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Abstract

Predictive accuracy claims should give explicit de-
scriptions of the steps followed, with access to the
code used. This allows referees and readers to check
for common traps, and to repeat the same steps on
other data. Feature selection and/or model selection
and/or tuning must be independent of the test data.
For use of cross-validation, such steps must be re-
peated at each fold. Even then, such accuracy assess-
ments have the limitation that the target population,
to which results will be applied, is commonly different
from the source population. Commonly, it is shifted
forward in time, and it may differ in other respects
also.

A consequence of source/target differences is that
highly sophisticated modeling may be pointless or
even counter-productive. At best, model effects in the
target population may be broadly similar. Investiga-
tion of the pattern of changes over time is required.
Such studies are unusual in the data mining literature,
in part because relevant data have not been available.

Several recent investigations are noted that shed
interesting light on the comparison between observa-
tional and experimental studies, with particular rel-
evance when there is an interest in giving parameter
estimates a causal interpretation.

Data mining activity would benefit from wider
co-operation in the development and deployment of
computing tools, and from better integration of those
tools into the publication process.

Keywords: Data mining, statistics, predictive accu-
racy, target population, observational data, selection
bias, reject inference, comparison of algorithms.

1 Introduction

It is now widely though not universally understood
that training set accuracy, derived by using the train-
ing data for testing also, can be grossly optimistic.
Cross-validation or a bootstrap approach is therefore
preferred. Where however feature selection and/or
model tuning are a component of the model fitting
process, care is required to avoid subtler versions of
the bias in the training set accuracy measure. For
an unbiased assessment, any feature selection and/or
model tuning must be repeated at each fold of the
cross-validation.

Other important issues relate to the distinction be-
tween observational and experimental data, to differ-
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ences between source and target population, to the
stability and interpretability of model parameters, to
the comparison of algorithms, to the implications of
new technology for the publication process, and to im-
proving cooperation in the development of new tools.
The remainder of this section will make preliminary
comments on the first two of these issues.

1.1 Observational versus experimental data

Data mining typically uses for prediction or other in-
ferences data that are observational rather than ex-
perimental. This introduces hazards that, for data
from carefully planned and conducted experiments,
are largely absent.

Thus, in a recent study that used a large US car ac-
cident database (Meyer and Finney, 2005), the inter-
est is in a model parameter that accounts for the effect
of airbag availability on accident mortality. Many fac-
tors apart from airbag availability contribute to the
outcome. If other factors are ignored, airbags seem
to give large benefits. After accounting for the effects
of seatbelts and various other factors, benefits appear
small or non-existent.

Compare this with a notional experimental study,
where cars would be randomly assigned to have
airbags fitted, or not, and where other factors (use
of a seatbelt, speed of impact, etc) should on average
contribute only statistical noise.

Where experimental studies fail, it is typically for
one of a small number of reasons, commonly failure
of the randomization process. Other possibilities are
that experimental subjects (or units) may be untypi-
cal of the population to which results will be applied,
or that the experiment may answer a question that is
different (perhaps subtly different) from the question
of interest.

By contrast, it is hardly possible to give a sim-
ple and reasonably complete summary of the differ-
ent ways in which observational studies may fail. See
however Rosenbaum (2002). The range and variety
of different types of observational study is almost un-
limited.

In some business and industrial problems, it may
be reasonable to limit attention to a small number
of well understood causal factors. The assumption
that this is the case should not be made lightly. At
the very least, issues such as will be discussed below
severely limit the range of problems where relatively
automated data mining approaches can be trusted to
give useful results. At worst they may make any in-
ferences from available data, however carefully teased
out, perilous.

1.2 Accuracy varies with target population

A recurring theme will be that accuracy assessments
are specific to a particular target population. A sim-



ple example, using the Pima.tr data set that is in-
cluded with the MASS package for R, will illustrate
the point. There are seven columns of features that
may help explain diabetic status, recorded as No or
Yes. Use of Breiman’s random forest algorithm, as
implemented in R, gave a classification rule thus:

> Pima.rf <- randomForest(type ~ .,
+ data = Pima.tr)

The confusion matrix is

> Pima.rf$confusion

No Yes class.error
No 111 21 0.159
Yes 36 32 0.529

The error rate is estimated as 28%; this is calcu-
lated as (132x0.159 + 68x0.529)/ (132 + 68).

If however predictive accuracy is calculated for a
population in which the proportions of No and Yes are
equal, the expected error rate changes to 0.5x0.159
+ 0.5%x0.529 = 34%.

Thus use of a balanced sample in cross-validation
accuracy assessment may make a large difference to
the assessment. Any report of an overall measure
should be accompanied by details of the population
composition that is assumed. Better still, accompany
the report with details of the confusion matrix.

As an aside, note that balanced samples are a
poor use of data, unless the relative proportions, per-
haps weighted according to misclassification costs, are
equal in the target population. Even then, it is bet-
ter to use prior weights to train a model that is opti-
mal for the relative frequencies and costs in the tar-
get population. See Ripley (1996) for the relevant
Bayesian decision theory for classification models.

In the case discussed, the difference was in the rel-
ative frequencies in two categories. Differences be-
tween source and target population are common, and
rarely so straightforwardly handled. This discussion
will be pursued in the next section, noting also impli-
cations for the comparison of algorithms.

2 Honest use of cross-validation

A cross-validation estimate of accuracy, or an esti-
mate obtained from a random split of the data into
two parts, is often the best that is available. In de-
fault of anything better, it provides an upper bound
on the accuracy that can be expected for predictions
for the target population. Such estimates are in any
case commonly used when algorithms are compared.
Unless done correctly, such comparisons are meaning-
less, and potentially misleading.

Where there is feature selection and/or significant
model selection and/or significant model tuning, the
following steps are involved:

1. Select features and/or select model and/or tune
the model

2. Fit the model that is in due course selected as
“best”.

Both these steps must be repeated at each fold of the
cross-validation process, using what are the training
data for that fold.

Consider the following experiment, leading in due
course to Figure 1:

e Set up a matrix X whose n rows are observations,
and whose p >> n columns are features.

CV - select per fold +
Defective CV =
Training set .
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Figure 1: The plots repeat discriminant rule calcula-
tions, using different sets of random normal data, to
compare different accuracy measures. Each data set
had 200 observations, divided approximately equally
between three groups, and 1000 features, The train-
ing measure (filled circle) is severely biased. Ten-
fold cross-validation, with features selected using all
the data (filled square), has a less severe bias that
is nevertheless unacceptable. An acceptable measure
(points shown as +) requires re-selection of features
at each fold of the cross-validation.

(The code used to create these plots is available from
the web page noted in Section 5.)

e Fill the elements with random normal data, in-
dependent (though this is not essential to the
demonstration) between elements.

e Generate a categorical variable y, with k& = 3
categories.

Now do the following:

Defective cross-validation — select once
For each of m =2,3...,30, repeat the following
steps

1. Using an analysis of variance F-statistic as
the criterion, choose the m features that
best separate the rows of X into the k cat-
egories.

2. Do a cross-validation of a discriminant anal-
ysis with the chosen m features, and deter-
mine predictive accuracy.

Cross-validation — select at each fold

At each fold of the cross-validation, there is a
local set of training data, on which the model is
trained, with remaining data providing the local



test set. Modify the above procedure so that, at
each fold, the local training set is used for feature
selection (and any model tuning), prior to fitting
the model and making predictions for the local
test set.

Figure 1 shows, for two different X-matrices where
the data are “white noise”, and with 200 observa-
tions that were divided approximately equally be-
tween three groups, the resulting assessments of pre-
dictive accuracy, plotted against number of features.
Notice the different patterns of change in the correct
cross-validated error rate (points shown as +), dif-
ferent between the two sets of random data. Similar
results to the points shown as + will be obtained if
the overall model is assessed on a completely separate
set of randomly chosen test data, i.e. on a new matrix
Z of the same dimensions as X and filled in the same
way with random normal data.

The trap may seem obvious, but a number of au-
thors, including well-known names, have been caught
by it. See Ambroise and McLachlan (2002); Zhu et al.
(2006). In statistics as in mathematics, plausible no-
tions and methods that have not been validated with
proper care are commonly found to be wrong or mis-
guided. Simulation, with random data as in Figure 1,
can often give a useful wake-up call.

Suppose however that there is a genuine signal in
X, which will now be treated as a sample from the
source population. Suppose also that there are sys-
tematic differences from the target population, from
which we have a sample Z. Assume now that the
cross-validation is done correctly. Close tuning to fit
the source population will, at some point, lead to the
degrading of performance on the target population.
Although he does not make the point in this way,
this is implicit in the comments in Hand (2006). I
will comment further in the next section.

3 Source and target population

Differences in the relative frequencies of different
groups in the data are relatively simple to handle.
More generally, accuracy assessments that are based
on cross-validation, or that are from a random split of
the total data into training and test data, are realistic
only if the processes that generated the data are the
same processes that will apply when results are put to
practical use. The source population, from which the
data have been sampled, must be closely identical to
the target population to which results will be applied.
Or, to use different language, the model that describes
the processes that have generated the data must also
be an adequate description for the processes that will
apply when model predictions are used in practice.

A clear and unequivocal near identity of source
and target population is, with observational data, un-
usual. In a business context data that are derived
from the past year’s activities, or from the past sev-
eral years, may be the basis for changes in business
practice that will affect future years. This point will
be taken up below.

3.1 Reject inference

A common further complication is noted in Hand
(2006). In assessing credit risk, the sample is dis-
torted as a sample of the potential population of ap-
plicants. The true outcome is known only for those
applicants who were given credit, yet the inference is
required for all applicants, leading to the term reject
inference. The methodology discussed in Heckman
(1979) can in principle address this problem, but re-
quires assumptions that cannot always be checked.

Even if predictions are stable under temporal or
other changes that affect the population of interest,
it does not follow that model parameters (e.g., regres-
sion coefficients) will be stable. There are subtle and
complex issues that affect the interpretation of such
coefficients when they are derived from observational
data.

3.2 Source and Target — A Taxonomy

The following are typical of situations that may occur
in practice. This is a slightly modified version of the
classification of the range of possibilities that appears
in Maindonald & Braun (2006):

1. The data used to develop the model are, to a
close approximation, a random sample from the
population to which predictions will be applied.
If this can be assumed, a simple use of a resam-
pling method will give an accuracy estimate that
is unbiased with respect to the population that
is the target for predictions.

2. Test data are available that are from the target
population, with a sampling mechanism that re-
flects the intended use of the model. The test
data can then be used to derive a realistic esti-
mate of predictive accuracy.

3. The sampling mechanism for the target data dif-
fers from the mechanism that yielded the data
in 1, or yielded the test data in 2. However,
there is a model that predicts how predictive ac-
curacy will change with the change in sampling
mechanism. Thus, in the Pima.tr and Pima.te
datasets that were the basis for the calculations
in Subsection 1.2, the predictive accuracy is a
function of the relative number that are Yes.

4. The connection between the population from
which the data have been sampled and the target
population may be weak or tenuous. It may be so
tenuous that a confident prediction of the score
function for the target population is impossible.
In other words, a realistic test set and associated
sampling mechanism may not be available. An
informed guess may be the best that is available.

These four possibilities are not completely distinct;
they overlap at the boundaries. The distinction be-
tween them, such as it is, is however a good start-
ing point for making a judgment on the closeness of
the connection between the source and target popu-
lations.

Item 3 covers a wide range of possibilities. One
simple possibility was discussed earlier, where the
remedy is to give groups within the data weights that
reflect the relative frequencies and perhaps costs in
the target population, rather than those in the source
population. The forest cover dataset from the UCI
Machine Learning Database (Newman et al, 1998) is
interesting in this connection. The relative numbers
of the seven different forest cover types change sys-
tematically as a window of perhaps 5000 from the
500,000 observations moves through the data. This
presumably reflects systematic changes in geograph-
ical location — information not included in the data.
As the window moves, there are large changes in lo-
cal predictive accuracy, i.e., using the data within the
window as target. This is the case both for a model
fitted to the data as a whole, and when the model is
fitted to the data locally. While the confusion ma-
trix from the local model changes somewhat between
successive windows, the effect on predictive accuracy
is of minor consequence relative to that of changes in
the proportions of the different cover types.



For reject inference problems, approaches such as
in Heckman (1979) are available, but rely strongly on
specific modeling assumptions. Validation is accord-
ingly both more necessary and more difficult.

In another common circumstance, there may for
example be very extensive data on house prices in two
suburbs of a large city. For predicting house prices in
another suburb we have what is effectively a sample of
two, and must further assume that this can be treated
as a random sample. The assumption that errors are
independently and identically distributed across the
total sample of prices, as in most software that is ex-
plicitly aimed at data mining, will lead to optimistic
assessments of predictive accuracy. (For other exam-
ples see Maindonald, 2003). Similar issues arise with
data that are a time series. Again it is necessary, for-
mally or informally, to account for the “error” part of
the model.

3.3 Changes with time

Consider again the use of the current year’s data to
make assessments that will affect next year’s busi-
ness activity. If data from several previous years are
available, then it makes sense to run the analysis sep-
arately for each of those years, and check for con-
sistency between the different sets of results. If such
data are not available, then there may be no good ba-
sis for judging the relevance to the subsequent year’s
business activity. Even where there does seem to be
some modest level of consistency over time, this con-
sistency may be placed in jeopardy by changes in ex-
ternal circumstances. Economic shocks — a dramatic
increase in oil prices or an economic recession — may
depending on the specific context create discontinu-
ities that invalidate or place in doubt assessments that
are based on past data.

Where the source and target populations are sep-
arated in time, model refinement is readily taken to
a point where improved accuracy for the source pop-
ulation leads to reduced accuracy for the target pop-
ulation. What is signal at one point in time may
with the passage of time become bias. Under-fitting,
relative to estimates of accuracy that are based on
a random split between test and training data or on
cross-validation, may lead to improved accuracy for
the data that matter.

Hand (2006) has two interesting examples that re-
late to credit scoring. Hand’s Figure 4 shows the er-

ror rate over a 3% period, from a classifier built at the

start of the period. The error rate drops to almost
zero after 8 months, then after a year is back at the

initial level, then rises to be 2% times the initial level

by the end of the period. In a second graph (Hand’s
Figure 5), the performance of a tree-based classifier
is compared with that of a linear discriminant func-
tion, over customers 1 to 60,000, using odd-numbered
customers in the range 1 to 4999 for training. At the
beginning of the series, the misclassification cost was
around 0.1 less for the tree-based classifier. This dif-
ference had reduced to perhaps 0.05 by the end of the
series, with the performance of the linear discrimi-
nant staying fairly constant at a cost of around 0.225.
Other issues concern inevitable changes in the compo-
sition of the target population, arbitrariness and drift
in the class definition (“concept drift”), and vagueness
in the assignment of relative costs.

3.4 Implications for comparing algorithms

In practice then, there is not the identity between
source and target populations that the standard com-
parisons of algorithms assume. Published compar-
isons of algorithms are at best broad indications of
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Figure 2: Calculations used the diabetes dataset, in-
cluded in R’s mclust package. Proximities r;;, calcu-
lated for any pair (i, j) of points as the proportion of
trees in which they appear at the same terminal node,
were derived from use of the randomForest function
with the diabetes dataset. Distances 1-r;; were then
used with R’s cmdscale metric scaling function, yield-
ing a two-dimensional representation.

performance, even once careful attention has been
given to advice such as appears on the web site Keogh
?t al 52006) or in the papers Elkan (2001); Salzberg
1997).

Hand (2006) makes the further point that, in com-
parisons of different algorithms, users who are more
expert with a particular method will have a bias to-
wards obtaining their best results with that method.
This, and the inevitability that performance is to an
extent data dependent, are yet further reasons for
treating published comparisons of algorithms as, at
best, broad indications of performance.

A quick check through the UCI Machine Learning
repository did not reveal any sizeable data sets that
are well suited to studying changes in algorithm per-
formance over time. This is clearly a serious gap in
the resources that are currently available for testing
and evaluating algorithms. In a number of cases (e.g.,
the email spam database), it would be highly inter-
esting to have comparable time-stamped data from a
period of several years. The newly established UCR
Time Series Data Mining Archive (Keogh, 2006) is
therefore very welcome. Many practical classifica-
tion problems have a time-dependent component that
should not be ignored.

3.5 Low-dimensional representations

It is helpful to characterize, where possible, condi-
tions under which one or other algorithm is likely to
perform well. A low-dimensional representation that
shows the separation of groups in supervised classifi-
cation, or of clusters in a cluster analysis, may give
valuable insight. It may indicate gross features of the
distribution of data, and give visual clues that high-
light differences between one algorithm and another.
Where the main effect of tweaking an algorithm is to
change which observations are misclassified, the plot
will show this. Insight is often more helpful than a
0.1% gain in the cross-validation estimate of predic-
tive accuracy.



Figure 2 was obtained by using the “proximities”
from a randomForest discriminant rule to derive a
low-dimensional representation. The figure legend
gives the details. The plot identifies three points
where the class labels seem in doubt. Plots of dis-
criminant scores from R’s 1da (MASS package) or of
the ordination scores from svm (e1071 package) with
default parameters, do not show the same clear sepa-
ration. Why?

4 The Interpretation of Model Parameters

An unequivocal interpretation is usually impossible
when there are multiple explanatory features that
might be included in the model, perhaps measured
with different accuracies. Typically, it is necessary
to appeal to other supporting sources of information.
Parameter estimates, even if highly significant statis-
tically, cannot necessarily be taken at face value. I
will note several instructive case studies. Even if not
highly typical of the problems tackled by data min-
ers, they have lessons of which data miners should be
aware.

A referee has made the point that whether obser-
vational studies are effective in any particular circum-
stance will depend on the importance, subtlety and
nature of the inference. Where the interpretation of
parameter(s) is an issue, and there are multiple ex-
planatory features, there is inevitable subtlety.

4.1 Smoking and lung cancer

Notwithstanding the strength of the link between
smoking and lung cancer, with papers making the
link appearing in the late 1920s, it was not until the
1950s that the connection was placed beyond reason-
able doubt. Only when it was clear that multiple
independent lines of evidence all pointed in the same
direction were the most tenacious critics silenced. See
Freedman (1990) for further commentary on the his-
tory, on the statistical issues, and for a number of
other examples.

Effects that are much smaller than in the connec-
tion between smoking and lung cancer may be hard
or impossible to tease out, especially if several factors
are involved and no one factor strongly predominates.

4.2 Hormone Replacement Therapy

The health effects of hormone replacement therapy
(HRT) have been a subject for extensive investiga-
tion over a long period of time, with extensive data
now available both from observational and from ex-
perimental studies. This large collection of studies
offers data analysts a unique opportunity to compare
results between experimental and observational stud-
ies.
Case-control studies, as in Varas-Lorenzo et al
(2000), are among the best-regarded of the obser-
vational studies. In these “cases”, i.e., individuals
who have the disease, are first identified. These are
then matched with disease-free “controls”, chosen to
be as similar as possible in all respects except per-
haps use of the therapy, in this case HRT. The hope
is that over subjects as a whole, disease status will
be the same as if the assignment to receive HRT had
been done randomly. Almost inevitably the match-
ing is not completely effective, and regression must be
used to adjust for remaining differences. If an impor-
tant explanatory variable is omitted from the adjust-
ment (perhaps, as suggested below, childhood socio-
economic status), conclusions may be fatally compro-
mised.

Contrast such studies with experimental studies
such as are reported in Rossouw et al (2002). As they
enrol, participants are randomly assigned either to
HRT or to a placebo, perhaps subject to restrictions
that maintain a numeric balance between treatment
and control groups. Strict adherence to randomiza-
tion protocols ensures the identity of the treatment
and control populations.

A large meta-analysis of the “best” quality co-
hort and other observational studies (Stampfer and
Colditz, 1991) found a relative reduction in coronary
heart disease (CHD) risk of 50% from any use of HRT.
Where population based studies gave more or less
definitive results, they agreed broadly in their conclu-
sions, to the extent that Stampfer and Colditz could
claim

Overall, the bulk of the evidence strongly
supports a protective effect of estrogens that
is unlikely to be explained by confounding
factors.

Broad agreement across the different studies does not
however mean that the estimates are correct. Few
would now defend Stampfer and Colditz’s conclusion,
for reasons that will now be discussed.

The experimental results showed that, far from re-
ducing CHD risk, risk was increased. One large ran-
domized controlled trial (Rossouw et al, 2002) found
that HRT use increased CHD hazard by a factor of
1.29 (95% CI 1.02-1.63), after 5 years of follow-up.

This was particularly anomalous because the re-
sults of the observational studies have been consis-
tent with the results of randomized trials for other
outcomes — breast cancer (increased risk for the com-
bined oestrogen/progesterone HRT; for a 50-year old
from 11 in 1000 to maybe 15 in 1000), colon cancer
(reduced risk), hip fracture (reduced risk, but diet,
exercise and other drugs can achieve the same or bet-
ter results) and stroke (increased risk; for a 50-year
old from 4 in 1000 to 6 in 1000). See again Swan et
al (2006) and e.g., Rossouw et al (2002) for further
details and references.

Lawlor et al (2004) discuss why there is agree-
ment for most outcomes, but not for CHD. Childhood
socio-economic indicators are known to be important
as predictors of CHD, independently of adult socio-
economic status (SES), behavioural and physiological
risk factors. This is not true for the other outcomes
considered. Additionally, the use of HRT is “strongly
socially patterned”; those with low childhood SES less
commonly used HRT. Consider now individuals with
low childhood SES, but high adult SES. Their low
childhood SES is associated with low use of HRT and
consequent lowered risk of CHD. In the analysis, the
only adjustment is for their high adult SES. The ben-
efit derived from non-use of HRT is wrongly ascribed,
in the analysis and its associated interpretation, to
their high adult SES.

If this account is correct, it highlights the impor-
tance of accounting properly for socio-economic ef-
fects. When studying an outcome of interest from an
observational public health study, it is important to
ask whether the simpler type of model that can ac-
count for breast cancer risk is adequate, or whether
the situation that pertains to CHD risk is more likely.

4.3 Other examples and references

Do airbags save lives? The available US data are not
encouraging, if analyzed with care. See Meyer and
Finney (2005), and articles in a forthcoming issue of
Chance that will continue the discussion, now with
corrected data. The data, although extensive, suf-
fer from a version of the reject inference problem —



they are from accidents that are sufficiently serious
that at least one car was towed from the scene. Es-
timates of the effect of airbags change spectacularly
with changes in the other factors that are incorpo-
rated into the model.

Leavitt and Dubner (2005) have a number of ex-
amples that illustrate the care that must be taken in
bringing together multiple sources of evidence, in or-
der to reach conclusions that seem reasonably secure.
Their account of the reasons for the reduction in US
crime rates in the 1990s, which I find convincing, has
attracted huge controversy.

Rosenbaum (2002) teases out practical implica-
tions of the use of observational rather than exper-
imental data, using for illustration a number of inter-
esting examples. The insights in this important book
have received less attention than they deserve in the
statistical community, and scant attention in the data
mining community. The brief final chapter, entitled
“Some Strategic Issues”, makes a number of specific
suggestions that merit attention.

5 Re-engineering the publication process

Advances in computer technology allow and demand
large changes in the reporting of data, in data analy-
sis, in the total content of publications, and in access
to the separate components of the content (Maindon-
ald, 2005). Data mining is among the areas where the
potential for change and innovation is greatest. Code
and data that are used in papers should be available
as a matter of course, preferably as part of a com-
pendium (Gentleman and Lang, 2004) such as will
now be discussed, which the reader can readily pro-
cess through a computer program to create a version
of the final paper. The compendium should include
or give access to

e the text of the paper
e the data on which it is based, and

e the code used for analysis and for generation of
tables and graphs.

The notion of reading a paper is substantially en-
larged, to include interaction with the processes in-
volved in moving from data to analysis to published
paper.

The noweb literate programming syntax (Johnson
and Johnson, 1997) is a suitable vehicle for the im-
plementation of these ideas. My experience has been
with the implementation in the R system (R Core De-
velopment Team, updated regularly). The function
Sweave (Leisch, 2006) provides a flexible framework
for mixing text and R code in an enhanced ITEX
document for automatic report generation. When
processed through R’s Sweave function, markup in-
structions that surround the R code chunks determine
which chunks, and which of the output generated by
the code, will be included in the final IXTEX docu-
ment. Output may include tables and figures.

Gentleman and Lang (2004) argue strongly for the
provision of an Sweave type compendium for any pa-
per that presents results of genomic analyses, as a
matter of standard practice. Users can then know
with certainty the steps that have been followed. Ben-
efits include the opening to scrutiny of any biases
in the analysis protocols, and a ready ability to re-
produce results and test their sensitivity to analysis
choices.

The arguments are surely equally cogent for jour-
nals and conferences that publish data mining papers.
Provision of Sweave type features is a reasonable re-
quirement for any language that is intended for sci-
entific use. A present serious limitation of Sweave is

that code that appears in the ITEX document has
comments stripped from it.

An Sweave version of this present paper is avail-
able from the web page http://www.maths.anu.edu.
au/~ johnm/dm/ausdm06/ausdm06-jm.Rnw. The R
packages hddplot, mclust (which includes the dia-
betes dataset), randomForest and xtable must be in-
stalled.

The file ausdmO6-jm.Rnw, when processed
through R’s Sweave function, yields a IXTEX file and
associated graphics file from which this present paper
can be generated.

6 Final Comments

The issues that I have raised are all in a sense statis-
tical, though not always receiving the attention that
they deserve in statistics courses. Here, I will com-
ment on the different traditions of data mining and of
statistics, and on the large area of interest that they
have in common.

6.1 Different traditions of data analysis

Statistics started as a discipline that had a strong
practical orientation. The small number of statistics
departments that predated World War II likewise had
a strong practical orientation. The three decades that
followed World War II saw the widespread establish-
ment of statistics departments, now with a strong the-
oretical focus. Many of the teachers saw statistics as
primarily a mathematical discipline. Over the inter-
vening years, the teaching of statistics has slowly ma-
tured to pay more attention to applications, though
this change still has some way to go. Over this same
period, theory and computing have moved in synergy
to bring been huge advances both in theory and in
practical computing tools.

The R system (R Core Development Team, up-
dated regularly) is an outstanding product of the
new synergy between theory, computing and prac-
tice. It demonstrates what is possible when ex-
perts co-operate widely across national boundaries. It
promises larger achievements yet, more in tune with
modern ideas of computer systems.

Where academic statistics took mathematics and a
range of practical demands as its points of departure,
data mining has taken computing, algorithmics and
data bases as its points of departure. It has thrown
out a variety of challenges to statistics — challenges
which I think valuable for the future development of
statistics. A specific challenge is to make statistical
methodology available to those who, while bypassing
much of the mathematical theory, wish to have access
to the fruits of that theory. Simulation is for this as
well as for other purposes highly important, especially
as it sometimes offers a way ahead in cases where the
theory is intractable.

Data miners face, likewise, challenges from the sta-
tistical tradition, beyond those raised earlier in this
paper. Among these is the challenge to marshal com-
puting skills and tools effectively. Standalone tools
are typically deficient in the data manipulation and
graphical abilities needed to use them effectively, re-
quire the mastering of their own idiosyncratic user
interfaces, and do not penetrate widely into the com-
munities where they might find use. Contrast this
with the use of R or another such system, as a frame-
work for developing new software, and as an interface
into the end product. Many data miners, sensitive to
the benefits of such a common interface, are already
using and contributing to R. Those who do not wish
to go this route have the challenge of finding or de-
veloping a system that can equal or better R: in the



expertise that has contributed to its development, in
its range of abilities, in the trustworthiness of its out-
put, in its cohesion, in its linkages into other systems,
in automated checks that impose minimal standards
of consistency across the system as a whole, in the use
of the internet to give access to R and to associated
resources, in its relative ease of use, and in the wide
extent of its user community.

Hard-won insights from both the practical and the-
oretical streams of statistical development require the
attention of data miners. I attach high importance
to issues that I have noted in this paper, center-
ing around source and target population, realistic as-
sessment of predictive accuracy, the interpretation of
model parameters, and the insights that may be de-
rived by comparing results from observational studies
with results from experimental studies.

6.2 The training of data miners

To what extent is understanding of statistical issues,
such as I have canvassed, required for effective data
mining? Relatively automated use of data mining
tools will give better results for some applications
than for others. Without however some sense of what
issues are important, how will the data analyst know
the difference? Anyone who expects to make data
mining a substantial part of their work will do well to
take time and effort to get on top of the issues that I
have canvassed. They can all be understood without
recourse to advanced mathematics. To be effective,
these points must be reinforced by exposure to, and
understanding of, the practical data analysis contexts
in which they arise.

6.3 Course materials

Course materials for a course component that includes
a statistically focused commentary on data mining
are available from my website (Maindonald, 2006).
Data that the laboratory exercises explore include two
substantial datasets that were mentioned above — the
US forest cover data and the US car accident data.
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