# Applications in medical statistics - meta-analysis, nonparametric testing, and power calculations

Malcolm Hudson\*
Professor, Department of Statistics
Macquarie University

malcolm@ctc.usyd.edu.au

June, 2008

#### Meta-analysis graphics

Meta-analysis graphics

I. Meta-analysis graphics

Womens Health Initiative study of HRT

This talk: Graphic synthesis

Sources of bias in observational studies

Reducing bias

Meta analysis models and weighting

Cross-design RE models

Meta-Analysis: HRT studies up to WHI 2002

EM Algorithm

Model estimates

Findings

hidden

# **Meta-analysis graphics**

Malcolm Hudson

## **Meta-analysis graphics**

#### Meta-analysis graphics

#### Meta-analysis graphics

I. Meta-analysis graphics

Womens Health Initiative study of HRT

This talk: Graphic synthesis

Sources of bias in observational studies

Reducing bias

Meta analysis models and weighting

Cross-design RE models

Meta-Analysis: HRT studies up to WHI 2002

EM Algorithm

Model estimates

Findings



### I. Meta-analysis graphics

Meta-analysis graphics

Meta-analysis graphics

I. Meta-analysis graphics

Womens Health Initiative study of HRT

This talk: Graphic synthesis

Sources of bias in observational studies

Reducing bias

Meta analysis models and weighting

Cross-design RE models

Meta-Analysis: HRT studies up to WHI 2002

EM Algorithm

Model estimates

Findings

hidden

Malcolm Hudson<sup>1</sup>, Victor DeGruttola<sup>2</sup>, Carol Hargreaves and Val Gebski<sup>3</sup>

<sup>&</sup>lt;sup>1</sup>Macquarie University

<sup>&</sup>lt;sup>2</sup>Harvard School of Public Health

<sup>&</sup>lt;sup>3</sup>NHMRC Clinical Trials Centre

### Womens Health Initiative study of HRT

Meta-analysis graphics

Meta-analysis graphics

I. Meta-analysis graphics

Womens Health Initiative study of HRT

This talk: Graphic synthesis

Sources of bias in observational studies

Reducing bias

Meta analysis models and weighting

Cross-design RE models

Meta-Analysis: HRT studies up to WHI 2002

EM Algorithm

Model estimates

Findings

hidden

Early stopping by the SDMC raised questions

**Ethical issues** Weigh individual risk of trial participants vs. community benefit

**Statistical interpretation of findings** *Over-estimate* risk of the adverse treatment effect (breast cancer) that led to stopping the trial;

- Statistical estimation of odds ratios requires adjusting for multiple outcomes
- Stopping rule based on a mix of outcomes (1 primary, 7 adverse) implies limited information about each.
- Should we adjust the OR of breast cancer down?

**Specific effects** (inducing trial-specific bias) apply to randomized trials

### This talk: Graphic synthesis

#### Meta-analysis graphics

Meta-analysis graphics

I. Meta-analysis graphics

Womens Health Initiative study of HRT

This talk: Graphic synthesis

Sources of bias in observational studies

Reducing bias

Meta analysis models and weighting

Cross-design RE models

Meta-Analysis: HRT studies up to WHI 2002

**EM Algorithm** 

Model estimates

Findings

hidden

**Aim:** to review variation in published HRT trial results and the potential for combining risk estimates from RCTs with those of cohort and case-control studies

Cross-design synthesis (CDS): synthesis of evidence from multiple (trial) sources and designs (RCTs, observational) identify sources of variation in reported outcomes appropriate identification, adjustments for bias statistical model and methods evaluation in meta-analysis of 28+ HRT studies

Issues bias- variance compromise

selection criteria for study inclusion in meta-analysis

Scope & Limitations uses reported summary statistics not IPD; known within trial measurement uncertainty

### Sources of bias in observational studies

"Observational evidence is clearly better than opinion, but it is thoroughly unsatisfactory." (Archibald Cochran)

Therapy is chosen to affect outcome.

**Treatment imbalances:** Confounding. Why did the patient get treatment?

**Time origin:** Time since study enrolment? Subject age?

**Temporal change** 

In observational studies estimating HRT effect on breast cancer, necessary to allow for biases:

- earlier diagnosis, differential reporting of use,
- potential confounders: time since menopause, BMI, delay starting HRT after menopause, years of HRT
- lead to substantial underestimation of risk of breast cancer associated with the use of HRT<sup>4</sup>.

Malcolm Hudson

<sup>&</sup>lt;sup>4</sup>Collaborative Group on Hormonal Factors in Breast Cancer (HFBC) Lancet, 1997

### Reducing bias

Meta-analysis graphics

Meta-analysis graphics

I. Meta-analysis graphics

Womens Health Initiative study of HRT

This talk: Graphic synthesis

Sources of bias in observational studies

#### Reducing bias

Meta analysis models and weighting

Cross-design RE models

Meta-Analysis: HRT studies up to WHI 2002

EM Algorithm

Model estimates

Findings

hidden

**Exclusion strategy:** In a meta-analysis Peto<sup>5</sup> excluded trials:

... "treatment assignment was not by strict randomisation"

Outcome evaluation not double blind

Study quality

In observational studies Stratification and model adjustment for confounders

<sup>&</sup>lt;sup>5</sup>Stampfer, Goldhaber, Yusuf, Peto and Henneken (NEJM 307)

# Meta analysis models and weighting

Meta-analysis graphics

Meta-analysis graphics

I. Meta-analysis graphics

Womens Health Initiative study of HRT

This talk: Graphic synthesis

Sources of bias in observational studies

Reducing bias

Meta analysis models and weighting

Cross-design RE models

Meta-Analysis: HRT studies up to WHI 2002

**EM Algorithm** 

Model estimates

Findings

hidden

Single true meta effect (fixed effect) versus Inhomogeneity (random effects).

RE model (DerSimonian and Laird<sup>6</sup>)

$$Y_j = \delta + u_j + e_j,$$

 $e_j$ , measurement error in the estimated treatment effect in study j, is distributed N(0,  $V_{0j}^2$ ).

- $\blacksquare$   $Y_j$  is the apparent effect,
- lacksquare  $\delta$  average (meta) effect of treatment,
- $\mathbf{u}_j$ , mean 0, variance  $\sigma_1^2$ , varies treatment effect due to specific study effects
- $lacksquare{1}{2}$   $V_{0j}$  measurement variance in the estimate of effect in study j.

Weightings of trial estimates are inverse to their variance:  $V_{0j}+\sigma_1^2$ 

<sup>&</sup>lt;sup>6</sup>DerSimonian & Laird, 1986

# **Cross-design RE models**

Meta-analysis graphics

Meta-analysis graphics

I. Meta-analysis graphics

Womens Health Initiative study of HRT

This talk: Graphic synthesis

Sources of bias in observational studies

Reducing bias

Meta analysis models and weighting

Cross-design RE models

Meta-Analysis: HRT studies up to WHI 2002

**EM Algorithm** 

Model estimates

Findings

hidden

Stratified binary outcomes: e.g. DerSimonian-Laird method with  $\log$  odds-ratio estimates  $Y_j$ .

**Study classes:** e.g. randomised R, non-randomised NR. Postulate LME model:

$$\begin{split} E(Y_j|u) &= \mu + u_{j1} \quad \sim \quad N(0,\sigma_1^2), \quad \text{for } j \in R \\ E(Y_j|u) &= \mu + \delta + u_{j1} + u_{j2} \quad \sim \quad N(0,\sigma_1^2 + \sigma_2^2), \quad \text{for } j \in NR. \end{split}$$

### Notes:

- Introduces an extra source of variation in NR studies
- If  $\delta = 0$ , pooling class meta-estimates is legitimate.
- Not covered by DerSimonian-Laird theory.

# Meta-Analysis: HRT studies up to WHI 2002

#### Meta-analysis graphics

Meta-analysis graphics

I. Meta-analysis graphics

Womens Health Initiative study of HRT

This talk: Graphic synthesis

Sources of bias in observational studies

Reducing bias

Meta analysis models and weighting

Cross-design RE models

Meta-Analysis: HRT studies up to WHI 2002

EM Algorithm

Model estimates

Findings

hidden

### 1. Included:

- all studies included in the HFBC (1997) meta-analysis (RCTs 0);
- published papers since this date (n=4, RCTs 2). Total N=28 estimates.
- 2. Goal: meta-estimate and display
- 3. Outcome: HRT effect on invasive breast cancer incidence Odds-ratio (adjusted) comparing HRT (ever) vs HRT never.
- Trial types case-control (hospital controls; community based controls), prospective/ cohort, two recent randomized clinical trials.

### Meta-analysis graphics

Meta-analysis graphics

I. Meta-analysis graphics

Womens Health Initiative study of HRT

This talk: Graphic synthesis

Sources of bias in observational studies

Reducing bias

Meta analysis models and weighting

Cross-design RE models

Meta-Analysis: HRT studies up to WHI 2002

EM Algorithm

Model estimates

Findings



### **EM Algorithm**

#### Meta-analysis graphics

Meta-analysis graphics

I. Meta-analysis graphics

Womens Health Initiative study of HRT

This talk: Graphic synthesis

Sources of bias in observational studies

Reducing bias

Meta analysis models and weighting

Cross-design RE models

Meta-Analysis: HRT studies up to WHI 2002

#### **EM Algorithm**

Model estimates

Findings

```
{ # For two groups, R (n1 trials, type=1), NR (n2 trials, type != 1)
  # [snip: skip E-step and outer iteration loop]
  # M-step: update variance components d1 (sigma_1^2) and d2 (sigma_2^2)
  V \leftarrow V0 + d1 * rep(1, n)
  V[type!=1] \leftarrow V[type!=1] + d2 * rep(1, n2)
  w < -1/V
  res \leftarrow (y-mu)
  ss1 \leftarrow sum(w^2 * res^2)
  d1 \leftarrow (d1^2 * ss1 + d1* (n - d1 * sum(w)))/n
  d1var[itn] \leftarrow d1
  ss2 \leftarrow sum(w[type!=1]^2 * res[type!=1]^2)
  d2 \leftarrow (d2^2 * ss2 + d2 * (n2 - d2 * sum(w[type!=1]))) / n2
  d2var[itn] \leftarrow d2
  mu \leftarrow mu + sum(w * res)/sum(w0)
  means[itn] <- mu
EM. Searle .100 \leftarrow EM3(y, V0, nitn=100, d1=0.0001, d2=0.0004, type=Study . Type)
```

### **Model estimates**

| Meta-ar | nalysis | grap | hics |
|---------|---------|------|------|
|         |         |      |      |

Meta-analysis graphics

I. Meta-analysis graphics

Womens Health Initiative study of HRT

This talk: Graphic synthesis

Sources of bias in observational studies

Reducing bias

Meta analysis models and weighting

Cross-design RE models

Meta-Analysis: HRT studies up to WHI 2002

EM Algorithm

Model estimates

Findings

| log-Likelihood statistics; after 1000 EM iterations |                              |        |    |  |  |
|-----------------------------------------------------|------------------------------|--------|----|--|--|
| Model                                               | Parameter estimate           | -2l    | df |  |  |
| Homogeneous model                                   | $\hat{\mu} = 0.186$          |        |    |  |  |
| no random effects                                   | $\sigma_1^2 = 0$             |        |    |  |  |
|                                                     | $\sigma_2^2 = 0$             | 37.73  | 27 |  |  |
| Heterogeneity but shared mean                       | $\hat{\mu} = 0.188$          |        |    |  |  |
| non-randomised studies only,                        | $\sigma_1^2 = 0$             |        |    |  |  |
|                                                     | $\hat{\sigma}_2^2 = 0.00684$ | 27.407 | 26 |  |  |
| Heterogeneity but shared mean                       | $\hat{\mu} = 0.188$          |        |    |  |  |
| in both RCTs and NRCTs,                             | $\hat{\sigma}_1^2 = 0.00011$ |        |    |  |  |
| shared mean                                         | $\hat{\sigma}_2^2 = 0.00672$ | 27.405 | 25 |  |  |

#### Meta-analysis graphics

Meta-analysis graphics

I. Meta-analysis graphics

Womens Health Initiative study of HRT

This talk: Graphic synthesis

Sources of bias in observational studies

Reducing bias

Meta analysis models and weighting

Cross-design RE models

Meta-Analysis: HRT studies up to WHI 2002

EM Algorithm

Model estimates

Findings

- 1. Odds ratios of risk of invasive breast cancer were generally consistent over the 28 studies, once stratified by age, parity, age at first child, years since menopause and BMI.
- 2. Exceptions can either be seen as 'outlier' trials, or as providing support for extra variation (or over-dispersion) in OR estimates among non-randomized studies (of any design class).
- 3. Outlier trials were indicated by a discrepancy between the naive variance (1/a+1/b+1/c+1/d) and the correct pooled variance after stratification.
- 4. In either case, there is extra variation but no statistical evidence of consistent bias when studies are classified by their design class.
- 5. The data is generally consistent with an average log OR comparing (HRT ever use) with (HRT never use) between 0.16 and 0.22 with 95% confidence.

#### R-notes

Meta-analysis in R: references

Early days: S-Plus 6

on PC

Variance component

estimation

Current environment

Lattice Display

Lattice Display: grouped by study type

Meta Plot via Lattice

Graphic Graphic

R packages: meta and rmeta

hidden

### **R-notes**

Malcolm Hudson ASC2008-R satellite – 16 / 55

### Meta-analysis in R: references

#### R-notes

### Meta-analysis in R: references

Early days: S-Plus 6 on PC

Variance component estimation

Current environment

Lattice Display

Lattice Display: grouped by study type

Meta Plot via Lattice Graphic

R packages: meta and rmeta

- 1. Paul Murrell, R Graphics, 2005, Chapman & Hall
- 2. Brian Everitt & Torsten Hothorn, A handbook of statistical analyses using R. 2006, Boca Raton: Chapman & Hall/CRC
- 3. Maindonald and Braun, Data Analysis and Graphics Using R, Second Edition, Cambridge
- 4. http://cran.rproject.org/doc/vignettes/HSAUR/Ch\_meta\_analysis.pdf
- 5. MiMa function, http://www.wvbauer.com/downloads.html to fit Meta-Analytic Mixed-, Random-, and Fixed-Effects Models.

### Early days: S-Plus 6 on PC

#### R-notes

Meta-analysis in R: references

Early days: S-Plus 6 on PC

Variance component estimation

Current environment

Lattice Display

Lattice Display: grouped by study type

Meta Plot via Lattice Graphic

R packages: meta and rmeta

hidden

Error Bar Plot via S-Plus Object Oriented Graphics (non R-compatible)

:

```
guiModify( "Graph2D", Name = "ErrorBarPlot$1",
    PanelType = "Condition",
    ConditionColumns = "TT",
    ConditionType = "Discrete")
```

### Variance component estimation

#### R-notes

Meta-analysis in R: references

Early days: S-Plus 6 on PC

Variance component estimation

Current environment

Lattice Display

Lattice Display: grouped by study type

Meta Plot via Lattice Graphic

R packages: meta and rmeta

hidden

### Single population, home grown code, snippet

```
"EM1" = function(y, V0, maxitn = 1, mu = sum(y/V0)/sum(1/V0), d1 = 0.2, cc1 = cc2 = 0.001)

{
    # Searle's algorithm (8.15)
    # d1 variance component
    # input logOR (unscaled) for specified subgp as y
    # V0 measurement variances
    # Searle's cgence criterion
```

### **Current environment**

#### R-notes

Meta-analysis in R: references

Early days: S-Plus 6 on PC

Variance component estimation

#### Current environment

Lattice Display

Lattice Display: grouped by study type

Meta Plot via Lattice Graphic

R packages: meta and rmeta

hidden

Mandriva Linux 2007.1

R ver 2.6

KDE 3.5.6

RKWard 0.4.6 R GUI interface (fantastic)

kile LaTeX editor

### **Lattice Display**

#### R-notes

Meta-analysis in R: references

Early days: S-Plus 6 on PC

Variance component estimation

Current environment

#### Lattice Display

Lattice Display: grouped by study type

Meta Plot via Lattice Graphic

R packages: meta and rmeta



```
library (lattice)
yscale < round(exp(c(-0.4, -0.2, 0, 0.2, 0.4, 0.6)), 1) # 1 decimal place
# basic plot, no grouping
xyplot(ID~Y, data=hrt5s, sd=hrt5s$SE.Y,
  panel=function (x, y, subscripts, sd, ...)
  panel.xyplot(x,y,...)
  larrows (x-sd[subscripts], y,
    x+sd[subscripts],y,
    angle=90,code=3,len=0.1,\#lwd=1/sd[subscripts])/4,
    . . . )
  panel. abline (v=0, |ty=2)
  panel. abline (v=0.18)
  scales=list(x=list(at=log(yscale), labels=yscale))
                                                           ASC2008-R satellite – 21 / 55
```

# Lattice Display: grouped by study type

#### R-notes

Meta-analysis in R: references

Early days: S-Plus 6 on PC

Variance component estimation

Current environment

Lattice Display

Lattice Display: grouped by study type

Meta Plot via Lattice Graphic

R packages: meta and rmeta



## Meta Plot via Lattice Graphic

#### R-notes

Meta-analysis in R: references

Early days: S-Plus 6 on PC

Variance component estimation

Current environment

Lattice Display

Lattice Display: grouped by study type

Meta Plot via Lattice Graphic

R packages: meta and rmeta

```
xyplot(ID~Y|TT, data=hrt5s, sd=hrt5s$SE.Y,
    panel=function(x,y,subscripts,sd,...) {
    panel.xyplot(x,y,...)
    larrows(x-sd[subscripts],y,
        x+sd[subscripts],y,
        angle=90,code=3,len=0.1,#lwd=1/sd[subscripts])/4,
        ...)
    panel.abline(v=0,lty=2)
    panel.abline(v=0.18)
    },
    scales=list(x=list(at=log(yscale),labels=yscale))
)
```

# R packages: meta and rmeta

R-notes

Meta-analysis in R: references

Early days: S-Plus 6

on PC

Variance component

estimation

Current environment

Lattice Display

Lattice Display: grouped by study type

Meta Plot via Lattice Graphic

R packages: meta and

rmeta

hidden

metabin(meta) Meta-analysis of binary outcome data

metacont(meta) Meta-analysis of continuous outcome data

metacum(meta) Cumulative meta-analysis

metagen(meta) Generic inverse variance meta-analysis

metainf(meta) Influence analysis in meta-analysis

trimfill(meta) Trim and fill method for meta-analysis

plot(meta) meta-analysis plots

Type 'help(FOO, package = PKG)' to inspect entry 'FOO(PKG) TITLE'

### rmeta:

der Simmonian and Laird RE, produces some nice graphs

### Power comparisons

II. Power comparisons

Statistical analysis of survival trade-offs

Continuous TTO

inference

Comparisons by

scores vs. ranks

Comparison by scores

Effect of ties on

P-values

'log' analysis

Simulation study goals

Nominal P-value

Location shift (log)

alternative

Power

Power

Conclusion

hidden

# **Power comparisons**

Malcolm Hudson

### II. Power comparisons

#### Power comparisons

#### II. Power comparisons

Statistical analysis of survival trade-offs Continuous TTO inference

Comparisons by scores vs. ranks

Comparison by scores

Effect of ties on P-values

'log' analysis

Simulation study goals

Nominal P-value Location shift (log) alternative

Power

Power

Conclusion

hidden

Context: parametric and rank tests: grouped outcomes with zero-spike. Survival trade-off outcomes:

- In cancer studies, preferences between treatments may depend on trading off discomfort and inconvenience for enhanced survival
- Two forms of outcome measure:
  - □ time trade-off (TTO): offer extra survival time
  - probability trade-off (PTO): offer higher probability of survival
  - ☐ minimum outcome necessary to make treatment worthwhile

### Statistical analysis of survival trade-offs

#### Power comparisons

II. Power comparisons

### Statistical analysis of survival trade-offs

Continuous TTO inference

Comparisons by scores vs. ranks

Comparison by scores

Effect of ties on P-values

'log' analysis

Simulation study goals

Nominal P-value Location shift (log)

alternative

Power

Conclusion

hidden

### **STOs**

- lacktriangleq T: survival gain required for treatment to be worthwhile
- 50-70% of women judged a 1% improvement in 5 year survival rates or a 3 month improvement in life expectancy to make either 6 cycles of CMF or 4 cycles of AC worthwhile. <sup>7</sup>
- Analysis perspectives
  - underlying/latent continuous outcome?
  - ordinal discrete (esp. survival categories, e.g, 'low-realistic')?
  - mixture distribution?
    - both non-traders (T=0, discrete) and continuous (T>0) outcomes

<sup>&</sup>lt;sup>7</sup>Duric et al, Annals of Onc, 2005

### **Continuous TTO inference**

#### Power comparisons

II. Power comparisons

Statistical analysis of survival trade-offs

### Continuous TTO inference

Comparisons by scores vs. ranks

Comparison by scores

Effect of ties on P-values

'log' analysis

Simulation study goals

Nominal P-value

Location shift (log) alternative

Power

Power

Conclusion

- lacktriangleq T time required for ACT to be worthwhile
  - □ t- test, 'log'-transformation (ad hoc)?
  - □ rank tests?
    - Wilcoxon-Mann-Whitney
    - Normal scores (common choice, underlying lognormal)?
    - rank tests are invariant to (monotone) transformation
  - discrete distributions (binning)?
    - observed outcomes are discrete (1 day, 1 month, 3 mths, . . .
    - pre-assign 'scores'
      - □ t-test, score STO levels using log
      - rank tests scores are the o.s. under a distribution

# Comparisons by scores vs. ranks

### AC4 vs CMF





# Comparison by scores

### Power comparisons

II. Power comparisons
Statistical analysis of
survival trade-offs

Continuous TTO

inference

Comparisons by scores vs. ranks

#### Comparison by scores

Effect of ties on P-values

'log' analysis

Simulation study goals

Nominal P-value

Location shift (log) alternative

Power

Power

Conclusion

hidden

### AC4 vs CMF



### **Effect of ties on P-values**

### Power comparisons

II. Power comparisons Statistical analysis of survival trade-offs Continuous TTO

inference

Comparisons by scores vs. ranks

Comparison by scores

Effect of ties on P-values

'log' analysis

Simulation study goals

Nominal P-value Location shift (log)

alternative

Power

Power

Conclusion

hidden

statistic = mean difference in log((STTO+0.25)/0.25)



#### Power comparisons

II. Power comparisons

Statistical analysis of survival trade-offs

Continuous TTO

inference

Comparisons by scores vs. ranks

Comparison by scores

Effect of ties on P-values

'log' analysis

Simulation study goals

Nominal P-value

Location shift (log) alternative

Power

Power

Conclusion

hidden

P = 0.07

\*\*\* Permutation Test Results \*\*\*

Number of Replications: 999

Summary Statistics:

Observed Mean SE alternative p.value

Param 0.6302 0.006444 0.3365 two.sided 0.07

Percentiles:

2.5% 5% 95% 97.5%

Param -0.6539397 -0.5460052 0.5544847 0.6529697

### **Further analysis**

#### Power comparisons

II. Power comparisons
Statistical analysis of
survival trade-offs
Continuous TTO
inference

Comparisons by scores vs. ranks

Comparison by scores

Effect of ties on P-values

'log' analysis

Simulation study goals

Nominal P-value Location shift (log) alternative

Power

Power

Conclusion

- Consistency: logrank (CoxPH) with other tests
- Kruskal-Wallis, Normal scores, ordinal regression
- Logrank test P-values
- Effect of ties in Cox PH models?
- Ad hoc analysis by jittering to break ties
- Ad hoc analysis by t-test of log(1+TTO/0.25)

### Simulation study goals

#### Power comparisons Validity of P-values reported in discrete TTO data II. Power comparisons Statistical analysis of based on asymptotic normality (finite sampling theory) survival trade-offs permutation distribution P-values are gold standard Continuous TTO inference Comparisons by Power comparisons scores vs. ranks Comparison by scores location-shift alternatives to latent log-normal TTOs Effect of ties on P-values alternative: multiplicative factor changes latent TTO 'log' analysis grouped in fixed intervals to form the discrete distributions Simulation study goals Nominal P-value Tests considered Location shift (log) alternative log- scores (permutation t-test) Power Wilcoxon (rank) test Power Conclusion Normal scores (rank) test hidden

Exponential scores (Savage rank) test

### Simulated data: NULL effect

Power comparisons

II. Power comparisons

Statistical analysis of survival trade-offs

Continuous TTO

inference

Comparisons by scores vs. ranks

Comparison by scores

Effect of ties on P-values

'log' analysis

Simulation study goals

Nominal P-value

Location shift (log) alternative

Power

Power

Conclusion

hidden

Null effect: type 1 error rates

| Equal sample sizes           | Effect: NULL   |      |     |     |
|------------------------------|----------------|------|-----|-----|
| N=100                        | Rejection rate |      |     |     |
|                              |                |      |     |     |
| Test                         | %              | %    | %   | %   |
| alpha                        | 0.1            | 1    | 5   | 10  |
|                              | %              | %    | %   | %   |
| Wilcoxon RS                  | 0.06           | 0.92 | 5.0 | 9.9 |
| Normal scores                | 0.07           | 0.90 | 5.0 | 9.9 |
| (unconditional)              | 0.10           | 0.98 | 5.0 | 9.8 |
| Logrank (exponential scores) | 0.08           | 1.00 | 4.7 | 9.5 |
| t-test (permutation)         | 0.02           | 0.69 | 4.7 | 9.8 |
| (unconditional)              | 0.02           | 0.70 | 4.6 | 9.7 |

Table 1: Rejection rates

# Location shift (log) alternative

### Power comparisons

II. Power comparisons

Statistical analysis of survival trade-offs

Continuous TTO

inference

Comparisons by

scores vs. ranks

Comparison by scores

Effect of ties on

P-values

'log' analysis

Simulation study goals

Nominal P-value

Location shift (log) alternative

anemanv

Power Power

Conclusion



### **Effect: location shift**

### Power comparisons

II. Power comparisons
Statistical analysis of
survival trade-offs
Continuous TTO
inference
Comparisons by
scores vs. ranks
Comparison by scores

Effect of ties on

P-values

'log' analysis

Simulation study goals

Nominal P-value

Location shift (log)

alternative

Power

Power

Conclusion

| Equal sample sizes            | Effect: SHIFT   | 0.5 SD |    |    |
|-------------------------------|-----------------|--------|----|----|
| N=100                         | Rejection rate* |        |    |    |
|                               |                 |        |    |    |
| Test                          | %               | %      | %  | %  |
| alpha                         | 0.1             | 1      | 5  | 10 |
|                               | %               | %      | %  | %  |
| Wilcoxon RS                   | 14              | 36     | 62 | 73 |
| Normal scores                 | 14              | 37     | 63 | 74 |
| (unconditional)               | 15              | 38     | 63 | 74 |
| Logrank (exponential scores)  | 13              | 32     | 57 | 68 |
| t-test (permutation)          | 6               | 25     | 50 | 63 |
| (unconditional)               | 7               | 25     | 50 | 63 |
| *N=10000 replicated data sets |                 |        |    |    |

Table 2: Power: SHIFT alternative

# **Polarisation**

### Power comparisons

II. Power comparisons

Statistical analysis of survival trade-offs

Continuous TTO

inference

Comparisons by

scores vs. ranks

Comparison by scores

Effect of ties on

P-values

'log' analysis

Simulation study goals

Nominal P-value

Location shift (log)

alternative

Power

Power

Conclusion



# **Effect: polarisation**

|  |  |  | parisons |  |  |  |  |
|--|--|--|----------|--|--|--|--|
|  |  |  |          |  |  |  |  |
|  |  |  |          |  |  |  |  |
|  |  |  |          |  |  |  |  |
|  |  |  |          |  |  |  |  |

II. Power comparisons
Statistical analysis of
survival trade-offs
Continuous TTO
inference
Comparisons by
scores vs. ranks
Comparison by scores
Effect of ties on
P-values
'log' analysis
Simulation study goals

Nominal P-value

Location shift (log)

alternative

Power

Power

Conclusion

| Equal sample sizes            | Effect: POLARISE | 2.0*SD |    |    |
|-------------------------------|------------------|--------|----|----|
| N=100                         | Rejection rate*  |        |    |    |
|                               |                  |        |    |    |
| Test                          | %                | %      | %  | %  |
| alpha                         | 0.1              | 1      | 5  | 10 |
|                               | %                | %      | %  | %  |
| Wilcoxon RS                   | 0.6              | 5      | 15 | 24 |
| Normal scores                 | 1.2              | 8      | 22 | 32 |
| (unconditional)               | 2                | 8      | 22 | 32 |
| Logrank (exponential scores)  | 5                | 21     | 43 | 57 |
| t-test (permutation)          | 6                | 25     | 50 | 63 |
| (unconditional)               | 10               | 36     | 63 | 75 |
| *N=10000 replicated data sets |                  |        |    |    |

Table 3: Power: POLAR alternative

### Conclusion

#### Power comparisons

II. Power comparisons
Statistical analysis of
survival trade-offs
Continuous TTO
inference
Comparisons by

Comparison by scores

Effect of ties on P-values

scores vs. ranks

'log' analysis

Simulation study goals

Nominal P-value Location shift (log) alternative

Power

Power

Conclusion

- Nominal type 1 error rates (finite sample asymptotics) are reliable for STO data
- Standard method, normal scores tests, Wilcoxon share good performance under translation shift alternatives
- Very poor power in heterogeneous groups, relative to permutation t-test and logrank test
- mixture model analysis
- log rank tests for TTO and STO data!
- agrees with ad hoc analysis:  $\log(1 + T/0.25)$ .

#### R-notes

coin: Conditional Inference

Related R bootstrap

packages

hidden

# **R-notes**

Malcolm Hudson ASC2008-R satellite – 41 / 55

### coin: Conditional Inference

R-notes

coin: Conditional

Related R bootstrap packages

hidden

Exact and asymptotic permutation distribution probabilities:

T. Horthorn R News, Vol 1/1, January 2001, p11

oneway\_test two- and K-sample permutation test

wilcox\_test Wilcoxon-Mann-Whitney rank sum test

normal\_test van der Waerden normal quantile test

ansari\_test Ansari-Bradley test

fligner\_test Fligner-Killeen test

chisq\_test Pearsons  $\chi^2$  test

cmh\_test Cochran-Mantel-Haenszel test

lbl\_test linear-by-linear association test

surv\_test two- and K-sample logrank test

spearman\_test Spearmans test

wilcoxsign\_test Wilcoxon-Signed-Rank test

## Related R bootstrap packages

#### R-notes

coin: Conditional Inference

Related R bootstrap packages

hidden

boot: This package incorporates quite a wide variety of bootstrapping tricks.

bootstrap: A package of relatively simple functions for bootstrapping and related techniques.

coin: A package for permutation tests (discussed above).

MChtest: This package is for Monte Carlo hypothesis tests, that is, tests using some form of resampling. This includes code for sampling rules where the number of samples taken depend on how certain the result is. permtest: A package containing a function for permutation tests of microarray data.

resper: A package for doing restricted permutations.

scaleboot: This package produces approximately unbiased hypothesis tests via bootstrapping.

simpleboot: A package of a few functions that perform (or present) bootstraps in simple situations, such as one and two samples, and linear regression.

```
Nscores.2 <- normal.scores(stto.2)
nscores.out2 \leftarrow t.test(Nscores.2[group==0],Nscores.2[group==1])
nscores.out2$p.value
test.NS.2 <- sum(Nscores.2[group==1])
?replicate
sum(replicate(10000,sum(Nscores.2[sample(n,n1)])) > = test.NS.2)/10000
sum(replicate(10000,sum(Nscores.2[sample(n,n1)])) <= test.NS.2)/10000
Nscores.2.rep <- apply (stto.2.rep,2,normal.scores)
nscoresP <- t.test(normal.scores(stto.2)[1:50], normal.scores(stto.2)[51:100])$p.value
nscores.P.2 \leftarrow apply(Nscores.2.rep,2, function(x){t.test(x[1:50],x[51:100])$p.value})
summary(nscores.P.2)
qqplot(nscores.P.2, unif.os)
for (alpha in c(0.001,0.01,0.05,0.10))
  print(sum(nscores.P.2 <= alpha)/10000)</pre>
## more precise P
```

```
norm.approx <- function(obs,scores,n1,N)
{  # approx permutation P-value from sampling without replacement mean, var
  # many scores are tied, but jittering leaves unchanged mu, V and sum of second group
  # test conditional on values observed, no continuity correction
mu <- n1* mean(scores)
s2 <- var(scores)
f <- n1/N
V <- n1*s2*(1-f)
z <- (obs-mu)/sqrt(V)
P1 <- pnorm(z)
P2 <- 1-P1
P <- ifelse(P1 <= 0.5, 2*P1, 2*P2)
list(z,P,P1,P2)
}</pre>
```

Malcolm Hudson

Malcolm Hudson

#### hidden

Women's Health Inititiative Study of HRT

Random effects/ Variance Component Model

Inference

References

Power Calculation code snippets

# **Appendix**

Malcolm Hudson ASC2008-R satellite – 47 / 55

## Women's Health Inititiative Study of HRT

### **Key features**

- Second large RCT<sup>8</sup> on Estrogen/progestin vs. placebo
- First of a pair of RCTs conducted by WHI with different HRT treatments
- Primary outcome CHD, primary adverse outcome invasive breast cancer
- Healthy post-menopausal women aged 50-79 yrs
- Population sample (direct mailing campaign)
- Multiple outcomes CHD, colorectal cancer, hip fractures, . . .
- Global index of monitored outcomes: balancing risks and benefits

### **Controversial**

- Settled advice to women
- Trial was stopped early (5 yrs vs 8.5 yrs) by the SDMC
- Stopping rule based on mix of outcome boundaries (1 positive, 8 adverse)
- Adverse boundaries were for breast cancer and 7 other outcomes the latter employed 1-sided  $\alpha=0.05/7$  boundaries
- Compliance: treatment non-compliance 25%-30% at 5 yrs

<sup>&</sup>lt;sup>8</sup>WHI Investigators, JAMA 2002

# **Annals of Internal Medicine**

Established in 1927 by the American College of Physicians

forme | Current Issue | Past Issues | Search | Collections | PDA Services | Subscribe | Contact Us | Help | ACP Online

### LETTER

### Large-Database Research

### Complement to Randomized Trials?

Jose A. Sacristan, MD; Javier Soto, MD, PhD; and Ines Galende, MD

15 May 1998 | Volume 128 Issue 10 | Page 875

To the Editor: We are disappointed by the emphasis that the articles on database research in the supplement published on 15 October 1997 place on sophisticated new mathematical models to control for confounding factors and by the classic commonplace that clinical database studies are "attractive alternatives to randomized trials" [1]. Using large databases to compare therapies remains controversial [2]. By design, databases record observations made in clinical practice. Because treatment decisions are not randomly allocated, any observed therapeutic effect may be due to unrecognized factors affecting the treatment allocation rather than the treatment itself.

It is surprising that a supplement focused on the future of databases did not mention new research methods, such as cross-design synthesis [3], directed toward the generation of results with an acceptable balance between internal and external validity. Specifically, cross-design synthesis proposes the assessment, adjustment, and combination of treatment effects obtained with randomized studies and database analyses.

80

# Random effects/ Variance Component Model

#### hidden

Women's Health Inititiative Study of HRT

Random effects/ Variance Component Model

Inference

References

Power Calculation code snippets

Searle's random effects model:  $Y = X\mu + \sum_{i=1}^{2} Z_i u_i + e$ , where  $u_1 = (u_{11}, \dots, u_{1N})^T$  and  $u_2 = (u_{2N_1+1}, \dots, u_{2N})^T$ , X is an arbitrary design matrix for fixed effects,  $Z_1$  is an NxN identity matrix and

$$Z_2 = \begin{bmatrix} 0^T \\ \end{bmatrix}^T$$
 is  $N \times N_2$ , with  $N = N_1 + N_2$ .

The log-likelihood l is conveniently expressed as

$$-2l = \sum_{j} \log(V_j) + \sum_{j} \frac{(y_j - \mu)^2}{V_j}$$

where  $V_j$  represents the variance of the treatment summary outcome in trial j according to the model. For example, in the model with two strata:

$$V_j = V_{j0} + \sigma_1^2$$
 for  $j = 1, \dots, N_1$   
=  $V_{j0} + \sigma_1^2 + \sigma_2^2$  for  $j = (N_1 + 1), \dots, N$  (1)

### Inference

#### hidden

Women's Health Inititiative Study of HRT

Random effects/ Variance Component Model

#### Inference

References

Power Calculation code snippets

Nested models may readily be compared by difference in log-likelihoods, once variance parameters are estimated.

Differences in twice log-likelihood  $-2\Delta l$  should be compared with *half* the tabled value for chi-square with degrees of freedom the number of extra variance parameters <sup>9</sup>.

<sup>&</sup>lt;sup>9</sup>Stram, Biometrics, 1994

#### hidden

Women's Health Inititiative Study of HRT

Random effects/ Variance Component Model

#### Inference

References
Power Calculation
code snippets



Malcolm Hudson ASC2008-R satellite – 52 / 55

#### hidden

Women's Health Inititiative Study of HRT

Random effects/ Variance Component Model

#### Inference

References

Power Calculation code snippets



Malcolm Hudson ASC2008-R satellite – 53 / 55

### References

#### hidden

Women's Health Inititiative Study of HRT

Random effects/ Variance Component Model

Inference

#### References

Power Calculation code snippets

- Hajek, Sidak, Sen Theory of rank tests, Wiley, 1998.
- Best Non-parametric comparisons of two histograms, Biometrics, 1994
- Buning et al. Power of generalised Wilcoxon test, Communications in Statistics
- Tanizaki Power comparisons of non-parametric tests: small-sample properties from Monte-Carlo experiments, 1997
- Varice, Weil, Exact non-null distributions of rank statistics,
   Communications in Statistics, 2001

```
simul2 <- data.frame(stto=stto.2,group)

## R graphics
library(lattice)
histogram(~log(stto)|group,data=simul2,breaks=(-7:4))
dev.set (2)
dev2bitmap ("simul2plot1.png", type="png256", res=72.00000000)
histogram(~log((stto+0.25)/0.25)|group,data=simul2,breaks=(seq(0,6,by=0.5)))</pre>
```