
Structured Graphics Using the Lattice Package

John Maindonald

Australian National University

June 18, 2008

Lattice Graphics

Lattice Lattice implements trellis style graphics
(the S-PLUS flavour was the original)

Grid grid is a low-level graphics system, used to build lattice.
For grid, see Part II of Paul Murrell’s R Graphics

Lattice Lattice is more structured, automated and stylized.
vs base Much is done automatically, without user intervention.

Changes to the default style are harder than for base.

‘Printing’ Lattice functions do not“print” the graph. Conceptually:
graphs gph <- xyplot(ACT ∼ Year, data=austpop)

print(gph)

Updating update(gph, par.settings=simpleTheme(pch=16, cex=1.5))

Lattice Lattice syntax is consistent and tightly regulated
syntax For lattice, graphics formulae are mandatory.

Topics (some covered cursorily)

I Printing and updating issues.
I Customization

I Point, line and related settings.
I Axes, tick marks & labels, scales, etc.
I Mathematical, etc., expressions: Section 3.3.
I Regression lines &/or smooth curves: Section 3.3.

I Automatic key generation. More complex keys: See Section 3.4.
I Panels and other “viewports”: Finer control

I Panel functions: Section 5.1
I Interaction with lattice plots: Section 5.2.

I Other lattice functions (there are many).

Definitive reference

Sarkar, D. 2008. Lattice. Multivariate Data Visialization with R.
Springer.

A Dataset that is Ideally Made for Lattice

Australian & NZ apparent per person annual alcohol consumption of
the pure alcohol content (in liters) of liquor products, 1998 to 2006.

Beer Wine Spirit Country Year

1 5.24 2.86 1.81 Australia 1998
2 5.15 2.87 1.77 Australia 1999
3 5.06 2.94 1.88 Australia 2000
4 5.07 2.95 2.07 Australia 2001

. . .
9 4.57 3.11 2.15 Australia 2006

10 4.50 2.59 1.77 NewZealand 1998
11 4.28 2.65 1.64 NewZealand 1999

. . .
18 3.96 3.09 2.20 NewZealand 2006

These data are in the DAAGxtras package:

library(DAAGxtras)

Beer+Wine+Spirit, conditioning on Country
A

m
ou

nt
 c

on
su

m
ed

 (
pe

r
pe

rs
on

)

1

2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●
●

●
● ● ●

Australia

1998 2000 2002 2004 2006

●
● ● ● ● ● ● ●

●

NewZealand

Beer Spirit Wine●

xyplot(Beer+Spirit+Wine ~ Year | Country, data=grog,

outer=FALSE, auto.key=list(columns=3))

NB: Code has been simplified; next slide has full details.

Beer+Wine+Spirit, conditioning on Country, with frills

grogplot <-

xyplot(Beer+Spirit+Wine ~ Year | Country, data=grog,

outer=FALSE, auto.key=list(columns=3))

Send output from update() to command line, causing ‘printing’

update(grogplot, ylim=c(0,5.5),

xlab="", ylab="Amount consumed (per person)",

par.settings=simpleTheme(pch=c(1,3,4)))

Alternatively, spell out the details – ‘print’ explicitly

frillyplot <-

update(grogplot, ylim=c(0,5.5),

xlab="", ylab="Amount consumed (per person)",

par.settings=simpleTheme(pch=c(1,3,4)))

print(frillyplot)

Grouping of Points, and Columns in Parallel

Overplot
(a single panel)

Separate panels
(conditioning)

Levels of
a factor

Beer ∼ Year,
groups=Country Beer ∼ Year | Country

1

2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●
● ●

● ● ●

Aust
NZ

●

1

2

3

4

5

19982000200220042006

● ● ● ●
● ●

● ● ●

Australia

19982000200220042006

● ● ● ● ● ● ● ● ●

NewZealand

Beer+Wine+Spirit ∼ Year,
Columns
in parallel

outer=FALSE outer=TRUE

2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●
●

●
● ● ●

Beer
Wine
Spirit

●

2

3

4

5

1998 2002 2006

● ● ● ●
● ●

● ● ●

Beer

1998 2002 2006

● ● ● ● ● ● ● ● ●

Wine

1998 2002 2006

● ● ●
●

● ●
● ● ●

Spirit

Year

B
ee

r
+

 W
in

e
+

 S
pi

rit

2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●
●

●
● ● ●

Beer

1998 2000 2002 2004 2006

● ● ● ● ● ● ● ● ●

Wine

1998 2000 2002 2004 2006

● ● ●
●

● ●
● ● ●

Spirit

Australia NewZealand●

xyplot(Beer+Wine+Spirit ~ Year,

groups=Country, outer=TRUE,

data=grog,

auto.key=list(columns=2))

A
m

ou
nt

 c
on

su
m

ed
 (

pp
)

1

2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●
●

●
● ● ●

Australia

1998 2000 2002 2004 2006

●
● ●

● ● ● ● ●
●

NewZealand

xyplot(Beer ~ Year | Country, data=grog)

Year

B
ee

r
+

 W
in

e
+

 S
pi

rit
2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●
●

●
● ● ●

Australia
Beer

●
● ●

● ● ● ● ●
●

NewZealand
Beer

● ● ● ● ● ● ● ● ●

Australia
Wine

2

3

4

5

● ● ● ●
● ● ●

● ●

NewZealand
Wine

2

3

4

5

● ● ●
●

● ●
● ● ●

Australia
Spirit

1998 2000 2002 2004 2006

●
●

●
●

●
● ●

● ●

NewZealand
Spirit

xyplot(Beer+Wine+Spirit ~ Year | Country,

outer=TRUE, data=grog)

Year

B
ee

r
+

 W
in

e
+

 S
pi

rit

2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●
●

●
● ● ●

Beer

1998 2000 2002 2004 2006

● ● ● ● ● ● ● ● ●

Wine

1998 2000 2002 2004 2006

● ● ●
●

● ●
● ● ●

Spirit

Australia NewZealand●

xyplot(Beer+Wine+Spirit ~ Year,

groups=Country, outer=TRUE,

data=grog,

auto.key=list(columns=2))

A
m

ou
nt

 c
on

su
m

ed
 (

pp
)

1

2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●
●

●
● ● ●

Australia

1998 2000 2002 2004 2006

●
● ●

● ● ● ● ●
●

NewZealand

xyplot(Beer ~ Year | Country, data=grog)

Year

B
ee

r
+

 W
in

e
+

 S
pi

rit

2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●
●

●
● ● ●

Australia
Beer

●
● ●

● ● ● ● ●
●

NewZealand
Beer

● ● ● ● ● ● ● ● ●

Australia
Wine

2

3

4

5

● ● ● ●
● ● ●

● ●

NewZealand
Wine

2

3

4

5

● ● ●
●

● ●
● ● ●

Australia
Spirit

1998 2000 2002 2004 2006

●
●

●
●

●
● ●

● ●

NewZealand
Spirit

xyplot(Beer+Wine+Spirit ~ Year | Country,

outer=TRUE, data=grog)

Year

B
ee

r
+

 W
in

e
+

 S
pi

rit

2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●
●

●
● ● ●

Beer

1998 2000 2002 2004 2006

● ● ● ● ● ● ● ● ●

Wine

1998 2000 2002 2004 2006

● ● ●
●

● ●
● ● ●

Spirit

Australia NewZealand●

xyplot(Beer+Wine+Spirit ~ Year,

groups=Country, outer=TRUE,

data=grog,

auto.key=list(columns=2))

A
m

ou
nt

 c
on

su
m

ed
 (

pp
)

1

2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●
●

●
● ● ●

Australia

1998 2000 2002 2004 2006

●
● ●

● ● ● ● ●
●

NewZealand

xyplot(Beer ~ Year | Country, data=grog)

Year

B
ee

r
+

 W
in

e
+

 S
pi

rit

2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●
●

●
● ● ●

Australia
Beer

●
● ●

● ● ● ● ●
●

NewZealand
Beer

● ● ● ● ● ● ● ● ●

Australia
Wine

2

3

4

5

● ● ● ●
● ● ●

● ●

NewZealand
Wine

2

3

4

5

● ● ●
●

● ●
● ● ●

Australia
Spirit

1998 2000 2002 2004 2006

●
●

●
●

●
● ●

● ●

NewZealand
Spirit

xyplot(Beer+Wine+Spirit ~ Year | Country,

outer=TRUE, data=grog)

Year

B
ee

r
+

 W
in

e
+

 S
pi

rit

2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●
●

●
● ● ●

Beer

1998 2000 2002 2004 2006

● ● ● ● ● ● ● ● ●

Wine

1998 2000 2002 2004 2006

● ● ●
●

● ●
● ● ●

Spirit

Australia NewZealand●

xyplot(Beer+Wine+Spirit ~ Year,

groups=Country, outer=TRUE,

data=grog,

auto.key=list(columns=2))

A
m

ou
nt

 c
on

su
m

ed
 (

pp
)

1

2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●
●

●
● ● ●

Australia

1998 2000 2002 2004 2006

●
● ●

● ● ● ● ●
●

NewZealand

xyplot(Beer ~ Year | Country, data=grog)

Year

B
ee

r
+

 W
in

e
+

 S
pi

rit

2

3

4

5

1998 2000 2002 2004 2006

● ● ● ●
●

●
● ● ●

Australia
Beer

●
● ●

● ● ● ● ●
●

NewZealand
Beer

● ● ● ● ● ● ● ● ●

Australia
Wine

2

3

4

5

● ● ● ●
● ● ●

● ●

NewZealand
Wine

2

3

4

5

● ● ●
●

● ●
● ● ●

Australia
Spirit

1998 2000 2002 2004 2006

●
●

●
●

●
● ●

● ●

NewZealand
Spirit

xyplot(Beer+Wine+Spirit ~ Year | Country,

outer=TRUE, data=grog)

Conditioning on multiple factors

library(DAAG) # Make the tinting datset available

Separate the factor names with *, e.g.

2 conditioning factors

xyplot(csoa ~ it | sex * agegp, data=tinting)

3 conditioning factors

xyplot(csoa ~ it | sex * agegp * target, data=tinting)

3 conditioning factors; all panels on one page

xyplot(csoa ~ it | sex * agegp * target, data=tinting,

layout=c(4,2), aspect=1)

Use layout to specify the columns × rows × pages layout.

Use aspect=1 for a square plotting region (c.f. also aspect="xy")

Lattice parameter settings

1. Changes to points and line settings (a change of ‘theme’) are
readily made using the function simpleTheme() (in recent
versions of lattice).

2. Axis, axis tick, tick label and axis label settings are readily made
using the argument scales in the function call.

3. Lattice objects can be created, then updated – use update().

4. Note also the arguments aspect (aspect ratio) and layout (#
rows × # columns × # pages).

5. The type argument can specify any combination of p (points), l
(lines), b (points & lines), r (regression lines) and smooth (a
smooth curve). Set span to control the smoothness of any curve.

Use of simpleTheme() for Point & Line Settings

First use simpleTheme() to create a “theme” with the new settings:

miscSettings <- simpleTheme(pch = 16, cex=1.25)

Alternatives are then:

(i) Supply the “theme” to par.settings in the function call.
[This stores the settings with the object. These
stored settings over-ride the global settings at the time of printing.]

xyplot(Beer ~ Year | Country, data=grog,

par.settings=miscSettings)

(ii) Supply the “theme” to trellis.par.set(), prior to plotting:
[Makes the change globally, until a new trellis device is opened]

trellis.par.set(miscSettings)

xyplot(Beer ~ Year | Country, data=grog)

Axis, tick, tick label and axis label settings

jobplot <- xyplot(Ontario+BC ~ Date, data=jobs)

Half-length ticks, each quarter, Label years, Add key

tpos <- seq(from=95, by=0.25, to=97)

tlabs <- rep(c("Jan95", "", "Jan96", "", "Jan97"),

c(1,3,1,3,1))

update(jobplot, auto.key=list(columns=2), xlab="",

scales=list(tck=0.5, x=list(at=tpos, labels=tlabs)))

Date

O
nt

ar
io

 +
 B

C

2000

3000

4000

5000

95.0 95.5 96.0 96.5 97.0

● ●

● ●

O
nt

ar
io

 +
 B

C

2000

3000

4000

5000

Jan95 Jan96 Jan97

● ●

● ●

Ontario BC● ●

Now use logarithmic y -scale
O

nt
ar

io
 +

 B
C

e^7.6

e^7.8

e^8.0

e^8.2

e^8.4

e^8.6

95.0 95.5 96.0 96.5 97.0

● ●

Ontario

95.0 95.5 96.0 96.5 97.0

● ●

BC

logplot <-

xyplot(Ontario+BC ~ Date, data=jobs, outer=TRUE,

xlab="", scales=list(y=list(log="e")))

Natural
log scale

O
nt

ar
io

 +
 B

C

e^
8.

55
e^

8.
57

e^
8.

59

95.0 95.5 96.0 96.5 97.0

● ●
● ● ● ● ● ● ●

● ● ● ●

● ● ●
● ●

●

●

●
● ●

●

Ontario

95.0 95.5 96.0 96.5 97.0

e^
7.

46
e^

7.
48

e^
7.

50
e^

7.
52

●

●

● ●
●

●
●

● ●
●

●
●

● ●
●

● ● ●

●

●
●

●

●

●

BC

update(logplot, scales=list(y=list(relation="sliced")))

Natural
log scale,
"sliced"

Now use logarithmic y -scale
O

nt
ar

io
 +

 B
C

e^7.6

e^7.8

e^8.0

e^8.2

e^8.4

e^8.6

95.0 95.5 96.0 96.5 97.0

● ●

Ontario

95.0 95.5 96.0 96.5 97.0

● ●

BC

logplot <-

xyplot(Ontario+BC ~ Date, data=jobs, outer=TRUE,

xlab="", scales=list(y=list(log="e")))

Natural
log scale

O
nt

ar
io

 +
 B

C

e^
8.

55
e^

8.
57

e^
8.

59

95.0 95.5 96.0 96.5 97.0

● ●
● ● ● ● ● ● ●

● ● ● ●

● ● ●
● ●

●

●

●
● ●

●

Ontario

95.0 95.5 96.0 96.5 97.0

e^
7.

46
e^

7.
48

e^
7.

50
e^

7.
52

●

●

● ●
●

●
●

● ●
●

●
●

● ●
●

● ● ●

●

●
●

●

●

●

BC

update(logplot, scales=list(y=list(relation="sliced")))

Natural
log scale,
"sliced"

Now use logarithmic y -scale
O

nt
ar

io
 +

 B
C

e^7.6

e^7.8

e^8.0

e^8.2

e^8.4

e^8.6

95.0 95.5 96.0 96.5 97.0

● ●

Ontario

95.0 95.5 96.0 96.5 97.0

● ●

BC

logplot <-

xyplot(Ontario+BC ~ Date, data=jobs, outer=TRUE,

xlab="", scales=list(y=list(log="e")))

Natural
log scale

O
nt

ar
io

 +
 B

C

e^
8.

55
e^

8.
57

e^
8.

59

95.0 95.5 96.0 96.5 97.0

● ●
● ● ● ● ● ● ●

● ● ● ●

● ● ●
● ●

●

●

●
● ●

●

Ontario

95.0 95.5 96.0 96.5 97.0

e^
7.

46
e^

7.
48

e^
7.

50
e^

7.
52

●

●

● ●
●

●
●

● ●
●

●
●

● ●
●

● ● ●

●

●
●

●

●

●

BC

update(logplot, scales=list(y=list(relation="sliced")))

Natural
log scale,
"sliced"

Now use logarithmic y -scale
O

nt
ar

io
 +

 B
C

e^7.6

e^7.8

e^8.0

e^8.2

e^8.4

e^8.6

95.0 95.5 96.0 96.5 97.0

● ●

Ontario

95.0 95.5 96.0 96.5 97.0

● ●

BC

logplot <-

xyplot(Ontario+BC ~ Date, data=jobs, outer=TRUE,

xlab="", scales=list(y=list(log="e")))

Natural
log scale

O
nt

ar
io

 +
 B

C

e^
8.

55
e^

8.
57

e^
8.

59

95.0 95.5 96.0 96.5 97.0

● ●
● ● ● ● ● ● ●

● ● ● ●

● ● ●
● ●

●

●

●
● ●

●

Ontario

95.0 95.5 96.0 96.5 97.0

e^
7.

46
e^

7.
48

e^
7.

50
e^

7.
52

●

●

● ●
●

●
●

● ●
●

●
●

● ●
●

● ● ●

●

●
●

●

●

●

BC

update(logplot, scales=list(y=list(relation="sliced")))

Natural
log scale,
"sliced"

Adding regression lines (take a subset of the data)

Use type= c("p", "r") to get points & regression lines. Panels set
apart sex, with sport set apart within panels.

First, take a subset

aisBS <- subset(ais, sport %in% c("B_ball", "Swim"))

ais$sport <- factor(ais$sport) # drop now or later!

Code for axis labeling is omitted

xyplot(hg ~ rcc | sex, groups=sport[drop=TRUE],

data=aisBS, type=c("p","r"))

Subsetting & plotting, all in one

xyplot(hg ~ rcc | sex, groups=sport[drop=TRUE],

data=ais, type=c("p","r"),

subset = sport %in% c("B_ball", "Swim"))

Red cell count (1012.L−−1)

B
lo

od
 c

el
l t

o
pl

as
m

a
ra

tio
 (

%
)

36

38

40

42

44

46

48

4.0 4.5 5.0

●

●

●

●

●

●

●
●

●
● ●

●

●

f

4.0 4.5 5.0

●

●

●

●

●

●

●

●

●

●

●

●

m

B_Ball Swim●

Code for axis labeling is omitted

xyplot(hg ~ rcc | sex, groups=sport[drop=TRUE],

data=aisBS, type=c("p","r"))

Customized Panel & Strip Functions

Red cell count (1012.L−−1)

B
lo

od
 c

el
l t

o
pl

as
m

a
ra

tio
 (

%
)

12

13

14

15

16

4.0 4.5 5.0

●

●

●

●

●

●

●

●

●

●

●

●

●

Female

4.0 4.5 5.0

●

●

●
●

●

●

●

●

●

●
●●

Male

B_Ball Swim●

Add ‖
regression
lines;
customize
strip
labels:

Requires a customized panel function, plus strip function

Customized Panel & Strip Functions

Red cell count (1012.L−−1)

B
lo

od
 c

el
l t

o
pl

as
m

a
ra

tio
 (

%
)

12

13

14

15

16

4.0 4.5 5.0

●

●

●

●

●

●

●

●

●

●

●

●

●

Female

4.0 4.5 5.0

●

●

●
●

●

●

●

●

●

●
●●

Male

B_Ball Swim●

Add ‖
regression
lines;
customize
strip
labels:

Requires a customized panel function, plus strip function

Customized Panel & Strip Functions – Code

Add parallel regression lines; customize strip labels:

xyplot(hg ~ rcc | sex, groups=sport[drop=TRUE], data=aisBS,

auto.key=list(lines=TRUE, columns=2), aspect=1,

strip=strip.custom(factor.levels=c("Female","Male")),

panel=function(x, y, groups, subscripts, ...){

panel.superpose(x,y, groups=groups,

subscripts=subscripts, ...)

b <- coef(lm(y ~ groups[subscripts] + x))

lcol <- trellis.par.get()$superpose.line$col

lty <- trellis.par.get()$superpose.line$lty

panel.abline(b[1], b[3], col=lcol[1], lty=lty[1])

panel.abline(b[1]+b[2], b[3], col=lcol[2],

lty=lty[2])

})

Customized Panel & Strip Functions – Notes on Code I

strip=strip.custom(factor.levels=c("Female","Male")),

”Female” replaces the first level name (”f”), & ”Male” replaces ”m”

panel=function(x, y, groups, subscripts, ...){

panel.superpose(x,y, groups=groups,

subscripts=subscripts, ...)

. . . .

panel.abline(b[1], b[3], col=lcol[1], lty=lty[1])

panel.abline(b[1]+b[2], b[3], col=lcol[2],

lty=lty[2])

})

Inside panel functions, use functions such as panel.points(),
panel.lines(), etc.

If there are groups, panel.xyplot() calls panel.superpose()
Here, call panel.superpose() directly.

Customized Panel & Strip Functions – Notes on Code II

Calculate the regression estimates

b <- coef(lm(y ~ groups[subscripts] + x))

x and y are already subscripted. Use groups[subscripts], however.

The user needs to get the point & line type

lcol <- trellis.par.get()$superpose.line$col

lty <- trellis.par.get()$superpose.line$lty

Get default settings for colour and line type. The first two line types
and colors will be required, one for each of the two calls to abline().

Plotting expressions

This is extra to the code on the previous slide

xlab=expression("Red cell count (10"^{12}*"."*L^{-1}*")")

ylab="Blood cell to plasma ratio (%)"

Interaction with Lattice Plots

I Following the plot, call trellis.focus().

I In a multi-panel display, click on a panel to select it.

I Use functions such as panel.points(), panel.text(),
panel.abline(), panel.identify().

I Call trellis.focus(), as needed, to switch panels.

I When finished, call trellis.unfocus().

Example

xyplot(log(Time) ~ log(Distance), groups=roadORtrack,

data=worldRecords)

trellis.focus()

Now click (maybe twice) on a panel

panel.identify(labels=worldRecords$Place)

Click near to points that should be labeled

Right click to terminate

trellis.unfocus()

Focusing and Unfocusing – Further Notes

A lattice plot is made up of a number of “viewports”:

In the call to trellis.focus(), the default is (name="panel").

Other choices of name include "panel", "strip", name="legend"
and "toplevel". For name="legend"; side should be indicated.

Use the call trellis.panelArgs() to identify the arguments that
are available to panel functions following a call to trellis.focus().

To highlight, or not to highlight:

For non-interactive use, turn off highlighting:

trellis.focus(highlight=FALSE)

Further Information:

See the help pages for trellis.focus() and trellis.vpname().

Lattice – further possibilities

I Axes and labels – some further customizations
I Generation of tick labels in a date format: Section 3.2.

I More flexible keys: Section 3.4.

I Further lattice functions (there are many): 3.4.2 and 3.6.

I Much else:
Sarkar, D. 2008. Lattice. Multivariate Data Visialization with R.
Springer.

