
Constrained Optimization for Validation-Guided
Conditional Random Field Learning

Minmin Chen Yixin Chen Michael R. Brent Aaron E. Tenney
Department of Computer Science and Engineering

Washington University in St. Louis
Missouri, USA

{mc15, chen, brent, aet1}@cse.wustl.edu

ABSTRACT
Conditional random fields(CRFs) are a class of undirected
graphical models which have been widely used for classifying
and labeling sequence data. The training of CRFs is typi-
cally formulated as an unconstrained optimization problem
that maximizes the conditional likelihood. However, maxi-
mum likelihood training is prone to overfitting. To address
this issue, we propose a novel constrained nonlinear opti-
mization formulation in which the prediction accuracy of
cross-validation sets are included as constraints. Instead of
requiring multiple passes of training, the constrained formu-
lation allows the cross-validation be handled in one pass of
constrained optimization.

The new formulation is discontinuous, and classical La-
grangian based constraint handling methods are not appli-
cable. A new constrained optimization algorithm based on
the recently proposed extended saddle point theory is de-
veloped to learn the constrained CRF model. Experimental
results on gene and stock-price prediction tasks show that
the constrained formulation is able to significantly improve
the generalization ability of CRF training.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Parameter learn-
ing ; J.3 [Life and Medical Sciences]: [Biology and genet-
ics]; J.1 [Administrative Data Processing]: [Financial]

General Terms
Algorithm, Experimentation

Keywords
Conditional random fields, Constrained optimization, Cross
validation, Extended saddle points

1. INTRODUCTION
We study in the paper new formulations and optimization

algorithms for training Conditional Random Fields (CRFs),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’09, June 28–July 1, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-495-9/09/06 ...$10.00.

a class of discriminative probabilistic models for sequence la-
beling. CRFs have attracted intensive interest and achieved
success in various domains, such as as computer vision [12,
17], natural language processing [10, 16, 15, 13], and bioin-
formatics [6]. In general, CRFs model the conditional distri-
bution p(y|x) between the labeling sequence and the obser-
vation sequence. The learning of CRF parameters is tradi-
tionally formulated as an unconstrained optimization prob-
lem of maximizing the conditional distribution. We propose
a constrained formulation for training CRFs in this paper.

A key advantage of CRFs is that they support the use of
complex features. In most cases, it is insufficient to include
only simple and independent features. Rather, it is nec-
essary to use long-range features that are overlapping and
inter-dependent. It is hard for traditional generative graphi-
cal models, such as hidden Markov models (HMMs), to cap-
ture these complex features. The Markovian assumption
requires that the current state only depends on the previous
one and that the observation depends only on the current
state. These assumptions severely limit the possible features
that can be included in HMMs. CRFs overcome the above
limitations of HMMs [10] by relaxing the independence as-
sumptions, allowing overlapping and dependent features to
be included and learned in a unified fashion.

The flexibility of CRF models encourages the use of large
feature sets with a rich collection of features. During our
study, we found that CRF models with a large feature set
often suffer from overfitting. A CRF model with the opti-
mal parameter set found on the training data often has a
significant performance degradation when applied to unseen
data. For instance, in a gene prediction task, using the CRF
model trained on the training data, we achieved 100% gene
level sensitivity and specificity when testing on the same
set, comparing to an average of only 2− 4% accuracy when
testing on unseen data.

One existing approach to address the overfitting problem
of CRFs is to include a regularization term in the objective
function [16, 19] to penalize large weight vectors. A major
problem with this approach is that, the regularization factor
which controls the penalty strength is hard to control. A
randomly selected regularization factor will not be effective
in addressing the overfitting problem.

In this paper, we propose a new constrained formulations
for CRF training to help overcome the overfitting problem,
inspired by the idea of cross-validation. Cross-validation [9]
is often used to estimate the accuracy of a classifier and
to select models. We propose to use cross-validation in a
novel way as a measure to address overfitting. Constraints

prescribing the difference of the score of labels generated by
the trained CRF model and that of the real labels on the
validation sets are added to prevent the model from fitting
freely and tightly to the training data.

The constrained formulation has several advantages. First,
our experience shows that the cross-validation constraints
can effectively help address the overfitting problem, as this
approach can enforce an even distribution of validation er-
rors across the training sets. Second, instead of separating
the training and validation phases, we integrate validation
into the training process by modeling the validation quality
as constraints in the problem formulation. Third, supported
by a constrained optimization solver proposed in this paper,
we only need one run of constrained optimization, although
we have multiple validation sets. Fourth, we create our val-
idation sets from the training data, avoiding waste of train-
ing data, which is crucial for problems with limiting data
available. Further, the constraints are beneficial in difficult
training scenarios. We have found that, for CRF training,
gradient-based optimization methods may terminate prema-
turely at non-optimal points due to a flat terrain near the
global optimum [4]. The violated constraints provide addi-
tional guidance during search, leading the search to good
directions that effectively reduce the objective function.

Since the new constraint formulation is discontinuous and
non-differentiable, classic constrained optimization methods,
like Lagrangian method, are not applicable. A new con-
strained optimization algorithm based on the recently pro-
posed extended saddle point (ESP) theory [20, 21] is devel-
oped to solve the constrained problem. Unlike the tradi-
tional Lagrange multiplier method, in which a set of unique
Lagrange multipliers is required, the ESP condition is sat-
isfied for an extended range of penalty multipliers, mak-
ing the search much easier and more robust. Further, the
ESP theory provides optimality conditions for problems with
non-differentiable constraints, which is needed in our CRF
formulation. Based on the ESP theory, we develop a con-
strained solver to efficiently train constraint-based CRFs.

The paper is organized as follows. In Section 2, we review
the basics of CRFs and the traditional parameter estima-
tion methods. In Section 3, we detail our new constrained
formulation. In Section 4, we describe our constrained op-
timization algorithm. Experimental results are presented in
Section 5 and conclusions given in Section 6.

2. BACKGROUND
As shown in Figure 1(a), a CRF is a graphical model based

on an undirected graph G = (V, E), such that Y = (Yv)v∈V ,
the set of hidden variables, when conditioned on X, the set of
variables on the observation sequence, obey the Markovian
property with respect to the graph: p(Yv|X, Yu, u 6= v) =
p(Yv|X, Yu, u ∼ v), where u ∼ v indicates that u and v are
neighbors in G [10]. The fully connected subgraphs of G
define a set of cliques C = {Xc, Yc}. Each clique defines a
feature for the CRFs.

Each predefined feature typically returns a binary value.
For example, a feature can be defined as:

fk(yt,xt) = 1{yt−1=NC}1{yt=C}1{xt···t+2=′ATG′}

It evaluates to 1 when the previous state is“NC”, the current
state is“C”, and the observations at time t to t+2 are ‘ATG’.

In this paper, we focus on linear-chain CRF, a class of

X={ X1, , X2 … XT }

 Y1 Y2 Y3 YT

X={ X1, , X2 … XT }

 Y1 Y2 Y3 Yk YT

Figure 1: (a) A general graphical CRF model. (b)
A linear-chain CRF model.

CRFs that is computationally tractable and widely used. In
linear chain CRFs, each each clique (feature) only involves
two consecutive hidden states as shown in Figure 1(b).

Let x and y be the observation and labeling sequences,
respectively. By the fundamental theorem of random fields
[7], a linear-chain CRF defines the conditional distribution
of a label sequence y, given the observation sequence x as

p(y|x) =
1

Z(x)
exp

(
KX

k=1

TX
t=1

ωkfk(yt, yt−1,xt)

)
, (1)

where {fk(yt, yt−1,xt)}K
k=1 is a set of feature functions, and

W = {ωk} ∈ RK is the corresponding weight vector. Z(x)
is an instance-specific normalization function

Z(x) =
X

y’

exp

(
KX

k=1

TX
t=1

ωkfk(y′t, y
′
t−1,xt)

)
. (2)

2.1 CRF training and overfitting
Given training data D = {x,y}, to estimate the weights

{ωk}, we typically solve the following unconstrained opti-
mization problem to maximize the conditional log likelihood:

maximizeW O(W) = log p(y|x). (3)

It is a convex optimization problem with only one global
optimum. The objective function cannot be maximized in a
closed form and numerical optimization is used for training.

The partial derivatives of the objective function with re-
spect to each feature weight ωk, k = 1, 2, · · · , K takes this
form,

∂O
∂ωk

=

TX
t=1

fk(yt, yt−1,xt)

−
TX

t=1

X

y,y′
fk(y, y′,xt)p(y, y′|x(i)) (4)

In the derivative, the first term is the empirical count
of feature fk in the training data, or in other words, the
expected number of appearances of fk under the empirical
distribution. The second term is the expected number of ap-
pearances of fk under the model distribution p(y|x; W)p̂(x)
[10]. When the model is optimized, the gradient reaches zero
and the two expectations will be equal. Hence, CRF training
can be viewed as a maximum likelihood training for expo-
nential models which tries to find an optimal parameter set
to best fit the training data. Therefore, like other maximum

� � � � � � � � � � � � � 	 � � � �
 �
 �

Figure 2: Definitions of the training, test, and vali-
dation sets in the STMV framework.

likelihood methods, CRF training is prone to overfitting the
training data.

2.2 Related work
A common way to avoid overfitting is via regularization,

which penalizes weight vectors whose norm is too large. In-
stead of maximizing solely the conditional distribution, an
Ω2 regularization term is added:

maxW O(W) = log p(y|x)−
KX

k=1

ω2
k

2δ2
, (5)

where δ2 is a parameter determining the strength of penalty.
The regularized formulation can be viewed as maximizing a
posteriori estimation of W , which is assigned a Gaussian
prior with zero mean and covariance δ2I.

To determine the best regularization parameter requires
a computationally-intensive parameter sweep. In previous
work, part of the training data is held out to find the regu-
larization parameter δ2 first. However, it has been reported
that the model accuracy does not appear to be sensitive to
the changes in δ2, even when δ2 is varied up to a factor of
10 [18]. Our own experimental results have confirmed it.

A number of other smoothing methods have been used to
address the overfitting problems for maximum entropy mod-
els [5]. The smoothing method tries to relax the constraint
that the model distribution should be exactly the same as
the empirical distribution on the training data. The good-
Turing smoothing algorithm [14] tries to add a discount to
the empirical count of events in the training data. The
fuzzy maximum entropy framework encourages the model
to fit the training data, while at the meantime adds a prior
distribution favoring uniform models. The fat constraints
method [11] tries to avoid over-fitting by not exactly sat-
isfying the constraints but instead requiring the difference
between the empirical and model distributions to be within
certain range. It was reported that the Gaussian prior in
(5) performs as well as or better than all the other algo-
rithms [5].

3. CONSTRAINED OPTIMIZATION FOR-
MULATION

We propose a constrained formulation for CRF training
based on cross-validation. Our approach integrates cross-
validation into the training process in a novel way, aiming
at avoiding overfitting and finding better models.

3.1 The single training multiple validation
(STMV) framework

A common setting of cross validation is the k-fold cross-
validation, in which data D is randomly split into k mutually
exclusive subsets D1, · · · ,Dk. The predictor is trained and
tested k times, each time the whole data set D excluding

Dt, t ∈ 1, 2, · · · , k is used as the training set and Dt as the
test set. Such a method is often used for model selection.
However, the method wastes 1/k of the training data and
requires k-fold training time.

CRF training for large scale problems is computationally
expensive. In a gene prediction task with around 300K bases
and 30K features, it takes 5 to 6 hours on our cluster with
20 processors to complete one run of the training process.
Since CRF optimization is usually time-consuming, it is very
expensive, if not prohibitive, to use the traditional k-fold
cross-validation.

We use cross-validation in a single training multiple val-
idation (STMV) framework originally proposed for neural
network training [22]. Instead of separating the training and
validation phases, we integrate validation into the training
process by modeling the validation quality as constraints in
the problem formulation. We select multiple subsets from
the training sequence as validation sets as shown in Figure 2.
The entire training set is used for training. This way, we do
not waste any training data as the k-fold cross-validation
does. Also, this approach can enforce an even distribution
of validation errors across the training set and offer flexibil-
ity in choosing the validation sets.

3.2 Constrained Formulation
As illustrated in Figure 2, we use multiple subsets from

the training set as the validation sets. Define

SW (x,y) =

KX

k=1

X
t∈I

ωkfk(yt, yt−1,xt)

to be the score of a specific labeling sequence y for an ob-
servation sequence x, where I is the set of indices in se-
quences x and y. We propose the following constrained
CRF (CCRF) formulation:

max
W

O(W) = log p(y|x) (6)

subject to hj(W) ≤ γ,

where hj(W) = SW (v(j), ŷ(j))− SW (v(j),y(j)).

∀j = 1, · · · , V, (7)

Here, γ is a small positive constant, V = {(v(j),y(j))}j=1,··· ,V
are the validation sets extracted from the training data, V
is the total number of validation sets, and ŷ(j) is the most
likely labeling sequence for the observation sequence v(j)

found by the Viterbi algorithm under the current model.
From the mechanism of Viterbi algorithm, we know that
ŷ(j) is the sequence with the best score.

Instead of using the prediction accuracy of the validation
sets, we use the score difference between the best scoring
labeling sequence ŷi and the desired labeling sequence yi

in our constraints. We observe that a CRF model learned
through unconstrained optimization often has substantial
differences of scores on the validation sets. Generally, the
performance on the validation set is strongly correlated to
the performance of the trained model on unseen data. A
trained CRF model giving many wrong predictions on the
validation sets tend to perform poorly on the testing data.
To ensure non-deteriorated performance on unseen data, we
want to make sure that the trained model not only fits the
training data, but also the validation sets. In other words,
we want to make sure that, for the trained model, the score

difference between the most likely sequence ŷi and the an-
notated sequence yi is small for each validation set.

In our formulation, the parameter γ controls the score
difference allowed for each validation set. We set γ to be
a small positive constant. In difficult training scenarios, it
may be impossible to reach convergence with γ = 0. Set-
ting γ > 0 may allow training to converge faster. Further,
suitable relaxation may help avoid overfitting.

4. EXTENDED SADDLE POINT SEARCH
ALGORITHM

The CCRF formulation in (6) has discontinuous and non-
differentiable constraints. The constraint for validation set
j, j = 1..V , can be re-written as:

gj(W) =

KX

k=1

X
t∈Ij

ωkfk(ŷ
(j)
t , ŷ

(j)
t−1,v

(j)
t)

−
KX

k=1

X
t∈Ij

ωkfk(y
(j)
t , y

(j)
t−1,v

(j)
t)− γ ≤ 0,

where Ij is the set of indices of the jth validation set. Note
that, for each predefined feature fk(y′, y,vt), it is satis-
fied when the observation at time t matches vt. The state
changes of W may lead to changes of the labeling sequence
ŷ(j) generated by the Viterbi algorithm for each validation
set V(j). When the labeling sequence changes, the feature

functions fk(ŷ
(j)
t , ŷ

(j)
t−1,v

(j)
t) may change from 1 to 0 (true

to false) or from 0 to 1 (false to true), resulting in a discon-
tinuous gj(W).

Since the CCRF problem in (6) has non-differentiable
constraints, it cannot be readily solved using existing La-
grangian methods that require the differentiability of func-
tions. Sampling methods such as simulated annealing and
genetic algorithms are too slow. Penalty methods can han-
dle such constraints but it is in general difficult to choose
proper penalties. In this paper, we propose to solve (6)
using the recently developed extended saddle point (ESP)
theory [20, 21]. The ESP search has successfully solved dis-
continuous optimization problems from AI planning [21] and
engineering [20].

4.1 Extended saddle point (ESP) theory
The ESP theory can handle nonlinear programming (NLP)

problems in a continuous, discrete or mixed space. Here we
focus on NLPs with continuous variables. A NLP is de-
fined as follows, with functions f , h = (h1, . . . , hm)T , and
g = (g1, . . . , gr)

T defined in real space R:

(Pc) : min
x

f(x) where x = (x1, . . . , xv)T ∈ Rv (8)

subject to h(x) = 0 and g(x) ≤ 0.

In order to solve CCRF, we assume that f(x) is contin-
uous and differentiable, but h(x) and g(x) may be non-
differentiable.

Definition 1. A point x∗ is a CGM, a constrained global
minimum of (Pc), if x∗ is feasible and f(x∗) ≤ f(x) for all
feasible x.

While CGM is generally difficult to find for nonlinear
problems, a common goal of solving Pc is to find a con-

strained local minimum x with respect to NCN (x) = {x′ :
‖x′ − x‖ ≤ ε and ε → 0}, the continuous neighborhood of x.

Definition 2. A point x∗ is a CLM, a constrained local
minimum with respect to the continuous neighborhood of x∗

in Pc, if x∗ is feasible and f(x∗) ≤ f(x) for all feasible
x ∈ NCN (x∗).

The ESP theory is based on the `m
1 -penalty function de-

fined below.

Definition 3. The `m
1 -penalty function of Pc in (8) is

Lc(x, α, β) = f(x) + αT |h(x)|+ βT g+(x),

where g+(x) = max(0, g(x)), α ∈ Rm and β ∈ Rr are the
extended penalty values.

Instead of using a single penalty term as the traditional
`1-penalty, the `m

1 -penalty uses multiple penalty parameters
α and β, one for each constraint. The `m

1 -penalty can be
viewed as a mixture of the Lagrangian function with multi-
ple multipliers and the `1-penalty with non-negative trans-
formations on constraints.

Definition 4. Constraint-qualification condition. A point
x ∈ Rv meets the constraint qualification if there exists no
direction ~p ∈ Rv along which the subdifferentials of equality
and active inequality constraints are all zero. Let

Dx(φ(x), ~p) = lim
ε→0

φ(x + ε~p)− φ(x)

ε
,

the condition is:

6 ∃ ~p ∈ Rv such that Dx(hi(x), ~p) = 0

and Dx(gj(x), ~p) = 0 ∀i ∈ Ch and j ∈ Cg,
where Ch and Cg are, respectively, the sets of indices of
equality and active inequality constraints. This qualification
is always less restrictive than the KKT regularity condition.

The following theorem gives a necessary and sufficient con-
dition for CLMs of NLPs.

Theorem 1. Necessary and sufficient extended saddle point
condition on CLM of Pc. Suppose x∗ ∈ Rv satisfies the con-
straint qualification, then x∗ is a CLM of Pc if and only if
there exist finite α∗ ≥ 0 and β∗ ≥ 0 such that, for any
α∗∗ > α∗ and β∗∗ > β∗, the following condition is satisfied:

Lc(x
∗, α, β) ≤ Lc(x

∗, α∗∗, β∗∗) ≤ Lc(x, α∗∗, β∗∗) (9)

for all x ∈ NCN (x∗), α ∈ Rm, and β ∈ Rr.

Theorem 1 differs from the traditional saddle point (SP)
condition [1] in a significant way. The traditional SP condi-
tion is based on a Lagrangian function and works only for
NLPs with continuous and differentiable constraints. Fur-
ther, the SP condition is true at unique Lagrange multipli-
ers. In contrast, ESP based on the `m

1 function works for
discontinuous, non-differentiable NLPs and it suffices to find
any α∗∗ > α∗ and β∗∗ > β∗. Computationally, it is much
easier to find α∗∗ and β∗∗ in an extended region than finding
unique Lagrange multipliers as required by the traditional
Lagrangian theory.

Figure 3 shows a general framework that implements the
conditions in Theorem 1. The inner loop looks for local min-
ima of Lc(x, α, β) in the continuous neighborhoods, whereas

α −→ 0; β −→ 0;
repeat

increase αi by δi if hi(x, y) 6= 0 for all i;
increase βj by δj if gj(x, y) � 0 for all j;
repeat

perform descent of Lc(x, α, β) with respect to x;
until a local minimum of Lc(x, α, β) has been found;

until a CLM of Pc has been found or (α > ᾱ∗ and β > β̄∗);

Figure 3: Iterative implementation of ESP search
for locating CLM of Pc. ᾱ∗ and β̄∗ are pre-defined
upper bounds.

the outer loop performs ascents on α and β for unsatisfied
constraints and stops when a CLM has been found.
Significance of the ESP condition. The ESP condi-
tion has several salient advantages over previous constraint
handling theory. Unlike the Karush-Kuhn-Tucker (KKT)
condition in the Lagrangian theory that works only for con-
tinuous and differentiable problems, ESP condition offers
a uniform treatment to discrete and mixed problems and
does not require the constraints to be differentiable or in
closed form. More importantly, unlike the KKT condition
that requires finding a set of unique Lagrange multipliers
which are oftentimes hard to locate exactly for large prob-
lems, ESP condition is satisfied over an extended region
of penalty values. In fact, ESP condition is true for any
α∗∗ > α∗ and β∗∗ > β∗, where α∗ and β∗ are finite thresh-
olds. Experimental results on discontinuous planning and
engineering problems [20, 21] suggest that it is generally
much easier to locate suitable penalty values in an extended
region than to find the exact Lagrange multipliers.

The ESP condition result is also stronger than the KKT
condition in the sense that KKT condition is only necessary
but not sufficient. That is, any qualified CLM satisfies the
KKT condition, but a point satisfying the KKT condition
may not be a CLM. Thus, an algorithm converging to a KKT
point may not find a CLM.

4.2 The ESP search algorithm
We develop a solver that solves the constrained problem

(6) based on the ESP search framework in Figure 3. We
have recently developed CRF-OPT [4], a package for general
unconstrained CRF training, on top of the Toolkit for Ad-
vanced Optimization (TAO) [2]. CRF-OPT uses the Limited
Memory Variable Metric (LMVM) method, a quasi-Newton
method, as the unconstrained optimization algorithm.

We develop our constrained CRF solver on top of CRF-
OPT. The `m

1 -penalty function of (6) is:

Lc(W, β) = −O(W) +

VX
j=1

βjg
+
j (W) (10)

Our ESP algorithm consists of two loops. The outer loop
updates β and the inner loop minimizes Lc(W, β) in the W -
space using the LMVM method in TAO. The quasi-Newton’s
method, LMVM, requires the objective and gradient infor-
mation of Lc(W, β) and approximates the inverse Hessian
to generate descent directions. Since gj(W) is not differen-
tiable, we approximate its gradient as follows.

The partial derivative of Lc(W, β), with respect to weight

� � � � � � � �

�
Figure 4: Change of weights influences the most
likely sequence selected by the Viterbi algorithm.
See text for explanation.

ωk, k = 1..K, can be expressed as:

∂Lc(W, β)

∂ωk
= −∂O(W)

∂ωk
+

VX
j=1

βj

∂g+
j (W)

∂ωk
(11)

The first term, ∂O(W)
∂ωk

, is the gradient of the original ob-

jective, and can be calculated efficiently by the forward-

backward algorithm [18]. We now focus on computing
∂g+

j (W)

∂ωk
.

∂g+
j (W)

∂ωk
=

∂

∂ωk

„
SW (v(j), ŷ(j))− SW (v(j),y(j))

«

=
X
t∈Ij

KX

k′=1

ωk′ · ∂

∂ωk
fk′(ŷ

(j)
t , ŷ

(j)
t−1,v

(j)
t) +

X
t∈Ij

„
fk(ŷ

(j)
t , ŷ

(j)
t−1,v

(j)
t)− fk(y

(j)
t , y

(j)
t−1,v

(j)
t)

«
(12)

The first term of (12)

KX

k′=1

X
t∈Ij

ωk′
∂

∂ωk
fk′(ŷ

(j)
t , ŷ

(j)
t−1,v

(j)
t) (13)

is needed because the most likely sequence ŷ(j) of the vali-
dation set V(j) depends on ωk.

Figure 4 illustrates the mechanism of the Viterbi algo-
rithm and how the change of ωk will affect the counts of
features. Define feature fk as,

fk(yt−1, yt,xt) = 1{y′=s1}1{y=s2}1{xt=v}.

Let S be the set of possible states (S = {s1, s2, s3} in Fig-
ure 4) and let the length of the sequence be T . Before back-
tracking, Viterbi will do a forward run. For each state y ∈ S
at time t, it finds out the state at time t− 1 that will most
likely lead to this state, as shown in blue arrows in the figure.
Also, the highest probability of reaching state y at time t is
remembered in τ(t, y). Then, Viterbi backtracks from time
T by starting from the state y?, τ(T, y?) ≥ τ(T, y), ∀y ∈ S,
and follows the red arrows in the figure. Let t1 be the posi-
tion where the backward process differs. As we change the
weight of ωk, Viterbi finds that state s1 at time t1 − 1 has
a better chance to lead to s2 , and backtracks in a different
path and changes the labels ŷt

(j), t ∈ [1, t1 − 1] , as shown

in green arrows. As a result, the satisfiability of all the fea-
tures, not only feature fk, will be changed. The direct effect
of changing weight ωk is the change of the satisfiability of
feature fk. That is, the origin of the change is when at one

position t where fk(ŷ
(j)
t , ŷ

(j)
t−1,v

(j)
t) changes from 0 to 1 or

from 1 to 0.
Note that, in the Viterbi algorithm, most of the computa-

tional time is spent on the forward run, and the backtracking
process requires little time. Hence, we want to avoid repeat-
edly carriyng out the forward runs when approximating the
discontinuous term (13).

We detail our approximation scheme when weight ωk is
increased as follows. The case when ωk is decreased is sym-
metric.

For a feature fk(y′, y,v), we find out the positions t where

v
(j)
t = v, ŷ

(j)
t = y and ŷ

(j)
t 6= y′, and store them in Pk, the

set of such positions that, when ωk increases, fk(ŷ
(j)
t , ŷ

(j)
t−1,v

(j)
t)

will change from 0 to 1.

The reason for us to require v
(j)
t = v is that, at each posi-

tion t, the feature fk(y′, y,v) is satisfied if ŷ
(j)
t−1 = y′, ŷ

(j)
t = y

and v
(j)
t = v. Since the observation sequence v(j) is given,

the change of the weight ωk can only affect the changes of
the labeling sequence ŷ(j) found by the Viterbi algorithm.

Therefore, if at time t, v
(j)
t 6= v, then a change of ωk will not

lead to a change in the satisfiability of fk(ŷ
(j)
t , ŷ

(j)
t−1,v

(j)
t).

We require ŷ
(j)
t = y because Viterbi algorithm works in

a backtracking way, and the precondition of satisfying the

transition (y′, y) is to let ŷ
(j)
t = y. As we assume the weights

for other features are fixed when we do approximation, if

ŷ
(j)
t 6= y, then there is no way change of ωk can change

fk(ŷ
(j)
t , ŷ

(j)
t−1,v

(j)
t) from 0 to 1.

The reason for us to require ŷ
(j)
t 6= y′ is obvious. If ŷ

(j)
t =

y′, y′ has already been chosen as the preceding state for y,
then the feature fk has already been satisfied. Increasing
the weight ωk will have no effect on the configuration of the
most likely sequence.

For each t ∈ Pk, we compute the minimum increase ∆t
ωk

of ωk required to make y′ the preceding state of y. Let ŷ
be the preceding state of y originally selected by the Viterbi
algorithm. ∆t

ωk
can be efficiently calculated from τ(y, t−1),

τ(ŷ, t − 1), and the weights of other active features at time
t.

Then, we find the position t? satisfying, ∆t?

ωk
≤ ∆t

ωk
, ∀t ∈

Pk and increase ωk by ∆t?

ωk
. By doing so, only the preceding

state of y at time t? is changed to y′. For all the other po-
sitions t ∈ Pk, since the increase of ωk does not reach their
minimum requirement, the configuration will remain the
same. Then we can backtrack from y′ at time t− 1 and effi-
ciently find the most likely sequence, without performing the
forward part of the Viterbi algorithm. After having the new
most likely sequence, we can acquire the change of counts
for all the features with respect to the change of ωk. The
changes are store in a vector ∆A = {∆A1, ∆A2, · · · , ∆AK}.

Finally, we approximate the first term of (12) as shown in
(13) by

KX

k′=1

X
t∈Ij

ωk′ · ∂

∂ωk
fk′(ŷ

(j)
t , ŷ

(j)
t−1,v

(j)
t) = min(c,

KX

k′=1

∆Ak′

∆ωt?
k

). (14)

where c > 0 is a constant for avoiding excessively large
derivatives.

Convergence analysis. Since LMVM uses the Armijo
stepsize rule [2], convergence to local minimum of Lc(W, β)
of the inner loop is guaranteed under very relaxed assump-
tions, so long as the direction at any step is a descent direc-
tion. Our experience shows that the quasi-Newton directions
generated by LMVM, based on the gradient in (11) and (12)
always give descent directions of Lc(W, β) at each iteration
of LMVM. Therefore, the inner loop converges to a local
minimum of Lc(W, β) for a fixed β.

In the outer loop, we update the penalties by

c0 = 10−9, cm+1 = 2cm (15)

βm+1
j = βm

j + cmg+
j (W m), j = 1, ..., V (16)

where m is the outer loop number.
Proposition 1. Suppose there is a CLM of (6) that satisfies
the constraint qualification, then the ESP search algorithm
finds a CLM of (6) in a finite number of outer loops, if the
inner loop minimizes Lc(W, β) at each major iteration.

We give a sketch the proof here. Consider any CLM W ∗

of (6). Since W ? is a CLM, we have, f(W ?) ≤ f(W) and
g(W ∗) ≤ 0, for any infeasible W ∈ NCN (W ?), we can show
that there exists a finite threshold β∗ > 0 such that

Lc(W
∗, β∗) ≤ Lc(W, β∗), ∀ infeasible W ∈ NCN (W ?) (17)

In a finite number of major iterations, βm can exceed any
finite threshold β∗ using the update rules in (15) and (16).
Let W m be he point the inner loop stops. Then, as long as
the inner loop minimizes Lc(W, β), W m is feasible. Thus,
we have g+(W m) = 0 and, for any β ∈ RV ,

Lc(W
m, β) ≤ Lc(W

m, β∗) ≤ Lc(W
m, βm). (18)

On the other hand, we have

Lc(W
m, βm) ≤ Lc(W, βm), ∀W ∈ NCN (W m). (19)

Combining (18) and (19) and applying Theorem 1, we see
that (W m, βm) is an ESP point and hence W m is a CLM.

Noted that theoretically LMVM guarantees local optimal-
ity while Proposition 1 requires global optimality of the un-
constrained solver. Empirically, our solver can always sat-
isfy the cross-validation constraints in less than 20 major
iterations. Since ESP search allows an extended region of
suitable penalties, the solver is not sensitive to the penalty
update rules. In contrast, it is difficult to control the single
penalty in a traditional `1-penalty function when there are
many constraints.

5. EXPERIMENTAL RESULTS
We present experimental results on two applications. We

compare the original CRF-OPT package built in TAO with
a new version that uses the constrained formulation and
solver. We set γ = 0.01 for all runs.

5.1 Gene prediction
Given a DNA observation sequence, consisting of ‘A’, ‘T’,

‘G’, ‘C’ bases, the aim of gene prediction is to find out the
protein coding regions, known as genes, and their associated
components, including coding exons, start/stop exons, pro-
moters, and poly-adenylation sites [3]. We first illustrate the
improvement of the constrained approach on a simple model
and then report results on a state-of-the-art gene predictor.

Figure 5 shows a finite state machine representation of
the structure of genomic sequences in our implementation.

Table 1: The performance of original CRF, regularized CRF (CRFr) and constrained CRF (CRFc) for gene prediction.

Measure
Set 1 Set 2 Set 3 Set 4

CRF CRFr CRFc CRF CRFr CRFc CRF CRFr CRFc CRF CRFr CRFc

Gene Sensitivity(%) 7.50 7.50 10.00 2.50 2.50 2.50 4.35 4.35 6.52 2.04 2.04 2.04
Gene Specificity(%) 6.98 6.82 11.11 2.33 2.13 2.86 3.85 4.35 6.12 2.13 1.79 2.33

Transcript Sensitivity(%) 7.50 7.50 10.00 2.50 2.50 2.50 4.35 4.35 6.52 2.04 2.04 2.04
Transcript Specificity(%) 6.98 6.82 11.11 2.33 2.13 2.86 3.85 4.35 6.12 2.13 1.79 2.33

Exon Sensitivity(%) 33.92 37.00 37.89 29.54 25.32 31.22 34.43 34.43 34.43 32.41 28.62 30.69
Exon Specificity(%) 40.53 43.30 42.57 35.53 30.00 38.34 36.86 39.66 38.84 32.41 33.88 36.63

Nucleotide Sensitivity(%) 89.96 90.35 90.99 86.53 84.21 90.38 90.20 90.62 90.00 93.45 92.84 93.35
Nucleotide Specificity(%) 87.84 88.54 87.06 90.45 89.64 88.66 89.74 89.54 89.88 91.26 90.67 90.35

� �� � � � � �� � � � � �� � � � � � � � �� � � �� � � 	 � � � 	 � � �
� �

Figure 5: A finite state machine for gene prediction

In this model, each node represents a hidden state, such
as exon (C), intron (I), and intergenic region (NC). In
our model, the introns and exons are further divided into
three phases according to the reading frame. Each edge
represents a possible hidden state transition with required
base observation.

The features used in our model is the state transition and
base observation requirement as represented by the edges
in Figure 5 and a 5-th order base emission information. In
total we have around 7× 46 features.

We test our algorithm on DNA sequences from the pathogenic
fungus cryptococcus neoformans. We evaluate performance
at the following four different levels: nucleotide-level, exon-
level, transcript level, and gene level. For each level, we use
the standard sensitivity (Sn) and specificity (Sp) measures
defined as Sn = TP

TP+FN
and Sp = TP

TP+FP
, where TP, FN,

FP denote the numbers of true positive, false negative, and
false positive labels, respectively [3].

In Table 1, we compare the performance of the constrained
CRF and CRF with regularization. We set the regulariza-
tion parameter δ2 = 100. We use all the 170 genes to con-
struct four different data sets. We randomly split the data
into 75% training data and 25% test data. For each set,
three validation sets, each with 1/3 length of the training
set, are constructed from the training data.

As shown in the result, our constrained CRF gives bet-
ter performance than the unconstrained CRF model using
the same feature set. Comparing to the regularization ap-
proach, our method has a notable performance boost, es-
pecially for the higher-level gene, transcript, and exon level
measures. The higher level accuracy is typically more diffi-
cult to achieve than the nucleotide level accuracy. To achieve

one gene level accuracy will require thousands of consecutive
correct predictions on the nucleotide level. The computing
time of constrained CRF is about 3 to 4 times longer than
unconstrained CRF.

Although the gene prediction model used in previous ex-
periment is still a much simplified one, the results show
the effectiveness of the proposed work. In the following ex-
periment, we integrate these techniques to CONTRAST, a
state-of-the-art CRF-based gene predictor [8] to predict fly
genomes. By effectively making use of multiple informants,
CONTRAST is able to show substantial improvement over
previous de novo gene predictors. The main component of
this gene predictor is a CRF model with 33,003 features and
41 possible states. Similarly, we constructed validation sets,
and added cross-validation guided constraints to the original
formulation in CONTRAST. The performance is compared
to CONTRAST without regularization, and CONTRAST
with regularization terms added. For CONTRAST with reg-
ularization, a validation set is reserved and used to tune the
regularization factor.

As shown in Table 2, both regularized formulation and
our constrained formulation perform better comparing to
the original unconstrained formulation. In most of the cases,
our constrained formulation is able to improve the gene level
accuracies by over 5% percentages, and better than the reg-
ularized formulation. We also find that our constrained for-
mulation is able to converge with less iterations than that
of the regularized formulation.

5.2 Stock price prediction
In this application, we try to predict if tomorrow’s stock

price will raise or decrease comparing to today’s, based on
historical stock price data. One thing to note is that, the
prediction accuracies presented in this section is on the fil-
tered stock price data, which has been smoothed, not the
raw data.

In this task, the training sequence grows everyday, while
the length of the testing sequence is only one, since we only
try to predict for the next day. As the raw stock price data
is noisy, we apply several preprocessing techniques, includ-
ing stock screening, filtering, and transformation. Certain
techniques are used later on to map the prediction results of
smoothed data back into raw data.

Here we only focus on the prediction of smoothed data.
For each stock, the preprocessed data is stored in sequence
(r,y), where the observation r is the sequence of price change
ratio, and y is the labeling sequence. Given the sequence
(r1 · · · rT ; y1 · · · yT), we try to predict yT+1. In our applica-
tion, yt ∈ {0, 1} represents Raise or Fall. We use a 3rd order

Table 2: The performance of original CRF, regularized CRF (CRFr) and constrained CRF (CRFc) on CONTRAST.

Measure
Set 1 Set 2 Set 3 Set 4

CRF CRFr CRFc CRF CRFr CRFc CRF CRFr CRFc CRF CRFr CRFc

Gene Sensitivity(%) 46.1 49.8 52.1 46.9 51.2 53.8 50.1 50.3 52.2 44.7 47.2 48.5
Gene Specificity(%) 46.1 51.3 58.5 53.2 60.9 62.5 55.3 57.4 59.6 42.5 57.2 59.4
Exon Sensitivity(%) 79.7 78.8 80.0 79.6 82.5 82.5 80.8 80.2 81.3 80.9 80.9 79.9
Exon Specificity(%) 67.8 68.0 71.2 70.7 75.1 75.7 71.1 73.0 73.6 65.5 75.5 76.4

Nucleotide Sensitivity(%) 97.0 96.6 96.3 96.1 97.9 97.5 96.4 96.9 96.8 97.6 97.4 96.5
Nucleotide Specificity(%) 79.5 85.8 87.0 86.5 88.5 89.0 86.2 87.1 86.9 75.5 88.4 90.0

feature function,

f(yt, yt−1, rt) =

8
>>><
>>>:

1 lbi < rt−3 < ubi and
lbj < rt−2 < ubj and
lbk < rt−1 < ubk and

yt = s, yt−1 = s′

0 Otherwise

We divide the price changing ratio into several ranges. Each
atom of the feature function is true when the changing ra-
tio falls into the corresponding range. When all the atoms
return true, the feature is true. In total, 2000 features are
included to aid learning.

We test our algorithm on 1741 stocks that are selected by
our stock screening algorithm from all stocks in NASDAQ
and NYSE, each of which contains the stock prices from
2002-02-01 to 2007-09-12. For each stock, when we try to
predict the price tendency of day T +1, the data from day 1
to T is used for training. After that, the stock price on day
T + 1 and the real price tendency on that day is added to
the training sequence for predicting day T + 2. The process
is repeated until the last day. We start our prediction on
2006-05-16. For our constrained formulation, the validation
sequence is a sequence of data right before the predicted day.
If we want to predict the price on day T + 1, the validation
sequence will be the data from day T−V +1 to T , where V is
the length of the validation sequence. We have set V = 100.� � � � � � � � � � 	
 � � �
 � � � � � � � � 	
 � � �
 � � �� � �� � �

� �� � ��� � �� �� �������� �
� �� ���� � � !"�
� �� �# ��

�� �� � � $ % � & $ � & $ % ' � $ ' � $ % ' & $ ' & $ % � � $ � � $ � & $ � & $ % (� $ (� $ % (& $ (& $ % � � � $
Figure 6: The prediction accuracies before and after
adding constraints.

We classify the 1741 stocks into different categories ac-
cording to the prediction accuracy of the unconstrained CRF.
For stocks in each category, we calculate the average predic-
tion accuracy of the original CRF model and the constrained

CRF model. As shown in Figure 6, the constrained CRF
gives much better accuracy when the original unconstrained
formulation has low accuracy (< 85%) and is comparable
in other cases. The prediction accuracy of constrained CRF
is consistently above 82% for all categories. Note that the
accuracy is for predicting smoothed stock price curves. We
can achieve around 55%-63% accuracy after translating the
prediction back to raw prices. For each stock, the average
training time is 25.5 seconds for the unconstrained CRF and
97.5 seconds for the constrained CRF.

6. CONCLUSIONS
In this paper, we present a novel constrained formulation

for CRF training. Constraints reflecting cross-validation ac-
curacies are added to prevent overfitting and to boost the
generalizability of CRF models. The new formulation is dif-
ficult since it is discontinuous and nondifferentiable, and
classical Lagrangian methods are not applicable. We de-
velop a new constrained optimization algorithm based the
recently proposed ESP theory to solve the problem. The
constrained formulation and optimization algorithm are ap-
plied to gene prediction and stock price prediction tasks.
The results show that our method is able to achieve sig-
nificantly better prediction quality than unconstrained for-
mulations, both with and without regularization. The CRF
models with constrained formulation can improve the qual-
ity of a leading gene predictor as well as give high accuracy
for predicting smoothed stock prices.

7. ACKNOWLEDGEMENT
This work is supported by NSF grant IIS-0713109, a DOE

ECPI award, and a Microsoft Research New Faculty Fellow-
ship.

8. REFERENCES
[1] M. Avriel. Nonlinear Programming: Analysis and

Methods. Prentice Hall, Englewood Cliffs, N.J., 1976.

[2] S. J. Benson, L. McInnes, J. Moré, and J. Sarich. TAO
user manual (revision 1.8). Technical Report
ANL/MCS-TM-242, Mathematics and Computer
Science Division, Argonne National Laboratory, 2005.

[3] C. Burge. Identification of genes in human genomic
DNA. PhD thesis, Stanford Univerisity, 1997.

[4] M. Chen, Y. Chen, and M. Brent. CRF-OPT: An
efficient high-quality conditional random field solver.
In Proc. AAAI Conference on Artificial Intelligence
(AAAI08), 2008.

[5] S. Chen and R. Rosenfeld. A gaussian prior for
smoothing maximum entropy models. Technical

Report CMUCS-99-108, Carnegie Mellon University,
1999.

[6] A. Culotta, D. Kulp, and A. McCallum. Gene
prediction with conditional random fields. Technical
Report UM-CS-2005-028, University of Massachusetts,
Amherst, Apr. 2005.

[7] G. GRIMMETT. A theorem about random fields.
Bulletin of the London Mathematical Society, 5:81–84,
1973.

[8] S. S. Gross, C. B. Do, M. Sirota, and S. Batzoglou.
CONTRAST: a disriminative, phylogeny-free
approach to multiple informant de novo gene
prediction. Genome Biology, 8:R269, 2007.

[9] R. Kohavi. A study of cross-validation and bootstrap
for accuracy estimation and model selection. In Proc.
IJCAI, pages 1137–1145, 1995.

[10] J. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting
and labeling sequence data. International Conference
on Machine Learning, 2001.

[11] W. I. Newman. Extension to the maximum entropy
method. IEEE Trans. on Information Theory,
(1):89–93, 1977.

[12] A. Quattoni, M. Collins, and T. Darrell. Conditional
random fields for object recognition. IEEE Int
Conference on Computer Vision, 2:1150–1157, Jun.
2003.

[13] B. Roark, M. Saraclar, M. Collins, and M. Johnson.
Discriminative language modeling with conditional
random fields and the perceptron algorithm. The 42nd
Annual Meeting of the Association for Computational
Linguistics, 2004.

[14] R. Rosenfeld. A maximum entropy approach to
adaptive statistical language modeling. Computer,
Speech, and Language, pages 187–228, 1996.

[15] S. Sarawagi and W. Cohen. Semi-markov conditional
random fields for information extraction. Proc. NIPS,
2004.

[16] F. Sha and F. Pereira. Shallow parsing with
conditional random fields. Human Language
Technology, 2003.

[17] C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas.
Conditional models for contextual human motion
recognition. pages 1808–1815, 2005.

[18] C. Sutton and A. McCallum. An Introduction to
Conditional Random Fields for Relational Learning.
MIT Press, 2006.

[19] D. L. Vail, J. D. Lafferty, and M. M. Veloso. Feature
selection in conditional random fields for activity
recognition. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages
3379–3384, 2007.

[20] B. Wah and Y. Chen. Solving large-scale nonlinear
programming problems by constraint partitioning. In
Proc. Constraint Programming, pages 697–711, 2005.

[21] B. Wah and Y. Chen. Constrained partitioning in
penalty formulations for solving temporal planning
problems. Artificial Intelligence, 170(3):187–231, 2006.

[22] B. Wah and M. Qian. Constrained formulations for
neural network training and their applications to solve
the two-spiral problem. In Proc. Fifth Int’l Conf. on

Computer Science and Informatics, volume 1, pages
598–601, 2000.

