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Data - Height/Diameter from Stage (1963)

A brief synopsis:

I 66 trees, purposively selected in

I 9 national forests around northern and central Idaho,
representing

I 5 habitat types.
I Trees split: decadal measurements of

I height
I dbhib
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Figure: Al Stage’s Grand Fir stem analysis data: height (m) against
diameter inside bark (cm). These were dominant and co-dominant trees.



A simpler perspective

Construct a height-diameter relationship using two randomly
selected trees in a forest, given that we have measured each three
times.

Growing conditions are quite different for the trees, leading to a
systematic difference between the height-diameter relationships.
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A simpler perspective

If we fit a simple regression to the trees then we obtain a flawed
residual/fitted value plot (left).

If we fit a simple regression to the trees with an intercept for each
plot then we obtain a reasonable residual/fitted value plot (right).
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Dilemma! Do we use a useless good model or a useful bad model?



Model for getting it wrong in R

hi = β0 + β1 × di + εi (1)

Regression assumptions.

I True relationship is linear.

I εi ∼ N (0, σ2)

I εi independent.



Diagnostics for getting it wrong in R

> hd.lm <- lm(height.m ~ dbhib.cm, data = stage)

> plot(hd.lm)
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Decomposition 1

Note that the model specification implies that:

ε̂ij = yij − ŷij (2)

and

I The true relationship is linear.

I εi ∼ N (0, σ2)

I The εi are independent.

Clearly not true. This is our problem.



Decomposition 2

What if we could make:

yij − ŷij = b̂i + ε̂ij (3)

So

ε̂ij = yij − ŷij − b̂i (4)

Then we merely need to assume that:

I The true relationship is linear.

I bi ∼ N (0, σ2
b)

I εij ∼ N (0, σ2)

I The residuals εij are independent.

Much more tenable!



Decomposition 3

The assumptions are satisfied because the systematic differences
between the plots, which previously produced correlation, are now
accounted for by the new random effects.

However, when the time comes to use the model for prediction, we
do not need to know the plot identity, as the fixed effects do not
require it.



Another look
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Model for getting it less wrong in R

hit = β0 + b0i + β1 × dit + εit (5)

Regression assumptions.

I True relationship is linear.

I b0i ∼ N (0, σ2
b0

), independent.

I εit ∼ N (0, σ2), independent.

Temporary Vocabulary.

I εit are the innermost (level k = 1) residuals.

I b0i + εit are the outermost (level 0) residuals.



(General Model Statement)

Y = Xβ + Zb + ε

b ∼ N (0,D)

ε ∼ N (0,R)

Design Matrices

I X allocates the fixed effects.

I Z allocates the random effects.

Covariance Matrices

I D describes the random effects covariance.

I R describes the residuals covariance.



Assumptions for getting it less wrong in R

Now, the key assumptions that we’re making are that:

1. the model structure is correctly specified

2. the tree random effects are normally distributed,

3. the tree random effects are homoskedastic.

4. the innermost residuals are normally distributed,

5. the innermost residuals are homoskedastic within and across
the tree random effects.

6. the innermost residuals are independent within the groups.



Software

Two primary tools to fit this model:

I lme (nlme)
I Stable
I Well-documented
I Many helper functions

I lmer (lme4)
I Crossed random effects
I Optimized for large datasets
I MCMC for inference
I GLMM

although numerous other tools will do it too.



Fitting a model

Popular arguments.

lme(fixed, # y ~ the fixed effects

random, # ~ covariates | groups

data, # name the dataframe

na.action, # what to do with missing values

subset, # including only some of the data

weights, # heteroskedasticity within groups

correlation, # correlation within groups

method, # ReML or ML

control, # underneath the bonnet

keep.data = TRUE)



Fit.

> require(nlme)

> stage.g <- groupedData(height.m ~ dbhib.cm | Tree.ID,

+ data = stage)

> hd.lme.1 <- lme(height.m ~ dbhib.cm,

+ random = ~ 1 | Tree.ID,

+ data = stage.g)

> require(lme4)

> hd.lmer.1 <- lmer(height.m ~ dbhib.cm + (1|Tree.ID),

+ data = stage)



Helper functions

I lme()

> resid(hd.lme.1, type = "p", level = 1)

> fitted(hd.lme.1, level = 0)

> ranef(hd.lme.1, standard = FALSE)

I lmer()

> resid(hd.lmer.1) # level = k, not standardized

> fitted(hd.lmer.1) # level = k

> ranef(hd.lmer.1) # Not standardized



lme() Linearity, constant variance

> trellis.par.set(plot.line = list(col = "black"))

> plot(hd.lme.1,

+ resid(., type = "p") ~ fitted(.),

+ type = c("p", "smooth"))

Fitted values
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lme() Normality (and homoskedasticity)

> qqnorm(hd.lme.1, ~ ranef(., standard = TRUE))

> qqnorm(hd.lme.1, ~ resid(., type = "p"))

Standardized random effects
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lme() Constant Variance.

> plot(hd.lme.1,

+ sqrt(abs(resid(., type = "p"))) ~ fitted(.),

+ type = c("p", "smooth"))
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lme() Diagnosing Variance Structures
> plot(hd.lme.1,

+ sqrt(abs(resid(., type = "p"))) ~ fitted(.) | HabType.ID,

+ type = c("p", "smooth"))

Fitted values
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lme() Within-subject heteroskedasticity

In the one-level case, we model as follows:

yij = β0 + bi + β1 × xij + εij (6)

Regression assumptions.

I True relationship is linear.

I bi ∼ i.i.d N (0, σ2
b)

I εij ∼ i.i.d N (0,Var(εij |bi ))

I Var(εij |bi ) = σ2g2(µij , vij, δ)



lme() Variance Structures: weights =

Arguments:

I value = δ0, form = ∼ cov | stratum, fixed = δ.

Function types:

I varFixed: known variance relation (still estimate σ2).

I varIdent: different constant variances within each stratum

I varPower: power of nominated covariate(s); default fitted.

g = |vij|δ

I varExp: exponential of covariate(s); default fitted.

g = exp(δvij)

I varConstPower: constant plus power; default fitted.

g = δ1 + |vij|δ2

I varComb: combination by product.



lme() Testing Variance Structures

anova(model_1, model_2)



lme() Conditional independence

> plot(hd.lme.1,

+ resid(., type = "p") ~ fitted(.),

+ subset = stage$Tree.ID=="77", type = "b")

> plot(ACF(hd.lme.1, resType = "n"), alpha = 0.01)

Fitted values
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lme() Modelling within-subject autocorrelations

Spatial or temporal (or both)

I By definition, residuals are no longer independent.

I Correlation of two residuals is modelled as some smooth
function of their relative position.

I corr(εij , εij ′) = h(|εij , εij ′ |, ~ρ)

NB: Now we use resType = "n" to assess corrections to the
model.



lme() Temporal Correlation: correlation =

Arguments:

I value = δ0, form = ∼ cov | stratum,
fixed = FALSE.

Function types:

I corCompSymm(): a compound-symmetric matrix;
h(|εij , εij ′ |, ρ) = ρ

I corSymm(): a general positive definite matrix;
h(|εij , εij ′ |, ρ) = ρk

I corAR1(): autoregressive with order 1;
h(|εij , εij ′ |, ρ) = ρk , k = 0, 1, . . .

I corCAR1(): continuous autoregressive with order 1;
h(|εij , εij ′ |, ρ) = ρk , k ≥ 0

I corARMA(p = a, q = b): autoregressive moving average,
any order (a, b).



lme() Spatial Correlation Structures

> plot(Variogram(hd.lme.1, form = ~dbhib.cm | Tree.ID))
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lme() Spatial Correlation Structures

These functions were intended for 2-d correlation but are more
general, and can be used for 1-d correlation as well.

The general form of the semivariogram is:

γ[d(εx , εy ), λ] =
1

2
Var(εx − εy )

=
1

2
E(εx − εy )2



lme() Spatial Correlation Structures

Arguments:

I value = δ0, form = ∼ cov | stratum, nugget = FALSE,
metric = "euclidean", fixed = FALSE.

The supported semivariogram functions are:

1. corExp: exponential semivariogram;
γ(s, ρ) = 1− exp(−s/ρ)

2. corGaus: Gaussian semivariogram;
γ(s, ρ) = 1− exp(−(s/ρ)2)

3. corLin: linear semivariogram;
γ(s, ρ) = 1− (1− s/ρ)× I (s < ρ)

4. corRatio: rational quadratic semivariogram;
γ(s, ρ) = (s/ρ)2/(1 + (s/ρ)2)

5. corSpher: spherical semivariogram;
γ(s, ρ) = 1− (1− 1.5s/ρ + 0.5(s/ρ)3)× I (s < ρ)



lme() Spatial Correlation Structures
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Variations on a Theme from Stage

I lme()

> hd.lme.2 <- update(hd.lme.1,

+ random = ~ dbhib.cm | Tree.ID)

> hd.lme.3 <- update(hd.lme.1,

+ random = ~ dbhib.cm - 1 | Tree.ID)

I lmer()

> hd.lmer.2 <-

+ update(hd.lmer.1,

+ formula = height.m ~ dbhib.cm +

+ (dbhib.cm | Tree.ID))

> hd.lmer.3 <-

+ update(hd.lmer.1,

+ formula = height.m ~ dbhib.cm +

+ (dbhib.cm - 1 | Tree.ID))



lme() More than one random effect per subject.

> pairs(ranef(hd.lme.2))
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lme() Snapshot.

> plot(augPred(hd.lme.2))
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lme() Double Snapshot.

> plot(comparePred(hd.lme.2, hd.lme.3))
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lme() The other correlation.

The following structures are supported for the covariance matrices
of random effects.

I pdBlocked: a block-diagonal matrix, comprising other types.

I pdCompSymm: a compound-symmetry matrix

I pdIdent: some multiple of the identity matrix

I pdSymm: the default, a general positive definite matrix



lme() Specifying the control parameters

I often use ...

control = lmeControl(
maxIter = 5000, # Of course
msMaxIter = 5000, # it helps
niterEM = 500, # to be
msMaxEval = 500, # patient!
msVerbose = TRUE, # Loquacity ...
opt = "optim", # Optional, and
optimMethod = "Nelder-Mead" # often useful
)

Changing the optimizer can make the difference between
convergence and failure.

> help(lmeControl)



Estimating Random Effects

Point Estimates

> summary(hd.lme.1)

. . .

Random effects:
Formula: ~1 | Tree.ID

(Intercept) Residual
StdDev: 2.976158 2.386359

> VarCorr(hd.lme.1)

Tree.ID = pdLogChol(1)
Variance StdDev

(Intercept) 8.857514 2.976158
Residual 5.694708 2.386359



Estimating Random Effects

Interval Estimates

> intervals(hd.lme.1)

. . .

Random Effects:
Level: Tree.ID

lower est. upper
sd((Intercept)) 2.474999 2.976158 3.578796

Within-group standard error:
lower est. upper

2.239627 2.386359 2.542704



Inference for Random Effects

Fit two models: one including the random effect(s) under question,
and the other excluding it/them. Compare the models using the
anova() function, which performs a likelihood ratio test (among
other things).

> anova(hd.lme.1, hd.lme.2)

Model df AIC BIC logLik Test L.Ratio p-value

hd.lme.1 1 4 2664.745 2681.911 -1328.372

hd.lme.2 2 6 2463.740 2489.489 -1225.870 1 vs 2 205.0049 <.0001



Estimating Fixed Effects

Point Estimates

> summary(hd.lme.1)

. . .

Fixed effects: height.m ~ dbhib.cm
Value Std.Error DF t-value p-value

(Intercept) 2.2896107 0.4268314 475 5.3642 0
dbhib.cm 0.6628527 0.0065173 475 101.7070 0
Correlation:

(Intr)
dbhib.cm -0.445



Estimating Fixed Effects

Interval Estimates

> intervals(hd.lme.1)

. . .

Fixed effects:
lower est. upper

(Intercept) 1.4508994 2.2896107 3.128322
dbhib.cm 0.6500465 0.6628527 0.675659



Inference for Fixed Effects

Be Alert, not Alarmed.

The degrees of freedom and therefore the tests that they index
should be viewed as approximate.

Use the anova() function to construct sequential conditional F
tests.

> anova(hd.lme.1)

numDF denDF F-value p-value
(Intercept) 1 475 3198.518 <.0001
dbhib.cm 1 475 10344.325 <.0001



Inference for Fixed Effects

If the term order is inappropriate, then refit (update()!) the
model, replacing the expression of the fixed effects with:

terms(y ~ x1 * x2 + x3, keep.order=TRUE)

The t-tests reported in the various coefficient tables are marginal.
The anova() function will perform marginal tests also, by calling
the type = "marginal" argument.



lme() Alert or Alarmed?

The authors have provided a simulation function that permits the
checking of various large-sample assumptions for any given model.
Denote a null model and an alternative model. Data are generated
from the null model and then fit to both models, and the LRT
computed.

A similar tool might become available for lmer at some point.

> hd.lme.4 <- update(hd.lme.1,

+ fixed = height.m ~ dbhib.cm + HabType.ID)

> simulate.hd <- simulate.lme(hd.lme.1, hd.lme.4,

+ method = "ML",

+ nsim=1001, seed=2115153)



lme() Alert or Alarmed?

> plot(simulate.hd, df = c(4, 5))
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Other relationships between random effects

The consideration of only nested random effects amounts to a
substantial constraint on model fitting.

In reality, effects can be any structure. For example, . . .



Stage Data

The 66 trees (t) were measured at multiple ages (a) in 9
forests (f ) and 5 habitat types (h). Forests are crossed with
habitat types, and trees are nested within both.

hatfh = β0 + bf + bh + bt(fh) + β1 × dat(fh) + εatfh (7)

Regression assumptions.

I True relationship is linear.

I bf ∼ iid N (0, σ2
bf

)

I bh ∼ iid N (0, σ2
bh

)

I bt(fh) ∼ iid N (0, σ2
bt

)

I εatfh ∼ iid N (0, σ2)

NB: a 1-d hierarchical structure of residuals no longer makes
sense . . .



New Strategy

> hd.lmer.0 <-

+ lmer(height.m ~ dbhib.cm + (1|Tree.ID), data=stage)

> hd.lmer.1 <-

+ lmer(height.m ~ dbhib.cm + (1|Forest.ID) +

+ (1|HabType.ID) + (1|Tree.ID), data=stage)



New Strategy

> str(ranef(hd.lmer.1, postVar = TRUE))

Formal class 'ranef.lmer' [package "lme4"] with 1 slots

..@ .Data:List of 3

.. ..$ :'data.frame': 66 obs. of 1 variable:

.. .. ..$ (Intercept): num [1:66] -2.09 -2.68 -6.10 -1.74 -1.41 ...

.. .. ..- attr(*, "postVar")= num [1, 1, 1:66] 1.56 1.22 1.04 1.33 1.47 ...

.. ..$ :'data.frame': 9 obs. of 1 variable:

.. .. ..$ (Intercept): num [1:9] 0.0579 -0.3830 0.0811 -0.3708 0.8248 ...

.. .. ..- attr(*, "postVar")= num [1, 1, 1:9] 0.528 0.434 0.475 0.464 0.327 ...

.. ..$ :'data.frame': 5 obs. of 1 variable:

.. .. ..$ (Intercept): num [1:5] 1.174 -0.647 1.791 -0.563 -1.755

.. .. ..- attr(*, "postVar")= num [1, 1, 1:5] 1.158 2.180 1.110 0.952 1.034

> str(residuals(hd.lmer.1))

num [1:542] -0.902 -0.249 -0.687 -1.164 1.138 ...



New Strategy

> anova(hd.lmer.0, hd.lmer.1)

Data: stage

Models:

hd.lmer.0: height.m ~ dbhib.cm + (1 | Tree.ID)

hd.lmer.1: height.m ~ dbhib.cm + (1 | Forest.ID) + (1 | HabType.ID) + (1 |

hd.lmer.0: Tree.ID)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

hd.lmer.0 3 2654.4 2667.3 -1324.2

hd.lmer.1 5 2650.4 2671.9 -1320.2 8.0161 2 0.01817 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



What information is available?

> slotNames(summary(hd.lmer.1))

[1] "isG" "methTitle" "logLik" "ngrps" "sigma" "coefs"

[7] "vcov" "REmat" "AICtab" "flist" "Zt" "X"

[13] "y" "wts" "wrkres" "cnames" "nc" "Gp"

[19] "XtX" "ZtZ" "ZtX" "Zty" "Xty" "Omega"

[25] "L" "RZX" "RXX" "rZy" "rXy" "devComp"

[31] "deviance" "fixef" "ranef" "RZXinv" "bVar" "gradComp"

[37] "status" "frame" "call" "terms"



Variance estimates

> summary(hd.lmer.1)@REmat

Groups Name Variance Std.Dev.
"Tree.ID" "(Intercept)" "6.38991" "2.52783"
"Forest.ID" "(Intercept)" "0.65699" "0.81055"
"HabType.ID" "(Intercept)" "2.96455" "1.72179"
"Residual" "" "5.69223" "2.38584"



Fixed effects: something’s missing

> summary(hd.lmer.1)@coefs

Estimate Std. Error t value
(Intercept) 2.325739 0.963098970 2.414849
dbhib.cm 0.662185 0.006508289 101.744860

> anova(hd.lmer.1)

Analysis of Variance Table
Df Sum Sq Mean Sq

dbhib.cm 1 58926 58926



So, lmer() provides no p-values for fixed effects!

1. Degrees of freedom are unknown, and approximations are
poor.

2. The tests ignore the extra uncertainty from estimating random
effects (they condition on the random effects.)

3. We don’t know the underlying distribution of the parameter
estimates.

> require(coda)

> mcmc.hd <- mcmcsamp(hd.lmer.1, n = 1001)

> densityplot(mcmc.hd, plot.points = FALSE)



Density Plot

> print(densityplot(mcmc.hd, plot.points = FALSE))
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New Strategy

> HPDinterval(mcmc.hd)

lower upper
(Intercept) -1.0057929 5.7980535
dbhib.cm 0.6489785 0.6750611
log(sigma^2) 1.6243177 1.9027143
log(T.ID.(In)) 1.0089994 2.0111319
log(F.ID.(In)) 1.4614669 3.7438338
log(HT.I.(In)) -0.9911411 2.9967855
attr(,"Probability")
[1] 0.95005



New Strategy

> require(languageR)

> pvals.fnc(hd.lmer.1, nsim = 1001)

$fixed

Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)

(Intercept) 2.3257 2.2781 -0.9768 5.8582 0.1578 0.0161

dbhib.cm 0.6622 0.6626 0.6507 0.6765 0.0010 0.0000

$random

MCMCmean HPD95lower HPD95upper

sigma 2.428 2.2645 2.603

T.ID.(In) 2.117 1.6956 2.719

F.ID.(In) 3.845 2.2808 6.704

HT.I.(In) 1.553 0.5937 4.169



Designed Experiments: Case study.

Oats growth data: the help file in R says:

The treatment structure used in the experiment was a
3×4 full factorial, with three varieties of oats and four
concentrations of nitrogen. The experimental units were
arranged into six blocks, each with three whole-plots
subdivided into four subplots. The varieties of oats were
assigned randomly to the whole-plots and the
concentrations of nitrogen to the subplots. All four
concentrations of nitrogen were used on each whole-plot.



Get the data and examine it.

> data(Oats)

> str(Oats)

Classes 'nfnGroupedData', 'nfGroupedData', 'groupedData' and 'data.frame': 72 obs. of 4 variables:

$ Block : Ord.factor w/ 6 levels "VI"<"V"<"III"<..: 6 6 6 6 6 6 6 6 6 6 ...

$ Variety: Factor w/ 3 levels "Golden Rain",..: 3 3 3 3 1 1 1 1 2 2 ...

$ nitro : num 0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 ...

$ yield : num 111 130 157 174 117 114 161 141 105 140 ...

- attr(*, "formula")=Class 'formula' length 3 yield ~ nitro | Block

.. ..- attr(*, ".Environment")=<R_GlobalEnv>

- attr(*, "labels")=List of 2

..$ y: chr "Yield"

..$ x: chr "Nitrogen concentration"

- attr(*, "units")=List of 2

..$ y: chr "(bushels/acre)"

..$ x: chr "(cwt/acre)"

- attr(*, "inner")=Class 'formula' length 2 ~Variety

.. ..- attr(*, ".Environment")=<R_GlobalEnv>



Represent the data somehow.

> require(lattice)

> xyplot(yield ~ nitro | Block,

+ group = Variety,

+ type = "l",

+ data = Oats)
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Effect an analysis

> Oats$nitro <- factor(Oats$nitro)

> oats.1 <- lme(yield ~ nitro * Variety,

+ random = ~ 1 | Block / Variety,

+ data = Oats)



Diagnostics

Scatterplot of residuals:

> scatter.smooth(fitted(oats.1), resid(oats.1))

> abline(h = 0, col = "tomato2")

qq-plot of residuals:

> qqnorm(resid(oats.1))

> qqline(resid(oats.1), col = "maroon4")

Variance-checking plot:

> scatter.smooth(fitted(oats.1), sqrt(abs(resid(oats.1))))

qq-plot of standardized block random effects:

> qqnorm(ranef(oats.1, standard = TRUE)[[1]][, 1])

> qqline(ranef(oats.1, standard = TRUE)[[1]][, 1], col = "steelblue4")

qq-plot of standardized variety within block random effects:

> qqnorm(ranef(oats.1, standard = TRUE)[[2]][, 1])

> qqline(ranef(oats.1, standard = TRUE)[[2]][, 1], col = "violetred3")



Check assumptions
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Check assumptions

One slightly odd block ...

> ranef(oats.1)[[1]]

(Intercept)

VI -6.259679

V -10.582911

III -6.529881

IV -4.706018

II 2.656986

I 25.421504



> anova(oats.1)

numDF denDF F-value p-value
(Intercept) 1 45 245.14333 <.0001
nitro 3 45 37.68561 <.0001
Variety 2 10 1.48534 0.2724
nitro:Variety 6 45 0.30282 0.9322



> summary(oats.2 <- update(oats.1, fixed = yield ~ nitro))

Linear mixed-effects model fit by REML

Data: Oats

AIC BIC logLik

596.2187 611.7553 -291.1094

Random effects:

Formula: ~1 | Block

(Intercept)

StdDev: 14.50596

Formula: ~1 | Variety %in% Block

(Intercept) Residual

StdDev: 11.03868 12.74987

Fixed effects: yield ~ nitro

Value Std.Error DF t-value p-value

(Intercept) 79.38889 7.132398 51 11.130742 0

nitro0.2 19.50000 4.249955 51 4.588283 0

nitro0.4 34.83333 4.249955 51 8.196164 0

nitro0.6 44.00000 4.249955 51 10.353050 0

Correlation:

(Intr) ntr0.2 ntr0.4

nitro0.2 -0.298

nitro0.4 -0.298 0.500

nitro0.6 -0.298 0.500 0.500

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.78155527 -0.61168952 0.02222401 0.62200734 1.68137804

Number of Observations: 72

Number of Groups:

Block Variety %in% Block

6 18



> summary(oats.3 <- update(oats.1, fixed = yield ~ ordered(nitro)))

Linear mixed-effects model fit by REML

Data: Oats

AIC BIC logLik

597.605 613.1416 -291.8025

Random effects:

Formula: ~1 | Block

(Intercept)

StdDev: 14.50596

Formula: ~1 | Variety %in% Block

(Intercept) Residual

StdDev: 11.03866 12.74987

Fixed effects: yield ~ ordered(nitro)

Value Std.Error DF t-value p-value

(Intercept) 103.97222 6.640618 51 15.657009 0.0000

ordered(nitro).L 32.94473 3.005173 51 10.962675 0.0000

ordered(nitro).Q -5.16667 3.005173 51 -1.719258 0.0916

ordered(nitro).C -0.44721 3.005173 51 -0.148815 0.8823

Correlation:

(Intr) or().L or().Q

ordered(nitro).L 0

ordered(nitro).Q 0 0

ordered(nitro).C 0 0 0

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.78155519 -0.61168955 0.02222437 0.62200777 1.68137738

Number of Observations: 72

Number of Groups:

Block Variety %in% Block

6 18



> summary(aov(yield ~ nitro * Variety + Error(Block/Variety),

+ data = Oats))

Error: Block

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 5 15875.3 3175.1

Error: Block:Variety

Df Sum Sq Mean Sq F value Pr(>F)

Variety 2 1786.4 893.2 1.4853 0.2724

Residuals 10 6013.3 601.3

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

nitro 3 20020.5 6673.5 37.6856 2.458e-12 ***

nitro:Variety 6 321.7 53.6 0.3028 0.9322

Residuals 45 7968.7 177.1

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



The roles differ

For the design,

I fixed effects represent themselves;

I random effects represent a population.

Within the model,

I fixed effects explain variation;

I random effects organize unexplained variation.

Random effects are effects that common sense says will explain
variation, but you don’t want to have to know them in order to be
able to apply the model.



Utility

Mixed effects models also allow the estimation of useful quantities.

I Variance components.

I Intra-class correlation.



Modelling is much more involved

Add a new dimension to your flow chart!



A Candidate Modelling Strategy

The modeling strategy depends on the modeler’s intention.

1. Fit baseline model.

1.1 Include the meaningful fixed effects.
1.2 Include the design random effects.

2. Check the assumption diagnostics.

3. Add or modify random components until diagnostics are
satisfied.

3.1 a heteroskedastic variance structure (several candidates)
3.2 a correlation structure (several candidates)
3.3 extra random effects (e.g. random slopes)

4. Consider adding more fixed effects.

5. Re-examine the diagnostics, add/modify random effects, etc.



Questions?

Hierarchical Linear Models

Assumptions

Random Effects

Fixed Effects

Further Developments

Designed Experiments

Wrap-up



Y = Xβ + Zb + ε

Var (Y | X,Z,β,b) = R

Var (Y | X,β) = ZDZ′ + R = V



Log Likelihood

L (β,V | Y,X) = −1

2
ln (|V|)−n

2
ln (2π)−1

2
(Y − Xβ)′ V−1 (Y − Xβ)

Profile β out

β̂ = (X′V−1X)−1X′V−1Y

β is gone!

L (β,V | Y,X) = f (V | Y,X,Z)

Estimate V̂ by maximization and then β̂ by substitution.



ReML

NB: Maximum likelihood estimators of covariance parameters are
usually negatively biased.

Briefly, ReML involves applying ML, but replacing

I Y with KY;

I X with 0;

I Z with K′Z; and

I V with K′VK

where K is any K such that K′X = 0.

e.g. K′ = I− X(X′X)−1X′

I Y becomes Y − X(X′X)−1X′Y;

I X becomes 0;

I Z becomes Z− X(X′X)−1XZ; and

I V becomes (I− X(X′X)−1X′)V(I− X(X′X)−1X′)′



Multiple Comparisons

It is often necessary to obtain simultaneous estimates of
fixed-effects parameters.

The estimable (gmodels) function allows for joint testing of
arbitrary linear contrasts, but not joint interval estimation.

Joint estimation and size-corrected testing requires the glht
(multcomp) function.



Estimating Contrasts of Fixed Effects

Use the estimable() function from the third-party package called
gmodels to obtain arbitrary linear contrasts of the model
parameter estimates. E.g. we get a prediction of the height for a
30 inch tree by:

> require(gmodels)

> estimable(hd.lme.1, c("(Intercept)" = 1, dbhib.cm = 30))

You’ll get a warning. Don’t take it personally.

help(estimable)
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