes the binomial likelihood of
the rates given the cell data:

L(θc|Xc) ∝
Y

y

[(p0 + y∆)ky × (1.0 − p0 − y∆)ny−ky ]

3. MLE0 performs a binomial MLE for an input spatial area.
MLE0 is run under the constraint that ∆ is constant across
all cells in the input area, and that (p0 + y∆) ∈ [0, 1]. If
the input area is the entire grid, this corresponds to the null
hypothesis that the trend for each cell in the grid is the same,
though the starting rate p0 might be different.

4. Finally, MLE1 performs two similar binomial MLEs, ex-
cept that there are two different trends ∆A and ∆Ā allowed
for the areas within and without A, respectively.

3.4 So, What’s the Difficulty?
Running the naive algorithm in Figure 1 can be quite expensive,

but the computational difficulty is not necessarily associated with
enumerating all of the local spatial regions; even for a 100 × 100
gird this should take only a few seconds. Rather, the computa-
tional difficulty is associated with actually computing MLE1 and
MLE0 for every candidate area in the grid. Thus, we will con-
sider pruning strategies that still enumerate all of the O(n4) local
spatial areas in the grid, but can often inexpensively tell us before
any MLEs are ever computed that it is impossible for the current
LRT statistic to have a large or interesting value.

3.5 Remarks Regarding the Framework
First, we point out that this model is exceedingly general. The

only constraint of any significance is that we require statistical in-
dependence of data generation across cells.

Second, there is the issue of statistical significance of the regions
returned as the result of the search. Since our framework relies on
the LRT, the null distribution is known once the likelihood function
is defined and it is quite easy to associate a p value with each dis-
covered region. The only difficulty is that an appropriate multiple-
hypothesis-testing correction [4] must be used to account for the
fact that O(n4) individual hypothesis tests have been performed.

If a user is uncomfortable with either the use of an asymptotic
null distribution (because he or she is suspicious of relying on asymp-
totics) or the use of a multiple-hypothesis-testing correction (be-
cause he or she is worried that this will compromise the power of
the underlying statistical test), then a Monte-Carlo method can be
used to associate a p value with each result. Specifically, a large
number of spatial grids can be generated under the null hypothesis,
and the search for the most anomalous region can be performed in
each. By counting how many of the grid replicas have a LRT statis-
tic greater than the one obtained on the real data, one obtains an
appropriate p value. The Monte Carlo method makes the pruning
algorithms presented subsequently much more important. Since we
are only interested in knowing how many of the grid replicas have
larger LRT statistic than the one obtained on the real data, we will
supply the largest LRT statistic from the real data as an initial cut
off value to the remaining replicas, which may result in tremendous
speedup comparing to the naive Monte Carlo method.

A2

A3 A4

A1

AA

A

(a) (b)

Figure 2: Illustration of bounding the maximum likelihood of
region A by the product of the maximum likelihoods of sub-
region Ais. (a) The current testing region A. (b) The testing
region A tiled by four subregions.

4. BASIC PRUNING MECHANISM
Given the framework from the previous section, the problem be-

comes speeding the search through each of the O(n4) possible
regions in the grid. The basic idea that we will pursue is devis-
ing some way of immediately knowing—without performing any
MLE—whether the LRT statistic can possibly exceed a given cut-
off value for an area A.

So, how do we do this? At each iteration of Algorithm 1, we
will consider a region A, and wish to know whether the value of Λ
associated with A exceeds the cutoff. Normally, to compute Λ, we
will invoke both MLE1 and MLE0. That is, we would compute
(θA, θĀ) = MLE1(A, f(G)), and θG = MLE0(f(G)), and then
compute the quantity Λ = −2 log L(θG|X) + 2 log L(θA|XA) +
2 log L(θĀ|XĀ)

Our goal is to somehow avoid running the expensive MLEs and
still obtain some idea about whether or not Λ exceeds the cutoff.
Handling θG is easy. Since the value of MLE0(f(G)) is the same
no matter what the value of A, we can compute MLE0 over the
entire data set once, and then simply re-use this value for every
iteration of the loop that enumerates all possible rectangles.

However, it is more difficult to avoid running MLE1(A, f(G)).
Fortunately, we can upper-bound the values of both L(θA|XA) and
L(θĀ|XĀ) obtained via MLE1 by using the likelihoods associated
with the MLEs that we have computed previously.

To do this, let A = R1 ∪ R2 for non-overlapping R1 and R2,
so that XA = XR1

∪ XR2
. Let θA = θR1

∪ θR2
be the set

of parameter values relevant to area A, that were computed via
MLE1(A, f(G)). Now, assume that θ′R1

was computed directly
by calling MLE0(f(R1)). Then we know that:

L(θR1
|XR1

) ≤ L(θ′R1
|XR1

) (3)

This must be true since performing MLE0 on a subregion of A
has essentially relaxed the constraints for the optimization task per-
formed by MLE1 on A. Why? Recall that the shared parameters
relevant to a given cell are categorized into two classes: the shared
parameters that are not in the test set T , and the shared parameters
that are in the test set T . θR1

is chosen by the optimization routine
MLE1 under two constraints:

1. All cells on the grid share the same set of values for all shared
parameters not in the test set.

2. Consider the cells within A as a group, and cells within Ā as
another group. Within both groups, all cells must share the
same values for each test parameter, but across groups, test
parameter values can differ.

Inequality 3 holds since θ′R1
is chosen by MLE0 under the relaxed

constraints that:
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A A

(a) (b)

−

Figure 3: Illustration of the second tight bound criterion. (a)
Three subregions evenly cover the target region. (b) Three sub-
regions unevenly cover the target region, with one big subre-
gion dominating the other two.

1. All cells within R1 share the same set of values for all shared
parameters not in the test set.

2. All cells within R1 share the same set of values for all shared
parameters in the test set.

Obviously, the former two constraints used by MLE1(A, f(G))
to choose θR1

are more strict than the later two constraints used by
MLE0(f(R1)) to choose θ′R1

. As a result, inequality 3 must be
true. Likewise, L(θR2

|XR2
) ≤ L(θ′R2

|XR2
). Thus:

L(θA|XA) ≤ L(θ′R1
|XR1

) × L(θ′R2
|XR2

)

Thus, one can partition A into two arbitrary subregions, then
invoke MLE0 on each of those subregions independently, and use
the result to upper-bound the value of L(θA|XA) that would be
obtained via a call to MLE1(A, f(G)). Taking this to its logical
conclusion, by induction, one can always give an upper bound to
the value of L(θA|XA) obtained via MLE1 for A = R1 ∪ R2 ∪
R3 ∪ ... by invoking MLE0(f(Ri)) separately for each Ri (see an
example in Figure 2). A similar argument holds for L(θĀ|XĀ).

Our basic tactic will be to pre-compute a number of strategically-
chosen result sets from calls to MLE0, and use those to attempt to
avoid expensive calls to MLE1 by upper-bounding the quantity of
the result. If these upper bounds are tight, it will often be possible
to prune A without ever calling MLE1.

5. TIGHT BOUND CRITERIA
To bound L(θA|XA) and L(θĀ|XĀ) we must be able to tile both

A and Ā with a set of regions for which an MLE0 has already been
pre-computed. There are many possible precomputations and till-
ing methods, and the manner in which A (and Ā) is tiled can have
a significant effect upon the quality of the bound that is achieved.

In practice, there are two over-riding considerations when tiling
a region in order to bound the value of L(θA|XA):

1. The region should be tiled with as few tiles as possible.

2. For a fixed number of tiles, it is generally better to have a
high variance in tile sizes than it is to have a low variance in
tile sizes—that is, one big tile and n−1 small tiles are better
than n medium-sized tiles.

It is easy to argue why adding more tiles than that are strictly
needed is generally a bad idea. Under MLE0, only one value for
every parameter in the shared set is allowed. However, if A is cov-
ered with n tiles, then n different values of the parameters in the
shared set are allowed, with one parameter value per tile. Thus,
adding more and more tiles has the effect of adding more and more

1

2
3
4

5
6
7
8

1

2

3

4

1

2

1

L1 L0L3 L2
(b)

1

2
3
4

5
6
7
8

1

2

3

4

1

2

1

L3 L2 L1
(d)

L0

−

ji

m n

(c)

(a)

−

ji

m n

A

Figure 4: Illustration of tiling A. (a) Rectangle (m, n, i, j) is
recursively split. (b) The splitting position in each level. (c) A is
tiled using three precomputed rectangles. (d) The precomputed
rectangles that are used (they are circled) to tile A.

parameters. This tends to result in a looser and looser upper bound
on L(θA|XA).

The reason that large tiles are preferred—even if it results in one
or two large regions and a few very small regions—is illustrated in
Figure 3. The data points in this figure are represented by X’s and
O’s; the data points represented by X’s are generated by a different
process than the O’s and so they require different shared parameter
values to model them than the O’s do. If a number of smaller boxes
are used (as in the left of Figure 3), then it is much more likely that
the data inside of those boxes are homogeneous and contain mostly
X’s or mostly O’s, and MLE0 will produce a much looser bound
than the case in the right of Figure 3.

6. PRECOMPUTATION AND BOUNDING
Were we to compute an MLE for every A in the grid, there would

be O(n4) MLE computations. Our goal is to reduce this by at least
a factor of n by performing only O(n3) MLE0 pre-computations
and a handful of actual MLE1(X, A) computations for those A’s
that are not pruned. Also, our goal is to limit those precomputation
to smaller spatial regions, so they tend to be less expensive opti-
mization problems. Since our reduced problem is to bound both
L(θA|XA) and L(θĀ|XĀ), we consider them separately.

6.1 Precomputation and Bounding for A

We devise a method that uses at most 2 log n
2 precomputed rect-

angles to tile any given A. The precomputed rectangles are ob-
tained as follows. Consider the biggest rectangle that is enclosed
by a pair of the vertical grid lines. Figure 4(a) illustrates one such
rectangle (m,n, j, i). The horizontal grid line which crosses the
center point of the grid is used to split this rectangle into two iden-
tical subrectangles. If we recursively split the resulting subrectan-
gles by horizontal grid lines from their midpoints until we reach
the lowest resolution of the grid, our precomputation set contains
(2n−1)(n+1)n

2 rectangles, which is in the order of O(n3).
To use the precomputed rectangles to tile any given A, we use a

divide and conquer method. Figure 5 gives the detailed algorithm.
The recursive function Tile_A accepts the bottom-left (x1, y1) and
top-right (x2, y2) coordinates of a rectangle A, and a pair of low
and high values (initially, low is set to zero and high is set to n).
It splits A in a top-down fashion following the split points used
during precomputation. This method will always tile A with the
biggest possible rectangle in our precomputed set and guarantees
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Procedure Tile_A(x1, y1, x2, y2, low, high)
1. Let mid=(low+high)/2

//base case
2. If ((y1 ==low && y2 ==high) or (y1 ==low && y2 ==mid)

or (y1 ==mid && y2 ==high))
3. Return rect(x1, y1, x2, y2) /* rect() returns the stored

rectangle log-likelihood */
//recursive case

4. If (y2 ≤mid)
5. Return Tile_A(x1, y1, x2, y2, low, mid)

6. Else If (y1 <mid and y2 >mid)
7. Return Tile_A(x1, y1, x2, mid, low, mid)+

Tile_A(x1, mid, x2, y2, mid, high)
8. Else If (y1 ≥mid)

9. Return Tile_A(x1, y1, x2, y2, mid, high)

Figure 5: The algorithm for tiling A

we use the smallest number of tiles. Figure 4 (c) and (d) illustrate
an example where we use two level 2 rectangles (numbered 2 and
3) and one level three rectangle (numbered 7) to tile the given A.

6.2 Precomputation and Bounding for Ā

Now we turn our attention to the tiling methods for Ā. There are
two different tiling strategies that we employ:

The radial method. As illustrated in Figure 6 (a), in a clock-wise
order, we elongate the edges of a rectangle A until the edges hit
the grid borders. Ā is then divided into four rectangles denoted
Ā1 to Ā4, which are used to tile Ā. We can do the same thing in
a counter-clockwise order, which is depicted in Figure 6 (b). In
order to tile any given Ā using the radial method, the precomputed
set should contain all the rectangles that share at least one corner
with the grid. This set can be obtained by considering all of the
intersection points on the grid. We connect each intersection point
on the grid with the four corners of the grid. This produces four
diagonals, each of which creates one rectangle in our precomputed
set. Since there are O(n2) intersection points, there are O(n2)
rectangles in our precomputed set.

The sandwich method. As illustrated in Figure 6 (c), if we elon-
gate the two vertical edges of A in both directions until they reach
the borders of the grid, Ā is divided into four rectangles, denoted
Ā1 to Ā4. We use these four resulting rectangles to tile Ā. In the
same fashion, we can do this horizontally as illustrated in Figure
6 (d). In order to tile any Ā using this method, we need to pre-
compute all the rectangles that share two corners with the grid. In
Figure 6 (c), these rectangles are Ā2 and Ā4. Notice that these two
rectangles are in the the precomputed set for the radial method, so
we can reuse them. Also, since we want to avoid any additional
precomputations to bound Ā1, we call the Tile_A procedure from
the previous subsection to upper bound Ā1. We can upper bound
Ā3 in similar fashion. As a result, with no additional precomputa-
tion, we can obtain the bounds using the sandwich method.

We have discussed four methods to bound Ā (Fig 6); in practice,
we compute each and choose the tightest bound on L(θĀ|XĀ).

7. FINAL SEARCH ALGORITHM
The final search algorithm in Figure 7 modifies the naive algo-

rithm. At each iteration, the new algorithm obtains an upper bound
for the current LRT statistic, and compares the upper bound with
the current cutoff related to the kth largest Λ discovered so far. If
the upper bound is less than the cutoff, the current region is pruned.
Otherwise, the exact value for the LRT statistic is computed.
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(c) (d)

(a)
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Figure 6: Tiling methods for Ā. (a) and (b) depict the Radial
methods. (c) and (d) depict the Sandwich methods.

Input: a spatial grid G, f, MLE0,MLE1, L and k
Output: top-k anomalous regions.
1. Precompute the O(n3) rectangles described in Section 6.1
2. Precompute the O(4n2) rectangles described in Section 6.2
3. Let θ0 = MLE0(f(G)).
4. For each rectangle A on the grid:

5. Follow Section 6.1 to get the upper bound for log L(θA|XA)
6. Follow Section 6.2 to get the upper bound for log L(θĀ|XĀ)
7. Combine the results of step 3, 5, 6 to an upper bound for ΛA

8. If the upper bound is less than the kth best, prune A
9. Else compute ΛA; if in the top k, remember A

Figure 7: Top-k LRT statistic search with pruning

8. EXPERIMENTS

8.1 Experiment One: Synthetic Data
Experimental Goal. Our goal is to answer two questions:

1. Does our precomputation actually cut down on the number
of MLEs that need to be run in a realistic setting?

2. Second, the LRT framework has a known asymptotic null
distribution. If we use this fact along with a standard Bonfer-
roni correction to take into account the multiple hypothesis
test (MHT) problem induced by running a separate hypoth-
esis test for each area in an n × n grid, will we (a) still be
able to detect any subtle anomalies, and (b) be able to cor-
rectly recognize those cases where there is no anomaly in the
underlying data?

Experimental Setup. For our experiments over synthetic data, we
used a simple binomial likelihood model. This model is chosen
because performing the required MLE is fast, so we can repeatedly
run and re-run tests over reasonably large grids.

Our setup is as follows. For each cell c in the grid, we randomly
generate a population size nc. Then the number of “successes"
kc in the cell is generated by sampling from a Bin(nc, p) random
variable for success rate p. Given a testing rectangle A, denote the
“success” rate within A by p and within Ā by q. The test set is p,
the local parameter is the number of binomial trials in a particular
cell. The null hypothesis asserts that p = q, and the alternative
hypothesis asserts that p &= q.

Since the complete parameter space only has one more dimen-
sion than the null parameter space, the null distribution is chi-
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Table 1: Average pruning rates and accuracy for 50 trials on a

128 × 128 grid. The pruning rate is
pruned rectangle #

total rectangle #
.

Test Avg Pruning Rate Accuracy

Null (standard) 99.9994% no false alarm
Null( city population) 99.9996% no false alarm
Hot spot p = 0.003 99.9712 % 100%
Hot spot p = 0.01 99.9722 % 100%

Table 2: Average pruning rates and accuracy for 50 random
trials on a 256 × 256 grid.

Test Avg Pruning Rate Accuracy

Null (standard) 99.9999% no false alarm
Hot spot p = 0.003 99.9996% 100%

squared with one degree of freedom. For our tests, we run 50 trials
on a grid size of 128×128. To test the scalability, we also consider
a grid size of 256 × 256. Our initial cutoff value for pruning was
chosen to correspond to an overall false positive rate of 5%. In all
tests, we seek the top subregion.

We ran two different sets of experiments where the null hypoth-
esis was in fact true. In the first, the underlying nc values are rela-
tively uniform, where nc was always sampled from a Normal(µ =
1×104, σ = 1×103) distribution. The “success” rate for each cell
was set to 0.001. In the second case, there was a single densely-
populated region, or simulated “city". We randomly selected an
area of size 12 × 12, and within this area, nc was always sam-
pled from a Normal(µ = 1 × 105,σ = 5 × 103) distribution. We
recorded the pruning rate (the number of rectangles pruned/the total
rectangles), and checked if there were false alarms.

We also simulated a case where the alternative hypothesis holds.
The setup was the same as the standard null case, except that we
randomly pick a 4 × 3 region as the “hot spot”. In one set of tests
(the “subtle anomaly case"), the success rate for generating each kc

was set to 0.003. In the other (the “extreme anomaly case"), the
success rate was set to 0.01. Results are given in Tables 1 and 2.

Discussion. In general, the results shows very high pruning power.
Taking into account the precomputated MLEs, the pruning rates
realized on the 128×128 grid would on average reduce the number
of tests required by a factor of 31.1 to 31.4 compared to the naive
algorithm. On the 256×256 grid, our framework would reduce the
number of tests required by a factor of 63.4.

Also, with an overall 0.05 level test, our framework did not find
any false alarms in tests where the null hypothesis held. The to-
tal lack of false alarms (even at a significance level of 0.05) may
result from our application of a conservative Bonferroni correc-
tion. On the other hand, in both the “subtle anomaly” and “ex-
treme anomaly” cases, the framework had 100% detection accu-
racy. Overall, these results show that the framework seems to be
both safe and effective.

8.2 Experiment Two: The ARM Database
Application Description. 357 U.S. hospitals participate in the
ARM program, where each year, for each (bacteria/antimicrobial
drug) combination, each hospital submits the number of isolates
(bacteria instances) tested, as well as the number of times that the
bacteria was found to be susceptible to the given drug. As described
in the introduction, our goal is to find local spatial regions where
the temporal trend of antimicrobial resistance change within the
region is significantly different than the trend outside of the region.

Experimental Goal. We wish to experimentally test whether our

LRT framework can be used to effectively speed the naive algo-
rithm. There are two primary questions we wish to answer:

1. First, what is the pruning rate of our LRT framework over the
real data set, with a realistic likelihood model?

2. Second, what is the speedup in wall-clock running time com-
pared to the naive algorithm?

Instantiating the LRT Framework. To make use of LRT frame-
work, and following the notations introduced in the running ex-
ample of Section 3.3, we provide instances of f , L, MLE0 and
MLE1 as follows:

1. For each cell on the grid, there may be one or more hospi-
tals. Function f reports the number of aggregate microbial
infections in each cell in a given area A for years 0, 1, ...
(n0,n1,...) as well as the number of resistant infections in
each year(k0,k1,...) for all the hospitals in the cell over a
fixed five years span. That is, if x indexes the cell, and y
indexes the year, then f reports (nxy , kxy) for every x and
y.

2. For each cell on the grid, we treat each year’s data as a sin-
gle binomial trial. L accepts the cell’s summary statistics
reported by f as well as the rate of infection for the initial
year p0 and a change rate ∆ :

L(θc|Xc) =
Y

y

„

ny

ky

«

(p0+y∆)ky(1.0−p0−y∆)ny−ky

Here, we assume there is a linear relationship for each cell’s
yearly infection rates. That is, py = y∆ + p0, and py ∈
[0, 1]. Since we are testing if any subset of adjacent cells
exhibits a different trend than the rest of the cells, the test set
is ∆, and the local parameter is p0 and ny .

Plugging in the cell’s PDF into Equation 2, we have the entire
grid’s likelihood:

L∗(θ|f(G)) =
Y

x∈A

Y

y

[

„

nxy

kxy

«

((p0)x + y∆A)kxy ×

(1.0 − (p0)x − y∆A)nxy−kxy ] ×
Y

x∈Ā

Y

y

[

„

nxy

kxy

«

((p0)x + y∆Ā)kxy ×

(1.0 − (p0)x − y∆Ā)nxy−kxy ] (4)

In Equation 4, θ = {∆, nxy , (p0)x}. Assuming that all the
cells within a test region A share the same trend ∆A, and all
the cells outside region A share the same trend ∆Ā, then we
have the following competing hypotheses:

• H0: ∆A = ∆Ā

• Ha : ∆A &= ∆Ā

3. MLE0 implements a numerical optimization routine for max-
imizing the value of L in Equation 4. Numerical methods are
required due to the lack of an analytic solution.

4. MLE1 simply invokes MLE0 on f(A) and f(Ā) indepen-
dently, since each shared parameter is also in the test set.
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Table 3: LRT framework time (in days) vs. naive algorithm for
“trend" model.

n × n LRT time LRT pruning Naive time Speedup

16 × 16 0.15 96.5286% 2.6 17.3
32 × 32 1.13 97.6303% 35.9 31.8
64 × 64 11.9 98.0431% 544 45.7

Table 4: LRT framework time (in days) vs. naive algorithm for
“wage" model.
n × n LRT time LRT pruning Naive time Speedup

16 × 16 0.29 78.8396% 1.28 4.41
32 × 32 2.01 86.1219% 14.0 6.97

Experiment Setup. For the bacteria-antimicrobial combination of
S. aureus and Nafcillin, we extracted data from the ARM database
for 203 hospitals that provided data in the time period from 2000
to 2004, inclusive. All of the hospitals were organized into an n ×
n spatial grid. We first sort the hospitals using the longitude of
their physical locations. They are then grouped into n equi-depth
buckets. The placement of hospitals into the n buckets determines
which column of the grid each hospital belongs to. Similarly, we
sort all hospitals on latitude, partition them n ways, and use the
partitioning to determine the rows.
We tested three different grid sizes: n = 16, 32, and 64, and use
our framework to find the spatial region that most strongly rejects
the null hypothesis. For each grid size, we recorded both the prun-
ing rate and the wall-clock running time. Since MLE0 requires
one second over the entire data set, there is a strong relationship
between the pruning rate and running time; enumerating all of the
cells in the grid is inexpensive compared to running one or more
MLEs for each area in the grid. Also, due to the high cost of run-
ning the MLE, in order to compare our methods with the naive
method of simply running an MLE over each area, we had to resort
to sampling. For each iteration of the naive method of Algorithm
1, before we invoke MLE0 over A and Ā, we flip a coin having a
1% chance of obtaining a “head” result. If the result is a “head”,
we compute the LRT statistic by running the MLE. Otherwise, we
skip the rectangle. While the result of running this sampling-based
algorithm will be useless, the running time is expectedly 1

100 of the
time required to run the naive algorithm to completion. All results
are presented in Table 3.

Discussion. We observed a speedup of between one and two orders
of magnitude with respect to the naive algorithm, with the speedup
increasing with increasing grid size. The results are quite striking.
For example, in the 64 × 64 case, our framework took about 12
days to finish running. On the other hand, the naive method is esti-
mated to take 544 days, or about one and a half years! Thus, in this
real application, the pruning strategies that the proposed framework
utilizes can turn a computation that is totally infeasible to one that
may still be expensive—but is possible in a time frame that is likely
acceptable in most epidemiological settings.

8.3 Experiment Three: Census Data

Application. Our data comes from a 5% sample of the 2000 U.S.
census data. 2 Each database record contains data describing a
single person, where we know (a) the person’s annual wage, (b)
the person’s highest educational attainment level, and (c) the place
where the person works. Annual wage is an integral number. There
are eighteen classes of educational attainment, such as Bachelor’s
degree, Master’s degree, etc. For privacy reasons, the place of work
attribute in this data is described in terms of the Public Use Mi-

2http://usa.ipums.org/usa/

crodata Area (PUMA), a Census Bureau-defined area of 100,000+
residents; we use the center of each PUMA to place each person
into a spatial grid placed over the U.S.A. Given this data, we wish
to ask the following question:

Are fluctuations in the level of income across the country totally
explained by differences in education levels across the country, or
are there real differences in income level according to the spatial
region where people work?

This question can be re-cast in a slightly different way that is quite
amenable to analysis using our proposed framework:

If we condition each person’s income level upon the level of educa-
tion that they obtained, are there spatial subregions of the country
where the income level is significantly different from the rest?

Experimental Goal. We wish to experimentally test whether our
LRT framework can be used to effectively speed a realistic, large-
scale data analysis problem—there are 1.5 million records in the set
we consider. Furthermore, the problem is made even more realistic
by the fact that the data are not clean—some of the data have a
missing label for the level of educational attainment, which is an
issue that must be dealt with in a statistically rigorous fashion; we
use an EM algorithm to deal with the missing data.

Instantiating the LRT Framework. To use the LRT framework,
again we need to provide the following components:

1. For each cell on the grid, there may be co-located many
PUMAs. Function f reports each respondent’s annual wage,
together with the person’s education level whose values is in
{0, 1, . . . 18}, where 0 indicates the respondent’s education
level is missing. For a cell in area A, denote the set of la-
beled data returned by f by XL, and denote the set of data
with missing education level (the unlabeled data) using XU .
Each element of XL ∪ XU takes the form (x, y) where x is
the reported income and y indicates educational level.

2. For each cell, we describe the wages distribution using a
Gamma mixture model, where there are 18 component dis-
tributions, each of which represents the wage distribution of
an educational class. If a data point has a valid education
label, we use the Gamma component distribution to get the
data point’s likelihood directly. Otherwise, we plug in the
data point into the mixture model. We use wj to denote the
weight of the jth component for a cell; this is the probability
that an arbitrary person in the current cell achieves an edu-
cation level of j. (αj ,βj ) denotes the Gamma distribution’s
parameters for the jth component. Then, L is:

L(θc|Xc) =
Y

(x,y)∈XL

p(x|αy,βy) ×

Y

x∈XU

18
X

j=1

wjp(x|αj ,βj)

Here, we are interested in testing if the component distribu-
tion representing each education class is the same across the
country. The test set includes (αj ,βj) for all possible j, the
local parameters are the weights wj’s for each mixture com-
ponent j in a cell.

Again, we can plug in the cell’s PDF into Equation 2 to get
the grid’s likelihood function L∗(θ|f(G)). Using i to index

the cells, we have θ = {(αA
j ,βA

j ), (αĀ
j , βĀ

j ), wij} for every
i and j. Here, the test set is (αj ,βj), the local parameter is
wij .
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Assuming all the cells within a testing region A share the
same education class distribution Gamma(x|αA

j ,βA
j ), and

all the cells without A share the same class distribution
Gamma(x|αĀ

j ,βĀ
j ) for each j ∈ {1, . . . , 18} . Then, we

have the following competing hypothesis:

• H0 :αA
j = αĀ

j and βA
j = βĀ

j for all j ∈ {1, . . . , 18}.

• Ha: ∃αA
j &= αĀ

j or βA
j &= βĀ

j for some j ∈ {1, . . . , 18}.

3. MLE0 in this problem is an implementation of the EM al-
gorithm [3], which is chosen so that we can handle the MLE
over the unlabeled data in a statistically meaningful fashion,
without simply throwing them away. Since EM only con-
verges to a local maxima, our implementation performs sev-
eral random restarts, though in practice we find that no mat-
ter what the starting point, the end quality of MLE0 does
not change significantly enough to affect the LRT statistic.
For brevity, we omit the details of the derived EM.

4. MLE1 is two invocations of MLE0 with XA and XĀ, re-
spectively.

Experimental Setup. We extracted data for fourteen, contiguous
U.S. states, forming a rectangle from Arizona to Indiana, cover-
ing 330 PUMAs. The 330 PUMAs were organized into an n × n
grid using a method identical to the one used for the ARM data.
We used n = 16 and 32. We used our framework to look for the
top subregion—that is, the one with the largest LRT statistic value.
Since MLE0 relies on an iterative EM implementation, it is expen-
sive to run. We used sampling to obtain the estimated wall-clock
time for the naive method. The results are presented in Table 4.

Discussion. We find that we still achieve good performance com-
pared to the naive method, even in a small grid size. However, the
pruning rate and speedup, while significant, are not as dramatic as
with the other two data sets. It appears that there is some particu-
lar aspect of this application which results in the bound computed
by the framework not being quite as tight as in the other two cases.
Still, in the case of the 32×32 grid, the framework is able to reduce
the required time from two weeks down to two days.

9. RELATED WORK
Detecting anomalous spatial regions have been a popular research

topic. Two lines of research have been popular in this area. One is
spatial clustering, which includes CLARANS [10], DBSCAN [5],
and STING [11] etc. The other group focuses on the performance
study on detecting statistical significant spatial or spatial-temporal
cluster (hot spot) [8, 9, 2, 1]; most papers in this second line of work
are based on Kulldorff’s spatial scan statistic (SSS)[6, 7]. The SSS
is used to detect non-random spatial clusters of event occurrence.
Conditioned on the observed event counts, and assuming event in-
dependence, the SSS is expressed in the following form:

CA log
CA

PA
+ (CG − CA) log

CG − CA

PG − PA
− CG log

CG

PG

where CA is the aggregate event count for area A, and CG is the ag-
gregate event count for the entire spatial region. PA and PG are the
population sizes for zone A and the entire spatial region, respec-
tively. Monte Carlo methods is employed to obtain the empirical
null distribution of the test statistic.

Since obtaining null distribution is expensive for Kulldorff’s spa-
tial scan statistic, several methods have been proposed for address-
ing the performance issue [9, 8, 1, 2]. These methods differ from

our own in that they aim to actually avoid considering all O(n4)
rectangular areas, whereas our goal is to avoid expensive LRT statis-
tic computations. The existing methods in the literature only ap-
ply to those relatively simple density measures that are convex or
monotonic with respect to the ratio of zone population over entire
population and the ratio of zone’s event count over the entire event
count. For such measures, the scan-statistic-based approach would
be preferred to our own. Unfortunately, existing methods do not
apply to the likelihood functions used in the trend or wage model
considered in this paper; in these cases, our algorithms are the only
option.

10. CONCLUSIONS
In this paper, we have considered the problem of detecting spatial

anomalies in an n×n grid using a LRT with a chi-squared asymp-
totic null distribution. Our focus is on using pruning to reduce the
magnitude of the constant c in the underlying O(cn4) computa-
tion in the case where c is large due to an expensive LRT statistic.
Experiments in real-life applications show that our methods are ef-
fective at reducing c by almost two orders of magnitude.
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