2.6. Leave-one-out residuals

This is the element in the (j, j) position of

$$\frac{\mathbf{Q}_r \, \mathbf{Q}_r^{\mathsf{T}} \mathbf{y}}{\alpha} = \frac{\mathbf{I} - \mathbf{Q}_f \, \mathbf{Q}_f^{\mathsf{T}} \mathbf{y}}{\alpha}$$

i.e., it equals e_j/α , where e_j is the residual from the model that includes the j^{th} row. In place of **R** β = **f**, the regression parameters are obtained by solving

$$\begin{bmatrix} \mathbf{R} & \mathbf{q}_{j(f)} \\ 0 \dots 0 & \alpha \end{bmatrix} \begin{bmatrix} \tilde{\boldsymbol{\beta}} \\ \boldsymbol{\zeta} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ \frac{e_j}{\alpha} \end{bmatrix}$$

Hence

$$e_{(j)} = \frac{e_j}{\alpha^2} \tag{19}$$

$$= \frac{e_j}{\|\mathbf{q}_{j(r)}\|^2}$$
(20)

$$=\frac{e_j}{1-a_{jj}}\tag{21}$$

where a_{ij} is the j^{th} diagonal element of the matrix

$$\mathbf{A} = \mathbf{Q}_f \mathbf{Q}_f^{\mathsf{T}} = \mathbf{I} - \mathbf{Q}_r \mathbf{Q}_r^{\mathsf{T}}$$
(22)

Notice that we have not made any assumption of non-singularity.

2.6.1. The OCV mean square error

It follows from Equation 21 that the *ordinary cross-validation* (OCV) mean square error statistic:

$$OCV = \frac{1}{n} \sum_{j=1}^{n} e_{(j)}^{2} = \frac{1}{n} \sum_{j=1}^{n} \frac{e_{j}^{2}}{(1 - a_{jj})^{2}}$$
(23)

This is a weighted sum of the squares of the ordinary residuals. High leverage points (large $1 - a_{ii}$ get the greatest weight.

In Subsection 2.6.2 that now follows, it will be argued that the *generalized cross-validation* (GCV) mean square prediction error estimate is preferable.

2.6.2. The GCV statistic

This continues the discussion above. The GCV statistic is based on an orthonormal rotation of the row space of \mathbf{X} , where the rotation is chosen to yield pseudo-observations that all have equal leverage.

If **P** is any orthonormal matrix

$$\|\mathbf{P}\mathbf{y} - \mathbf{P}\mathbf{X}\boldsymbol{\beta}\|^2 = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^\top P^\top P(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$
$$= (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^\top (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$
$$= \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

23

2. Solving Least Squares Systems

Thus minimization of $||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||^2$ is equivalent to minimization of $||\mathbf{P}\mathbf{y} - \mathbf{P}\mathbf{X}\boldsymbol{\beta}||^2$. The effect is to replace columns of **X** by columns of **PX**, and elemement of **y** by elements of **Py**. Where the ordinary least squares residuals were $\boldsymbol{\epsilon}$ they are now $\mathbf{P}\boldsymbol{\epsilon}$. We have created a set of pseudo-observations and pseudo-residuals, iid normal if the elements of $\boldsymbol{\epsilon}$ are iid normal. If the observations are replaced by these pseudo-observations, the OCV statistic changes.

The GCV statistic is the OCV statistic that results from choosing \mathbf{P} so that all pseudoobservations have equal leverage. It is not necessary to find such a \mathbf{P} in order to calculate the GCV statistic; all that is necessary is to show that such a choice is possible.²

Now suppose that, as before, premultiplication by $\mathbf{Q}_f^{\mathsf{T}}$ reduces \mathbf{X} to upper triangular form. Then

$$\mathbf{Q}_f^{\mathsf{T}} \mathbf{P}^{\mathsf{T}} \mathbf{P} \mathbf{X} = \mathbf{Q}_f^{\mathsf{T}} \mathbf{P}^{\mathsf{T}} (\mathbf{P} \mathbf{X})$$

i.e., premultiplication by $\mathbf{Q}_f^{\mathsf{T}} \mathbf{P}^{\mathsf{T}}$ reduces **PX** to upper triangular form. The leverages for these pseudo-observations are diagonal elements of

$$\mathbf{P}\mathbf{Q}_{r}\mathbf{Q}_{r}^{\mathsf{T}}\mathbf{P}^{\mathsf{T}}=\mathbf{I}_{n}-\mathbf{P}\mathbf{Q}_{f}\mathbf{Q}_{f}^{\mathsf{T}}\mathbf{P}^{\mathsf{T}}$$

Moreover the sum of the leverages is

trace(
$$\mathbf{P}\mathbf{Q}_{r}\mathbf{Q}_{r}^{\mathsf{T}}\mathbf{P}^{\mathsf{T}}$$
) = trace($\mathbf{Q}_{r}\mathbf{Q}_{r}^{\mathsf{T}}\mathbf{P}^{\mathsf{T}}\mathbf{P}$)
= trace($\mathbf{Q}_{r}\mathbf{Q}_{r}^{\mathsf{T}}$)
= trace($\mathbf{I} - \mathbf{Q}_{f}\mathbf{Q}_{f}^{\mathsf{T}}$)
= $n - \sum_{i=1}^{n} a_{ii}$

The sum of the leverages is $n - \sum_{i=1}^{n} a_{ii}$, just as for the unrotated configuration. In the equal leverages configuration, the leverages are thus all equal to

$$\frac{1}{n}\left(n-\sum_{i=1}^{n}a_{ii}\right)$$

The sum of squares of the estimated pseudo-residuals is unchanged. Ordinary cross-validation gives, for these pseudo-observations, the *generalized cross-validation* (GCV) estimate

$$\frac{n\sum_{i=1}^n e_i^2}{(n-\sum_{i=1}^n a_{ii})^2}$$

Not only does this have better theoretical properties than OCV; it is simpler computationally. It is, as for the OLS estimate, derived from the residual sum of squares.

The divisor $n - \sum_{i=1}^{n} a_{ii}$ has the same role as the degrees of freedom in the classical theory.

²One way to show this is to note that if two rows have different L_2 norms, then we can find a Givens rotation that equalizes the lengths. This process can be repeated until all rows are, to within numerical error, of equal length.