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ABSTRACT
The aim of data mining is to find novel and actionable insights in
data. However, most algorithms typically just find a single (pos-
sibly non-novel/actionable) interpretation of the data even though
alternatives could exist. The problem of finding an alternative to
a given original clustering has received little attention in the liter-
ature. Current techniques (including our previous work) are unfo-
cused/unrefined in that they broadly attempt to find an alternative
clustering but do not specify which properties of the original clus-
tering should or should not be retained. In this work, we explore a
principled and flexible framework in order to find alternative clus-
terings of the data. The approach is principled since it poses a
constrained optimization problem, so its exact behavior is under-
stood. It is flexible since the user can formally specify positive and
negative feedback based on the existing clustering, which ranges
from which clusters to keep (or not) to making a trade-off between
alternativeness and clustering quality.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data min-
ing

General Terms
Algorithms, Experimentation

Keywords
Clustering

1. INTRODUCTION
The purpose of data mining is to find novel and actionable pat-

terns. However, in many situations a practitioner already has knowl-
edge of what is not actionable and not novel and unless this is some-
how encoded, the algorithm may continue to find those patterns.
Consider the clustering of loan applications in order to identify bad
loans, but the clusters fall along racial lines. You may wish to find
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another alternative yet equally good clustering. Similarly, high di-
mensional data such as collections of images may naturally con-
tain many plausible ways of clustering based on different subsets
of pixels. Finally as previously showed, in even low dimensional
data (the pen digit data set in our earlier work [5]) multiple expla-
nations may exist if the underlying phenomenon is complex and the
data is insufficient to justify just one explanation.

The recent innovation of finding an alternative clustering an-
swers the question: “Given a clustering π, does there exist another
clustering π′ which is different from π but equally good in terms
of objective function value?” Note that in this question there are
two key factors of concern: alternativeness and quality. That is, we
hope the new clustering not only interprets the data from an alter-
native perspective but also is of good quality in terms of the algo-
rithm’s objective function. Others [9, 2, 4] as well as ourselves [5]
have tackled the problem which we term the Singular Alternative
Clustering Problem described below.

PROBLEM 1. Singular Alternative Clustering Problem. Given
an objective function f , an existing clustering π so that f(π) = x,
does there exist another clustering π′ that is different from π and
where f(π′) ≈ f(π)?

Note that the Singular Alternative Clustering Problem is a dif-
ferent problem from the one addressed in Jain, Meka and Dhillon’s
work [10]. In that paper, the authors deal with a problem of finding
two disparate (alternative) clusterings simultaneously, while our
work deals with finding an alternative clustering given an existing
one.

There are two primary limitations in previous work on this topic.
First, existing techniques aside from our prior work [5] are algorithm-
dependent [9, 2, 4], as we shall describe in Section 2. Second, all
the existing techniques including our own [5] do not specify which
properties of the original clustering should be preserved (or not) in
the new clustering. Instead, they bluntly find an alternative clus-
tering with no guidance other than the new clustering must be an
alternative to the original. However, in many circumstances we
may not wish to find a complete alternative, but perhaps a partial
alternative, and seek to precisely state which parts of the clustering
to retain and which parts not to retain.

The main contribution of this paper is to propose a general frame-
work for solving the Singular Alternative Clustering Problem where
the expected properties of the new clustering can be specified. To
find the new clustering in an algorithm-independent way, we cre-
ate a transformation matrix to transform the data set into a new
space while preserving the properties of the data set and respect-
ing the users’ feedback on the previous clustering. This allows
any clustering algorithm to be applied to the transformed data. We
will formally show that our approach is a solution to a constrained
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optimization problem. Our formulation minimizes the Kullback-
Leibler divergence between two distributions: the original data and
the transformed data, so that the data properties are not overly dis-
torted. The constraint on the optimization allows us to specify
which properties of the clustering should be kept. Formally, our
aim is to create an approach that:

• Is general purpose and can address the Singular Alternative
Clustering Problem for a variety of clustering algorithms;

• Can specifically identify which properties of the old cluster-
ing should (or should not) be maintained in the new cluster-
ing;

• Is efficient and easy to implement;

• Is feasible for both high (Figure 3, 4 and 5) and low dimen-
sional data sets (Table 1, 2 and 3).

Note that this work does not build upon our previous work [5]
apart from working on the same problem and also proposing an
algorithm-independent approach.

We begin this paper by describing the related work in Section 2.
We present our framework to solve the Singular Alternative Clus-
tering Problem in Section 3. In Section 4, we show the flexibility
of our approach by discussing the variations to our problem formu-
lation. In Section 5, we illustrate experimental results on UCI data
sets which show that our approach provides genuinely (non-trivial)
alternative clusterings with good quality. The experiments on im-
age segmentation applications show that our approach can obtain
alternative meaningful image partition results. Finally, we present
the experiments where the desirable/undesirable clusters in the new
clustering can be explicitly specified, and the results show that our
approach not only achieves alternative clusterings but also main-
tains the desirable clusters.

2. RELATED WORK
The problem of finding alternative clusterings has received lim-

ited attention so far. Most of the approaches to address this problem
are based on some specific clustering algorithm. Bae and Bailey
[2] force an alternative clustering by generating cannot-linked con-
straints from all pairs of objects which are in the same cluster in π,
the original clustering. However, their method is tied to a hierarchi-
cal clustering algorithm. Another approach combines k-means and
PCA to project the data into an alternative subspace [4]. This has
the limitation of not being appropriate for lower dimensional data
sets such as spatial data, as we discussed and illustrated in previous
work [5]. A third approach [9] explored the idea of using Condi-
tional Information Bottleneck (CIB) to find an alternative cluster-
ing to a given non-novel clustering. This approach subtracts the
background knowledge of the given clustering by maximizing con-
ditional mutual information I(C; Y|Z) (C, Y and Z denote the clus-
ters of objects, relevant features and the background knowledge),
which is difficult to implement since it requires modeling joint dis-
tribution between the cluster labels and the relevant features. The
last approach, which is our own [5], first learns a distance metric
Dπ from the original clustering π and then interprets Dπ from the
geometric point of view. It then reverses the transformation of Dπ

using Moore-Penrose pseudo-inverse to get the new distance met-
ric D′

π . Thus in the new data transformed by D′
π one will find a

different clustering other than π.
The area of non-hierarchical clustering with constraints can po-

tentially be used to find alternative clusterings. Consider a cluster-
ing π which can non-ambiguously be represented by a large con-
junction of must-linked constraints between every two points in the

same cluster and a large conjunction of cannot-linked constraints
between every two points from different clusters. Since this repre-
sents the clustering π, we can guarantee that π is not found again
by flipping the constraints (making must-linked constraints cannot-
linked and vice-versa) and clustering to satisfy these flipped con-
straints. Consider if π = {(a, c), (b, d), (e, f)} shown in Fig-
ure 1 (a) then this clustering can be uniquely represented as the
constraints must-link(a,c), must-link(b,d), must-link(e,f), cannot-
link(c,d), cannot-link(c,e) and cannot-link(d,f) (not all entailed con-
straints are provided for clarity) shown in Figure 1 (b). However,
flipping these constraints for even this simple six point data set
produces cannot-link(a,c), cannot-link(b,d), cannot-link(e,f), must-
link(c,d), must-link(c,e), must-link(d,f) shown in Figure 1 (c) for
which no clustering exists that satisfies all constraints. For sim-
ilar reasons it is not desirable to learn a distance function from
the flipped constraints due to the many inconsistent constraints that
flipping could generate. Furthermore, even if a set of non-contradic-
tory constraints could be generated, then trying to find just a single
clustering to satisfy them is known to be NP-complete [7] for any
constraint type combination involving cannot-linked constraints.
Davidson and Ravi have shown that clustering under many cannot-
linked constraints is intractable for batch [6], incremental [8] and
even pruning-style algorithms [7]. This is a large hurdle since we
most certainly wish to generate must-linked constraints from points
in the same cluster but flipping them will produce the undesirable
cannot-linked constraints. Finally, approaches that can deal with
inconsistent constraints/advice in a principled manner were lim-
ited. For example, the work of Coleman et al. [3] that deals with
embedding constraints into the spectral clustering algorithm only
addresses the problem where no object is involved in more than 1
cannot-linked constraint, and only for k = 2.

As we discussed in the introduction section, the problem of find-
ing two clustering simultaneously is a different problem from our
problem setting. That problem has been formulated under the frame-
work of the EM algorithm [10]. Their two approaches, Decorrelated-
kmeans and Convolutional-EM in Jain, Meka and Dhillon’s work
are based on two separate assumptions. The first one assumes that
if the "representative" vectors (which are different from the mean
vectors and lack of intuitive interpretation) of the old clustering and
the new clustering are mutually orthogonal, then the alternativeness
of two clusterings should be guaranteed. The second approach in-
terprets each clustering as a partial representation of the data and
models the data as a sum of mixture distributions, each mixture
corresponding to a clustering. Note that there is no transformation
of the data involved in both methods.

3. OUR APPROACH

3.1 Setting and Notation
Let X = {x1, x2, ..., xn} ⊆ Rd denote the given d-dimensional

data set which is represented by a d × n matrix. The original
clustering π is found in X . The transformation matrix D is a d × d
matrix while Y = {y1, y2, ..., yn} ⊆ Rd refers to the transformed
data set by transformation Y = DX . The alternative clustering π′

is found in Y . Let X and Y follow the probability density functions
px(x) and py(y).

The output of a clustering algorithm is a k-block set partition
of the data set X which is referred to as a clustering. Each block
forms a cluster, and they are referred to as C1, C2, ..., Ck. The size
of cluster Ci is denoted as ni. The cluster centroids are denoted as
m1, m2, ..., mk.

Please refer to Appendix B for the complete table of notations.
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(a) Clustering π = {(a, c), (b, d), (e, f)}
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(b) The minimum set of constraints to rep-
resent π non-ambiguously
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(c) The flipped constraints

Figure 1: A simple example where ML is must-linked constraint and CL is cannot-linked constraint.

3.2 Constrained Optimization Formulation
To achieve our goal of finding an alternative clustering with good

quality in a general purpose manner we explore a data transforma-
tion approach that converts the original data X to Y using a dis-
tance metric represented by the transformation matrix D. Our for-
mulation allows the user to choose any appropriate clustering algo-
rithm to run on Y to achieve the new alternative clustering hence
we term our approach algorithm-independent. Note that another
option is to directly use the transformation matrix D generated in
our approach along with the old data X by using the transformation
matrix D as the distance metric in any distance based algorithm.
The first option is more useful since we do not always have a dis-
tance based algorithm, and it is used in the experimental section of
this paper.

There are two main factors in our work:

• The new data set Y preserves the characteristics of X as
much as possible so that the new clustering π′ found in the
new space has good quality in the original space. In all of
our experiments we report VQE, DI and JI for both π
and π′ in X;

• Conversely, π (or parts of π) should have a poor objective
function value in Y so that it should not be found by a clus-
tering algorithm.

According to these two factors, we formulate the problem as a
constrained optimization problem, as shown in Eq.(1), where B =
DT D and ‖·‖B denotes the Mahalanobis distance with this weight
matrix B.

min
Bº0

DKL(py(y)||px(x))

s.t.
1

n

nX
i=1

kX

j=1,xi /∈Cj

‖(xi −mj)‖2B ≤ β
(1)

The objective function of the Kullback-Leibler divergence is a
measure of the difference between two probability distributions.
When DKL(py(y)||px(x)) = 0, the two distributions px(x) and
py(y) of X and Y are the same. We minimize KL divergence in
Eq.(1) so that the probability density functions of X and Y are
closely matched. This ensures that the inherent properties of X are
not destroyed when being transformed to Y .

The constraint in Eq.(1) comes from the characteristics that we
expect the new clustering π′ to express. We now explain our ini-
tial and most general constraint. Variations in this constraint are
discussed in Section 4. The constraint is best explained in a prob-
abilistic framework. To simplify the problem formulation, assume

that the clusters of π′ follow a mixture model of multivariate Gaus-
sian distributions f1(y), ..., fk(y) with the same covariance matrix
Σ̂ but different means m̂1, ..., m̂k, respectively. In other words,
we assume that each cluster in π′ follows a multivariate Gaussian
distribution with the same covariance matrix Σ̂. Let m̂1, ..., m̂k

be the projection of the original centroids m1, ..., mk in the new
space. Note that these means are different from the centroids the
algorithm will find. Let C1, C2, ..., Ck denote the k clusters in π

and bC1, bC2, ..., bCk denote the k new clusters in π′. Then the prob-
ability density function of y is

p(y) =

kX
i=1

bni

n
fi(y) =

kX
i=1

bni

n|Σ̂| 12 (2π)
d
2

e−
1
2 ‖(y−m̂i)‖2Σ̂−1 (2)

where bni is the size of cluster bCi in π′. Consequently we have
kX

i=1

bni = n.

Suppose object xi belongs to the cluster Cj in π, which means
that Cj is its most probable cluster. In order to find a different
clustering we must transform the data so that xi is more likely to
be assigned to a different cluster other than Cj in the new space.
Then the probability of object yi belonging to bCj (being closest to
bmj) in the new clustering π′ should be small, which is written as
(0 ≤ α ≤ 1):

bnj

n|Σ̂| 12 (2π)
d
2

e−
1
2 ‖(yi−m̂j)‖2

Σ̂−1 ≤ α (3)

This is equal to Eq.(4).

kX

j=1,xi /∈Cj

bnj

n|Σ̂| 12 (2π)
d
2

e−
1
2 ‖(yi−m̂j)‖2

Σ̂−1 ≥ 1− α (4)

When there is no specific assumption of the sizes of clusters in
π′, we can assume that each cluster has the same size. Thus bnj

n
=

1
k

for (1 ≤ j ≤ k). In the multivariate Gaussian model, we assume
that bΣ has the same variance along each dimension and dimensions
are highly independent. Then the off diagonal entries are very small
and can be ignored, and bΣ can be approximated by a multiplication
of a scaler and an identity matrix σ2I (σ > 0). Therefore Eq.(4)
becomes:

e
− 1

2σ2

k|Σ̂| 12 (2π)
d
2

kX

j=1,xi /∈Cj

e−
1
2 ‖(yi−m̂j)‖2 ≥ 1− α (5)
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kX

j=1,xi /∈Cj

e−
1
2 ‖(yi−m̂j)‖2 ≥ (1− α)k|Σ̂| 12 (2π)

d
2 e

1
2σ2 (6)

Since (a1 + a2 + . . . + an)/n ≥ n
√

a1a2 . . . an when ai >
0 (1 ≤ i ≤ n), Eq.(6) must hold if Eq.(7) is true:

(k − 1) k−1

vuut
kY

j=1,xi /∈Cj

e−
1
2 ‖(yi−m̂j)‖2 ≥

(1− α)k|Σ̂| 12 (2π)
d
2 e

1
2σ2

(7)

Therefore, we have

kX

j=1,xi /∈Cj

‖(yi − m̂j)‖2 ≤

− 2 ln [(
(1− α)k|Σ̂| 12 (2π)

d
2 e

1
2σ2

k − 1
)k−1]

(8)

Let β be −2ln[( (1−α)k|Σ̂|
1
2 (2π)

d
2 e

1
2σ2

k−1
)k−1]. For every yi, the

constraint becomes (β > 0):

1

n

nX
i=1

kX

j=1,xi /∈Cj

‖(yi − m̂j)‖2 ≤ β (9)

Since Y = DX , m̂ = Dm and B = DT D, for x we have

1

n

nX
i=1

kX

j=1,xi /∈Cj

‖(xi −mj)‖2B ≤ β (10)

To derive the solution, we define an auxiliary covariance matrix
eΣ, shown in Eq.(11). We see that eΣ is a d × d matrix and can
be interpreted as the variance of the data with respect to k − 1
centroids since the centroid which each instance is assigned to in π
is excluded.

eΣ =
1

n

nX
i=1

kX

j=1,xi /∈Cj

(xi −mj)(xi −mj)
T (11)

Then the solution to our constrained optimization problem de-
fined in Eq.(1) is B = eΣ−1 and since B = DT D we have our
transformation matrix D = eΣ− 1

2 . Details of the solution are de-
scribed in Appendix A. We see that eΣ is essentially the summation
over n (the number of instances) d × d matrices. Each of these n
matrices is in turn a summation of further (k− 1) d × d matrices.
Each of these n(k−1) matrices measures the variability caused by
a point for a given centroid which this point unlikely belongs to in
π′. We then see that the solution to Eq.(1) is to transform the data
so as to reduce this variability which in turns satisfies the upper
bound in the equation.

The constraint in our formulation (Eq.(1)) is exchangeable with
different specifications of the expected properties in the new clus-
terings. We will discuss the details of variations of the problems in
Section 4.

An illustrative example. We use the following simple example
to illustrate our techniques. Figure 2 (a) shows that the data set
X is composed of four multivariate Gaussian distributions at four
corners of a square with the same variance along each dimension.
The given clustering π with two horizontal clusters is shown in

Figure 2 (b). We see that eΣ

eΣ =

»
9.7419 0.1801
0.1801 36.6461

–
, D = eΣ− 1

2 =

»
0.3204 −0.0010
−0.0010 0.1652

–

indicating that there is more variability between the points along
the y-axis than the x-axis. Then the resultant transformation D
is to compress more along the y-axis than the x-axis. Therefore,
when X is transformed to Y = DX , the new clustering π′ with
two vertical clusters as shown in Figure 2 (c) is more likely to be
found.

4. VARIATIONS OF THE PROBLEM
Our basic formulation of the constraint part of the optimization

problem in Eq.(1) essentially transforms the data but makes sure
that each point is not assigned to the same cluster as before. In
this section we will discuss other variations to guide the data trans-
formation. In particular we shall explore three main variations of
general use, but there may be others of more specific use. We will
empirically verify our approach to the first and second variations of
the problem in Section 5.

The three variations allow:

1. Specifying a trade-off between the alternativeness and qual-
ity of the new clustering with respect to the original cluster-
ing.

2. Specifying which clusters in the original clustering to keep
and which clusters not to keep.

3. Finding an alternative clustering in a subspace.

Recall that the constraint in Eq.(1) takes the form

1

n

nX
i=1

kX

j=1,xi /∈Cj

‖(xi −mj)‖2B ≤ β.

Each of the above variations involves changing some aspect of this
basic form, as we now describe.

4.1 Specifying the Trade-off between
Alternativeness and Quality

We add the parameter a ≥ 1 to quantify the trade-off between
alternativeness and quality by redefining the constraint as follows:

1

n

nX
i=1

kX

j=1,xi /∈Cj

‖(xi −mj)‖a
B ≤ β (12)

We see that the larger a is, the stronger the constraint of assigning
an object to a different cluster in the new clustering will be (see our
probabilistic interpretation of this constraint in the previous sec-
tion). Hence the optimization is focused/biased more towards al-
ternativeness. Conversely if a is made small then the constraint is
weaker. The solution to the modified optimization problem is then
B = eΣ− a

2 , that is, D = eΣ− a
4 .

4.2 Specifying Which Clusters to Keep and Not
to Keep

To allow this we can have multiple constraints (summations) for
different clusters. For a cluster (say Cj) we wish not to keep we
employ the same constraint as in Eq.(1) except the summation is
limited to points only in Cj . For a cluster (say Cl) we wish to retain
we then have the constraint:

P
xi∈Cl

‖(xi −ml)‖2B ≤ δ where δ
is some small constant value. The new form of the constraint in
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(c) The new clustering π′ with 2 clusters
at left and right

Figure 2: An illustrative 2D example.

our problem formulation is shown in Eq.(13) where the clusters of
CY = {C1, ..., Cr}(1 ≤ r < k) are retained and the clusters of
CN = {Cr+1, ..., Ck} are not retained. Note that the first summa-
tion is related to the points in the clusters to be maintained, and the
second summation is related to the points in the clusters not to be
maintained.

X
xi∈CY

rX

l=1,xi∈Cl

‖(xi −ml)‖2B+

X
xi∈CN

kX

j=1,xi /∈Cj

‖(xi −mj)‖2B ≤ β

(13)

The solution to the modified optimization problem is then B =

eΣ−1
1 , that is, D = eΣ−

1
2

1 , where eΣ1 is defined in Eq.(14).

eΣ1 =
1

n
(
X

xi∈CY

rX

l=1,xi∈Cl

(xi −ml)(xi −ml)
T +

X
xi∈CN

kX

j=1,xi /∈Cj

(xi −mj)(xi −mj)
T )

(14)

There are some cases where the partial clustering that needs to
be kept is not composed of whole clusters but some small chunklets
of objects. We can specify the information that objects xi and xj

should be in the same cluster as a constraint s(xi, xj). Suppose
CY = {c1, ..., ct} includes all the chunklets c1, ..., ct(t > 0) that
is supposed to be retained and the objects in CN = X \ A should
change their assignment in the new clustering. We generate a con-
straint set S = {s(xi, xj), ...}which includes all the pairs of points
that should be in the same cluster. The constraint formulation is as
in Eq.(15), and the auxiliary matrix eΣ2 is redefined in Eq.(16).

X
xi∈CY

X

s(xi,xl)∈S

‖(xi − xl)‖2B+

X
xi∈CN

kX

j=1,xi /∈Cj

‖(xi −mj)‖2B ≤ β

(15)

The solution to the modified optimization problem in Eq.(15) is

then B = eΣ−1
2 , that is, D = eΣ−

1
2

2 , where eΣ2 is as in Eq.(16).

eΣ2 =
1

n
(
X

xi∈CY

X

s(xi,xl)∈S

(xi − xl)(xi − xl)
T +

X
xi∈CN

kX

j=1,xi /∈Cj

(xi −mj)(xi −mj)
T )

(16)

4.3 Finding an Alternative Clustering in a
Subspace

In the original formulation we transformed the data using all en-
tries/dimensions in B, but in this variation we normalize over only
a subspace in B. For example, we may find that the given clustering
π is most compact in some subset of dimensions and wish to find
an alternative clustering in the complement of this subset. This is
effectively finding an alternative clustering in the complementary
subspace that π is most compact in. It can be achieved by fixing
the row and column entries in B to be zero for all dimensions that
the clustering π is most compact in. Then it makes all the points
along each of these dimensions mapped to the dimension origin, ef-
fectively making these dimensions useless for differentiating points
into clusters.

5. EXPERIMENTAL RESULTS
We present three sets of experimental results. We will now sketch

the results and in later subsections provide full details that will al-
low their repetition. Note that the source code in MATLAB used to
reproduce these results will be made available, and we have posted
the source code at www.constrained-clustering.org. In
all of the experiments, we use three measurements: Dunn Index
(DI), Vector Quantization Error (VQE) and Jaccard Index (JI) to
evaluate the results. The DI is a quality measure of the ratio of the
minimum distance between two clusters (when measured as the av-
erage link distance) to the maximum cluster diameter. The larger
the DI the better. We also report the VQE for clusterings as it is
the objective function that k-means minimizes. The smaller the
VQE the better. Note that the DI is a measure of separation be-
tween clusters normalized by the cluster diameters, while the VQE
only measures cluster compactness, not their separation. The Jac-
card Index (JI) measures the similarity between two clusterings, the
smaller the JI, and the more dissimilar the two clusterings are. All
of the measurements are calculated based on the original data
X .

All of the clusterings related to the UCI data are obtained by
the k-means algorithm. The experiments on image segmentation
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uses the spectral clustering algorithm as defined by Shi and Malik
[11]. As before, π is the given clustering and the new alternative
clustering is π′.

5.1 UCI Data Set
Our first set of results is on standard UCI data [1] sets and com-

pares our work against others [2], including our previous work [5].
The comparison to the work of Cui et.al. [4] can be referred to in
our previous paper [5], but their approach does not work well for
lower dimensional data.

We show (see Table 1) that our work is comparable to similar
work with respect to quality of clustering found (when measured by
the VQE) and diversity between the original and alternative clus-
tering (when measured using the Jaccard index). The approach of
Bae and Bailey [2] obtains better DI results but worse VQE results
than our own. This can be explained by the fact that the objective
function of their algorithm is the DI and for k-means it is the VQE.
However, our approach has the advantage of being usable with a
variety of distance based clustering algorithms, being able to pro-
vide both positive (keep a cluster) or negative (don’t keep a cluster)
feedback (which will be discussed in Section 5.3) and being able
to trade-off the two parts (alternativeness and quality) of the con-
strained optimization problem. By modifying the exponent a we
can favor making the alternative clustering more different than π
but typically of worse quality and vice-versa, as shown in Table 2.

These types of experiments are typically performed to show that
the approach finds a clustering of reasonable quality and is differ-
ent from the original clustering. However, they do not show if the
second clustering is truly an interpretable alternative to the original
clustering. To show that, we need to focus on data sets where the
results are readily interpretable, as we do for our next two sets of
experiments.

5.2 Image Segmentation
Our second set of experimental results is for image segmentation

using spectral clustering. We focus on several Escher images which
are known to have multiple interpretations to the human eye. Con-
sider Figure 3 (a) which has two interpretations. If the eye focuses
on the black sections then there is a segmentation of the image into
black and non-black as found by spectral clustering in Figure 3 (b).
This is the dominant segmentation since the contrast between the
two clusters is great as one cluster includes the black parts and the
other cluster includes the orange and yellow parts. However, our
approach is able to discover the second and more subtle two clus-
ter segmentation in Figure 3 (c) where the orange is in one cluster
and the black and yellow are in the other. Similar results are found
for Figure 4 (a) which contains three types of butterflies (red, green
and blue). Spectral clustering first finds for k = 2 a clustering
of the blue butterflies by themselves and the green and red butter-
flies together in Figure 4 (b). The alternative clustering found by
our approach is the red butterflies by themselves and the blue and
green butterflies together in Figure 4 (c). In Figure 5, the original
clustering π partitions the image based on the blocked background
and subsumes the mandolin, but the new clustering π′ separates the
object of the mandolin from the background.

We use the normalized spectral method of Shi and Malik [11] as
the clustering algorithm. Each object in an image is a pixel with
two kinds of information: RGB value and position. The similarity
between two pixels is the weighted sum of the Euclidean distance
between their RGB values and position. The transformation is
only carried out in the RGB value space. In Figure 3 and 4 we see
that for the Escher images the new clustering π′ finds a different
texture in the images.

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

(a) The original flower image

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

(b) π found by the spectral clustering
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(c) π′ found by our approach given π

Figure 3: Escher flower example of an image with textures with
alternative interpretations, k = 2.

5.3 Specifying Which Clusters to Keep and Not
to Keep

Finally in our last set of experimental results we show how our
approach can focus on which clusters to keep and which not to
keep. The cluster Cl we chose to maintain is the one with the max-
imum size/cardinality in π which is derived from the inherent labels
in the UCI data set. Because the data set Ionosphere only has two
clusters inherently it is not possible to find a much different clus-
tering while maintaining one cluster. So we only focus on three
data sets: Glass, ESL and Vehicle. Let function g(Cl, π

′) return the
largest number of points in Cl which are in the same cluster in π′.
For instance, if the data set has 6 objects X = {x1, ..., x6}, Cl =
{x1, x2, x3}, and the clustering π′ partitions X into two clusters
C1 = {x1, x2} and C2 = {x3, ..., x6}, then g(Cl, π

′) = 2. The
size of subset Cl is denoted as nl.

We define the hit rate as the percentage of objects kept in the
same cluster in π′, as follows:

Hit Rate =
g(Cl, π

′)
nl

(17)
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Table 1: Results of comparing several alternative clustering approaches for Non-Hierarchical clustering, where π is given and π′ is
the new clustering found by each approach. Note DI=Dunn Index, JI=Jaccard Index, VQE = Vector Quantization Error (results are
averaged over ten random restarts of each approach).

Approach Data with Labels [2] [5] This Approach a = 5
4

Measurement DI (π) VQE(π) JI DI(π′) VQE(π′) JI DI(π′) VQE(π′) JI DI(π′) VQE(π′)
Glass 0.21 911 0.26 0.83 855 0.24 0.38 505 0.29 0.43 407

Ionosphere 0.65 3086 0.54 1.21 3207 0.43 0.98 2421 0.46 0.77 2716
ESL 0.38 1374 0.28 0.62 1085 0.24 0.73 1787 0.13 0.67 1277

Vehicle 0.56 2.4*107 0.26 1.05 5.5*106 0.18 0.57 5.4*106 0.22 0.77 5.0*106

Table 2: Results of our approach parameterized with a, where π is given and π′ is the new clustering found by each approach. Note
that as a increases the diversity between π and π′ increases and clustering quality suffers (results are averaged over ten random
restarts of our approach).

a a = 5
4

a = 3
2

a = 2
Measurement JI DI(π′) VQE(π′) JI DI(π′) VQE(π′) JI DI(π′) VQE(π′)

Glass 0.29 0.43 407 0.28 0.32 412 0.20 0.33 822
Ionosphere 0.46 0.77 2716 0.47 0.74 2813 0.47 0.68 3126

ESL 0.13 0.67 1277 0.12 0.65 1514 0.10 0.62 2216
Vehicle 0.22 0.77 5.0*106 0.19 0.67 6.5*106 0.16 0.53 1.6*107

In Table 3, we shows that the new clustering π′ in three data sets
is of good quality as measured by DI and VQE. Meanwhile, π′ is
not only different to π as compared by JI but also maintains the
cluster we want to keep as indicated by the high Hit Rates. We can
increase the Hit Rate by increasing the exponent a in Eq.(12).

6. CONCLUSION
Data mining aims to find novel and actionable patterns with most

algorithms typically returning just one such set of results. However,
in some circumstances we wish to find multiple alternative expla-
nations of the data. In this paper we study the following problem:
given a clustering, find a good quality alternative which we have
termed the singular alternative clustering problem. This allows the
domain expert who already has a not useful clustering to encode
this knowledge so that the algorithm does not find the same clus-
tering again. Multiple sequential solutions to this problem can also
be used to find many possible alternative patterns in the data.

Previous works to address this problem, including our own, were
limited in several ways. Firstly, they were (except our own [5])
algorithm-dependent; secondly, they were all (including our own
[5]) unrefined in the sense that they only allowed the domain expert
to say "find a completely alternative clustering" but did not allow
them to specify what properties of the given clustering to keep or
not keep.

In this paper we formulate a solution to this problem as a con-
strained optimization problem that minimizes the Kullback-Leibler
divergence between the probability density functions of the origi-
nal data set and a new transformed data set. This ensures that the
properties of the transformed data closely match those of the origi-
nal data set. The constraints specify which properties of clustering
should or should not be maintained and can be modified to multiple
variations of the problem in a principled and flexible way. Varia-
tions include finding alternative clusterings in subspaces as well
as trading off clustering quality with alternativeness to the original
clustering.

There are several advantages to our approach. It is general pur-
pose since it can be used with many clustering algorithms based
on a distance function, such as k-means and agglomerative algo-
rithms. The transformation of the data is specified in closed-form
and is easy to implement. Our approach can specify which parts

of the clustering are desirable and which are not. Furthermore, the
tradeoff between alternativeness and quality can be controlled by
the parameter a in Eq.(12).

To validate our approach we performed a set of experiments on
the low dimensional UCI data set (see Table 1) to compare our ap-
proach against the techniques of others [2] and our previous work
[5]. As discussed and shown in our earlier work, the approach of
Cui et.al. [4] is not designed for lower dimensional data and hence
does not perform well. It is important to note that all of the clus-
tering quality measurements we present are calculated based on the
original data X . That is, even though we transform X to an
alternative space we measure the alternative clusterings’ prop-
erties in the original space. We illustrated that our approach not
only achieves clusterings of comparable quality but also finds a di-
verse set of clusterings. We were able to focus on alternativeness
or quality by adjusting the parameter a (see Table 2). Our approach
can also find different interpretable clusterings in image segmen-
tation applications (see Figures 3, 4 and 5). Finally, we presented
the experiments where the desirable and undesirable clusters in the
new clustering can be explicitly specified, and the results showed
that our approach can find alternative clusterings while maintaining
the expected clusters (See Table 3). Our future work will include
kernelizing the current approach to find alternative clusterings by a
non-linear transformation of the data.
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APPENDIX
A. SOLUTION TO EQ.(1)

Here we derive the solution to the optimization problem in Eq.(1):
D = eΣ− 1

2 .
Since Y is transformed from X by the transformation Y = DX ,

we can find the connection between two density functions px(x)

and py(y): py(y) = px(x)
|D| , where |D| is the Jacobian determinant

of transformation matrix D. Then we can rewrite the objective
function in Eq.(1) as follows:

DKL(py(y)||px(x)) =

Z

y

py(y) log
py(y)

px(x)
d(y)

=

Z

x

px(x)

|D| log
1

|D| d(Dx)

=

Z

x

px(x) log
1

|D| d(x)

(18)

To minimize DKL(py(y)||px(x)) is to maximize log |D|.
Therefore, Eq.(1) is equal to Eq.(19).

max
Dº0

log |D| s.t.
1

n

nX
i=1

kX

j=1,xi /∈Cj

‖(xi −mj)‖2B ≤ β (19)

Since B is a positive definite matrix where B = DT D, and it
can be rewritten as follows:

max
Bº0

log |B| s.t.
1

n

nX
i=1

kX

j=1,xi /∈Cj

‖(xi −mj)‖2B ≤ β (20)

Use the method of Lagrange multiplier,

log |B| − γ(
1

n

nX
i=1

kX

j=1,xi /∈Cj

‖(xi −mj)‖2B − β)

= log |B| − γ(
1

n

nX
i=1

kX

j=1,xi /∈Cj

(xi −mj)
T B(xi −mj)− β)

= log |B| − γ(
1

n
(tr(B

nX
i=1

kX

j=1,xi /∈Cj

(xi −mj)(xi −mj)
T ))− β)

= log |B| − γ

n
(tr(BeΣ)− β)

(21)

Take the derivative of B to get Eq.(22) and let it be 0. The scaler
γ
n

does not impact the transformation and can be removed. Then
we get the solution B = eΣ−1 i.e. D = eΣ− 1

2 .

tr(B−1)− γ

n
tr(eΣ) (22)

B. LIST OF NOTATIONS
The following notations are used in this paper.

Notation Description
X The given d-dimensional data set (X ⊆

Rd)
xi The ith object in X
n Number of objects in X
k Number of clusters
π The given clustering found in X
Y The transformed data set by transforma-

tion Y = DX (Y ⊆ Rd)
yi The ith object in Y
π′ The new clustering found in Y
px(x) Probability density function of X
py(y) Probability density function of Y
D The transformation matrix
B B = DT D
Ci The ith cluster in π
ni Size of Ci

mi Centroid of Ci

bCi The ith cluster in π′

bni Size of bCi

bmi Projection of mi in Y
I Identity matrix
|| · ||B Mahalanobis distance with weight ma-

trix B
fi(y) Multivariate Gaussian distribution

which bCi follows
bΣ Covariance matrix of fi(y), (1 ≤ i ≤

k)
DKL(py||px) Kullback-Leibler divergence between

two distributions pyand px

eΣ Auxiliary matrix to derive D defined in
Eq.(11)

a Parameter to specify the trade-off be-
tween alternativeness and quality in
Eq.(12)

CY The set of clusters to be retained in Sec-
tion 4

CN The set of clusters not to be retained in
Section 4

s(xi, xj) The constraint that xi and xj must be in
the same cluster

S S = {s(xi, xj), ...} includes all the
specified constraints in Section 4

eΣ1 Auxiliary matrix to derive D defined in
Eq.(14)

eΣ2 Auxiliary matrix to derive D defined in
Eq.(16)

M º 0 Matrix M is positive semidefinite
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