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Three basic types of spatial data:

� geostatistical

� regional

� point pattern



Geostatistical data
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GEOSTATISTICAL DATA:
The quantity of interest has a value at any location, . . .



Geostatistical data
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. . . but we only measure the quantity at certain sites. These values are our data.



Regional data
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REGIONAL DATA:
The quantity of interest is only defined for regions. It is measured/reported for certain fixed regions.



Point pattern data
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POINT PATTERN DATA:
The main interest is in the locations of all occurrences of some event (e.g. tree deaths, meteorite
impacts, robberies). Exact locations are recorded.



Points with marks
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Points may also carry data (e.g. tree heights, meteorite composition)



Point pattern or geostatistical data?
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POINT PATTERN OR GEOSTATISTICAL DATA?



Explanatory vs. response variables
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Response variable: the quantity that we want to “predict” or

“explain”

Explanatory variable: quantity that can be used to “predict” or

“explain” the response.



Point pattern or geostatistical data?
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Geostatistics treats the spatial locations as explanatory variables and the values
attached to them as response variables.
Spatial point pattern statistics treats the spatial locations, and the values
attached to them, as the response.



Point pattern or geostatistical data?

Spatial Statistics ASC Workshop 2008 – 12

“Temperature is increasing as we move from South to North” — geostatistics
“Trees become less abundant as we move from South to North” — point pattern
statistics
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For information on spatial statistics software:

� go to cran.r-project.org

� find Task Views --- Spatial
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GIS = Geographical Information System

ArcInfo proprietary esri.com

GRASS open source grass.osgeo.org



GRASS
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GRASS: Image data
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GRASS: Vector data
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GRASS: Regional data
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GRASS: Multiple data layers
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GRASS: Multiple data layers
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GRASS: Mixed layers
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GRASS: visualisation
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GRASS: Data integration
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GRASS: I mean really integrated
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GRASS: did I mention data integration
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GRASS: unbelievably well integrated
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GRASS
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GRASS: runs on anything
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Recommendations:

For visualisation of spatial data, especially for presentation

graphics, use a GIS.

For statistical analysis of spatial data, use R.

Establish two-way communication between GIS and R,

either through a direct software interface, or by

reading/writing files in mutually acceptable format.
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RGIS



Putting the pieces together
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RGIS

In
te

rf
ac

e

Interface between R and GIS (online or offline)



Interfaces
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Direct interfaces between R and GIS:
spgrass6 interface to GRASS 6

RArcInfo interface to ArcInfo



Interfaces
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Direct interfaces between R and GIS:
spgrass6 interface to GRASS 6

RArcInfo interface to ArcInfo

Start R and GRASS independently; then start library(spgrass6) to establish
communication



GIS data files
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ESRI “shapefiles” ArcInfo software esri.com

NetCDF Unidata GIS standard unidata.ucar.edu
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Dominant formats for data files:
ESRI “shapefiles” ArcInfo software esri.com

NetCDF Unidata GIS standard unidata.ucar.edu

Libraries for reading/writing formats, etc:

GDAL geospatial data gdal.org

PROJ.4 map projections remotesensing.org

R packages handling GIS data files:

rgdal shapefiles, GDAL, PROJ.4

maps + mapproj map databases



Putting the pieces together
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RGIS

spatial

data

supportIn
te

rf
ac
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Support for spatial data: data structures, classes, methods



R packages supporting spatial data
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R packages supporting spatial data classes:

sp generic
maps polygon maps
spatstat point patterns



Putting the pieces together
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RGIS

analysis

spatial

data

supportIn
te

rf
ac
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Capabilities for statistical analysis
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RGIS

analysis

spatial

data

support

analysis

analysis

In
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Multiple packages for different analyses
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R packages for geostatistical data

gstat classical geostatistics
geoR model-based geostatistics
RandomFields stochastic processes
akima interpolation

R packages for regional data

spdep spatial dependence
spgwr geographically weighted regression

R packages for point patterns

spatstat parametric modelling, diagnostics
splancs nonparametric, space-time
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Geostatistical data



Software
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The R package gstat does classical geostatistics: kriging,
variograms etc.



Maas River data
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> library(gstat)

Loading required package: sp

> data(meuse)

> class(meuse)

[1] "data.frame"

> names(meuse)

[1] "x" "y" "cadmium" "copper" "lead" "zinc" "elev"

[8] "dist" "om" "ffreq" "soil" "lime" "landuse" "dist.m"



Convert raw data to spatial class
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> coordinates(meuse) = ~x+y

> class(meuse)

[1] "SpatialPointsDataFrame"

attr(,"package")

[1] "sp"



Bubble plot
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> bubble(meuse, "zinc",

main="Zinc concentration (ppm)")

Zinc concentration

113
198
326
674.5
1839



Pixel image
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> data(meuse.grid)

> coordinates(meuse.grid) = ~x+y

> gridded(meuse.grid) = TRUE

> class(meuse.grid)

[1] "SpatialPixelsDataFrame"

attr(,"package")

[1] "sp"



Pixel image
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> image(meuse.grid["dist"])

> title("distance to river")

distance to river



Naive Interpolation
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> zinc.idw = krige(zinc~1, meuse, meuse.grid)

[inverse distance weighted interpolation]

> class(zinc.idw)

[1] "SpatialPixelsDataFrame"

attr(,"package")

[1] "sp"

> spplot(zinc.idw["var1.pred"],

main = "Inverse distance weighted interpolations")

zinc inverse distance weighted interpolations
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> plot(zinc ~ dist, meuse)

0.0 0.2 0.4 0.6 0.8

50
0

10
00

15
00

dist

zi
nc



Transformation
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> plot(log(zinc) ~ sqrt(dist), meuse)

> abline(lm(log(zinc) ~ sqrt(dist), meuse))
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Variograms

Spatial Statistics ASC Workshop 2008 – 50

Variogram assuming constant mean:
> lzn.vgm = variogram(log(zinc)~1, meuse)

> head(lzn.vgm)

np dist gamma dir.hor dir.ver id

1 57 79.29244 0.1234479 0 0 var1

2 299 163.97367 0.2162185 0 0 var1

3 419 267.36483 0.3027859 0 0 var1

> lzn.fit = fit.variogram(lzn.vgm, model = vgm(1, "Sph", 900, 1))

> lzn.fit

model psill range

1 Nug 0.05066243 0.0000

2 Sph 0.59060780 897.0209

> plot(lzn.vgm, lzn.fit)
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Variograms
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Variogram of residuals from a fitted spatial trend:
> lznr.vgm = variogram(log(zinc)~sqrt(dist), meuse)

> lznr.fit = fit.variogram(lznr.vgm, model = vgm(1, "Exp", 300, 1))

> lznr.fit

model psill range

1 Nug 0.05712231 0.0000

2 Exp 0.17641559 340.3201

> plot(lznr.vgm, lznr.fit)
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Kriging
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lzn.kriged = krige(log(zinc)~1, meuse, meuse.grid, model = lzn.fit)

spplot(lzn.kriged["var1.pred"])
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Conditional simulation
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lzn.condsim = krige(log(zinc)~1, meuse, meuse.grid, model = lzn.fit,

nmax = 30, nsim = 4)

spplot(lzn.condsim, main = "four conditional simulations")

four conditional simulations

sim1 sim2

sim3 sim4
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Regional data



Software
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The R package spdep analyses regional data using neighbourhood
dependence statistics.



Software
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> library(spdep)

Loading required package: sp

Loading required package: tripack

Loading required package: maptools

Loading required package: foreign

Loading required package: SparseM

Loading required package: boot



North Carolina SIDS data
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> data(nc.sids)

> plot(sidspolys, forcefill=FALSE)
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p-value for each region
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pmap <- probmap(nc.sids$SID74, nc.sids$BIR74)

brks <- c(0,0.001,0.01,0.025,0.05,0.95,0.975,0.99,0.999,1)

cols <- rainbow(length(brks))

plot(sidspolys, col=cols[findInterval(pmap$pmap, brks)], forcefill=FALSE)
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under 0.001
0.001 − 0.01
0.01 − 0.025
0.025 − 0.05
0.05 − 0.95

0.95 − 0.975
0.975 − 0.99
0.99 − 0.999
over 0.999



Neighbours
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Define which regions are immediate neighbours according to some criterion.
coords <- nc.sids[, c("east", "north")]

gg <- gabrielneigh(coords)

nb <- graph2nb(gg)
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Moran’s I
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An index of spatial autocorrelation:

I =
n

∑
i

∑
j wij(yi − ȳ)(yj − ȳ)

(
∑

i

∑
j wij)(

∑
i(yi − ȳ)2)

where wij = 1 if sites i and j are neighbours, and 0 otherwise.



Weights
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Convert neighbourhood relations to weights wij between each pair of regions i, j.
lw <- nb2listw(nb)

(Non-binary weights are possible too.)



Moran’s I
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> rates <- with(nc.sids, SID74/BIR74)

> moran.test(rates, listw=lw)

Moran’s I test under randomisation

data: rates

weights: lw

Moran I statistic standard deviate = 4.1051, p-value = 2.021e-05

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance

0.222612195 -0.010101010 0.003213686



Spatial correlogram
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> lmr <- lm(rates ~ 1, data=nc.sids, weights=BIR74)

> res <- sp.correlogram(nb, residuals(lmr), order=5, method="I")

> plot(res)
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Spatial point patterns



Software
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The R package spatstat supports statistical analysis for spatial
point patterns.



Point patterns
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A point pattern dataset gives the locations of objects/events occurring in a study region.

The points could represent trees, animal nests, earthquake epicentres, petty crimes, domiciles of
new cases of influenza, galaxies, etc.



Marks
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The points may have extra information called marks attached to them. The mark represents an
“attribute” of the point.
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The points may have extra information called marks attached to them. The mark represents an
“attribute” of the point.
The mark variable could be categorical, e.g. species or disease status:

off
on



Continuous marks
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The mark variable could be continuous, e.g. tree diameter:



Covariates
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Our dataset may also include covariates — any data that we treat as explanatory, rather than as
part of the ‘response’.
Covariate data may be a spatial function Z(u) defined at all spatial locations u, e.g. altitude, soil
pH, displayed as a pixel image or a contour plot:
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Covariates
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Covariate data may be another spatial pattern such as another point pattern, or a line segment
pattern, e.g. a map of geological faults:
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Intensity



Intensity
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‘Intensity’ is the average density of points (expected number of points per unit area).
Intensity may be constant (‘uniform’) or may vary from location to location (‘non-uniform’ or
‘inhomogeneous’).

uniform inhomogeneous



Swedish Pines data
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> data(swedishpines)

> P <- swedishpines

> plot(P)



Quadrat counts
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Divide study region into rectangles (‘quadrats’) of equal size, and count points in each rectangle.
Q <- quadratcount(P, nx=3, ny=3)

Q

plot(Q, add=TRUE)
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χ2 test of uniformity
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If the points have uniform intensity, and are completely random, then the quadrat counts should be
Poisson random numbers with constant mean.



χ2 test of uniformity

Spatial Statistics ASC Workshop 2008 – 77

If the points have uniform intensity, and are completely random, then the quadrat counts should be
Poisson random numbers with constant mean.
Use the χ2 goodness-of-fit test statistic

X2 =
∑ (observed − expected)2

expected
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If the points have uniform intensity, and are completely random, then the quadrat counts should be
Poisson random numbers with constant mean.
Use the χ2 goodness-of-fit test statistic

X2 =
∑ (observed − expected)2

expected

> quadrat.test(P, nx=3, ny=3)

Chi-squared test of CSR using quadrat counts

data: P

X-squared = 4.6761, df = 8, p-value = 0.7916



χ2 test of uniformity
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> QT <- quadrat.test(P, nx=3, ny=3)

> plot(P)

> plot(QT, add=TRUE)
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Kernel smoothing
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Kernel smoothed intensity

λ̃(u) =

n∑

i=1

κ(u − xi)

where κ(u) is the kernel function and x1, . . . , xn are the data points.



Kernel smoothing
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Kernel smoothed intensity

λ̃(u) =

n∑

i=1

κ(u − xi)

where κ(u) is the kernel function and x1, . . . , xn are the data points.

1. replace each data point by a square of chocolate
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Kernel smoothed intensity

λ̃(u) =

n∑

i=1

κ(u − xi)

where κ(u) is the kernel function and x1, . . . , xn are the data points.

1. replace each data point by a square of chocolate
2. melt chocolate with hair dryer



Kernel smoothing
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Kernel smoothed intensity

λ̃(u) =

n∑

i=1

κ(u − xi)

where κ(u) is the kernel function and x1, . . . , xn are the data points.

1. replace each data point by a square of chocolate
2. melt chocolate with hair dryer
3. resulting landscape is a kernel smoothed estimate of intensity function



Kernel smoothing
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den <- density(P, sigma=15)

plot(den)

plot(P, add=TRUE)
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Modelling intensity

Spatial Statistics ASC Workshop 2008 – 81

A more searching analysis involves fitting models that describe how

the point pattern intensity λ(u) depends on spatial location u or on

spatial covariates Z(u).
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A more searching analysis involves fitting models that describe how

the point pattern intensity λ(u) depends on spatial location u or on

spatial covariates Z(u).

Intensity is modelled using a “log link”.



Modelling intensity

Spatial Statistics ASC Workshop 2008 – 82

COMMAND INTENSITY

ppm(P, ~1) log λ(u) = β0
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COMMAND INTENSITY

ppm(P, ~1) log λ(u) = β0

β0, β1, . . . denote parameters to be estimated.



Modelling intensity
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COMMAND INTENSITY

ppm(P, ~1) log λ(u) = β0

ppm(P, ~x) log λ((x, y)) = β0 + β1x

β0, β1, . . . denote parameters to be estimated.



Modelling intensity
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COMMAND INTENSITY

ppm(P, ~1) log λ(u) = β0

ppm(P, ~x) log λ((x, y)) = β0 + β1x

ppm(P, ~x + y) log λ((x, y)) = β0 + β1x + β2y

β0, β1, . . . denote parameters to be estimated.



Swedish Pines data
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> ppm(P, ~1)

Stationary Poisson process

Uniform intensity: 0.007



Swedish Pines data
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> ppm(P, ~x+y)

Nonstationary Poisson process

Trend formula: ~x + y

Fitted coefficients for trend formula:

(Intercept) x y

-5.1237 0.00461 -0.00025



Modelling intensity
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COMMAND INTENSITY

ppm(P, ~polynom(x,y,3)) 3rd order polynomial in x and y



Modelling intensity
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COMMAND INTENSITY

ppm(P, ~polynom(x,y,3)) 3rd order polynomial in x and y

ppm(P, ~I(y > 18)) different constants above and below
the line y = 18



Fitted intensity
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fit <- ppm(P, ~x+y)

lam <- predict(fit)

plot(lam)
The predict method computes fitted values of intensity function λ(u) at a grid of locations.

lam
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Likelihood ratio test
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fit0 <- ppm(P, ~1)

fit1 <- ppm(P, ~polynom(x,y,2))

anova(fit0, fit1, test="Chi")



Likelihood ratio test
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fit0 <- ppm(P, ~1)

fit1 <- ppm(P, ~polynom(x,y,2))

anova(fit0, fit1, test="Chi")
Analysis of Deviance Table

Model 1: .mpl.Y ~ 1

Model 2: .mpl.Y ~ polynom(x, y, 5)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 699 408.10

2 694 400.62 5 7.48 0.19



Likelihood ratio test
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fit0 <- ppm(P, ~1)

fit1 <- ppm(P, ~polynom(x,y,2))

anova(fit0, fit1, test="Chi")
Analysis of Deviance Table

Model 1: .mpl.Y ~ 1

Model 2: .mpl.Y ~ polynom(x, y, 5)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 699 408.10

2 694 400.62 5 7.48 0.19

The p-value 0.19 exceeds 0.05 so the log-quadratic spatial trend is not significant.



Residuals
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diagnose.ppm(fit0, which="smooth")

Smoothed raw residuals

 −0.003 

 −0.002 

 −0.002 

 −0.001 

 −0.001 

 0 

 0 

 0.001  0.001 

 0.002 

 0.002 

 0.003 

 0
.0

04
 

 0
.0

05
 



Spatial Statistics ASC Workshop 2008 – 89

Spatial covariates



Spatial covariates

Spatial Statistics ASC Workshop 2008 – 90

A spatial covariate is a function Z(u) of spatial location.



Spatial covariates

Spatial Statistics ASC Workshop 2008 – 90

A spatial covariate is a function Z(u) of spatial location.

� geographical coordinates



Spatial covariates

Spatial Statistics ASC Workshop 2008 – 90

A spatial covariate is a function Z(u) of spatial location.

� geographical coordinates
� terrain altitude



Spatial covariates

Spatial Statistics ASC Workshop 2008 – 90

A spatial covariate is a function Z(u) of spatial location.

� geographical coordinates
� terrain altitude
� soil pH



Spatial covariates

Spatial Statistics ASC Workshop 2008 – 90

A spatial covariate is a function Z(u) of spatial location.

� geographical coordinates
� terrain altitude
� soil pH
� distance from location u to another feature



Spatial covariates

Spatial Statistics ASC Workshop 2008 – 90

A spatial covariate is a function Z(u) of spatial location.

� geographical coordinates
� terrain altitude
� soil pH
� distance from location u to another feature
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Covariates
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Covariate data may be another spatial pattern such as another point pattern, or a line segment
pattern:



Covariate effects
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For a point pattern dataset with covariate data, we typically

� investigate whether the intensity depends on the covariates
� allow for covariate effects on intensity before studying dependence between

points



Example: Queensland copper data
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A intensive mineralogical survey yields a map of copper deposits (essentially pointlike at this scale)
and geological faults (straight lines). The faults can easily be observed from satellites, but the
copper deposits are hard to find.

Main question: whether the faults are ‘predictive’ for copper deposits (e.g. copper less/more likely to
be found near faults).



Copper data
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data(copper)

P <- copper$SouthPoints

Y <- copper$SouthLines

plot(P)

plot(Y, add=TRUE)
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Copper data
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For analysis, we need a value Z(u) defined at each location u.
Example: Z(u) = distance from u to nearest line.
D <- distmap(Y)

plot(D)
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Lurking variable plot
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We want to determine whether intensity depends on a spatial covariate Z.
Plot C(z) against z, where C(z) = fraction of data points xi for which Z(xi) ≤ z.
Also plot C0(z) against z, where C0(z) = fraction of area of study region where Z(u) ≤ z.
lurking(ppm(P), Z)



Lurking variable plot
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We want to determine whether intensity depends on a spatial covariate Z.
Plot C(z) against z, where C(z) = fraction of data points xi for which Z(xi) ≤ z.
Also plot C0(z) against z, where C0(z) = fraction of area of study region where Z(u) ≤ z.
lurking(ppm(P), Z)
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Kolmogorov-Smirnov test
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Formal test of agreement between C(z) and C0(z).



Kolmogorov-Smirnov test
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Formal test of agreement between C(z) and C0(z).
> kstest(P, Z)

Spatial Kolmogorov-Smirnov test of CSR

data: covariate ’Z’ evaluated at points of ’P’

and transformed to uniform distribution under CSR

D = 0.1163, p-value = 0.3939

alternative hypothesis: two-sided



Copper data
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D <- distmap(Y)

ppm(P, ~Z, covariates=list(Z=D))

Fits the model
log λ(u) = β0 + β1Z(u)

where Z(u) is the distance from u to the nearest line segment.



Copper data
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D <- distmap(Y)

ppm(P, ~polynom(Z,5), covariates=list(Z=D))
fits a model in which log λ(u) is a 5th order polynomial function of Z(u).



Copper data
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fit <- ppm(P, ~polynom(Z,5), covariates=list(Z=D))

plot(predict(fit))
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Copper data
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Dr <- summary(D)$range

Dvalues <- seq(Dr[1], Dr[2], length=100)

fakeZ <- data.frame(Z=Dvalues)

fakexy <- data.frame(x=rep(0,100), y=rep(0,100))

lambda <- predict(fit, locations=fakexy, covariates=fakeZ)

plot(Dvalues, lambda, type="l")
plots fitted curve of λ against Z .



Copper data
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Likelihood ratio test
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fit0 <- ppm(P, ~1)

fit1 <- ppm(P, ~polynom(Z,5), covariates=list(Z=D))

anova(fit0, fit1, test="Chi")



Likelihood ratio test
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fit0 <- ppm(P, ~1)

fit1 <- ppm(P, ~polynom(Z,5), covariates=list(Z=D))

anova(fit0, fit1, test="Chi")
Analysis of Deviance Table

Model 1: .mpl.Y ~ 1

Model 2: .mpl.Y ~ polynom(Z, 5)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 682 372.32

2 677 370.04 5 2.28 0.81
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fit0 <- ppm(P, ~1)

fit1 <- ppm(P, ~polynom(Z,5), covariates=list(Z=D))

anova(fit0, fit1, test="Chi")
Analysis of Deviance Table

Model 1: .mpl.Y ~ 1

Model 2: .mpl.Y ~ polynom(Z, 5)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 682 372.32

2 677 370.04 5 2.28 0.81

The p-value 0.81 exceeds 0.05 so the 5th order polynomial is not significant.



Interaction
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‘Interpoint interaction’ is stochastic dependence between the points in a point pattern. Usually we
expect dependence to be strongest between points that are close to one another.

independent regular clustered



Example
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Example: spacing between points in Swedish Pines data

swedishpines



Example
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nearest neighbour distance = distance from a given point to the nearest other point

swedishpines
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Summary approach:

1. calculate average nearest-neighbour distance
2. divide by the value expected for a completely random pattern.

Clark & Evans (1954)

> mean(nndist(swedishpines))

[1] 7.90754

> clarkevans(swedishpines)

naive Donnelly cdf

1.360082 1.291069 1.322862
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Summary approach:

1. calculate average nearest-neighbour distance
2. divide by the value expected for a completely random pattern.

Clark & Evans (1954)

> mean(nndist(swedishpines))

[1] 7.90754

> clarkevans(swedishpines)

naive Donnelly cdf

1.360082 1.291069 1.322862

Value greater than 1 suggests a regular pattern.
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Exploratory approach:

� plot NND for each point

P <- swedishpines

marks(P) <- nndist(P)

plot(P, markscale=0.5)



Example

Spatial Statistics ASC Workshop 2008 – 109

Exploratory approach:

� plot NND for each point



Example

Spatial Statistics ASC Workshop 2008 – 109

Exploratory approach:

� plot NND for each point
� look at empirical distribution of NND’s

plot(Gest(swedishpines))
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Modelling approach:

� Fit a stochastic model to the point pattern, with likelihood based on the NND’s.

> ppm(P, ~1, Geyer(4,1))

Stationary Geyer saturation process

First order term:

beta

0.00971209

Fitted interaction parameter gamma: 0.6335



Example: Japanese pines
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Locations of 65 saplings of Japanese pine in a 5.7 × 5.7 metre square sampling region in a natural
stand.
data(japanesepines)

J <- japanesepines

plot(J)

Japanese Pines



Japanese Pines
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fit <- ppm(J, ~polynom(x,y,3))

plot(predict(fit))

plot(J, add=TRUE)

predict(fit)
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Adjusting for inhomogeneity
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If the intensity function λ(u) is known, or estimated from data, then
some statistics can be adjusted by counting each data point xi with a
weight wi = 1/λ(xi).



Inhomogeneous K-function
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lam <- predict(fit)

plot(Kinhom(J, lam))
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Conditional intensity
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A point process model can also be defined through its conditional intensity λ(u | x).
This is essentially the conditional probability of finding a point of the process at the location u, given
complete information about the rest of the process x.

u



Strauss process
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Strauss(γ = 0.2) Strauss(γ = 0.7)



Fitting Gibbs models
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The command ppm will also fit Gibbs models, using the technique of ‘maximum pseudolikelihood’.

data(swedishpines)

ppm(swedishpines, ~1, Strauss(r=7))

Stationary Strauss process

First order term:

beta

0.02583902

Interaction: Strauss process

interaction distance: 7

Fitted interaction parameter gamma: 0.1841



Fitting Gibbs models
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The model can include both spatial trend and interpoint interaction.
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The model can include both spatial trend and interpoint interaction.
data(japanesepines)

ppm(japanesepines, ~polynom(x,y,3), Strauss(r=0.07))



Fitting Gibbs models
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The model can include both spatial trend and interpoint interaction.
data(japanesepines)

ppm(japanesepines, ~polynom(x,y,3), Strauss(r=0.07))
Nonstationary Strauss process

Trend formula: ~polynom(x, y, 3)

Fitted coefficients for trend formula:

(Intercept) polynom(x, y, 3)[x] polynom(x, y, 3)[y]

0.4925368 22.0485400 -9.1889134

polynom(x, y, 3)[x^2] polynom(x, y, 3)[x.y] polynom(x, y, 3)[y^2]

-14.6524958 -41.0222232 50.2099917

polynom(x, y, 3)[x^3] polynom(x, y, 3)[x^2.y] polynom(x, y, 3)[x.y^2]

3.4935300 5.4524828 23.9209323

polynom(x, y, 3)[y^3]

-38.3946389

Interaction: Strauss process

interaction distance: 0.1

Fitted interaction parameter gamma: 0.5323



Plotting a fitted model
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When we plot or predict a fitted Gibbs model, the first order trend β(u) and/or the conditional
intensity λ(u | x) are plotted.
fit <- ppm(japanesepines, ~x, Strauss(r=0.1))

plot(predict(fit))

plot(predict(fit, type="cif"))
predict(fit)
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Simulating the fitted model
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A fitted Gibbs model can be simulated automatically using the Metropolis-Hastings algorithm (which
only requires the conditional intensity).
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A fitted Gibbs model can be simulated automatically using the Metropolis-Hastings algorithm (which
only requires the conditional intensity).
fit <- ppm(swedishpines, ~1, Strauss(r=7))

Xsim <- rmh(fit)

plot(Xsim)



Simulating the fitted model
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A fitted Gibbs model can be simulated automatically using the Metropolis-Hastings algorithm (which
only requires the conditional intensity).
fit <- ppm(swedishpines, ~1, Strauss(r=7))

Xsim <- rmh(fit)

plot(Xsim)

Xsim



Simulation-based tests
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Tests of goodness-of-fit can be performed by simulating from the fitted model.
plot(envelope(fit, Gest, nsim=19))
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Diagnostics
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More powerful diagnostics are available.
diagnose.ppm(fit)
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Marks
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Each point in a spatial point pattern may carry additional information called a ‘mark’. It may be

a continuous variate: tree diameter, tree height
a categorical variate: label classifying the points into two or more different types (on/off,

case/control, species, colour)

In spatstat version 1, the mark attached to each point must be a single value.



Spatial Statistics ASC Workshop 2008 – 125

Categorical marks



Categorical marks
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A point pattern with categorical marks is usually called “multi-type”.
> data(amacrine)

> amacrine

marked planar point pattern: 294 points

multitype, with levels = off on

window: rectangle = [0, 1.6012] x [0, 1] units (one unit = 662 microns)

> plot(amacrine)

amacrine



Multitype point patterns
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summary(amacrine)



Multitype point patterns
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summary(amacrine)

Marked planar point pattern: 294 points

Average intensity 184 points per square unit (one unit = 662 microns)

Multitype:

frequency proportion intensity

off 142 0.483 88.7

on 152 0.517 94.9

Window: rectangle = [0, 1.6012] x [0, 1] units

Window area = 1.60121 square units

Unit of length: 662 microns



Intensity of multitype patterns

Spatial Statistics ASC Workshop 2008 – 128

plot(split(amacrine))

split(amacrine)

off on



Intensity of multitype patterns
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data(lansing)

summary(lansing)

plot(lansing)

lansing



Intensity of multitype patterns
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“Segregation” occurs when the intensity depends on the mark (i.e. on the type of point).
plot(split(lansing))

split(lansing)

blackoak hickory maple

misc redoak whiteoak



Intensity of multitype patterns
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Let λ(u, m) be the intensity function for points of type m at location u. This can be estimated by
kernel smoothing the data points of type m.
plot(density(split(lansing)))
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Segregation
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The probability that a point at location u has mark m is

p(m | u) =
λ(u, m)

λ(u)

where λ(u) =
∑

m λ(u, m) is the intensity function of points of all types.



Segregation
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D <- density(lansing)

Y <- density(split(lansing))

Dblackoak <- Y$blackoak

pBlackoak <- eval.im(Dblackoak/D)

plot(pBlackoak)
pBlackoak
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Interaction between types



Interaction between types
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In a multitype point pattern, there may be interaction between the points of different types, or
between points of the same type.

amacrine



Bivariate G-function
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Assume the points of type i have uniform intensity λi, for all i.
For two given types i and j, the bivariate G-function Gij is

Gij(r) = P (Rij ≤ r)

where Rij is the distance from a typical point of type i to the nearest point of type j.



Bivariate G-function
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plot(Gcross(amacrine, "on", "off"))
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Bivariate G-function
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plot(alltypes(amacrine, Gcross))
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For a multitype point pattern:
COMMAND INTERPRETATION
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For a multitype point pattern:
COMMAND INTERPRETATION
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For a multitype point pattern:
COMMAND INTERPRETATION

ppm(X, ~1) log λ(u, m) = β constant.
Equal intensity for points of each type.

ppm(X, ~marks) log λ(u, m) = βm

Different constant intensity for points of each type.



Fitting Poisson models
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For a multitype point pattern:
COMMAND INTERPRETATION

ppm(X, ~1) log λ(u, m) = β constant.
Equal intensity for points of each type.

ppm(X, ~marks) log λ(u, m) = βm

Different constant intensity for points of each type.

ppm(X, ~marks + x)



Fitting Poisson models
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For a multitype point pattern:
COMMAND INTERPRETATION

ppm(X, ~1) log λ(u, m) = β constant.
Equal intensity for points of each type.

ppm(X, ~marks) log λ(u, m) = βm

Different constant intensity for points of each type.

ppm(X, ~marks + x) log λ((x, y), m) = βm + αx
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COMMAND INTERPRETATION
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Different constant intensity for points of each type.
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Common spatial trend
Different overall intensity for each type.

ppm(X, ~marks + x + marks:x)
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Common spatial trend
Different overall intensity for each type.

ppm(X, ~marks + x + marks:x) equivalent to
ppm(X, ~marks * x)
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For a multitype point pattern:
COMMAND INTERPRETATION

ppm(X, ~1) log λ(u, m) = β constant.
Equal intensity for points of each type.

ppm(X, ~marks) log λ(u, m) = βm

Different constant intensity for points of each type.

ppm(X, ~marks + x) log λ((x, y), m) = βm + αx

Common spatial trend
Different overall intensity for each type.

ppm(X, ~marks + x + marks:x) equivalent to
ppm(X, ~marks * x) log λ((x, y), m) = βm + αmx

Different spatial trends for each type
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Likelihood ratio test of segregation in Lansing Woods data:
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Likelihood ratio test of segregation in Lansing Woods data:

fit0 <- ppm(lansing, ~marks + polynom(x,y,3))

fit1 <- ppm(lansing, ~marks * polynom(x,y,3))

anova(fit0, fit1, test="Chi")
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Likelihood ratio test of segregation in Lansing Woods data:

fit0 <- ppm(lansing, ~marks + polynom(x,y,3))

fit1 <- ppm(lansing, ~marks * polynom(x,y,3))

anova(fit0, fit1, test="Chi")

Analysis of Deviance Table

Model 1: .mpl.Y ~ marks + polynom(x, y, 3)

Model 2: .mpl.Y ~ marks * polynom(x, y, 3)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 73515 17485.0

2 73470 16872.4 45 612.6 1.226e-100



Fitted intensity
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fit1 <- ppm(lansing, ~marks * polynom(x,y,3))

plot(predict(fit1))

predict(fit1)
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Inhomogeneous multitype K function
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Inhomogeneous K function can be generalised to inhomogeneous multitype K function.
fit1 <- ppm(lansing, ~marks * polynom(x,y,3))

lamb <- predict(fit1)

plot(Kcross.inhom(lansing, "maple","hickory",

lamb$markmaple, lamb$markhickory))
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Multitype Gibbs models



Conditional intensity
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The conditional intensity λ(u, m | x) is essentially the conditional probability of finding a point of
type m at location u, given complete information about the rest of the process x.

u



Multitype Strauss process
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> ppm(amacrine, ~marks, Strauss(r=0.04))

Stationary Strauss process

First order terms:

beta_off beta_on

156.0724 162.1160

Interaction: Strauss process

interaction distance: 0.04

Fitted interaction parameter gamma: 0.4464



Multitype Strauss process
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> rad <- matrix(c(0.03, 0.04, 0.04, 0.02), 2, 2)

> ppm(amacrine, ~marks,

MultiStrauss(radii=rad,types=c("off", "on")))

Stationary Multitype Strauss process

First order terms:

beta_off beta_on

120.2312 108.8413

Interaction radii:

off on

off 0.03 0.04

on 0.04 0.02

Fitted interaction parameters gamma_ij:

off on

off 0.0619 0.8786

on 0.8786 0.0000



Website
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www.spatstat.org
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