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Early stopping by the SDMC raised questions

Ethical issues Weigh individual risk of trial participants vs. community
benefit

Statistical interpretation of findings Over-estimate risk of the adverse
treatment effect (breast cancer) that led to stopping the trial;

! Statistical estimation of odds ratios requires adjusting for
multiple outcomes

! Stopping rule based on a mix of outcomes (1 primary, 7
adverse) implies limited information about each.

! Should we adjust the OR of breast cancer down?

Specific effects (inducing trial-specific bias) apply to randomized trials
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Aim: to review variation in published HRT trial results and the potential
for combining risk estimates from RCTs with those of cohort and
case-control studies

Cross-design synthesis (CDS): synthesis of evidence from multiple
(trial) sources and designs (RCTs, observational)
identify sources of variation in reported outcomes
appropriate identification, adjustments for bias
statistical model and methods
evaluation in meta-analysis of 28+ HRT studies

Issues bias- variance compromise
selection criteria for study inclusion in meta-analysis

Scope & Limitations uses reported summary statistics not IPD;
known within trial measurement uncertainty
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“Observational evidence is clearly better than opinion, but it is thoroughly
unsatisfactory.” (Archibald Cochran)

Therapy is chosen to affect outcome.

Treatment imbalances: Confounding. Why did the patient get treatment?
Time origin: Time since study enrolment? Subject age?
Temporal change

In observational studies estimating HRT effect on breast cancer, necessary to allow for
biases:

! earlier diagnosis, differential reporting of use,
! potential confounders: time since menopause, BMI, delay starting HRT after

menopause, years of HRT
! lead to substantial underestimation of risk of breast cancer associated with the use of

HRT4.
4Collaborative Group on Hormonal Factors in Breast Cancer (HFBC) Lancet, 1997



Reducing bias

Meta-analysis graphics

Meta-analysis graphics
I. Meta-analysis
graphics
Womens Health
Initiative study of HRT
This talk: Graphic
synthesis
Sources of bias in
observational studies

Reducing bias
Meta analysis models
and weighting
Cross-design RE
models
Meta-Analysis: HRT
studies up to WHI 2002

EM Algorithm

Model estimates

Findings

hidden

Malcolm Hudson ASC2008-R satellite – 8 / 55

Exclusion strategy: In a meta-analysis Peto5 excluded trials:
. . . “treatment assignment was not by strict randomisation”

Sources of bias in RCTs Lack of treatment concealment
Outcome evaluation not double blind
Study quality

In observational studies Stratification and model adjustment for
confounders

5Stampfer, Goldhaber, Yusuf, Peto and Henneken (NEJM 307)
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Single true meta effect (fixed effect) versus Inhomogeneity (random
effects).
RE model (DerSimonian and Laird6)

Yj = δ + uj + ej ,

ej , measurement error in the estimated treatment effect in study j, is
distributed N(0, V 2

0j ).

! Yj is the apparent effect,
! δ – average (meta) effect of treatment,
! uj , mean 0, variance σ2

1 , varies treatment effect due to specific study
effects

! V0j – measurement variance in the estimate of effect in study j.

Weightings of trial estimates are inverse to their variance: V0j + σ2
1

6DerSimonian & Laird, 1986
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Stratified binary outcomes: e.g. DerSimonian-Laird method with log
odds-ratio estimates Yj .

Study classes: e.g. randomised R, non-randomised NR. Postulate LME
model:

E(Yj |u) = µ + uj1 ∼ N(0, σ2
1
), for j∈R

E(Yj |u) = µ + δ + uj1 + uj2 ∼ N(0, σ2
1
+σ2

2
), for j∈NR.

Notes:

! Introduces an extra source of variation in NR studies
! If δ = 0, pooling class meta-estimates is legitimate.
! Not covered by DerSimonian-Laird theory.
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1. Included:

! all studies included in the HFBC (1997) meta-analysis (RCTs 0);
! published papers since this date (n=4, RCTs 2). Total N=28

estimates.

2. Goal: meta-estimate and display
3. Outcome: HRT effect on invasive breast cancer incidence

Odds-ratio (adjusted) comparing HRT (ever) vs HRT never.
4. Trial types case-control (hospital controls; community based controls),

prospective/ cohort,
two recent randomized clinical trials.
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{ # For two groups , R ( n1 t r i a l s , type =1) , NR ( n2 t r i a l s , type ! = 1)
# [ sn ip : sk ip E−step and ou te r i t e r a t i o n loop ]
# M−step : update var iance components d1 ( sigma 1ˆ2 ) and d2 ( sigma 2ˆ2 )

V <− V0 + d1 ∗ rep (1 , n )
V[ type ! =1 ] <− V[ type !=1 ] + d2 ∗ rep (1 , n2 )
w <− 1 /V

res <− ( y−mu)
ss1 <− sum(wˆ2∗ res ˆ 2 )
d1 <− ( d1 ˆ2 ∗ ss1 + d1∗ ( n − d1 ∗ sum(w) ) ) / n
d1var [ i t n ] <− d1

ss2 <− sum(w[ type ! = 1 ] ˆ2 ∗ res [ type ! = 1 ] ˆ 2 )
d2 <− ( d2 ˆ2 ∗ ss2 + d2 ∗ ( n2− d2∗ sum(w[ type ! = 1 ] ) ) ) / n2
d2var [ i t n ] <− d2

mu <− mu + sum(w ∗ res ) /sum(w0)
means [ i t n ] <− mu
}

EM. Sear le .100 <− EM3( y , V0 , n i t n =100 , d1=0.0001 ,d2=0.0004 , type=Study . Type )
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log-Likelihood statistics; after 1000 EM iterations
Model Parameter estimate −2l df
Homogeneous model µ̂ = 0.186
no random effects σ2

1 = 0
σ2

2 = 0 37.73 27
Heterogeneity but shared mean µ̂ = 0.188
non-randomised studies only, σ2

1 = 0
σ̂2

2 = 0.00684 27.407 26
Heterogeneity but shared mean µ̂ = 0.188
in both RCTs and NRCTs, σ̂2

1 = 0.00011
shared mean σ̂2

2 = 0.00672 27.405 25
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1. Odds ratios of risk of invasive breast cancer were generally consistent
over the 28 studies, once stratified by age, parity, age at first child,
years since menopause and BMI.

2. Exceptions can either be seen as ‘outlier’ trials, or as providing
support for extra variation (or over-dispersion) in OR estimates among
non-randomized studies (of any design class).

3. Outlier trials were indicated by a discrepancy between the naive
variance (1/a + 1/b + 1/c + 1/d) and the correct pooled variance
after stratification.

4. In either case, there is extra variation but no statistical evidence of
consistent bias when studies are classified by their design class.

5. The data is generally consistent with an average log OR comparing
(HRT ever use) with (HRT never use) between 0.16 and 0.22 with 95%
confidence.
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1. Paul Murrell, R Graphics, 2005, Chapman & Hall
2. Brian Everitt & Torsten Hothorn, A handbook of statistical analyses

using R. 2006, Boca Raton: Chapman & Hall/CRC
3. Maindonald and Braun, Data Analysis and Graphics Using R, Second

Edition, Cambridge
4. http://cran.rproject.org/doc/vignettes/HSAUR/Ch_meta_analysis.pdf

5. MiMa function, http://www.wvbauer.com/downloads.html
to fit Meta-Analytic Mixed-, Random-, and Fixed-Effects Models.

http://www.wvbauer.com/downloads.html
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Error Bar Plot via S-Plus Object Oriented Graphics (non R-compatible)

Data <− HRT5[ , c ( ”Y” , ” ID ” , ”SE.Y” ) ]
Data [ , 3 ] <− 1.96∗Data [ , 3 ]

g u i P l o t ( PlotType = ” Hor iz Er ro r Bar ” ,
GraphSheet= ” Er ro rBa rP lo t ” ,
DataSetValues = Data ) #HRT5[ , c ( ”Y ” , ” ID ” , ”SE.Y ” ) ]

guiCreate ( ” ReferenceLine ” , Name = ” Er ro rBa rP lo t$1$1 ” ,
L ineColor = ” Black ” , L ineS ty le= ” Short Dash ” ,
O r i e n ta t i o n = ” V e r t i c a l ” , Po s i t i o n = 0)

...

gu iModi fy ( ” Graph2D” , Name = ” Er ro rBa rP lo t$1 ” ,
PanelType = ” Condi t ion ” ,
Condit ionColumns = ”TT” ,
Condit ionType = ” D iscre te ” )
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Single population, home grown code, snippet

”EM1” = function ( y , V0 , maxitn = 1 , mu = sum( y / V0) /sum(1 / V0 ) , d1 = 0 .2 , cc1 = 0
cc2 = 0.001)

{
# Searle ’ s a lgo r i t hm (8 .15 )
# d1 var iance component
# i npu t logOR ( unscaled ) f o r spec i f i ed subgp as y
# V0 measurement var iances
# Searle ’ s cgence c r i t e r i o n
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Mandriva Linux 2007.1
R ver 2.6
KDE 3.5.6
RKWard 0.4.6 R GUI interface (fantastic)
kile LaTeX editor
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l i b r a r y ( l a t t i c e )
yscale <− round ( exp ( c ( −0.4 , −0.2 ,0 ,0 .2 ,0 .4 ,0 .6) ) ,1 ) # 1 decimal place

# basic p lo t , no grouping
xyp l o t ( ID ˜Y, data=hr t5s , sd= hr t5s$SE.Y,

panel= function ( x , y , subscr ip ts , sd , . . . ) {
panel . x yp l o t ( x , y , . . . )
la r rows ( x−sd [ subsc r i p t s ] , y ,

x+sd [ subsc r i p t s ] , y ,
angle =90 ,code=3 , len =0.1 ,#lwd=1 / sd [ subsc r i p t s ] ) / 4 ,
. . . )

panel . abline ( v=0 , l t y =2)
panel . abline ( v =0.18)
} ,
scales= l i s t ( x= l i s t ( a t=log ( yscale ) , labels=yscale ) )
)
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xyp l o t ( ID ˜Y|TT , data=hr t5s , sd= hr t5s$SE.Y,
panel= function ( x , y , subscr ip ts , sd , . . . ) {
panel . x yp l o t ( x , y , . . . )
la r rows ( x−sd [ subsc r i p t s ] , y ,

x+sd [ subsc r i p t s ] , y ,
angle =90 ,code=3 , len =0.1 ,#lwd=1 / sd [ subsc r i p t s ] ) / 4 ,
. . . )

panel . abline ( v=0 , l t y =2)
panel . abline ( v =0.18)
} ,
scales= l i s t ( x= l i s t ( a t=log ( yscale ) , labels=yscale ) )
)
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metabin(meta) Meta-analysis of binary outcome data
metacont(meta) Meta-analysis of continuous outcome data
metacum(meta) Cumulative meta-analysis
metagen(meta) Generic inverse variance meta-analysis
metainf(meta) Influence analysis in meta-analysis
trimfill(meta) Trim and fill method for meta-analysis
plot(meta) meta-analysis plots

Type ’help(FOO, package = PKG)’ to inspect entry ’FOO(PKG) TITLE’
rmeta:
der Simmonian and Laird RE, produces some nice graphs
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Context: parametric and rank tests: grouped outcomes with zero-spike.
Survival trade-off outcomes:

! In cancer studies, preferences between treatments may depend on
trading off discomfort and inconvenience for enhanced survival

! Two forms of outcome measure:

" time trade-off (TTO): offer extra survival time
" probability trade-off (PTO): offer higher probability of survival
" minimum outcome necessary to make treatment worthwhile
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STOs

! T : survival gain required for treatment to be worthwhile
! 50-70% of women judged a 1% improvement in 5 year survival rates

or a 3 month improvement in life expectancy to make either 6 cycles of
CMF or 4 cycles of AC worthwhile. 7

! Analysis perspectives

" underlying/latent continuous outcome?
" ordinal discrete (esp. survival categories, e.g, ’low-realistic’)?
" mixture distribution?

! both non-traders (T = 0, discrete) and continuous (T > 0)
outcomes

7Duric et al, Annals of Onc, 2005
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! T - time required for ACT to be worthwhile

" t- test, ’log’-transformation (ad hoc)?
" rank tests?

! Wilcoxon-Mann-Whitney
! Normal scores (common choice, underlying lognormal)?
! rank tests are invariant to (monotone) transformation

" discrete distributions (binning)?

! observed outcomes are discrete (1 day, 1 month, 3 mths, . . .
! pre-assign ‘scores’

" t-test, score STO levels using log
" rank tests scores are the o.s. under a distribution



Comparisons by scores vs. ranks

Malcolm Hudson ASC2008-R satellite – 29 / 55

AC4 vs CMF
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AC4 vs CMF
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statistic = mean difference in log((STTO+0.25)/0.25)
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P=0.07

*** Permutation Test Results ***

Number of Replications: 999

Summary Statistics:

Observed Mean SE alternative p.value

Param 0.6302 0.006444 0.3365 two.sided 0.07

Percentiles:

2.5% 5% 95% 97.5%

Param -0.6539397 -0.5460052 0.5544847 0.6529697
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! Consistency: logrank (CoxPH) with other tests
! Kruskal-Wallis, Normal scores, ordinal regression
! Logrank test P-values
! Effect of ties in Cox PH models?
! Ad hoc analysis by jittering to break ties
! Ad hoc analysis by t-test of log(1+TTO/0.25)
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! Validity of P-values reported in discrete TTO data

" based on asymptotic normality (finite sampling theory)
" permutation distribution P-values are gold standard

! Power comparisons

" location-shift alternatives to latent log-normal TTOs
" alternative: multiplicative factor changes latent TTO
" grouped in fixed intervals to form the discrete distributions

! Tests considered

" log- scores (permutation t-test)
" Wilcoxon (rank) test
" Normal scores (rank) test
" Exponential scores (Savage rank) test
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Null effect: type 1 error rates

Equal sample sizes Effect: NULL
N=100 Rejection rate

Test % % % %
alpha 0.1 1 5 10

% % % %
Wilcoxon RS 0.06 0.92 5.0 9.9
Normal scores 0.07 0.90 5.0 9.9

(unconditional) 0.10 0.98 5.0 9.8
Logrank (exponential scores) 0.08 1.00 4.7 9.5
t-test (permutation) 0.02 0.69 4.7 9.8

(unconditional) 0.02 0.70 4.6 9.7

Table 1: Rejection rates
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Equal sample sizes Effect: SHIFT 0.5 SD
N=100 Rejection rate*

Test % % % %
alpha 0.1 1 5 10

% % % %
Wilcoxon RS 14 36 62 73
Normal scores 14 37 63 74

(unconditional) 15 38 63 74
Logrank (exponential scores) 13 32 57 68
t-test (permutation) 6 25 50 63

(unconditional) 7 25 50 63
*N=10000 replicated data sets

Table 2: Power: SHIFT alternative
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Equal sample sizes Effect: POLARISE 2.0*SD
N=100 Rejection rate*

Test % % % %
alpha 0.1 1 5 10

% % % %
Wilcoxon RS 0.6 5 15 24
Normal scores 1.2 8 22 32

(unconditional) 2 8 22 32
Logrank (exponential scores) 5 21 43 57
t-test (permutation) 6 25 50 63

(unconditional) 10 36 63 75
*N=10000 replicated data sets

Table 3: Power: POLAR alternative
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! Nominal type 1 error rates (finite sample asymptotics) are reliable for
STO data

! Standard method, normal scores tests, Wilcoxon share good
performance under translation shift alternatives

! Very poor power in heterogeneous groups, relative to permutation
t-test and logrank test

! mixture model analysis
! log rank tests for TTO and STO data!
! agrees with ad hoc analysis: log(1 + T/0.25).
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Exact and asymptotic permutation distribution probabilities:
T. Horthorn R News, Vol 1/1, January 2001, p11

oneway test two- and K-sample permutation test
wilcox test Wilcoxon-Mann-Whitney rank sum test
normal test van der Waerden normal quantile test
ansari test Ansari-Bradley test
fligner test Fligner-Killeen test
chisq test Pearsons χ2 test
cmh test Cochran-Mantel-Haenszel test
lbl test linear-by-linear association test
surv test two- and K-sample logrank test
spearman test Spearmans test
wilcoxsign test Wilcoxon-Signed-Rank test
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boot: This package incorporates quite a wide variety of bootstrapping
tricks.
bootstrap: A package of relatively simple functions for bootstrapping and
related techniques.
coin: A package for permutation tests (discussed above).
MChtest: This package is for Monte Carlo hypothesis tests, that is, tests
using some form of resampling. This includes code for sampling rules
where the number of samples taken depend on how certain the result is.
permtest: A package containing a function for permutation tests of
microarray data.
resper: A package for doing restricted permutations.
scaleboot: This package produces approximately unbiased hypothesis
tests via bootstrapping.
simpleboot: A package of a few functions that perform (or present)
bootstraps in simple situations, such as one and two samples, and linear
regression.
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Nscores .2 <− normal . scores ( s t t o . 2 )
nscores . out2 <− t . t e s t ( Nscores . 2 [ group ==0] , Nscores . 2 [ group ==1])
nscores . out2$p . value
t e s t .NS.2 <− sum( Nscores . 2 [ group ==1])
? r e p l i c a t e
sum( r e p l i c a t e (10000 ,sum( Nscores . 2 [ sample ( n , n1)])) >= t e s t .NS. 2 ) / 10000
sum( r e p l i c a t e (10000 ,sum( Nscores . 2 [ sample ( n , n1)])) <= t e s t .NS. 2 ) / 10000
Nscores . 2 . rep <− apply ( s t t o . 2 . rep , 2 , normal . scores )
nscoresP <− t . t e s t ( normal . scores ( s t t o . 2 ) [ 1 : 5 0 ] , normal . scores ( s t t o . 2 ) [ 5 1 : 1 0 0 ] ) $p . value
nscores .P.2 <− apply ( Nscores . 2 . rep , 2 , function ( x ){ t . t e s t ( x [ 1 : 5 0 ] , x [ 5 1 :1 0 0 ] ) $p . value })
summary( nscores .P . 2 )
qqplot ( nscores .P.2 , u n i f . os )
for ( alpha i n c ( 0 .001 ,0 .01 ,0 .05 ,0 .10 ) ){

pr in t (sum( nscores .P.2 <= alpha ) / 10000)
}

## more prec ise P
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norm . approx <− function ( obs , scores , n1 ,N)
{ # approx permutat ion P−value from sampling w i thou t replacement mean, var
# many scores are t i ed , but j i t t e r i n g leaves unchanged mu, V and sum of second group
# t e s t cond i t i o na l on values observed , no con t i n u i t y co r r e c t i o n

mu <− n1∗ mean( scores )
s2 <− var ( scores )
f <− n1 /N
V <− n1∗s2∗(1− f )
z <− ( obs−mu) / sqrt (V)
P1 <− pnorm ( z )
P2 <− 1−P1
P <− i f e l s e (P1<=0.5, 2∗P1 , 2∗P2)
l i s t ( z ,P, P1 , P2 )
}
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nscores .P.2 b <− apply ( Nscores . 2 . rep , 2 , function ( x ){
norm . approx (sum( x [ 5 1 : 1 0 0 ] ) , x , 5 0 , 1 0 0 ) [ [ 2 ] ]
})

summary( nscores .P.2 b )
qqplot ( nscores .P.2b , u n i f . os )
for ( alpha i n c ( 0 .001 ,0 .01 ,0 .05 ,0 .10 ) ){

pr in t (sum( nscores .P.2 b <= alpha ) / 10000)
}

## Exponent ia l scores rank t e s t
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Key features

! Second large RCT8 on Estrogen/progestin vs. placebo
! First of a pair of RCTs conducted by WHI with different HRT treatments
! Primary outcome CHD, primary adverse outcome invasive breast cancer
! Healthy post-menopausal women aged 50-79 yrs
! Population sample (direct mailing campaign)
! Multiple outcomes – CHD, colorectal cancer, hip fractures, . . .
! Global index of monitored outcomes: balancing risks and benefits

Controversial

! Settled advice to women
! Trial was stopped early (5 yrs vs 8.5 yrs) by the SDMC
! Stopping rule based on mix of outcome boundaries (1 positive, 8 adverse)
! Adverse boundaries were for breast cancer and 7 other outcomes

the latter employed 1-sided α = 0.05/7 boundaries
! Compliance: treatment non-compliance 25%-30% at 5 yrs

8WHI Investigators, JAMA 2002
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Searle’s random effects model: Y = Xµ +
∑2

i=1 Ziui + e,
where u1 = (u11, . . . , u1N )T and u2 = (u2N1+1, . . . , u2N )T , X is an
arbitrary design matrix for fixed effects, Z1 is an NxN identity matrix and

Z2 =

[

0T
...I

]T

is N × N2, with N = N1 + N2.

The log-likelihood l is conveniently expressed as

−2l =
∑

j

log(Vj) +
∑

j

(yj − µ)2

Vj

where Vj represents the variance of the treatment summary outcome in
trial j according to the model. For example, in the model with two strata:

Vj = Vj0 + σ2
1 for j = 1, . . . , N1

= Vj0 + σ2
1 + σ2

2 for j = (N1 + 1), . . . , N (1)
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Nested models may readily be compared by difference in log-likelihoods,
once variance parameters are estimated.
Differences in twice log-likelihood −2∆l should be compared with half the
tabled value for chi-square with degrees of freedom the number of extra
variance parameters 9.

9Stram, Biometrics, 1994
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-0.4 -0.2 0.0 0.2 0.4 0.6
logOR
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Population Case-Control
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Randomized Controlled Trials

All studies - heterogeneity
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! Hajek, Sidak, Sen Theory of rank tests, Wiley, 1998.
! Best Non-parametric comparisons of two histograms, Biometrics, 1994
! Buning et al. Power of generalised Wilcoxon test, Communications in

Statistics
! Tanizaki Power comparisons of non-parametric tests: small-sample

properties from Monte-Carlo experiments, 1997
! Varice, Weil, Exact non-null distributions of rank statistics,

Communications in Statistics, 2001
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simul2 <− data . frame ( s t t o = s t t o . 2 , group )

## R graph ics
l i b r a r y ( l a t t i c e )
histogram ( ˜ log ( s t t o ) | group , data=simul2 , breaks =(−7:4))
dev . set ( 2 )
dev2bitmap ( ” s imu l2p lo t1 . png ” , type= ” png256 ” , res =72.00000000)
histogram ( ˜ log ( ( s t t o +0.25) / 0 .2 5 ) | group , data=simul2 , breaks =(seq (0 ,6 ,by = 0 . 5 ) ) )
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